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Abstract- The valence subband dispersion of quantum-wire 
arrays grown on vicinal substrates in GaAs-Al&al-zAs ma- 
terial system is calculated using a finite-element method with 
periodic boundary conditions. The variational functional for 
the Luttinger-Kohn Hamiltonian is derived using the integra- 
tion by parts with proper boundary conditions. The validity of 
this method is confirmed by calculating subband structure of 
quantum wells and rectangular quantum wires. Along with the 
electronic band structure, a detailed study of gain in the quantum- 
wire arrays with rectangular and serpentine shapes is presented, 
including the effect of coupling between wires and polarization 
dependence of the momentum matrix element. Finally, these 
results are compared to those of quantum wells. 

I. INTRODUCTION 

UANTUM wires (QWR) which result due to quan- 
tum confinement in two dimensions have undergone 
extensive study and development for their interesting 

physical phenomena and potential device applications [ 11-[3]. 
However, to observe significant quantum effects at room 
temperature, the carriers should spatially be confined in two 
dimensions to less than the exciton radius in an uncon- 
fined structure [3]. Recent developments in crystal growth 
techniques on vicinal and patterned substrates [4]-[6] have 
made it possible to fabricate quantum-wire arrays with very 
small lateral dimensions. Among these quantum-wire arrays, 
the tilted superlattice [4] (TSL), which has rectangular cross 
section, and the serpentine superlattice [6] (SSL), which has 
parabolic lateral interfaces, offer the possibility of sub- 100 8, 
lateral dimensions. 

The calculations of the energy band diagram and the wave 
function of structures with two-dimensional quantum confine- 
ment are generally very complicated. In general, they cannot 
be done analytically, except for special circumstances such 
as isotropic cylindrical quantum wires with infinite potential 
barrier height 171. Recently, several numerical techniques have 
been developed for the analysis of quantum-wire structures, 
which include finite-element method [8], [9] (FEM), finite- 
difference method [ IO] (FDM), effective bond orbital method 
[ 1 11 (EBOM), and tight binding method [ 121 (TBM). Although 
EBOM and TBM can describe the electronic band structure 
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accurately. they require more than 18 basis functions at each 
atomic site, thus they require massive memory and processor 
time [ l l ] ,  [12]. However, FEM and FDM require only 4 
or 6 basis function, respectively, depending on whether the 
spin-orbit split-off bands are neglected or not. The advantage 
of FEM as a numerical technique over FDM is that it can 
utilize a nonuniform mesh, hence the energy eigenstates and 
wavefunctions of arbitrarily shaped geometries with wide 
range of lateral dimensions can be analyzed accurately 181. 
The disadvantage of the FEM compared to FDM, however, 
is that the formulation of the variational functional for the 
given multiband Hamiltonian is generally complicated. In this 
study, we first present a systematic implementation of the Lut- 
tinger-Kohn Hamiltonian [ 131 in the finite-element scheme for 
quantum-well and quantum-wire structures for arbitrary crystal 
orientation. The corresponding variational functional satisfying 
Euler equation [ 141 is derived for the first time by integration 
by parts with proper boundary conditions. Next, the accuracy 
of the method is verified by comparing its results to published 
results on quantum wells and wires. Then this finite-element 
method is applied to calculate the valence and conduction 
subband dispersion of tilted and serpentine superlattices which 
are GaAs quantum-wire arrays grown on vicinal substrates. 
The effects of wire-to-wire coupling on density of states and 
optical properties are quantitatively investigated. The polar- 
ization dependence of the optical transition involving heavy 
hole-like subbands and light hole-like subbands is graphically 
presented. The material gain and modal gain of TSL and SSL 
are also calculated and compared to a quantum-well structure. 

11. METHOD OF ANALYSIS 

If one neglects the effects of spin-orbit split-off bands on the 
valence band structure, one can use a four band k-p  analysis 
for its investigation. Then the top of the valence band can be 
described as a solution of coupled equations given by 

(1) [HLh. + (V(9-) - E)I]J1- = 0. 

V ( T )  is the confining potential, I is the 4 x 4 unity matrix, 
and E is the energy eigenvalue. HLh- is the Luttinger-Kohn 
Hamiltonian [ 131 which is 

P L M  

HLh-= i] 
M i  -Li P 
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TABLE I 
THE ELEMENTS OF F,$,j, Q,! j ,  L, ,  j A U D  Jf,$ j WHEN k AXES ARE PARALLEL TO CUBIC AXES, I.E., k,, / / [ loo] ,  k,//[010], A N D  

L,,//[001]. EXPRESSIONS I N  THE PARANTHESES A R E  FOR L., / /[ iTo],  X~,//[110], AND b.;//[Oo1] WHEN THEY DIFFER FROM 
THOSE FOR THE CUBIC AXES ORIENTATION. OTHERWISE. THE S A M E  EXPRESSION APPLIES FOR BOTH THE CRYSTAL ORIENTATIONS 

a =, ,j =a 

where Q and /3 are appropriate indices corresponding to coor- 
dinates . E .  y. or z. Equation ( 3 )  is nothing but decomposition 
of the original P,  Q ,  L,  and A4 elements into six terms, each 
one being the coefficient of kf . k ,  k ,  . k ,  k z  . k i .  k ,  k z  . and k: 
terms. The elements of P, j, Qa,j. Lo,j. and A4, 5 for typical 
crystal orientations are listed in Table I using the Luttinger 
parameters 71, 7 2 ,  and 7 3 .  The forms of these terms for the 
arbitrary crystal orientation can be determined by following 
the procedures given by Luttinger and Kohn [ 131, [ 151, [ 161. 

JI.  = [J1 .I* -1, .1J 

are the envelope functions for the basis set [ 131 { 13/2. 3/2). 
I3/2, 1/2).  I3/2. -1 /2) .  I3/2. -3/2)}. 

A .  Formulation for Quantum Wells 

For .r.y, and z along any crystal orientation, the Lut- 
tinger-Kohn Hamiltonian can be expressed in the form of 
(4). For a quantum-well structure, if one defines the growth 
direction as z-axis, k2  is to be replaced with -ii)/az. Then 
the H L ~  can be arranged into 

HLh. = H,,k:(H,,k, + H,,k,)k,  

E H ~ k . 2  + H B / ~ , ~  + H c  

= -Ha- - / H B ,  + H c .  

+ ( H x x k ;  + H,,ki + H,,k, k , )  ( 5 )  
(6) 

(7) 
a2 i) 

d z  d z  
To ensure Hemiticity, (7) can be written as [I61 

The set of equations that need to be solved are given in 
( 1 ) .  In order to be able to apply the FEM analysis, it is 

desirable to find a variational expression corresponding to 
this set of coupled partial differential equations. This is not 
a straightforward procedure. To achieve this, an inner product 
of J , ,  and the set of equations given in ( 1 )  is formed as 

Now an integration by parts is carried out, and the following 
equality is used to eliminate the remainder terms: 

where the indices (1) and (2) represent region 1 and 2 across 
an interface. This equality actually results from the flux 
continuity across the interface and is equivalent to enforcing 
the boundary conditions on the continuity of the envelope 
functions across the interface [ 171. They can be easily obtained 
by integrating (8) across the interface. Then one obtains the 
following variational expression: 

+ J , . ( H c  + V(z) )Jr  d z  - / JlEJ, ;  d z .  (12) 

This can be proved by observing that (1  2) can be transformed 
back into the original Luttinger-Kohn Hamiltonian by ap- 
plying the Euler equation of the variational principle [14]. 
The variational calculus states that the functional obtained 
this way is stationary around the correct solution. Therefore, 
the solution of the original Hamiltonian can be obtained by 
minimizing the functional given by ( 12). In this paper, a finite- 
element method is applied to achieve this numerically. In this 
approach, one expresses the envelope functions over a mesh 

I +  
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as J,, = N ( z ) F ,  where N is a shape function of each line 
element, and F is a column vector whose elements are its nodal 
values 1181. Making this discretization reduces the functional 
that needs to be minimized to a matrix equation as shown 
below 

As described in the previous section, the functional that is 
stationary around the solution of the differential equation is 
found by forming an inner product as shown below: 

= F ~ K F  - E F ~ M F  ( 14) 

where K is a Hamiltonian matrix corresponding to the first 

last term in (13), respectively. Since this expression should be [ Y Y  i )y  2 Y z  dz 

to the unknown nodal values should be zero, which yields 

Again, an integration by parts is carried out and the remaining 
terms are eliminated using the following equations: 

and the second terms, and M is a matrix corresponding to the H ( l )  - a 1  + - H ( l )  - d I ikx H ( l )  J ( l )  
2 x Y ]  I’ 

1 stationary around the correct solution, its variation with respect d 1 d i kx  
H ( 2 ) -  + - H ( 2 ) -  + -Hi? J:;) (20) 

yy a y  2 yz a2 2 

- = 0 = K F  - E M F .  
d J  

dFt  
(15) across an interface normal to y-axis, and 

1 8 1 d i k ,  
This is an eigenvalue equation for the unknown energy eigen- [Hi:)- + - H ( ’ ) -  + THPJ J::) 
values and wavefunctions. Therefore, by solving this problem, dz 2 y z  a y  
the energy eigenvalue, E ,  and the numerical values of the 
wavefunctions at the nodes of the mesh, which are the elements 
of F ,  can be obtained. Usually, K and M are sparse banded 
Hermitian matrices, hence this problem can be solved very 
efficiently using the subspace iteration algorithm and Rayleigh 
quotient method with LU decomposition algorithm for sparse 
banded matrices [ 191. 

B. Formulation for Quantum Wires 

For a quantum-wire structure with wire parallel to I;, 
direction, k ,  and k ,  can be replaced with - i i ) /dy  and 
- i d / t l z ,  respectively 131. Then the H L K  in (4) leads to 

across an interface noma1 to z-axis. These equations result 
from the boundary conditions on the envelope functions across 
the interface and can easily be obtained by integrating (18) 
across the interfaces normal to y and z-axes. Then one obtains 
the following variational expressions: 

dJ d J t  i)J, -H L + + H z 2 G  
” dr/ d z  d z  

- - I ’ + - H  dJ  8 J i  y;i’Ju) - 
H L K  = H,,k; + H,,k,k, + HzzI;: + H,,k,kZ yz a z  dz a y  

To ensure Hemiticity, (17) can be written as + / / J ! ( ~ ; H , ,  + (v(:y. 2) - E ) I ) J ,  w z .  ( 2 2 )  

Again, one can verify that this functional yields the original 
set of equations through the Euler equation [ 141. To apply the 
finite-element method, one expresses the envelope functions as 
J, .  = N ( y .  z ) F .  where N ( y .  z )  is a two-dimensional shape 

of its nodal values [20]. This form reduces the functional into 

i) a ,ilkx a i )  
H L K  - T H y y 7  dy dy - -( 2 H,.Y,+ -H,Y 

d!J dY 

(18) function of each triangular element, and F is a column vector 
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a matrix equation as shown below 

where K corresponds to the first and the second terms, and 
M corresponds to the last term in (23), respectively. Using the 
variational nature of this equation, it is reduced to an equation 
as K F  = E M F  as described earlier. 

C .  Comparison to Other Published Results 

After this formulation, two test cases were solved to check 
the accuracy of the approach. These are a GaAs quantum 
well and a GaAs quantum wire for which k,, k,, and k ,  are 
parallel to the cubic axes. The barrier material is Alo.2Gao.sAs 
in the both cases. The results are shown in Table I1 together 
with the results of two other approaches, namely, the finite- 
difference method (FDM) [ lo] and the effective bond-orbital 
model (EBOM) [ 1 I]. For the FDM, the coupled set of partial 
differential equations are solved directly using a finite dif- 
ference discretization for the partial derivatives. The EBOM 
exploits the symmetry of the problem and uses a variational 
approach. The valence band potential barrier height is assumed 
to be 98 meV, and the Luttinger parameters are assumed to be 
constant at 71 = 6.85, 7 2  = 2.1, and 7 3  = 2.9, as used in [ I  11 
to make a fair comparison. When k,//(lOO), ky//(OIO), and 
k2//(O01), the coefficients of the matrices K for the quantum 
well case are as follows: 

where 

dNT d N  
a z  a z  + (-Y~ - a2)-- + V ( Z ) N ~ N  

dNT d N  + (rl + 2y2)--, + V ( Z ) N ~ N  a z  d z  

whereas for the quantum-wire case, 

dNT d N  + dNT 6” 
a y  a z  a z  a y  

dNT d N  

M is a block diagonal matrix, i.e., 

rMdia 0 0 0 1 

1 o o o MdiaJ 

where 

Mdia = N T N d z  or Mdia = J’ 
for the quantum-well case and quantum-wire case, respec- 
tively. The results in Table I1 indicate that the FEM approach 
coupled with the variational formulation gives the same result 
when the original Hamiltonian is solved using the FDM as 
well as by another independent approach. Along with the 
accuracy, another potential important advantage of FEM is that 
it can be applied to arbitrarily shaped inhomogeneous quantum 
confined structures like the tilted and serpentine superlattices 
without additional effort such as coordinate transformations. 
Furthermore, the mesh size does not have to be uniform hence 
it is possible to model a region of interest with as many 
elements as needed in order to represent the physical behavior 
accurately. For the particular case reported in Table 11, the 
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TABLE 11 
THE VALENCE BAND ZONE CENTER ENERGIES IN mev FOR (a) A 100 A X 100 A SQUARE Q ~ ~ A N T U M  WIRE AND FOR (b) A 100 A QUANTUM WELL WITH -11 = 6.85. 

-,z = 2.1, -,,3 = 2.9, 1 = x. A N D  1. = 98 meV. THE GRID SIZE IS 40 x 40, RESULTING IN A TOTAL OF 1600 NODAL VALUES I N  BOTH FEM AND FDM 

(a) QWR (b) QW 

subband FEM FDM EBOMl1 FEM EBOMI' 

1 17.13 17.00 17.1 6.88 6.9 

2 28.21 27.79 28.1 20.36 20.4 

3 28.41 28.10 28.5 27.15 27.7 

4 38.59 38.15 38.4 59.31 59.7 

5 51.35 51.09 50.8 73.91 73.9 

grid size is 40 x 40, resulting in a total of 1600 nodal values. 
Since there are 4 envelope functions, the K and M matrices 
in equations (26) and (27) are 6400 x 6400 square matrices. 
They are about 20 times smaller than those of EBOM [ 1 I ]  
and TBM [12], which provides a substantial advantage in the 
required computational effort. 

Another case that is quite important and deserves par- 
ticular attention is a superlattice of quantum wires, i.e., a 
quantum-wire array. In this case, potential profile usually has a 
periodicity and one can simplify the problem using the Bloch 
theorem. This states that the wavefunction in one cell is exactly 
the same as that in the adjacent cell, except for phase term of 
e- -JkD.  where k is the Bloch wavenumber and D is the period. 
In other words, F ( y  + D .  z )  = F ( y ,  z ) e - l k D ,  where y-axis 
is parallel to the array direction, z-axis is perpendicular to the 
plane of the wire array, and x-axis is parallel to the wires. 
With this periodic boundary condition [21], an infinite array 
of QWR can be analyzed and their E - k diagram can be 
calculated. Once this is done, one can derive the density of 
states function and gain characteristics of the array. 

111. ANALYSIS OF TILTED AND SERPENTINE SUPERLATTICES 

The schematic cross-sectional profiles of the tilted su- 
perlattice (TSL) and serpentine superlattice (SSL) that are 
investigated in this work are shown in Fig. 1. The TSL 
and SSL are grown on (001) GaAs vicinal substrates tilted 
toward [110] direction by an angle N. Under the right growth 
conditions, a uniform atomic staircase on the vicinal substrate 
is formed, and one can grow an array of quantum wires 
parallel to the [lie] direction [4], [6]. Then the period of the 
superlattice is determined by the monolayer thickness, d ,  and 
surface tilt angle, r y .  as D = d/tan(rr). For example, when 
N = 2', D = 81 A, and when cy = 1.5", D = 108 A. In 
this section, the conduction and valence subband dispersions 
of TSL and SSL will be calculated and compared to that of 
the quantum-well structures. 

A .  Electronic Band Str-uc'ture 

Fig. 2 shows the conduction and valence energy band dia- 
grams of a 100-A-thick GaAs-Alo.2Gao 8As quantum well. 
The bulk bandgaps and Luttinger parameters used in the 

(b) 

Fig. 1. Schematic cross-sectional profile of lateral superlattices investigated 
in this work. (a) Tilted superlattice (TSL). (b) Serpentine superlattice (SSL). 

calculations are given in Table 111. A conduction-band offset 
of 57% was assumed [22] for the AlGaAs system. The 
conduction band dispersion is almost parabolic in [loo] and 
[110] directions since only one band effective mass Hamil- 
tonian was used in its analysis. The corresponding density 
of states (DOS) in the conduction band also is plotted on 
the same figure and shows steps [23] of height 711: /7~h~L~ 

where rn:, is the effective mass of nth conduction subband 
[24] and L= is the quantum-well thickness. For the valence 
subbands, a strong nonparabolicity is observed indicating band 
mixing effects [ 1 I ] ,  [25], [26]. Consequently, the resulting 
DOS is quite different from a step-like profile. Its overall 
magnitude is also larger than that of the conduction band by an 
order of magnitude, which hinders achieving transparency and 
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Fig. 2. Conduction and valence energy band diagram of a 100-A-thick 
GaAs-A10 ~(3% SAS quantum well. At right is the corresponding density of 
states (DOS) function. Note that the scale for the conduction band (CB) DOS 
is 10 times smaller than the valence band (VB) DOS scale, a ,  is the lattice 
constant for GaAs. 

TABLE 111 
AI, Gal-, As MATERIAL PARAMETERS USED IN THE 

CALCULATIONS OF THIS STUDY. THE CONDUCTION-BAND 
OFFSET IS TAKEN AS 57% OF BANDGAP CHANGE 1221 

Bulk band gap3* (eV) Eg(x)=1.424+1.721x -1.437x2+1.310~3 

yl(x)=6.85 ( 1 - ~ ) + 3 . 4 5 ~  

Luttinger m ( ~ ) = 2 . 1  ( 1 - ~ ) + 0 . 6 8 ~  

parameters39 y3(X)=2.9 ( 1 - ~ ) + 1 . 2 9 ~  

1 ~ ( ~ ) = 0 . 0 6 6 7 (  1 - ~ ) + 0 .  1 5 ~  

threshold for lasing at low current densities [26]. Moreover, the 
energy separation between the lowest two valence subbands is 
less than 10 meV. 

In Fig. 3, the results of energy band calculations and DOS 
of a tilted superlattice are shown. The rectangular wire array 
is 100-8, thick and 40.5-8, wide with a 40.5-8, separation be- 
tween wires, which are the typical values for 2" off TSL. The 
wire material is GaAs, the barrier material is Alo.,=,Gao.sAs, 
and cladding material is Alo.4Gao.eAs. In a TSL, the atomic 
steps run parallel to [IT01 direction [4]. Therefore, the wires 
are along [liO] direction and are equally spaced along [110] 
direction, which is defined as the array direction. Due to close 
proximity of the wires, there is a certain amount of coupling. 
This broadens the subbands of the wires into minibands. 
As a result, in array direction, a certain amount of subband 
dispersion is observed. The energy widths of these minibands 
are smaller for lower subbands since the corresponding wave- 
functions are more tightly confined for the lower subbands, 
reducing the coupling between wires. Fig. 4 shows the contour 
plots of the electron wavefunction magnitude at the zone center 

-3U 

-50 

v w> -70 

w -90 

-110 
-1 -0.5 0 0.02 OM 0 2.5 5 7 5  10 

ky(xlD) kx(2xlaJ DOS (1o2O/cm3ev) 

Fig. 3. Conduction and valence energy band diagram of a 100-A thick 
GaAs-Alo.sG@.sAs tilted superlattice quantum-wire array on a 2O off vicinal 
substrate (11- = S = 40.5 A). Other parameters are given in the text. 
Quantum wires are parallel to [IT01 direction are equally spaced along [110] 
direction. At right is the corresponding density of states function. The scale 
for the CB DOS is 5 times smaller than the VB DOS scale. 

for the two lowest conduction subbands, substantiating this 
argument. The corresponding DOS functions are shown on 
the right side of Fig. 3. For a single wire or a wire array with 
infinite barrier potentials, the DOS would show sharp peaks 
at the subband minima due to inverse square root of energy 
dependence of ideal quantum-wire DOS [23]. However, due 
to a finite width of the minibands, the real DOS function 
shows step-like behavior at the miniband minima and sharp 
peaks at the miniband maxima. The step height at the subband 
minimum is proportional to d m / . l r F i 2 L ,  as shown in the 
Appendix. In this expression, m, is the effective mass along 
the wire direction, i.e., [liO] direction, and ma is the effective 
mass along the array direction, i.e., [110] direction. Even 
though any quantum wire array DOS will have a sharp peak 
at the miniband top due to enhanced effective mass, this peak 
which has a narrow width does not play a significant role in 
gain enhancement due to the line broadening [27]. On the other 
hand, an increase of the step height at the subband minimum 
is more important for gain enhancement. As a matter of fact, 
the gain enhancement that will result in using a quantum-wire 
array with some coupling between the wires compared to a 
quantum well can be estimated based on the ratio of the DOS 
step heights of these two structures at the conduction band 
minima. For this particular TSL structure, the step height of the 
lowest conduction band DOS function is almost 3 times higher 
than that of the 100-8, thick quantum well discussed earlier. 
The corresponding gain curves will also differ by about the 
same ratio, as will be shown and discussed later in connection 
with Fig. 8. 

Since the hole effective mass is higher than the electron 
effective mass, the wire-to-wire coupling in the valence band is 
almost negligible and the width of the miniband is very small. 
The subbands are twofold degenerate as in the quantum-well 
case since the TSL structure under consideration has inversion 
symmetry. For the lower subbands, the corresponding DOS 
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(a) CB 1 (b) CB2 

Fig. 4. Contour plots of the electron envelope wavefunction magnitude at 
zone center for the two lowest conduction band eigenstates of the TSL studied 
in this work. The contours range from 5% to 95% with 15% increments. For 
the second conduction subband (CB2) significant coupling between quantum 
wires is observed. 

- 11101 riioi - o 0.5 I 1.5 z 

is almost like that of an ideal quantum wire. The overall 
magnitude of DOS is also comparable to that of conduction 
band. The separation between the lowest subbands is about 
25 meV in valence band 70 meV in conduction band. These 
large subband separation and sharp DOS profile promise an 
enhanced gain. 

Although the ideal TSL structure is quite promising, there 
is a practical difficulty in the fabrication of a TSL, which was 
recognized early on [4]. To keep the interface between the 
barriers and wires vertical, one has to know the exact growth 
rate of each material and keep them constant throughout the 
growth [4]. Any deviation from the correct value would tilt this 
interface, and hence will distort the quantum-wire geometry. 
This difficulty can be circumvented if one deliberately varies 
the growth rate from less than the correct value to greater 
than the correct value 161. Then one grows a superlattice 
with curved growth interfaces as shown in Fig. I(b), and 
somewhere within the grown layer where the interface between 
the wire and the barrier material is vertical, i.e., when the 
effective width of barrier is the largest, one obtains a two- 
dimensional confinement. Fig. 5 shows the results of energy 
band and DOS calculations for a serpentine superlattice. For 
a linear growth rate variation, the interface between the wire 
and barrier material can be expressed as [6] y = Kz2 .  where 
K = 2 A p / d ,  tan a. In this expression, A p  is the ratio of 
the maximum deviation in the linear growth rate variation 
to its nominal value, do is the thickness of the superlattice, 
and Q is the substrate tilt angle [4]. In this particular case, 
Do = 230 A, Q = 2" and Ap = 0.10, implying K =1/40 
A. Due to the high curvature of the interfaces, the quantum 
confinement of the lowest subband is strong and the envelope 
function is localized in the central part of the superlattice as 
shown in Fig. 6(a). Nevertheless, there is a miniband with 
a small width due to close proximity of the wires. For the 
higher subbands, however, the wavefunction extends outside 
the low bandgap wire material, as shown in Fig. 6(b). So for 
the higher conduction subbands, the coupling between wires 
becomes significant and they have wide miniband widths. As a 
result, the height of the step in the DOS is relatively small. The 
lowest valence subbands are well confined within the quantum- 
wire regions, regardless of heavy hole-like or light hole-like 
character of the subbands, as shown in Fig. 6(c) and (d). 
Hence, the coupling between wires is small and the dispersion 

-I -0.5 0 0.02 0.04 0 2.5 5 7.5 IO  

ky b/D) k x(2n 1%) DOS (1020/cm3ev) 

Fig. 5.  Conduction and valence energy band diagram of a GaAs- 
Alo sGao ?As serpentine superlattice quantum-wire array on a 2O off vicinal 
substrate ( T I -  = S = 40.5 A). Other parameters are given in the text. 
Quantum wires are parallel to [ITO] direction and are equally spaced along 
[110] direction. At right is the corresponding density of states function. The 
scale for the CB DOS is 5 times smaller than the VB DOS scale. 

along the array direction is almost negligible. As a result, the 
valence band DOS is ideal quantum wire-like. The separation 
between the two lowest subbands is 17 meV in valence band, 
while it is 45 meV in the conduction band. Along the wire 
direction, except at the zone center, the twofold degeneracy 
no longer exists due to the lack of inversion symmetry in 
the geometry. At the zone center, the first subband has heavy 
hole character, because the heavy hole basis functions have 
much larger amplitude than the light hole basis functions. 
The opposite is observed for the second subband, and this 
subband has mostly light hole like character at the zone center. 
Although it  is possible to determine whether each subband 
is heavy hole-like or light hole-like, a significant amount of 
intermixing between heavy hole and light hole character was 
observed in the higher subbands. Such a complicated nature 
of the band intermixing strongly affects the momentum matrix 
element for optical transitions, which will be discussed in the 
next section. 

B .  Momentum Matrk Element for- Optical Transitions 

One of the important properties of a quantum wire is 
highly anisotropic momentum matrix element. This offers 
the possibility of obtaining enhanced gain along particular 
directions 1281-1301. But in a practical quantum-wire array, 
it is very difficult to predict the magnitude of the momentum 
matrix element analytically due to the band mixing effects and 
the differences in the sizes of confinement between conduction 
and valence bands. Therefore, a numerical approach is needed. 
In the FEM analysis, the envelope wavefunctions are obtained 
simultaneously with the energy values. Therefore, one can 
construct the wavefunctions for each state using envelope 
functions and basis functions, and numerically obtain the 
momentum matrix elements [3]. 

In Fig. 7, the momentum matrix elements for the QW, TSL, 
and SSL structures considered in this work are plotted in polar 
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Fig. 6. The contour plots of the electron and hole envelope wavefunction 
magnitude at zone center for an SSL (a) for the lowest conduction subband, 
(b) for the second conduction subband, (c) for the lowest valence subband 
(only the envelope function for the S T and A- 1 basis functions are shown, 
since they are dominant for this band at zone center), and (d) for the second 
valence subband (only the envelope function for the 1- t and I? 1 basis 
functions are shown, since they are dominant for this band at zone center). 
The contours range from 5% to 95% with 15% increments. For conduction 
subbands, there is coupling between wires, whereas for the valence subbands, 
coupling is negligible due to heavier hole effective mass. 

form. The numerical values of the momentum matrix elements 
for specific optical polarization directions are listed in Table 
IV. For the quantum well, Cl-V1 transition, or heavy hold 
transition, is maximum when the optical polarization is in- 
plane, and minimum when it is perpendicular to the quantum- 
well plane. For Cl-V2 transition, or light hole transition, 
the opposite is true, i.e., the momentum matrix element is 
maximum when the optical polarization is perpendicular to 
the quantum-well plane and minimum when it is in-plane. For 
the quantum-wire arrays considered in this work, i.e., either 
for TSL or SSL, the C 1 -VI transition has mostly heavy hole- 
like character at zone center. The momentum matrix element 
for this transition is maximum when the optical polarization 
is along the wire direction, and is almost zero when the 
optical polarization is parallel to the shorter dimension of 
the quantum-wire cross section. The C1 -V2 transition in TSL 
corresponds to the heavy hole-like transition. The C 1 -V3 
transition in TSL, and Cl-V2 transition in SSL, have mostly 
light hole-like character at zone center, and their momentum 
matrix elements have similar behavior. For the case of the 
light hole-like transition, the momentum matrix element is 
maximum when the optical polarization is along the shorter 
dimension of the wire-cross section. For TSL, it is minimum 
when the optical polarization is along the wires; while for 
SSL, it is minimum when the optical polarization is along 
the longer dimension of the wire cross section. These trends 
agree with qualitative understanding of band-to-band optical 
transitions in compound semiconductors [30], [3 11. In general, 

Fig. 7. Polar plots of the momentum matrix element for QW, TSL, and 
SSL considered in this work. The length of a line between the origin and a 
particular point on the surface corresponds to the magnitude of the momentum 
matrix element. The direction of the line connecting the origin to a particular 
point on the surface corresponds to the direction of the electric field of the 
interacting radiation, i.e., it defines the polarization of the light. Quantum 
wires are along [IT01 direction (x-axis) and the arrays are distributed along 
[110] direction (y-axis). 

the heavy hole-like subband has the maximum momentum 
matrix element when the optical polarization is parallel to a 
direction along which there is no quantum confinement, and 
minimum when the optical polarization is along the strongest 
quantum Confinement direction. The opposite is true for the 
light hole-like subband for the TSL. In SSL, however, the 
minimum momentum matrix element is observed when the 
optical polarization is parallel to the longer dimension of the 
lateral quantum confinement. This may be due to the fact 
that in SSL there is stronger band intermixing due to the 
higher curvature of the interfaces. Such valence band mixing 
effects become more significant in the higher subbands and are 
observed even at the zone center. Outside the zone center, the 
momentum matrix elements become more complicated, and 
in some cases a heavy hole-like subband tums into a light 
hole-like subband, and vice versa [29], [301. 

Due to the different effective masses and potential barrier 
heights in conduction and valence bands, the envelope function 
in each band does not overlap completely; so the actual 
momentum matrix element tends to be smaller than the value 
obtained through ideal quantum-wire calculations, especially 
in the higher subbands. This trend is more significant for the 
weakly confined structures [32] and for the light hole-like 
transitions in quantum-wire arrays when the band mixing effect 
is strong. Therefore, for the realistic analysis of the optical 
properties of quantum wires, the actual momentum matrix 
elements should be calculated using the realistic wavefunctions 
in the conduction and valence bands, and other simple models 
like single band approximation or infinite barrier potential 
model may be very inaccurate [12], [26]. 
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TABLE IV 
NUMERICAL VALUES OF MOMENTUM MATRIX ELEMENT OF THE QW, TSL, A N D  

DIRECTIONS. THE ACTUAL GEOMETRIES ARE DESCRIBED I N  THE TEXT 
SSL STRUCTtiRES STUDIED IN THIS WORK FOR DIFFERENT POLARIZATIOK 

Structure Subbands involved in Direction of optical polarization 

the transition 

x//[i ioi  y/mio] ~'40011 

QW C1-V1 (heavy-hole) 0.97 0.97 0.0 

Cl-V2 (light-hole) 0.33 0.33 1.33 

C2-V3 (heavy-hole) 0.86 0.86 0.0 

C2-V4 (light-hole) 0.33 0.33 1.33 

TSL Cl-V1 (heavy-hole) 1.03 0.04 0.63 

C2-V2 (heavy-hole) 0.84 0.29 0.15 

Cl-V3 (light-hole) 0.01 0.3 1 0.20 

C2-V4 (light-hole) 0.04 0.09 0.23 

SSL Cl-VI (heavy-hole) 0.86 0.03 0.55 

C1-V2 (light-hole) 0.13 0.34 0.05 

C2-V2 (heavy-hole) 0.5 1 0.09 0.17 

C2-V3 (light-hole) 0.04 0.21 0.06 

C. Optical Gain 
By combining the density of states function and the mo- 

mentum matrix elements, one can obtain optical gain charac- 
teristics of the quantum-wire arrays using standard procedure 
1311, 1331. The results of such calculations are shown in 
Fig. 8. Fig. 8(a) shows the material gain as a function of 
injected carrier density. Fig. 8(b) shows the modal gain as a 
function of radiative current density. The optical confinement 
factor is assumed to be 0.01 15, which is a typical value 
for the 100-A-thick QWR arrays with equal widths of wire 
and barrier material in a 2-pm thick separate confinement 
heterostructure [28], [34]. In the calculations, a Gaussian line 
shape function [3] with the line broadening of 7 meV was 
assumed and all nonradiative processes are neglected [26]. 
The optical polarization is assumed to be parallel to the wire 
direction. The results indicate that TSL and SSL can give 
much higher gain compared to a quantum well at the same 
injection level. The sharply peaked and well-localized DOS 
profile, large subband spacing, and anisotropic momentum 
matrix element of the TSL and SSL account for this gain 
enhancement. Although the transparency current density of 
TSL and SSL is greater than that of the QW, the gain for 
TSL and SSL increases so rapidly that the actual threshold 
current for a practical device with finite loss having TSL 
or SSL active regions would be smaller than QW structure. 
Larger resonant frequency is also expected due to the larger 
differential gain [35]. Therefore, the ideal quantum-wire arrays 
grown on vicinal substrates with high density of wires like TSL 

loo00 
h 

E y 8wo 
+ v 

0 
0 2 4 6 8 1 0  

Carrier Density, 9 

(a) 

o m 4 ~ m ~ m i o o o  
Radiative Current Density, J (A/cm2) 

(b) 

Fig. 8. Comparison of the optical gain of TSL, SSL, and a 100-.&-thick QW. 
QW and quantum-wire array parameters are the same as the ones described 
in Fig. 2, 3, and 5. (a) Maximum material gain as a function of carrier 
density, r z .  (10'*/cm:'), (b) maximum modal gain as a function of radiative 
current density, J (A/cm'). The Gaussian line shape function with 7 meV 
line broadening has been assumed and nonradiative mechanism have not been 
included. The optical polarization has been assumed to be parallel to [IT01 
direction, i.e., to the wire axis. 

or SSL can increase the resonant frequency and reduce the 
threshold current by 2-3 times compared to the conventional 
QW structure. The effects of imperfections on the optical 
properties of lateral superlattices can be found elsewhere [27], 
[36]-1371. 

IV. CONCLUSION 

In this work, a finite-element method to numerically solve 
the Luttinger-Kohn Hamiltonian which is commonly used to 
investigate valence band structure of quantum structures is 
developed. The required variational functional is formulated 
through integration by parts with proper boundary conditions. 
The validity of this functional is verified using Euler equation. 
The accuracy of the approach is confirmed by comparing its 
results for energy eigenstates of a quantum well and a quantum 
wire to other published results. This method offers a significant 
computational advantage compared to other methods and can 
be applied to any arbitrarily shaped geometry. Quantitative 
values for the strength of optical transitions and optical gain 
of a QW, TSL, and SSL are obtained and compared. The 
effect of wire-to-wire coupling present in TSL and SSL 
is also quantitatively investigated. This coupling strongly 
affects the density of states and optical gain. The resulting 
optical gain in the ideal tilted superlattice and serpentine 
superlattice shows 2-3 times enhanced magnitude compared 
to a conventional quantum-well structure at the same injection 
level. 
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Fig. 9. E - k diagram of a tilted superlattice. Wire material is GaAs and the 
surrounding material is Alo.zsGao.TsAs. Wire width and the wire separation 
are both 40.5 A, and the wire thickness is 100 A. The dotted lines are 
parabolas fitted to the E - k dispersion curve by adjusting the effective 
masses, I I Z , . , I I ~ ~ .  11iY, , .  and k y , .  
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APPENDIX 
The density of states function of the conduction band in 

quantum-wire structure can be written [23] 

and the surrounding material is Alo.25Gao.75As. If one defines 
effective masses as shown in Fig. 9, the E - k diagram can 
be expressed as 

where k,, is the inflection point on the E - k dispersion along 
k,, mny is the effective mass at the nth subband zone center 
along the array direction, and mny, is another effective mass 
at the top of the miniband. E,, is the energy level at the 
top of the nth miniband. Then the mny and may, can be 
approximated as 

with Enyc = En(kyc) .  Here, 77 is defined as the deviation 
of the inflection point, ICyc, from r / 2 D ,  i.e., Q 5 (kyc - 

Now if one inserts (A-2) into (A-1) and performs the 
integration analytically, the density of states of nth subband 
in the superlattice quantum wire can be expressed as (A- 
5) found at the top of the page. Therefore, the conduction 
band density of states function becomes a step function when 
E, 5 E < Enyc with a step height J-i/.rrL,h2. 
In Fig. 10, the density of states functions are plotted using 
the analytic result given in (A-5) and also using numerical 
calculations using the E - k diagram. The results obtained 
numerically and analytically agree quite well. 

T / 2 D ) / ( T / 2 D ) .  
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