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Abstract-A simplified, approximate means for computing the 
distributed capacitance and inductance matrices for TEM-mode 
(or quasi-TEM-mode) single or multiple transmission lines is 
presented. Cases having multiple dielectrics and/or ground 
planes are included. The conductors used may be either rect- 
angular or planar. Simplicity is achieved by use of the “method 
of moments” along with two physically meaningful charge ba- 
sis functions per conductor face. The techniques utilized are 
relatively easy to program and result in fast programs which 
are accurate for many important geometries. Such programs 
should be suitable for inclusion as subroutines in larger CAD 
programs for analysis and design of high-speed digital or mi- 
crowave circuits. 

I. INTRODUCTION 
HE purpose of this paper is to present approximate T means for computing interconnect parameters that are 

sufficiently simple and fast that they can readily be incor- 
porated as a subroutine in a CAD program for the design 
of high-speed digital or microwave circuits. The concepts 
and equations involved in the methods described below 
are sufficiently simple that most engineers will have little 
difficulty in relatively quickly writing their own program 
based on them. The methods used involve approximations 
which tend to lose accuracy in some unlikely situations 
such as the case of two coplanar strips with an extremely 
small separation. However, as will be illustrated by ex- 
amples, in the practical range of line geometries the ac- 
curacy is surprisingly high. 

Existing programs for treating problems of this type 
typically involve the “method of moments” in some form 
[ 11-[3], often using a large number of rectangular or other 
charge basis functions, or a finite-element method using 
a very large number of elements [4], [5]. These ap- 
proaches are quite general and can be very accurate, but 
they may require the generation and inversion of large 
matrices, two processes which can lead to considerable 
program complexity and a large amount of computation. 
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(Sometimes the matrix size to be inverted may be of the 
order of hundreds or even thousands.) Here we also use 
the method of moments but, instead, use two kinds of 
physically meaningful charge basis functions, each of 
which is associated with an entire side of a conductor. In 
this way there are only two basis functions used per side 
of a rectangular conductor, and the required matrix size 
is only two times the number of sides that must be rep- 
resented. This approach, however, does have the limita- 
tion that only planar, rectangular, or possibly trapezoidal 
conductors can be considered. However, this is not a 
drawback for most situations of practical interest. Our 
method also uses “point matching” in the method of mo- 
ments (which implies the use of delta-function “testing” 
functions). This also adds simplicity to our procedures. 

We will first consider the problem of computing the 
interconnect capacitances per unit length. After having 
established procedures for doing this, the computation of 
the corresponding inductances per unit length will be quite 
simple. 

11. THE CHARGE BASIS FUNCTIONS 

Fig. l(a) shows a flat conductor of width w which ex- 
tends to infinity into and out of the paper. One of the two 
basic charge distribution functions we use is the even- 
symmetric function 

ue(x, b, W) = (1) 

which is sketched in Fig. l(b). This charge distribution is 
exactly that which would occur on an infinitely thin con- 
ductor such as that in Fig. l(a) if there were charge q 
coulombs /meter along the length of the conductor and an 
equal amount of opposite charge at infinity [6]. It can be 
shown [6] that the potential arising from (1) observed at 
any point z = x + j y  in the complex plane is given by 

where 
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(C) 
Fig. 1 .  (a) A metal strip which extends into and out of the paper. (b) An 
even charge basis function such as is used in this paper. (c) The corre- 
sponding odd basis function. 

Here, eo is the dielectric constant of the medium, b locates 
the center of the charge distribution of width w, and, in 
general, b can be complex so as to center the charge dis- 
tribution anywhere in the plane. An even-symmetric 
charge basis function as used herein will consist of a 
charge distribution as in (1) at a surface of the conductor 
plus any images of this charge that may be required by 
the presence of dielectric or metal planar interfaces (as 
will be explained Sections IV and V below). 

We also use the corresponding odd-symmetric charge 
distribution 

which is sketched in Fig. l(c). This is the charge distri- 
bution function that would be induced on the conductor 
in Fig. l(a) if it were immersed in a uniform electric field 
in the x direction in the figure. We have determined that 
the potential at any z caused by the charge distribution (3) 
centered at b is given by 

where 

H,(z, b, w) = Re [(z - b) - sign (Re (z  - b)) 

J(z - b)* - ( ~ / 2 ) ~ ] .  (4b) 

Here sign ( ) is to be replaced by the sign of its argument. 
The constant g in (4a) is either ?r times A in (3) or some- 
thing close to that value. However, we have not con- 
cemed ourselves with this point because it will be con- 
venient to simply deal with g in (4a), and the relation 
between A and g is not required. Note that the distribution 
in (3) has zero net charge. The odd-symmetric charge ba- 
sis functions that we use consist of a distribution as in (3) 
at a surface of the conductor plus any images of this charge 
that may be needed to represent the effects of adjacent 
dielectric or metal interfaces. 

In the methods below we use a superposition of the 
above even and odd charge distributions to approximate 
the charge distribution on each face of a conductor. Ex- 
amples have shown that in most instances this works very 
well. However the use of these distributions can be seen 
to have one weakness in that in the case of rectangular 
conductors they contain a charge singularity at the comers 
which is somewhat stronger than it should be. It is known 
that the transverse field and charge singularity as one ap- 
proaches the edge of an infinitely thin conductor as in Fig. 
l(a) should blow up according to p-(1/2) ,  where p is the 
distance from the edge of the strip [7]. Equations ( 1 )  and 
(3) are seen to have this property. However, in the case 
of a right-angle corner, the charge distribution should 
blow up according to p - ( ' I3 )  [7]. Thus, particularly in the 
case of rectangular conductors, we will wish to keep the 
sampling points for potential away from the comers since 
the charge and potential there will be somewhat exces- 
sive. 

111. A SIMPLE EXAMPLE 
The main concepts of the method are easily explained 

in terms of a simple example, which we will refer to as 
Example 1. Consider the problem of obtaining the dis- 
tributed capacitance between symmetrical coplanar strips 
as in Fig. 2, which are viewed as extending into and out 
of the paper and which have negligible thickness. For the 
moment let us assume that e l  = eo. We apply potential I/ 
and -V to the strips as shown, and represent the total 
charge distribution on each strip by the sum of an even 
distribution as in (1) plus an odd distribution as given by 
(3). The potentials at any point z arising from these dis- 
tributions are given by (2a), (2b), (4a), and (4b) and they 
sum to 
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Eo t 
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Fig. 2. Two coplanar strips extending into and out of the paper. 

Q is the normalized charge per unit length and G is the 
normalized odd-distribution amplitude. Implicit in ( 5 )  is 
the fact that since the potential on the left strip is the neg- 
ative of that on the right strip, the same relation applies 
between the charge distributions on the two strips. For 
this reason the H,(z, -6 ,  w) for the left strip has the op- 
posite sign to He(z ,  b ,  w) for the right strip. However, 
note that Ho(z ,  -b ,  w) has the same sign as Ho(z ,  b ,  w) 
for the right strip since it can be seen that if an odd charge 
distribution as in Fig. l(c) is simply translated to the left 
to be centered at x = - b ,  the resulting distribution at x 
= -b will be the negative of the original distribution at 
x = b. Thus the plus sign is correct for the second square 
bracket in ( 5 ) .  

For simplicity we will rewrite (5) as 

+(z)  = Q M z )  + Gho(z). (7) 

Note that because of the symmetry in this particular prob- 
lem we only need to solve for two amplitudes Q and G in 
order to completely define our approximate charge distri- 
butions. We will do this by forcing the potential + ( z )  to 
be equal to Vat the two match points 

~1 = X I  = b - ( Y ) w / ~  

22 = ~2 = b + ( Y ) w / ~  (8) 

indicated in Fig. 2. Here we have introduced a match- 
point parameter Y, which is the ratio of the distance of a 
match point from the center of a charge distribution di- 
vided by the half-width of the distribution. (We have 
found that for either thick or thin conductors where there 
is no ground plane nearby Y = 0.8 is a good value to use.) 
These constraints lead to the equations 

(9) 

which are readily solved for Q and G. Then the capaci- 
tance per unit length between the strips is 

C = 4 / (2V)  = e0Q/(2V). (10) 

Note that though G was a necessary part of the solution, 
it is not used in computing C since the odd charge basis 
function has zero net charge. 

TABLE I 
THE NORMALIZED DISTRIBUTED CAPACITANCE FOR COPLANAR STRIPS AS I N  

EXACT VALUES 
FIG. 2 COMPUTED BY THE METHODS OF THIS PAPER, COMPARED WITH 

S / w  C/%* % Error+ s / w  C/e0* % Error' 

0.1 2.808 -0.43 0.5 1.910 0.47 
0.2 2.423 0.62 1.0 1.567 0.26 
0.3 2.191 0.64 2.0 1.280 0.08 
0.4 2.031 0.59 3.0 1.140 0.00 

* Computed by methods of this paper for uniform dielectric eo. 
+ Percent error compared with results computed from conformal map- 

ping. 

In Table I values C/eo are tabulated for this example 
as computed by the above methods and also as computed 
from an exact formula [8]. The percentage error is also 
given. Note that the accuracy is excellent, even for the 
case where s /w is only 0.1. 

In Fig. 2 the coplanar strips are shown to be on a sub- 
strate with dielectric constant e l .  That case can easily be 
handled by the above analysis because adding dielectric 
to the lower half plane will have no effect on the electric 
field pattern, though it will increase the D field in the 
lower half plane by the relative dielectric constant. Thus 
if e l  differs from eo the distributed capacitance between 
the strips becomes 

where C was for = eo. 

IV. FORMULATION OF CASES INVOLVING RECTANGULAR 
CONDUCTORS 

Let us now consider the more general case of two asym- 
metric rectangular conductors on a dielectric substrate. 
Our discussion also is applicable to cases including ad- 
ditional conductors. Here we will also need the potentials 
Ue(zk,  b,, w,) and Uo(zk,  b,, w,,,) at any point z k  caused 
by vertically oriented even- and odd-charge basis func- 
tions of the forms in (1) and (3). Their potential functions 
are easily defined in terms of (2b) and (4b) to be 

and 

u o ( z k ,  bm, wm) = Ho(-jzk, -jbm, wm)* (13) 

Here b, is a complex number which locates the center of 
the mth conductor face and w, defines the width of that 
face. 

In the example in Fig. 3 we have followed a convention 
in numbering the faces which we have found to be con- 
venient for programming purposes. Going from left to 
right, we first number the bottom faces of the two con- 
ductors plus the bottom faces of any additional conductors 
which might be included on the right. (Note that the z k  

and the bk are both defined using this convention.) If the 
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problem deals with very thin conductors these will be the 
only faces that need to be used. If accounting for conduc- 
tor thickness is desired, then starting from the left we next 
number all the horizontal faces at the tops of the conduc- 
tors. Next we add numbering on the vertical faces. A con- 
venient scheme is first to number the left faces of all the 
strips going from left to right and then to number the right 
faces in the same manner. Using this numbering scheme 
for the b, and zk points, it is easy to provide user options 
for including charge distributions only for the conductors' 
bottoms, or for the bottoms, tops, and sides, as may be 
desirable for a given situation. Also the numbers m for 
the various faces of a given strip will always differ by a 
multiple of M ,  the number of strips. 

In the case in Fig. 3 we include image charge distri- 
butions (suggested by dashed lines in the figure) to ac- 
count for the effects of the dielectric interface. Then with 
the images in place the problem is solved using only the 
dielectric constant eo for the upper region. As suggested 
in the figure, the image charges are of exactly the same 
form as the charges in the upper region except they are 
scaled in amplitude by [9] 

Note that if c l  > eo, then K will be negative so that the 
sign of the image charge in the lower half plane will be 
the opposite of that for charge at the corresponding point 
in the upper half plane. Including the image, the potential 
from a horizontal even-symmetric basis function for a 
conductor face centered at b, is seen to be 

while that from a vertical even-symmetric basis function 

Here z k  and 6, are the complex conjugates of zk and b,. 
Likewise, the potential from an odd-symmetric basis 
function for a horizontal conductor face is 

while that for a vertical conductor face is 

(The different use of conjugates in (15a) and (16a) as 
compared with (15b) and (16b) is necessary to provide the 
proper symmetry.) We have degrees of freedom to fix the 
potential at two points on each conductor face, and these 
"match points" can be defined for a horizontal conductor 
face m by 

z2, - = b, - (rh) wm/2  z~~ = b, + (rh)wm/2 

Here the parameters rh and rv have the same significance 
as r in (8) but for flexibility they have been defined in- 
dependently for the horizontal and vertical faces, respec- 
tively. Though the solution is usually not very sensitive 
to the precise value of rh and rv, we have found that ex- 
pect for an extreme situation or two, which will be noted 
in Section X, rh = rv = 0.8 are particularly good values 
to use if the structure has no ground plane, and rh = 0.67 
with rv = 0.8 are particularly good to use if the structure 
has a ground plane (or two). 

Let us assume that the configuration to be analyzed has 
M thick conductors, so we want to include charge on all 
four faces of each conductor. Then, analogous to (5) and 
(9) ,  using (15a), (15b), (16a), and (16b), we obtain the 
system of equations 

4M 

m = l  C PLQm + PgmGm = u k l k = l t o l M  (18a) 

or 

[ p e  I [E] = [ V I .  

In the above the vk are the potentials at the 8M match 
points zk, while the P' and P o  are both matrices with 8M 
rows and 4M columns. Thus (18b) contains an 8M by 8M 
matrix (formed from P' and P o )  multiplied by a vector 
consisting of 4M unknown Q, values and 4M unknown 
G, values (defined as in (6)). Of course, if the strips are 
thin the number of equations can be reduced to 2 M ,  as 
discussed above, since only one pair of basis functions 
will be required per strip. We shall discuss the fixing of 
the vk values in the next two sections. 

1s 

PE, = [u,(zk, b,,, w,) + KUe(zk, b,, w,)]. (15b) 
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Fig. 4. Three transmission-line conductors with their voltages referred to 
a ground plane. 

V. CALCULATION OF THE CAPACITANCE MATRIX WHEN 
THE VOLTAGES ARE REFERENCED TO A GROUND PLANE 

Let us consider the example in Fig. 4, which has M = 
3 strips and a ground plane. Cases of this sort call for a 
capacitance matrix of order N = M ,  and for this example 

(For cases without a ground plane, to be discussed in the 
next section, the matrix will be of order N = M - 1.) 
Here the subscripts t on  the qtn are meant to imply the total 
charge per unit length on conductor n (in contrast to q in 
( 6 ) ,  which is the charge per unit length on only one face 
of a conductor). We can solve for the capacitances in col- 
umn p of equations such as (19) by applying a potential 
V,, to conductor p and setting the potentials of all other 
conductors to zero. Then 

which for a given value of p is used to obtain C ,  values 
for n = 1 to N .  The actual computations are accomplished 
by solving (1 8b) with 

vk = V,, for all zk on conductor p 

in order to get the Q,. Then in order to get qtn for con- 
ductor n we use 

qtn = 60 Q, (22) 

summed over all sides m on conductor n. (The sum above 
will have four terms if basis functions are used for all four 
sides of the conductor n.) This is repeated so as to com- 
pute the total charge induced on each of all N strips by 
the voltage on strip p with all other strips grounded. Then 
the C,,, are obtained using (20). In order to compute the 
N 2  capacitance coefficients (18b) is solved N times, each 
time with a voltage V,, applied to a different conductor 
with all other conductors grounded. 

VI. CALCULATION OF CAPACITANCE MATRICES WHEN A 
GROUND PLANE Is NOT PRESENT 

In many digital situations the spacing between conduc- 
tors is small compared with the thickness of the substrate, 
and the conductors are driven by devices connected be- 
tween them on the surface of the substrate. In such situ- 
ations even though the bottom of the substrate may be 
metallized it will have negligible effect, and the thickness 
of the substrate can be viewed as infinite. Also, since the 
conductors are driven by devices connected between them 
on the surface the total net charge on the conductors must 
add to zero. The examples in Figs. 2 and 3 are both of 
this sort. In the case of Fig. 2 the symmetry of the ge- 
ometry and applied voltages guarantees that the total 
charge will add to zero. However, in the asymmetrical 
case in Fig. 3 additional steps are necessary to ensure zero 
net charge on the conductors so that the capacitance be- 
tween the conductors will be computed correctly. The 
procedure will be explained in terms of a somewhat more 
general example. 

Fig. 5 shows a case of three conductors on a semi-in- 
finite dielectric substrate. In this case conductor no. 0 will 
be viewed as the “reference” or “return” conductor and 
the voltages VI and V2 on lines no. 1 and no. 2, respec- 
tively, are measured with respect to the potential on line 
no. 0. The charges on lines 1 and 2 caused by VI and V2 

are qrl and qt2, and these must always be balanced by 
charge qto on line no. 0. It will be necessary for us to take 
a special step in order to enforce this charge-balance con- 
dition. This charge-balance constraint has the effect of 
uniquely fixing the potential of the strips with respect to 
infinity. If we only fixed VI and V2 defined in Fig. 5 the 
values of qrl and qt2 would not be unique because the po- 
tential of the three strips with respect to infinity would 
still be arbitrary. Note that enforcing charge balance was 
not necessary for the cases treated in Section V, which 
had ground planes, because the presence of a plane at zero 
potential ensures that the charges on the strips plus the 
charges on their images will always add to zero. 

To treat a case which has no ground plane, such as the 
case in Fig. 5 ,  we use (18b) M times (where M is the total 
number of strips), each time with different potentials ap- 
plied to the strips. We first solve the equations using po- 
tential vk = V (1 V for convenience) at all points on all 
strips. This results in charges having the same sign on all 
strips with equal and opposite charges at infinity. In this 
way the charge-voltage relationship with respect to infin- 
ity (i.e., ground) is established. We will designate the re- 
sulting total charges on the strips obtained with the aid of 
(22) as q;,. Next in order to compute the capacitances in 
column p of the capacitance matrix we apply a voltage V,, 
to all points on conductor p (where p is not zero) and zero 
voltage to all points on all the other conductors including 
no. 0. Solving (18b) and (22) leads to another set of M 
charges 4;; with n = 0 to N = M - 1. To enforce charge 
balance we then solve for a,, in 

N N 

n = O  c q:, + a,, n=O c q;; = 0. 
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No. 0 1 No.1 No. 2 

Fig. 5 .  Three transmission-line conductors on a semi-infinite dielectric 
substrate. Here the voltages on lines 1 and 2 are referred to line 0. 

The resulting corrected charges on strips 1 to N = M - 
1 are then obtained using 

(24) 

and the values for column p of the capacitance matrix are 
then obtained using (20). This process is repeated f o r p  
= 1 to N applying a voltage V, to conductor p and zero 
voltage to all other conductors of the structure in order to 
obtain the elements in all N = M - 1 columns of the 
capacitance matrix. It is of interest to note that if a, had 
been known ahead of time the charges obtained by (24) 
could have been obtained immediately from (18b) if a 
voltage V, + a, V had been applied to conductor p and a 
voltage a, V was applied to all the other conductors. 

q t n  = q;n + Qpq:A, 

VII. ADDITION OF ANOTHER DIELECTRIC OR METAL 
INTERFACE 

The examples in Figs. 3 ,  4, and 5 ,  which involve only 
one dielectric interface or one ground plane with no di- 
electric interface, require only one set of images. How- 
ever, a case such as that in Fig. 6 ,  which has two dielec- 
tric interfaces, cases having one dielectric and one metal 
interface, and cases having two metal interfaces all the- 
oretically call for an infinite number of images [9]. How- 
ever, we have found that if we truncate a sequence of 
images and then adjust the charge of the last image in the 
truncated sequence so that the total net charge of the trun- 
cated sequence is the same as that for the infinite se- 
quence, good accuracy can be obtained using relatively 
few images. Also, the smaller the change in dielectric 
constant at one or both interfaces the smaller the number 
of images that will be required to give good accuracy. Of 
course, since the images of a charge are included in its 
basis function, the number of images used does not affect 
the number of complete basis functions needed or the size 
of the matrix that must be inverted to find the charges. 

For cases such as that in Fig. 6 we define two image 
coefficients: 

(25) 

Either the upper region or the lower region (or both) can 
be defined as metal by allowing eo -, 00 or e2 + 00. For 

€ 1  - € 2  

€ 1  + € 2  
K2 = p. Eo - € 1  K, = - 

€0 + € 1  

Fig. 6 .  Transmission-line conductors in multiple dielectrics. 

brevity we will construct the basis functions with images 
as a function off(z, b, w), wheref(z, b,  w) is the function 
in (2b), (4b), (12) ,  or (13) depending on whether the basis 
function is for a horizontal even- or odd-charge distribu- 
tion or for a vertical even- or odd-charge distribution, re- 
spectively. As previously discussed, b is a complex num- 
ber which defines the location of the center of the charge 
distribution and w defines its width. Note that the upper 
region in Fig. 6 is marked A while the dielectric layer of 
dielectric constant c l  is marked B. The images required 
are different depending on whether the charge and the 
point for observing the potential are both in region A ,  both 
in region B ,  or the charge is in one region and the obser- 
vation point in the other. To identify the equations for the 
four possibilities we will use two letters, the first indicat- 
ing the region of the observation point and the second the 
region of the charge. Thus, AA(z, b ,  w) will apply when 
the observation point and charge are both in region A while 
the equation for AB(z, b, w) will apply when the obser- 
vation point is in region A but the charge is in region B .  
The equations covering the four possible situations with 
reference to regions A and B in Fig. 6 are 

rD- I 

+ K2(1 - K:) c (-KIK2)" 
[ n = o  

f ( Z  - 2jnh, b, w) 

1 + alf(.7 - 2jDh, b ,  w) 
D- I 

AB(z, b, W )  = (1 + K1) 

+ al[f(z + 2jDh, b, w) 

+ K2f(?  - 2jDh, b, w)l 1 
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- [f(z - 2jnh, b, w) 

+ K2f(Z - 2jnh, b, w)] 

+ a l [ f ( z  - 2jDh, b, w) 

+ K2 f (2 - 2jDh, b, w)]] (28) 

1 D - l  

E I / € O  n=O 
BB(z, b, W )  = - E ( - K l K 2 ) " [ f ( ~  + 2jnh, b, W) 

+ K2f(Z - 2jnh, b, w)] 

a1 + - [ f ( ~  + 2jDh, b, W )  
€ 1  / E o  

-- K 1  E ( -K lK2)" - ' [ f (Z  +2jnh, b, w) 

+ K2f(Z - 2jDh, b, w)l 
D -  I 

E I / € O  n = l  

+ K 2 f ( z  - 2jnh, b, w)] 

where 

( - K1 K2 I D  
U l  = 

1 + K1K2'  

In these equations D is the number of images (or pairs of 
images) to be included. These equations were derived 
largely using the methods in [9] ,  but as previously men- 
tioned, the strength of the last image of each type has been 
adjusted to give the same total net charge for the truncated 
array as for the infinite array of images. 

Some experimentation suggests that a useful guide in 
fixing a minimum value for D is 

(31) 

Thus for a structure with relative dielectric constants 
= 1 ,  = 6, and er2 = 13, (31) calls for D = 4. For the 
case of microstrip we use er2 = 00 for the ground plane 
(so K2 = - l ) ,  so if E,,, = 1 and crl  = 2,  again a minimum 
of D = 4 is recommended. However, for microstrip with 
c r I  = 13, a minimum D of 21 is called for. These values 
of D are adequate for most situations, but for some cases 
larger values of D will be desired for reasons to be dis- 
cussed in Section X. 

To illustrate the use of the above equations, suppose 
we wished to generate a matrix element analogous to 
Pi,,, in (16a) for an odd, horizontal charge distribution lo- 
cated in region B of Fig. 6 with the observation point also 
in region B (as would be the case for obtaining the dis- 
tributed capacitance for the two lower bars shown. Then 

D = 1 + [(Integer) 2 -1.4/log IKIK2 I ] .  

Pim would be given by (29) with (4b) inserted forf(z, b,  
w). The potentials arising from even and odd charge ba- 
sis-function distributions on all the conductor faces are 
determined analogously using (2b), (4b), (12), or ( 1  3)  for 
f (z ,  b, w). In this manner the matrix in (18b) is con- 
structed and the solution proceeds as discussed in the pre- 
ceding sections. Note that if the strips are all in the same 
dielectric region only (26) or (29) will be required for 
constructing the matrix in (18b). However, if one of the 
strips is in a different region, as suggested by strip no. 2 
in Fig. 6, then the four equations (26) through (29) will 
all become involved. 

VIII. THE CASE OF STRIPLINE 
A special situation arises in the case of the stripline 

structure in Fig. 7. The top and bottom ground planes can 
be simulated by setting eo = e2 = 00. Then K1 = 1 ,  K2 
= - 1 ,  and there are an infinite number of images, all 
with unit positive or negative amplitude (instead of with 
declining amplitudes as in all of the previous cases). Be- 
cause of this, this problem needs a large number of im- 
ages (i.e., hundreds) for high accuracy unless some spe- 
cial modifications are made in the truncated image arrays. 
For convenience, and to reduce the number of images 
needed to obtain good accuracy, we recast (29) in the form 

D- 1 

BB(z, b, w)sr. = E [f(z + j2nh, b, W )  
f l = O  

- f ( Z  - j2nh, b, w)] 

+ OS(R2" + l)f(z + j2Dh, b, w)  

- 0.5R;"f (Z - j2Dh, b, w) 

- E [f(Z + j2nh, b, w) 

- f (z  - j2nh, b, w)] 

+ OS(R7" - l)f(z - j2Dh, b, w) 

- 0.5R:30f(Z + j2(D + l )h ,  b, w) (32) 

where R:  and R: are the fraction of the total flux caused 
by a charge distribution f(z ,  b, w) that terminates on the 
top plate for even and odd charge distributions, respec- 
tively, and R i  and RE are the corresponding fractions of 
the flux that terminate on the bottom plate. We note that 

D 

f l = l  

(33) R2" = 1 - R:." 

and that iff(z, b, w) is symmetrically placed with respect 
to the ground planes all the R's will be 0.5. 

The first summation in (32) represents the source charge 
plus all its images below the lower ground plane except 
those involving charge-balance corrections. The second 
summation includes all images above the upper ground 
plane except those involved in charge-balance correc- 
tions. Since the source function is defined with unit pos- 
itive amplitude, if the source-charge function is centered 
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0 / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, / The different definitions for the even and odd cases are 
n 4 needed because using our even potential functions the 

magnitude of the potential becomes larger as you get fur- 
ther from the source while for our odd potential functions 

C l  

B- 1 I 
d the magnitude of the potential becomes smaller as you 

move from the source, and these properties affect the 0 / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N ,,,,,, .? I,,, 
I charge-division approximations in (34) through (39b). In- 

clusion of these charge-division factors in (32) gives a 
considerable improvement in the results for asymmetrical 

Fig. 7. An asymmetrical pair of striplines analyzed in Example 6 .  

between the ground planes we must provide a net, nega- 
tive, half-unit amplitude in both the upper and lower 
ground-plane regions to provide charge balance. There are 
at least two simple ways to accomplish this. One is to use 
a truncated array of images with altemating positive and 
negative unit amplitudes so they have zero net charge and 
then add on an additional image with -0.5 amplitude. 
Another approach is to simply cut the amplitude of the 
last positive unit image in the upper and lower image ar- 
ray in half, again leaving a net charge of -0.5 in each of 
the two arrays. In some examples we have tried using D 
= 2 1, these two approaches gave somewhat different re- 
sults with errors in opposite directions. We further found 
that we obtained considerably improved results while 
using a relatively small number of images (such as D = 
21) if we used the average of the two approaches. This 
was done in the third and fourth, and the seventh and 
eighth lines of (32). 

Of course, if the source charge f ( z ,  6 ,  w)  is asymmetri- 
cally positioned between the ground planes more of the 
flux lines will terminate on one plane than the other, and 
the R factors discussed above were introduced for that 
reason. I f f (z ,  b ,  w)  is (2b) or (4b), which give the po- 
tentials for horizontal charge distributions, we use the ap- 
proximations 

and 

where 
Zhb = Re b + (rh)w 

zhr = z h b  + jh. 

(364 

(36b) 
I f f  ( z ,  b, w) is (12) or (13) for a vertical charge distri- 
bution we use the approximations 

(394 

cases. 
It should be noted that since eo, was made to be infinite 

to get (32) from (29), in this case the charge normaliza- 
tions in (6) and (22) must use E the dielectric constant 
for the region between the conductors, rather than eo. 

IX. CALCULATION OF INDUCTANCE MATRICES 
As is well known [2] ,  for TEM-mode operation the in- 

ductance matrix is easily obtained from the capacitance 
matrix [CO] which is computed for the same conductors 
but with all dielectric materials assumed to be replaced by 
air. The inductance matrix is then 

where eo and po are the electric permittivity and magnetic 
permeability of free space. 

X. SOME FURTHER EXAMPLES 
Example 1, previously discussed, consisted of two in- 

finitesimally thick symmetrical coplanar strips as shown 
in Fig. 2, and various results were listed in Table I along 
with the percentage errors compared with the results ob- 
tained from an exact conformal mapping solution. As can 
be seen, excellent agreement compared with the exact 
values were obtained. 

In all of the following examples results computed using 
the Ansoft finite-element program [5]  were used as a basis 
for comparison. In the Ansoft reference calculations a fast 
computer utilizing thousands of mesh triangles was used 
for each example, and the results are believed to be highly 
accurate. However, since we do not know the absolute 
accuracy of the reference calculations we will refer to the 
percentage difference between the results obtained from 
our program based on the methods of this paper compared 
with the Ansoft results. In order to obtain relative running 
times for the various examples using our program we ran 
the examples using our program on a 1985-vintage, Com- 
paq, IBM-PC-compatible computer. (When run on a Sun 
4 computer our program usually appeared to give practi- 
cally instantaneous results.) 

As Example 2, let us consider the case of three coplanar 
thick strips on a semi-infinite substrate, shown in Fig. 5 .  
To accommodate the dielectric substrate, single image 
charges are used in the basis functions as in (15a) to (16b). 
We used rh = rv = 0.8 for fixing the potential-matching 
points since, as previously mentioned, we have found 
these values to be particularly good when no ground plane 
is present. Also, since the voltages on strips 1 and 2 are 
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referred to strip 0, charge balance must be enforced and 
the methods in Section VI were used. The dimensions used 
for this example were wo = 4, w, = w2 = 3, to = t ,  = 
t2 = 1, and sol = sI2 = 2, where the wk and tk are the 
width and thickness of strip k ,  and S k , k +  is the spacing 
between strips k and k + 1. (We will use this notation 
also for all the following examples.) Using relative di- 
electric constants ed = 1 and E , . ~  = 2 we obtained 

46.20 -22.631, [0.06 -0.061 % (41) 

-22.64 31.87 0.01 -0.01 
[Cl = 

where the capacitance values in the matrix on the left are 
in pF/m, and the matrix on the right gives the percentage 
difference between our values and the values given by the 
Ansoft program. With E , ,  = 13 we got 

179.46 -87.351, [ 0.24 0.101 %. (42) 

-87.44 128.44 0.20 0.10 
[Cl = 

The percentage-difference matrices on the right for both 
of these cases show the agreement between our results and 
the Ansoft results to be excellent. The running time for 
these examples on the Compaq computer was 8 s each. 
At the suggestion of one of the reviewers of this paper we 
ran an additional case similar to that in Fig. 5 with wo = 

1, and E , ,  = 2. The differences between the capacitance 
coefficients obtained from our program compared with 
those obtained from the Ansoft program ranged from 
-0.34 to -0.53% using matching parameters rh = 0.8 
and rv = 0.67. This is an unusual example in that the 
gaps between the strips are proportioned to be narrow and 
tall. Using rv = 0.67 for the vertical faces was found to 
give several percent better accuracy than using rv = 0.8. 
The reason for this is probably the same as that which 
causes rh = 0.67 to be a better choice for the horizontal 
faces when there is a horizontal ground plane nearby. In 
this present example, which had no ground plane, using 
either rh = 0.8 or rh = 0.67 for the horizontal faces gave 
about the same accuracy, although the results for the for- 
mer were slightly smaller than the Ansoft results while 
those for the latter were slightly larger. 

As Example 3 we will use the same configuration of 
strips as for Example 2 but instead of using a semi-infinite 
substrate we will make the substrate h = 2 thick with a 
ground plane on the bottom as sketched in Fig. 8. In this 
case the strip voltages are referred to the ground plane so 
the methods in Section V are used. Because of the pres- 
ence of both a dielectric and a metal interface there are, 
in theory, an infinite number of images. These are ap- 
proximated using basis functions analogous to ( 15a) to 
(16b) constructed from the source charge plus a truncated 
set of images defined by (26). In this case e2 = 03 is used 
to define the metal ground plane so K2 = - 1. Here we 
used rh = 0.67 and rv = 0.8 because, as previously men- 
tioned, these appear to be particularly good for fixing the 
match points when one or more ground planes are present. 

4, w, = w2 = 3, to = t ,  = t.2 = 3, sol = SI2 = 1, e& = 

E m  =1 

1 2 3 

Fig. 8. Transmission lines analyzed in Example 3 .  

For the case of ed = 1 and 
= 4 as called for by (3 l ) ,  

73.08 

- 1.08 

E , . ~  = 2 we obtained, using D 

66.53 -11.46 , 1 -11.71 -1.08 

-11.46 63.38 

-0.16 -0.77 -0.40 

-0.79 0.04 -0.65 ] % (43) 

-0.38 -0.65 0.03 

where the running time was 9 s. Again the agreement with 
Ansoft results is excellent. Note that the matrix is third 
order because now there are three independent voltages. 

If we modify this example so that er1 = 13, then (31) 
calls for D = 21 images. If this example had only the two 
strips on the left in Fig. 8 there would be no advantage in 
using a D larger than that. However, we have found that 
in cases such as this, where there are an appreciable num- 
ber of images called for by (31), if any of the strips have 
much separation it is better to use additional images. This 
is apparently because widely separated strips obtain an 
oblique view of the images and are more sensitive to the 
fact that the array of images has been truncated. In this 
case we used D = 41. (However, D = 31 gives nearly 
the same results. If there is doubt about the value of D to 
use increasing values of D can be tried until further in- 
crease gives negligible change in the answers.) We ob- 
tained 

1 357.4 -24.79 -1.03 

[ C ]  = -24.47 302.6 -24.31 , 

-1.03 -24.31 299.0 

-0.26 0.13 -3.06 

[ -2.87 1.88 -0.36 

1.42 -0.60 1.89 1 % (44) 

[ 
in a running time of 43 s. Note the principal-diagonal per- 
centage differences with respect to the Ansoft results are 
very small, though the differences for the mutual capaci- 
tances between the most remote conductors are around 
3 % .  But even in these cases the absolute differences are 
extremely small because the mutual capacitances between 
the remote strips are themselves only about 0.3 % as large 
as the self-capacitances. Thus the larger percentage dif- 
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ferences compared with the Ansoft results for these rela- 
tively small mutual capacitances will usually be of neg- 
ligible engineering importance. 

In the previous two cases we used rh = 0.67 and rv = 
0.8, which we have found to be advantageous if a ground 
plane is present. A possible exception to this general rec- 
ommendation is that if the ground plane is remote it will 
be better to go back to rh = rv = 0.8, as for no ground 
plane. (In terms of ordinary engineering accuracy require- 
ments the choice between rh = 0.67 and 0.8 is not criti- 
cal.) Another phenomenon that we have observed is that 
if the gaps between strips are so small that, say, s / t  < 1 
(where s and t are as defined for Example 2) it appears to 
be preferable to use rh = 0.8 instead of 0.67 even if one 
or more ground planes are present. This may be because 
the fields are so concentrated around the gap that the sig- 
nificance of the ground plane is reduced. 

As a fourth example, consider the GaAs substrate (erZ 
= 13) in Fig. 9, which has three strips with a cover layer 
having erl  = 6. The voltage of strips 1 and 2 is referred 
to strip 0, and the dimensions are wo = 4,  w1 = w2 = 2, 
to = tl = t2 = 0.6, sol = s12 = 2, and h = 1.2. Since 
there is no ground plane we use rh = ru = 0.8, and, using 
(31), D = 4 was used. In a run time of 26 s our program 
yielded 

211.3 -100.91, [ 0.23 0.051 
%, (45) 

-101.11 147.4 -0.12 0.05 
[Cl = 

again with very small percentage differences with respect 
to the Ansoft results. 

In Fig. 10 is shown a fifth example, which is more com- 
plex to program than the previous examples because it re- 
quires the use of all four of the equations (26) to (29) 
since some of the source and observation points are in 
different media. The dimensions used were wo = w1 = 2, 
to = t l  = 0.6, sol = 2, and h = 1.2. For reasons previ- 
ously discussed, rh = rv = 0.8 and D = 4 were used. In 
this case there is only one capacitance to be considered 
since the voltage on strip 1 is referred to strip 0. In a 
running time of 7 s the value C = 82.33 pF/m was ob- 
tained, which is within -0.37% of the Ansoft results. 

We will use the stripline situation in Fig. 7 as a sixth 
example. In this case let erI = 1, and the dimensions are 
taken to be w1 = 4, w2 = 2, tl  = t2 = 1, s I2  = 2, h = 
6, and d = 1.5, making the structure asymmetric in both 
the horizontal and the vertical direction. Here the methods 
of Section VI11 were used with D = 21 (a value we hap- 
pened to have used in testing the methods described there), 
and rh = 0.67 with rv = 0.8 were used because of the 
presence of ground planes. The program gave in 33 s the 
results [ 59.77 -7.161 , [ -0.47 -0.10 

-7.20 42.92 -0.66 -0.14 
[Cl = 

which are in good agreement with Ansoft results. 
As a seventh and final example let us endeavor to com- 

pare the performance of the methods in this paper with 

1 O 7  

&m=l 

1 

h 6 

T 
Fig. 9. Transmission lines analyzed in Example 4. 

Fig. 10. The cross section of the conductors of a transmission line ana- 
lyzed in Example 5 .  

methods such as those in [2], which use a sizable number 
of pulse basis functions in order to approximate the charge 
functions. This is done most easily using the program [3] 
which is written for IBM compatible PC’s and uses the 
methods in [2]. The example chosen is the same as that 
in Example 3 and Fig. 8 with er ,  = 13 except that the 
right strip was removed, making it only a two-strip ex- 
ample and h was increased from 2 to 3. Our program using 
D = 21, as called for by (31), took 10 s on the Compaq 
PC and the differences for Cll, C12, C21, and C2, com- 
pared with the Ansoft results were 0.11, 0.20, 0.82, and 
0.01 %, respectively. When program [3] was used to solve 
the same problem with the same machine we used 140 
“nodes,” which gives the largest number of basis func- 
tions available in that particular program. It is of interest 
to note that [2] and [3] use pulse charge basis functions 
for the metal and also for the bound charge at dielectric 
interfaces, thus eliminating the need to use images for di- 
electric interfaces. In the present example with erl = 13 
the bound charges are quite large. We used a program 
option where the ground plane was simulated using im- 
ages (which we believe should be the most efficient for 
this problem). The running time was 6 min and 2 s, and 
the differences with respect to the Ansoft results were 
-2.35, 2.78, 3.22, and -3.06%, respectively. For per- 
spective it should be recalled that the methods of our pa- 
per are specialized to cases having rectangular or planar 
conductors, while the methods in [2] are completely gen- 
eral. Using the methods of [2] with sufficient basis func- 
tions it should be feasible to achieve almost any desired 
degree of accuracy for arbitrarily shaped conductors pro- 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 29,2010 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



MATTHAEI el al.: COMPUTATION OF INTERCONNECT DISTRIBUTED CAPACITANCES AND INDUCTANCES 523 

vided the required amount of computation is available and 
acceptable. 

XI. CONCLUSIONS AND CLOSING REMARKS 
A relatively simple, fast, and quite accurate technique 

has been presented for calculating the distributed capaci- 
tances and inductances of multiple, rectangular, or planar 
transmission lines. Particularly for cases where the con- 
ductors are all in the same dielectric, the required pro- 
gramming is quite simple, and it should be relatively easy 
for engineers to write subroutines for such computations 
for use in CAD programs. Also, the methods used require 
relatively little computational effort so that they can be 
readily implemented for machines as small as ordinary 
personal computers. 

The methods described herein acquire their simplicity 
and speed as a result of using only two basis functions per 
face of the conductors in order to represent the charge. 
These charge basis functions are functions which are 
physically relevant to this application and happen to be 
ones from which the potentials are easily computed. How 
accurate the results will be in a given instance will, of 
course, depend on how accurately the given basis func- 
tions can approximate the actual charge distribution. 
Thus, one would expect that the charge distributions in 
parts (b) and (c) of Fig. 1 could not represent situations 
very accurately where the actual charge is much more 
sharply concentrated at one or both edges of the conductor 
than is represented by the basis function. Yet as is indi- 
cated in the first example and Table I, the method gives 
very accurate results for the capacitance between the strips 
in Fig. 2 even when the gap between the strips is as small 
as s = w /  10 (which should give quite sharp charge con- 
centration at the inner edges of the strips). The approxi- 
mations are surprisingly insensitive in this regard. (Sim- 
ilar results have been obtained for finite-thickness strips 
having small gaps .) However, when applying these meth- 
ods to unusual geometries the actual physical nature of 
the approximations being utilized should be kept in mind 
so as not to misuse them. For common geometries, such 
as in our examples, the basis functions used appear to 
work remarkably well. 
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