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A Wide Angle Propagation Technique using 
an Explicit Finite Difference Scheme 

Youngchul Chung and Nadir Dagli 

Abstract- A wide angle propagation technique is developed 
by explicitly solving a Taylor-series-expanded form of the scalar 
Helmholtz wave equation. The wave equation is numerically 
solved using a central explicit finite difference scheme. In this 
new wide angle propagation technique only a sparse matrix 
multiplication is needed to propagate an optical wave at each 
propagation step. The accuracy of the explicit finite difference 
wide angle beam propagation method is confirmed by analyzing 
the guided-wave devices which involve highly tilted waveguides 
and etched turning mirrors. 

N recent years, significant improvements in the beam prop- I agation method (BPM) have taken place to meet the need 
of design and analysis of ever evolving photonic integrated 
circuits (PIC). The efficiency of the scalar paraxial BPM has 
been improved through finite difference algorithms [l], [2]. 
The vector nature of the wave propagation in PICs has been 
studied using the paraxial vector BPM [3], [4]. In addition, 
several wide angle beam propagation algorithms have been 
developed using a higher order expansion of a Helmholtz 
propagation operator [5] with the operator splitting or using 
a recursive Pade formula [6], [7]. All the reported algorithms 
are implicit schemes which require the solution of a linear 
matrix equation [6], [7] or that in combination with the 
fast Fourier transform [5]. The purpose of this paper is to 
introduce a simple explicit finite difference wide angle BPM. 
This wide angle propagation technique is compared with the 
paraxial BPM through numerical examples, which are tilted 
propagation in a dielectric waveguide and propagation through 
etched waveguide turning mirrors. 

The scalar wave equation 

is transformed with the substitution of a solution of the form 

E(z, Y, z )  = exp(-j(konrz)(E(z> Y, z )  (2) 

into the following equation for the slowing varying complex 
amplitude E ( z ,  y, z ) :  

.E(z ,  Y, 2 )  = 0 (3) 
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where n, is the reference refractive index, and ko = 2 r / X .  
This amplitude Helmholtz equation can be written as a factored 
form [8] 

,”’) ( &-jkonr - j konr  v:+Ic;(n2(z, y, 2)-nf)  
( k o n r ) 2  
.E(X, y, z )  = 0. (4) 

It is noticed that the propagation of the forward going (positive 
z direction) wave is described by the following wave equation: 

d E  
- d z  = jkon,(l - (1 + L)’IZ) 

where 

0: + k;(n2(z, y, z )  - nf)  L =  

The wave (5) reduces to the paraxial wave equation if the 
square of L and the higher order terms are ignored. In this 
paper, we consider the first order correction to the paraxial 
equation where the terms only to the L2 term are retained in 
(3, which is given as 

- d E  - - 0: + k;(n2 - nf)  ( 1-  0: + k;(n2 - n’)). (6) 
az j2konr 4( konr)  

The higher order terms could be included into the propagation 
algorithm to get the higher accuracy. If a Crank-Nicholson 
scheme is employed to solve (6), it can be transformed into a 
penta-diagonal linear matrix equation in the two-dimensional 
case and a more complicated matrix equation in the three 
dimensional case. On the other hand, (6) can also be explicitly 
solved using a center finite difference approximation to the 
z-derivative, i.e. 

d E  E(. + Az) - E(. - Az) 
- N  N 

d z  2Az 

As a demonstration of this scheme, the two-dimensional case 
is considered, and the resulting explicit propagating algorithm 
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Fig. 1. The overlap integral for the different values of the reference index. 
The tilted eigenmode of the slab waveguide is excited at the input. The overlap 
integral is calculated after 20pm propagation. The wavelength is 1.15 pm. 

can be expressed as follows: 

where 

2 
U = AW (- + (2 - 1) + W 

a n d c = W . A w  -- ( 4 d u 4 ) .  

Etched Mirror Structure 
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Fig. 2. An etched turning mirror structure. The waveguide between the 
turning mirrors is tilted 30". The position of the etched mirror is at the 
intersection of the waveguide axes. (b) The overlap integral of the output 
wave with the eigenmode of the single mode waveguide. The wavelength is 
1.15 bm. 

In the above equations, Aw = kon,Az, Au = kon,Ax, and 
W = 1 for the wide angle propagation and 0 for the paraxial 
propagation. It should be noted that the extension of this 

Of the present wide 
of the 

propagation scheme. At the input 
waveguide, the eigenmode propagating in the 

algorithm to a three-dimensional structure is straightforward, 

power-conserving only when the condition 

direction of the waveguide is launched. The overlap integral 

( z  = 20pm) with the input field profile is calculated for 
various values of reference index n, using the wide angle BPM 

Being explicit, the algorithm represented by (7) is stable and of the optical field at the output of the waveguide 

is satisfied. The general procedure to derive this condition 
can be found in [2]. For the values n, = 3.3, X = l p m ,  
Ax = 0.05 pm, the acceptable propagation step size is limited 
to the values smaller than 0.006pm. It should be noted that, 
even though the propagation step size should be very small for 
the stability and power conservation, the computational effort 
could be limited because only the sparse matrix multiplication 
is necessary at each propagation step. 

The propagation of an eigenmode in a 30' tilted waveguide 
shown in the inset of Fig. 1 is considered to check the accuracy 

and the paraxial BPM. In the calculation, the window size is 
L, = 30pm, and the number of mesh points is M, = 1024, 
and AZ = 0.0008pm. In Fig. 1, it is observed that the results 
obtained from the wide angle BPM(W = 1) are insensitive 
to a large extent to the choice of the reference index whereas 
those obtained from the paraxial BPM(W = 0) are greatly 
dependent on the reference index but accurate for a proper 
reference index value. 

As a further example, we consider the etched mirror struc- 
ture as shown in Fig. 2(a). This structure consists of two etched 
total internal reflection mirrors and a 30" tilted single mode 
waveguide in between. This structure makes it possible to 
change the direction of the beam in a very short distance. 
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Fig. 3. The intensity contour plots calculated using (a) the paraxial BPM 
and (b) the wide angle BPM. The optical wave is propagated through the 
structure shown in Fig. 2(a). 

The eigenmode of the single mode waveguide is excited at 
the input waveguide, propagated through the etched mirrors, 
and the overlap integral between the eigenmode and the 
resulting output optical wave was performed. The calculation 
was performed for a range of different refractive index values, 
and the results are plotted in Fig. 2(b). When the etched 

mirror plane is well aligned with respect to the intersection 
of the waveguide axes, the transmission through this guiding 
structure should be almost 100%. The wide angle BPM gives 
more than 97% amplitude transmission for a wide range of 
reference index values. On the other hand the paraxial BPM 
gives only about 85% amplitude transmission for the same 
range of reference index values. For the visual illustration, the 
contour plots of the propagating optical wave is plotted in Fig. 
3 both for the wide angle and for the paraxial propagation. 
In these simulations, the reference index value is 3 in both 
cases. The optical wave follows the axis of the waveguide 
very well in case of the wide angle propagation whereas 
the optical wave tends to get out of the waveguide axis in 
case of the paraxial propagation indicating the inaccuracy of 
the paraxial propagation. From the previous example of the 
propagation through the tilted waveguide, it was shown that the 
paraxial propagation technique can be well applied to the tilted 
waveguides if the propagating optical wave is planewave-like 
(i.e. one plane wave component is dominant) and a proper 
reference index is chosen. In the example as shown in Fig. 
2(a), there is a mixture of two beam angles (0” and 30”) in 
the vicinity of the etched mirrors making it difficult to select a 
proper reference index value in the paraxial BPM. That is why 
the paraxial propagation technique gives inaccurate results for 
any reference index values in this particular case. 

In conclusion, a simple explicit wide angle BPM is de- 
veloped through the Taylor series expansion of the scalar 
Helmholtz wave equation. The wide angle propagation using a 
first order correction is implemented using the central explicit 
finite difference method, and it is shown that the scheme 
is very accurate in the simulation of the tilted waveguide 
structures whereas the paraxial scheme gives erroneous results. 
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