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A Mapping Approach to Rate-Distortion 
Computation and Analysis 
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Abstract-In rate-distortion theory, results are often derived 
and stated in terms of the optimizing density over the reproduc- 
tion space. In this paper, the problem is reformulated in terms 
of the optimal mapping from the unit interval with Lebesgue 
measure that would induce the desired reproduction probability 
density. This results in optimality conditions that are “random 
relatives” of the known Lloyd optimality conditions for deter- 
ministic quantizers. The validity of the mapping approach is 
assured by fundamental isomorphism theorems for measure 
spaces. We show that for the squared error distortion, the 
optimal reproduction random variable is purely discrete a t  supercrit- 
ical distortion (where the Shannon lower bound is not tight). The 
Gaussian source is thus the only source that produces continu- 
ous reproduction variables for the entire range of positive rate. 
To analyze the evolution of the optimal reproduction distrihu- 
tion, we use the mapping formulation and establish an analogy 
to statistical mechanics. The solutions are given by the distribu- 
tion a t  isothermal statistical equilibrium, and are parameterized 
by the temperature in direct correspondence to the parametric 
solution of the variational equations .in rate-distortion theory. 
The analysis of a n  annealing process shows how the number of 
“symbols” grows as  the system undergoes phase transitions. 
Thus, an algorithm based on the mapping approach often needs 
but a few variables to find the exact solution, while the Blahut 
algorithm would only approach it a t  the limit of infinite resolu- 
tion. Finally, a quick “deterministic annealing” algorithm to 
generate the rate-distortion curve is suggested. The resulting 
curve is exact as  long as  continuous phase transitions in the 
process are accurately followed. 

Index Terms-Rate-distortion theory, statistical physics, 
Shannon lower bound, annealing, phase transitions. 

I. INTRODUCTION 

HE fundamental results of rate-distortion theory are T due to Shannon [l], [2]. These are the coding theo- 
rems which provide an (asymptotically) achievable bound 
on the performance of source coding methods. This bound 
is often expressed as a rate-distortion function R ( D )  for a 
given source whose curve separates the region of feasible 
operating points ( R , D )  from the region that cannot be 
attained by any coding system. Important extensions of 
the theory to more general classes of sources than those 
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originally considered by Shannon have been developed 
since (see [3] and 141). 

Explicit analytical evaluation of the rate-distortion 
function has been generally elusive, except for very few 
examples of sources and distortion measures (see [5] and 
[6] for results on the magnitude error distortion measure). 
Two main approaches were taken to address this problem. 
The first was to develop bounds to rate-distortion func- 
tions. A n  important example is the Shannon lower bound 
[ 2 ] ,  which is useful for difference distortion measures. The 
second main approach was to develop a numerical algo- 
rithm, the Blahut or Blahut-Arimoto algorithm (BA) [71, 
[SI, to evaluate rate-distortion functions. The power of the 
second approach is in that the function can be approxi- 
mated arbitrarily closely at the cost of complexity. The 
disadvantage is that the complexity may become over- 
whelming, particularly in the case of continuous alpha- 
bets, on which we focus in this paper, and even more so 
for continuous vector alphabets where the complexity 
could grow exponentially with the dimensions. Another 
disadvantage is, of course, that no closed-form expression 
is obtained for the function, even if a simple one happens 
to exist. 

In this paper, a new approach to rate-distortion compu- 
tation and analysis is suggested. We shall restrict our 
attention here to continuous alphabet sources. Much of 
the existing theory concerns optimization over the output 
density, and this is indeed the heart of the Blahut algo- 
rithm. In the new approach, we consider a mapping from 
the unit interval with the Lebesgue measure (i.e., uniform 
density) to the output space. Instead of optimizing the 
output density directly, we optimize this mapping. The 
theoretical equivalence of the mapping approach (MA) to 
the traditional approach is shown by isomorphism theo- 
rems for topological measure spaces. Although equivalent 
in principle, the MA formulation is different, and by 
deriving the results from this angle, some new insights are 
gained, as well as more efficient numerical approaches to 
compute the rate-distortion function. The objective of this 
work is to exploit the potential of MA (and the resulting 
statistical physics intuition) along these two lines, namely, 
theoretical results on the rate-distortion curve and on the 
optimizing output density, and numerical methods for 
rate-distortion function computation. 

In Section 11, MA is presented and its equivalence to 
the usual approach is discussed. The MA optimality con- 
ditions are derived, and are shown to relate directly to 
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known conditions for optimal quantizer design. They are 
“random coding” relatives of the Lloyd optimality condi- 
tions [91, [lo]. In Section 111, it is proved that for the 
squared error distortion, the optimizing reproduction vari- 
able is purely discrete as long as the rate-distortion func- 
tion does not coincide with the Shannon lower bound. In 
other words, except for the case that the bound is attained 
(e.g., Gaussian source for all positive rates), cthe output 
density consists of singularities. This could explain why 
explicit expressions for the rate-distortion function are so 
hard to obtain. Historical credit is due to Fix [ll],  who 
showed by a different approach that the optimizing output 
is discrete if the source density’s support is not the entire 
real line. This special case is covered by the results of 
Section 111 because, for such sources, the Shannon lower 
bound is strictly lower than the rate-distortion function at 
all positive distortions. 

The practical implications of this result are related to 
the work of Benjamin [12] on rate distortion for discrete 
sources with variable reproducing alphabets, and to the 
work of Finamore and Pearlman [13] who derived a rate- 
distortion theory for continuous alphabet sources with 
finite output constraint. This is due to the fact that the 
optimal output alphabet is often discrete and finite. Algo- 
rithms based on MA will be related to the algorithms 
suggested in [13] and in [12], except that the number of 
symbols will grow as necessary to obtain the uncon- 
strained rate-distortion result. 

Section IV is concerned with the analysis of the evolu- 
tion of the optimizing output densities as we decrease the 
distortion (that is, as we “crawl up” the rate-distortion 
curve). Here, we start by showing that the functional that 
is minimized to find the optimizing density is the free 
energy of an appropriately defined statistical mechanics 
system whose energy is the distortion. The slope parame- 
ter is inversely related to the temperature in the physical 
analogy, and the optimizing output density is given by the 
isothermal equilibrium distribution at the given tempera- 
ture. Thus, “crawling up” the rate-distortion curve is 
simply an annealing process in statistical mechanics. The 
analysis shows that the annealing process starts with a 
single output symbol at R = 0, and consists of a sequence 
of phase transitions which normally increase the number 
of symbols (or singularities). It is shown that the last 
phase transition occurs when the rate-distortion curve hits 
the Shannon lower bound, and where the singularities 
split or, rather, explode into a continuous distribution. It 
should be noted that Berger [4, pp. 253-2591 showed the 
equivalence between the discrete rate-distortion problem 
and the multiphase equilibrium problem which involves 
minimizing the Gibbs free energy, in support of suggested 
potential contributions of rate-distortion theory to the 
understanding of (mainly biological) information systems. 
That physical analogy, however, does not appear useful 
for our purpose here of analyzing the evolution of optimal 
output densities. 

Section V extends the results of Sections 111 and IV-C 
to higher dimensions. It focuses on certain difficulties that 

complicate the derivation. These are due to possible con- 
tinuity of the output over low-dimensional subspaces. This 
discussion was postponed to this late section in order to 
keep the basic derivation as simple as possible. 

Section VI discusses the applicability of the mapping 
approach to practical computation of rate-distortion func- 
tions. It is observed that as long as no discretization is 
used, both MA and BA will find the globally optimal 
output density. However, discretization for numerical 
computation results in differing performance. BA opti- 
mizes over a grid of points in the output space to obtain 
an approximate solution (whose quality depends on the 
resolution of the grid). MA uses the mapping which 
adapts its effective grid to the source distribution and so is 
more efficient. Moreover, as long as the Shannon lower 
bound is not tight, the optimal density is discrete (and 
finite) so that a few variables allow MA to find the exact 
solution, which BA approximates using the entire grid. 
Note also that once the Shannon lower bound is attained, 
we can explicitly derive the solution, so numerical evalua- 
tion is no longer necessary. This section also includes a 
sketch of a mapping algorithm for squared error distor- 
tion. 

To avoid confusion, a note should be made concerning 
our use of the term “random coding.” In this paper, a 
probability distribution is defined over the space of all 
possible deterministic codes, and expectations are com- 
puted with respect to this distribution to characterize the 
performance of this random code, as indeed it is often 
done elsewhere in the Shannon theory. However, this is 
not used directly to prove results that are asymptotic in 
the block length (except, of course, for the obvious asymp- 
totic significance of the rate-distortion function). 

11. THE VARIATIONAL EQUATIONS AND THE 
MAPPING APPROACH 

The rate-distortion curve is obtained by minimizing the 
mutual information subject to an average distortion con- 
straint. Formally stated, given a continuous source alpha- 
bet 2, random variable X with a probability measure 
given by the density p(x), and an output alphabet y, the 
problem is of optimizing 

over the random encoders q ( y  I x), subject to 

where d(.; ) is the distortion measure. By replacing the 
above minimization by parametric variational equations 
(see [31, [41, [14], or [15]), this problem can be reformu- 
lated as a problem of optimization over the output density 
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q(y). The functional to be minimized is 

The choice of the positive parameter p rather than the 
somewhat more common negative slope parameter s = 

- p  is for reasons that will become obvious when the 
relation to statistical mechanics is discussed (similar nota- 
tion was used in [3] and [16]). Another nonessential change 
is that we divide the usual functional by p. Optimizing (3) 
subject to /dyq(y) = 1, one gets the known conditions 
for optimality, and the Blahut algorithm (BA) as fixed 
point iterations based on these conditions. 

Note that the objective of the above optimization is to 
determine a probability measure on the output space y. 
Let us consider an alternative approach: the mapping 
approach (MA). Instead of searching for the optimal q(y) 
directly, we can search for the optimal mapping y : [O, 11 
-+ y, where to the unit interval we assign the Lebesgue 
measure, which we denote by p. In other words, we 
induce a a-homomorphism or set mapping of into the 
unit interval, and consequently we induce a mapping of 
measures on the unit interval into measures on y. The 
equivalence of the approaches is ensured by the theory of 
general measures in topological spaces (see, for example, 
117, ch. 151 or [18, ch. 2-31]. In particular, the Borel 
isomorphism theorem states that a complete separable 
metric space with a finite Borel measure is isomorphic to 
the unit interval with Lebesgue measure, and hence a 
corresponding point-to-point mapping exists. A more pre- 
cise statement of the theorem requires special attention 
to the case of a measure with atoms. This will be of 
considerable importance to us later, but let us ignore it at 
this point. 

We thus have to minimize the functional 

over the mapping y(u). 
Before continuing, let us write the necessary condition 

for optimality, which is obtained by calculus of variations 
(see part A of the Appendix): 

which is the Euler equation corresponding to the varia- 
tional problem at hand. This condition must be satisfied 
almost everywhere with respect to p(u). Since disagree- 
ment on a set of measure zero is of no importance here, 
we restrict the discussion to functions y(u) that satisfy the 
condition everywhere. We define the support of Y as the 
set of values that the random variable Y can possibly take, 
that is, the range of y(u). Thus, the support of Y is a 
subset of the points yo satisfying 

Note that, for simplicity, we have ignored the case of 
boundary points (if the output space is bounded) in the 
above derivation. 

To interpret this result, we define transition probabili- 
ties as 

This definition will be justified in Section IV. Using Bayes' 
theorem and the fact that p(u) is the Lebesgue measure 
on [0, 11, the condition ( 5 )  can be rewritten compactly as 

for all U E [O, 11, and similarly for all points of support of 
Y.  This result is nicely related to the Lloyd necessary 
conditions for optimal quantizer design [9], [lo]: the tran- 
sition probabilities (7) are random relatives of the nearest 
neighbor rule, and the condition (8) is a random relative 
of the centroid rule. This connection is used in the deter- 
ministic annealing approach to vector quantizer design 
[191. 

In summary, we see two approaches, namely BA and 
MA, whose equivalence follows from the Borel isomor- 
phism theorem. However, these approaches are substan- 
tially different in their computational complexity and per- 
formance if we need to discretize (as we usually do). 
When using BA, discretization means defining a grid {y;) 
on the output space y .  In MA, we "discretize the unit 
interval" (i.e., replace it by a set of indexes) and induce a 
grid on y by our mapping. The mapping will adapt this 
grid to the source, and therefore less complexity will be 
needed to obtain the same precision. This difference 
between the approaches is more fundamental because the 
output densities are often discrete and finite, as is ex- 
plained in the following sections. This gives MA the 
theoretical capability of producing exact solutions at finite 
resolution, while BA can only approach them at the limit 
of infinite resolution. 

It is important to note that discretized MA, when one 
allows a general probability measure over the set of 
indexes, as indeed one should, is closely related to the 
alphabet-size constrained rate distortion [131 at a given p 
and with the "right" number of symbols, and to the work 
on rate-distortion of discrete sources with continuous 
reproductions [12]. In the sequel, it is shown how the 
rate-distortion curve is obtained by annealing within the 
MA framework, without a priori limitation on the number 
of output symbols. 

111. OPTIMAL REPRODUCTION IS DISCRETE 
UNLESS THE SHANNON LOWER BOUND IS TIGHT 

In this section, we assume the squared error distortion 
measure d(x, y )  = ( x  - yI2. For simplicity, we restrict our 
treatment to scalars. The derivation for higher dimensions 
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parallels the scalar derivation, but requires more care, 
and will be addressed in a later section. The reader should 
note that the insights leading to understanding the dis- 
crete nature of the optimal reproduction variable come 
naturally from the mapping approach and the statistical 
physics analogy of the next section. However, the results 
can be proved directly without any essential use of the 
mapping approach, as we >hall point out specifically where 
appropriate in this section. 

Let us assume that the support of the reproduction 
random variable Y contains an interval I , ,  i.e., I ,  c 
y([O, 11). First, the condition for optimality (6) must be 
satisfied for all yo E I , .  For the squared error distortion, 
it states 

where 

We rewrite the condition as 

d 
/dwp(x)h(x)-e-P(x-y. . ) l  = 0. (10) 

ay,  

Since the left-hand side vanishes everywhere in the inter- 
val I,, all its derivatives must be zero at yo.  We therefore 
write 

For the sake of readability, we shall not provide rigorous 
justification for the change in order of differentiation and 
integration. A more careful proof of a stronger claim is 
given in part B of the Appendix. 

Note that the set of equations (11) can also be directly 
obtained by differentiating the Kuhn-Tucker optimality 
condition for a continuous alphabet (e.g., [ lS,  p. 981) at 
yo E I , ,  instead of using our mapping approach optimality 
condition (6). 

Next, we observe that 

(12) 

where H,(z) is the nth Hermite polynomial with respect 
to the weight function e 0’’. We thus rewrite (11) as 

Hence, p ( x ) A ( x )  is orthogonal to all Hermite polynomials 
of degree greater than zero. Since the Hermite polynomi- 
als form a complete orthogonal system in L2[ e - P ( x - y ~ J ’ l ,  

we get 

p ( x ) h ( x )  = constant (14) 

(subject to some restrictive assumption such as p h  E 

L2[e-P(”-Y~)’], which will be relaxed in part B of the 
Appendix). The constant is determined by normalization, 
and the result is 

which can be rewritten directly in terms of the reproduc- 
tion density (if Y has one): 

If the optimal output density q ( y )  satisfies (16), then the 
Shannon lower bound equals the rate distortion function 
[4]. The previous equation (15) states the equivalent con- 
dition for a general output probability measure. Let us 
summarize the result in the form of a theorem. 

Theorem I :  If the support of the optimal reproduction 
random variable contains some nonempty open set, then 
the rate-distortion function coincides with the Shannon 
lower bound. 

Corollary 1: If the Shannon lower bound does not hold 
with equality, then the optimal reproduction random vari- 
able is purely singular. 

A stronger theorem which implies Theorem 1 is the 
following: 

Theorem 2: If the support of the optimal reproduction 
random variable has an accumulation point, then the 
rate-distortion function coincides with the Shannon lower 
bound. 

Since Theorem 2 implies Theorem 1, a more careful 
(and lengthier) proof for it is given in part B of the 
Appendix. 

Corollary 2: If the Shannon lower bound does not hold 
with equality, then the support of the optimal reproduc- 
tion random variable consists of isolated singularities. 
Further, if this support is bounded, then Y is discrete and 
finite. 

Corollary 2 follows directly from Theorem 2 and the 
Bolzano-Weierstrass theorem. In particular, if the source 
has bounded support, then so does the output which must 
thus be discrete and finite, a result due to Fix [ll], who 
also suggested to bound the cardinality of the support by 
using Jensen’s theorem on the number of zeros of an 
entire function within a disk. 

In order to obtain the general description of the conti- 
nuity of the reproduction random variable as we vary the 
distortion, we review some known results on the coinci- 
dence of R ( D )  and the Shannon lower bound (SLB). The 
first point to make is that coincidence at distortion Do 
implies coincidence at all positive D < Do. It is well 
known, and can also be seen from the convolution in (16) 
or in (13, that SLB coincides with R ( D )  if and only if the 
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source random variable can be written as the sum of two 
independent random variables: 

X = Y + N  

where Y is the reproduction and N is normal, zero-mean 
with variance D. This condition is referred to as the 
“backward channel” condition. Now, if at distortion Do 
the backward channel condition is satisfied, i.e., X = Yo + 
No with appropriate Yo and No, then for all D < Do, we 
can write No = N + N *  where N and N *  are indepen- 
dent zero-mean normal random variables with variances 
D and Do - D ,  respectively. Thus, by choosing Y = Yo + 
N * ,  we satisfy the backward channel condition X = Y + 
N .  

This implies that there is a unique distortion level, 
called the critical distortion D,, such that R ( D )  = SLB for 
all D < D, and R ( D )  > SLB for all D > 0,. Moreover, 
at subcritical distortion D < D,, the reproduction variable 
is absolutely continuous since its density can be obtained 
by convolution with a normal density (let Do be such that 
D < Do < 0,; then Y = Yo + N *  where N *  is the corre- 
sponding independent normal variable as above). 

The following theorem summarizes the continuity prop- 
erties of the optimal reproduction variable. 

Theorem 3: The optimal reproduction random variable 
is absolutely continuous at subcritical distortion, and is 
purely discrete at supercritical distortion. At critical dis- 
tortion, the optimal reproduction probability measure may 
have both absolutely continuous and singular parts. 

At subcritical distortion, the rate-distortion problem is 
analytically resolved as R ( D )  coincides with the Shannon 
lower bound. The open problem is thus the behavior at 
supercritical distortion. Having seen that at supercritical 
distortion the optimal reproduction variable is discrete, 
we next consider the evolution of these discrete solutions 
as we vary the distortion. We address this problem by 
establishing the equivalence with a fundamental problem 
in statistical physics. 

I v .  PHASE TRANSITIONS IN RATE-DISTORTION 
COMPUTATION 

In this section, we show that our functional (4), which is 
optimized to find points on the rate-distortion curve, is 
the free energy associated with a corresponding statistical 
mechanics system whose energy function is the distortion. 
The analogy is shown by using random coding in two ways. 
First, we consider the random encoder for a given fixed 
“codebook” [fixed mapping y(u)] ,  and then we define a 
probability distribution over all possible deterministic 
codes and characterize the performance by taking expec- 
tations. The latter views the random code as an appropri- 
ate Gibbs canonical ensemble, and relates to the former 
by marginalization. The minimization of the free energy is 
equivalent to reaching isothermal equilibrium. Our pa- 
rameter p is inversely related to the temperature (we take 
the Boltzmann constant to be one). This derivation facili- 
tates an analysis of the evolution of the output distribu- 
tions as p is increased. All this eventually leads to sug- 

gesting a deterministic annealing method for computing 
the rate-distortion curve, which is similar to the determin- 
istic annealing approach to vector quantization 1191 and 
for mass-constrained clustering [20]. 

Please note that the recourse to statistical physics is by 
no means necessary here, as the mathematical theories of 
bifurcation would have been sufficient to derive most of 
the results. This choice of presentation simply reflects the 
source of intuition leading to the results herein, including 
those already described in Section 111. Moreover, by ob- 
serving the equivalence to fundamental problems in statis- 
tical physics, one can take advantage of the powerful 
mathematical tools and methods that have been devel- 
oped in this field, as will be specifically pointed out. 

A. Transition Probabilities 
To derive the transition probabilities, we define the 

source as a (possibly uncountable) set of vector points { p } ,  
whose density at x E 2? is given by p(x). We assume that 
each point in the set is encoded independently into a 
“codeword” U E [O, 11, and that the transition probabili- 
ties depend only on the location x, so we can denote them 
q(u I x). We further assume that the mapping y : [O, 11 + 

M is fixed. We can now write the distortion as 

D = / d x p ( x ) / d p ( u ) q ( u  I x) d [ x ,  y ( u ) l .  (17) 

This is the energy in our physical analogy. To compute the 
distribution governing the system, we use Jaynes’ formal- 
ism [21] based on the principle of maximum entropy. 
More precisely, we compute the transition (conditional) 
densities by maximizing the conditional entropy (we pur- 
posely ignore the subtleties associated with the continu- 
ous case, as one could use coarse-graining and the dis- 
crete entropy to obtain the same results, as indeed is 
commonly done in statistical mechanics; see [22] for such 
a discrete derivation) 

subject to the energy constraint (17). We, of course, 
obtain the Gibbs distribution of (7): 

e - P d [ ~ . ~ ( ~ ) I  

q ( u  1x1 = /dp(u)e-P“x,Y(U)l ‘ (19) 

The normalization function in the denominator is known 
as the partition function in statistical mechanics: 

By the assumption that each point p is independently 
encoded, the total partition function (accounting for en- 
coding the entire input set { p ) )  is “Z = n, ZI(p).’’ As { p }  
is possibly uncountable, we write more precisely 

z = e i A p ( r ) l o g Z ,  (21) 
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The free energy is therefore in practice), then we could immediately write the above 
average as the product of integrals: 1 1 

F = - -log Z = - - / a k p ( x )  l o g / d C L ( u ) e ~ ~ d ~ X ~ ~ ( u ) ~ .  
P P ( e - B D ( b . s ) ) 5  = n 1 d C L ( U ) e - P d [ x ( Y ) . ’ ( r r ) l  

( 2 2 )  p [ O , I l  

Note that thefiee-enelgy of ourphysical system is exact& the 
functional (4) that we need to optimize to find a point on the 
rate-distortion curve. 

B. Randomizing Over All Codes 

= nz,(,,,(Y) (29) 

where the rightmost equation used (20). As the set { p }  is 
generally uncountable, we rewrite (29) more precisely: 

( e - B D ( , . s ) ) ,  = e i r i x P ( r ) I O B Z J b )  = Z( y )  (30) 

P 

In this subsection, we extend the derivation, and drop 
the impossible assumption that the mapping y ( u )  is fixed. 
Instead of considering the encoder probabilities, we con- 
sider the probability distribution over all deterministic codes; 
in other words, an ensemble of codes. A code is given by a 
mapping y ( u )  where y : [O, 11 + y ,  and a deterministic 

where we also used (21). Note that here we make the 
dependence of Z ,  and Z on y explicit because, in this 
subsection, the mapping y ( u )  is no longer assumed to be 
fixed. It follows from (26), (271, and (30) that 

encoding rule via an encoder/selector function s ( p )  
where s : { p }  + [O, 11. We write s ( p )  = u p  where u p  is the 
“codeword” assigned to p ,  and where the reproduction 
value is y(u,). This notation parallels the notation in the 
vector quantization literature [23]. The encoding rule can 
be equivalently given by the choice of values for the set of 
variables {up} .  Note that, in principle, we allow points p at 
the same location x to be encoded differently. Let f ( y ,  s> 
denote the probability density over the space of determin- 
istic codes, i.e., over the product space of all possible 
mappings { y }  and all possible selector functions Is}. We 
determine f ( y ,  s) by maximizing the entropy 

subject to the expected distortion constraint 

where the distortion due to the code ( y ,  s) is 

(24) 

e - P f 0 )  

dy e P ‘(Y) 
Z ( y )  

j dyZ( y 1 
f ( y >  = ~ = (31) 

where F ( y )  is the free energy as defined in (4) and again 
in (22). 

In order to find the most probable mapping y ( u )  at a 
given P ,  we maximize (31) or, equivalently, we minimize 
the effective cost function F ( y ) ,  that is, we minimize the 
free energy. Note that minimum free energy defines 
isothermal equilibrium of the stochastic system in the 
physical analogy. This gives the direct relation to anneal- 
ing once we gradually increase @ (decrease the tempera- 
ture). We thus see that the optimal output density, or the 
optimal mapping y(u) ,  determines equilibrium at a given 
temperature (i.e., at a given rate-distortion slope). A pro- 
cess of annealing consists of starting at p = 0 and gradu- 
ally increasing P while maintaining the system at equilib- 
rium. Hence, annealing is equiralent to computing the rate- 
distortion curue, starting at R = 0 and “crawling” up the 
curve. This is the topic of the next subsection. 

N Y ,  s) = / d p d [ x ( p ) , y ( s ( p ) ) l .  (25 )  C. Phase Transitions in the Annealing Process 
Unlike the more general derivation of the previous two 

subsections, in this part, we restrict our derivation to 
scalars and to the squared error distortion measure 
d(x ,  y )  = (x - Y ) ~ .  Generalization to vectors will be dis- 
cussed in a later section. At supercritical distortion, the 

We obtain the Gibbs distribution 
e - P D ( Y  J) 

(26) 1 dy 1 ds e-PD(YxS) ’ f ( y , s )  = 

assuming that the normalizing integral exists. Next, we 
compute the marginal probability density over the space 
of mapping functions {y} :  

f ( y )  = / d s f . ( y ,  s). (27) 

We first consider the following average all possible selec- 
tor functions: 

J P 

which made use of (25). Had { p }  been a finite set where 
each element has unit weight (the typical training set used 

optimal reproduction variable is -discrete, and for simplic- 
ity, let us assume that its support is finite. 

We start by considering the case of P = 0 (extremely 
high temperature). It is easy to see that the optimal 
mapping satisfying ( 5 )  is obtained by mapping the entire 
unit interval to a single point y,  which minimizes 
/ a k p ( x ) ( x  - y(,)’; hence, y ,  is the center of mass of the 
input distribution. The average distortion is the variance 
of the input. At this temperature, the cardinality of the 
effective reproduction alphabet is one. As we lower the 
temperature, the cardinality will change (it will generally 
grow). We consider differing output cardinalities as phases 
of the physical system, and the purpose of this subsection 
is to provide insights on the evolution of the system via a 
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phase transition analysis. Some skepticism may be raised 
about the notion of phase transitions, especially since the 
rate-distortion curve is continuous and well behaved, and 
no phase transitions are detected by its examination. 
However, the existence, and importance, of phase transi- 
tions is evident from a more appropriate (parametric) 
representation. In Fig. 1 we see the curve of distortion 
versus slope (or, equivalently, energy versus temperature) 
for the simple case of a source with uniform density. This 
is a typical phase diagram in physics. 

The continuity of the R ( D )  curve implies that the 
system undergoes continuous (second-order) phase transi- 
tions, which are, in fact, symmetry breaks. An elegant and 
powerful approach for the analysis of such phase transi- 
tions is the Landau theory [24] (another relevant treat- 
ment can be found in [25]) which uses the theory of 
symmetry groups. A continuous phase transition means 
that there exists a critical temperature such that, above it, 
the state of the system is invariant to a transformation 
group, while below it, it is only invariant to a subgroup. 
Thus, continuous phase transitions correspond to breaks 
in symmetry. The Landau theory addresses the analysis by 
introducing the basic concepts of order parameter and the 
Landau uariationalfree energy. The advantages of a careful 
application of the Landau theory to rate-distortion analy- 
sis are still under investigation. In this subsection, some 
preliminary results are given to demonstrate the useful- 
ness of addressing the rate-distortion problem by phase 
transition analysis. 

A continuous phase transition occurs when the optimal 
mapping y ( u )  stops defining the minimum of the free 
energy, and becomes a saddle point. Specifically, at the 
critical p, the mapping y ( u )  satisfies the usual constraint 

but there exists a particular perturbation ~ ( u )  such that 

d 2  

Because of the discrete nature of the reproduction distri- 
bution, this translates into a simpler condition (for a 
detailed derivation, see part C of the Appendix): the 
transition occurs when some point of support y ,  satisfies 
both (101, which we rewrite here as 

(32) 

and 

(33) 

The first condition (32) is needed for y ,  to be a point of 
support. The second condition (33) is equivalent to 

(34) 
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Fig. 1. This phase diagram was produced by simulation on a uniform 
source [ - 20,201. Distortion versus p on logarithmic scale clearly shows 
the critical p where phase transitions occur. The cardinality (number of 
symbols) of the effective reproduction alphabet is marked within the 
region of the corresponding phase. Note that the apparent discontinuity 
of the transitions is due to the discrete jumps in p, and to the fact that 
in the simulation they occur slightly later than they should. 

where the variance is computed based on the backward 
conditional density 

q:y<> = jdXP(X I y,)(x - y,Y. 

Note that it is easy to show that if yo =y(u , )  for some 
U, E [O, 11, then 

e - P ( x - I J ?  

p(x I Y(,) = p ( x  I U,) = p ( x )  1 dp(U)e-fi[X-J([~)-'l 

From (341, the condition on the critical p is that there 
exists a point of support yo such that 

1 
(35 )  

In other words, a reproduction symbol will split when the 
variance of its inverse image in the source space becomes 
large enough with respect to the temperature. We thus 
have a description of the annealing process, where at each 
phase the effective reproduction alphabet consists of re- 
production symbols which are centroids of "fuzzy" clus- 
ters in the input space. Phase transitions occur so as to 
maintain the cluster variance below 1/2 p. As we increase 
p, when a cluster's variance becomes equal to 1/2P, it 
splits into smaller clusters, and the number of symbols 
increases. 

For the first phase transition, (35) is easily related to 
known results from rate-distortion theory. For example, if 
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the input is Gaussian, the curve hits the R = 0 axis with 
the slope 

1 1 
s = - P = - - = - -  

where q2 is the source variance [4], as predicted by (35). 
We are interested in less trivial outcomes than the behav- 
ior at R = 0. Note that the result of (35) is not restricted 
to Gaussians, nor to the first phase transition. It implies 
that we obtain a sequence of phase transitions, corre- 
sponding to reproduction symbol splits when the variance 
of their inverse image in the input space becomes large 
enough with respect to the temperature. 

Three important comments should be made at this 
point. First, we note that the condition for phase transi- 
tion is equivalent to the first two conditions for continuity 
of the reproduction variable, namely, (11) or (13) for 
n = 1, 2. We say that a phase transition occurred at p, 
satisfying (35) if the condition was not satisfied at nearby 
p < p,. In other words, the lust phase transition occurs at 
critical distortion. At subcritical distortion, the rate distor- 
tion curve coincides with the Shannon lower bound and 
(35) is satisfied everywhere. The Gaussian source is the 
unique source whose rate-distortion curve coincides with 
the Shannon lower bound for all positive rate R. It is 
therefore the unique source whose reproduction variable 
is absolutely continuous at all positive rates. From our 
viewpoint of phase transitions, the Gaussian’s first phase 
transition which happens at p = 1/2a,2 is also the last 
phase transition, and results in continuous output density. 

Second, it is important to note that there exists another 
type of phase transition that we have not analyzed here. 
We considered symbol splits where the resulting new 
symbols continuously move away. Another possibility is a 
new symbol that grows continuously from zero mass. The 
continuity of the rate-distortion curve [4], [ 151 implies that 
these two are the only possible types of phase transition. 
The requirement that the distortion (energy) varies con- 
tinuously with p implies that either the change in the 
mapping y (u )  is continuous (splitting), or that discontinu- 
ous change in mapping is over a set of measure zero 
(growing). We only obtained conditions for splitting be- 
cause we used a linear form for perturbation y + €7 in 
our derivation above. The analysis of “mass growing” 
phase transitions is currently under investigation, and it is 
believed that a careful Landau theory formulation will 
yield a complete description of the process. At this point, 
it is not difficult to see that these new points of support 
can be anticipated and tracked by “massless” symbols 
long before they start growing their mass. Further discus- 
sion of this is given in Section VI. 

The third comment concerns the issue of whether the 
cardinality of the effective reproduction alphabet grows 
monotonically with p. This section was written in a way 
that implicitly makes this assumption (by using the terms 
“splitting” and “mass growing”). However, this is a con- 
jecture. In physics, there are only very few exceptional 

2Dnlax 2 q 2  

examples of transitions where the symmetry group below 
the critical temperature is not subgroup of the symmetry 
group above critical temperature [24, sect. 1421. This 
strongly supports our conjecture for the case of the simple 
elastic system we have here. In any case, this conjecture is 
not essential for the above derivation, nor for the compu- 
tational methods to be described later, as both allow for 
occasional “merging” or “vanishing” of symbols. 

Summarizing the current results together with the re- 
sults of Section 111, we state that as long as the rate- 
distortion curve has not merged with the Shannon lower 
bound, the optimizing output density is expected to be 
discrete, with the number of symbols changing according 
to a sequence of distinct phase transitions. We have 
derived the condition for mass-splitting bifurcation which 
relates the covariance of the symbol’s inverse image in the 
input space to the annealing parameter p or to the slope 
of the rate-distortion curve s = -p .  

V. HIGHER DIMENSIONS 
The results in Sections 111 and IV-C were derived for 

scalar sources. Although the treatment of higher dimen- 
sions is generally similar, some additional difficulties need 
to be addressed that would have somewhat obscured the 
basic results, and therefore had been postponed until 
now. 

The derivation of Section 111 is easily extended to 
obtain the corresponding result: the support of the opti- 
mal reproduction contains an open set only if the rate- 
distortion function coincides with the Shannon lower 
bound. We now require the optimality condition to be 
satisfied in a small ball around the vector y ,  = y(u,). The 
point y ,  must satisfy 

which is a vector equation. Since this condition is satisfied 
by all points in the ball, all its directional derivatives must 
vanish at yo .  Let the unit vector e represent an arbitrary 
direction, and let x, =x‘e and y,,, =yAe be the corre- 
sponding components along e. We obtain the following 
condition for all n 2 1: 

(37)  

which we rewrite as 

Integrating (38) over the subspace orthogonal to e, we get 
a condition on the marginal p ( x ,  I yo>: 
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This implies that p ( x ,  I y o )  is Gaussian (similarly to the 
derivation in part B of the Appendix): 

ents. It is easy to see that the expression in (46) is (up to a 
positive multiplicative constant) the matrix 

(40) 
(47) 

I I I  where Cx,Yo  is the covariance matrix 
We found that the marginal of p ( x  I y,,) along any arbi- 
trary direction is Gaussian; hence; it must be an isotropic 
Gaussian: 

n / 2  The critical value for P is determined by the first eigen- 
value of (47) to become zero. In fact, p ( x  ly,) = (%)  e - ~ l x - y , 1 2 .  (41) 

1 
But since we also have P, = - (49) 

’Amax 

p ( x  I y o )  = p ( x ) A ( x ) e ~ P ~ x - ~ ~ 1 2  
where A,,, is the largest eigenvalue of the covariance 
C,  I Y ~ .  Thus, phase transitions occur when the temperature 
is lowered to twice the variance along the principal axis of 
the “cluster” or inverse image in the source space. Now, if 
besides satisfying the second moment condition (491, the 
marginal distribution of the principal component is exactly 
Gaussian, then condition (40) is satisfied, and the phase 
transition results in continuity along the principal axis. In 
other words, we have a singularity which is not a point 
singularity, as explained before. 

then 
n / 2  

(42) p ( x ) A ( x )  = (x) 
and we conclude that 

n / 2  

p ( x )  = (:) /dp(u)e-PI+-Y(’)I’ (43) 

or, if the output density exists, 

In other words, the rate distortion function coincides with 
the Shannon lower bound. We have thus obtained in the 
cector case that the reproduction variable is singular unless 
the Shannon lower bound is tight. The problem with higher 
dimensions is that not all singularities are necessarily 
point singularities. To obtain the condition for other (non- 
point) singularities, let us assume that the reproduction 
density is continuous at y ,  along direction e,  but not 
necessarily along other directions. This immediately gives 
(401, which says that p(x, I y o )  is Gaussian with mean yo ,  
and variance 1 /2p .  Further, this is also satisfied by all the 
other points on the line y = y o  + ae where a is a scalar 
variable. 

We now extend the derivation of the condition for 
phase transition to higher dimensions. At phase transi- 
tion, the scalar conditions of (32) and (33) are replaced by 
the following conditions at a point of support y o :  

(45) 

and the (Hessian) matrix 

is singular (i.e., it is no longer positive definite). The above 
derivatives are, of course, short-hand notation for gradi- 

This process is nicely illustrated by a nonisotropic mul- 
tivariate Gaussian source [4, pp. 108-1111. The output 
density starts as a singularity at the center of mass of the 
input density. When p = 1/2Amax, it becomes continuous 
along a line, the major principal axis of the input density. 
As P is increased, it reaches values corresponding to 
smaller eigenvalues, and the output density spreads along 
the corresponding principal directions. As it does, the 
output dimensionality is increasing. Only when p reaches 
the value 1/2Ami, do we get continuity on an open subset 
of Y (in fact, we get continuity over the entire space), and 
exactly at this p, the Shannon lower bound for the vector 
source is attained. However, it is obvious from (40) that 
continuity within hyperplanes will only happen for a very 
restricted class of sources. Usually, we will only have point 
singularities to deal with. Moreover, in numerical compu- 
tation where the source is discretized, the optimal repro- 
duction variable will always be purely discrete. 

VI. SOLUTION QUALITY, COMPLEXITY, 
AND FUTURE IMPROVEMENTS 

Both methods, BA and MA, yield the optimal solution 
in the continuous case if initialized strictly within the 
convex region “boundaries” in the probability space.’ For 
BA, this requires the initialization to satisfy q ( y )  > 0, Vy ,  
while for MA, we require equivalently that y : [O, 11 + y 
is onto. Discretizing the methods means that we have to 
initialize the iterations on the boundary. Clearly, the den- 
sity has to vanish everywhere except at the grid points. 

‘By “probability space” here, we mean a space where each point 
represents a choice of output probability density. The boundary of this 
space consists of points representing densities which vanish at some 
Y E Y.  
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For BA, this becomes the original discrete case [7], and is 
therefore ensured to converge to the optimal distribution 
[26] on this bounday (i.e., for the given grid). MA, on the 
other hand, can modify the grid by the mapping. It is thus 
not confined to distributions defined on the fixed grid. 
However, it is not guaranteed to obtain the globally 
optimal solution. This last statement should not necessar- 
ily be understood as a disadvantage with respect to BA. 
The solution obtained by MA is always optimal for the 
grid it converges to, just like BA’s optimality on its origi- 
nal grid. Multiple local minima are caused by this ability 
to modify the grid, i.e., it is not guaranteed to find the 
optimal grid. To see the nonconvexity in the finite discrete 
case, consider the case of p + W. In this case, our map- 
ping solution tries to minimize the distortion subject to a 
fixed number of output symbols. This is exactly the vector 
quantizer design problem which is known to have noncon- 
vex cost function. The existence of multiple local optima 
gives strong motivation for the use of annealing. 

From the previous sections, we know that the output 
density solution often consists of a finite number of singu- 
larities. This means that MA can produce the exact solu- 
tion with this finite number of variables. BA would ap- 
proach this solution only at the limit of infinite grid 
resolution. 

The annealing approach starts at the global optimum at 
p = 0 and tracks it while gradually increasing p. It is thus 
crawling up on the rate distortion curve. It will not leave 
the curve as long as we can follow all second-order phase 
transitions in the process. The open issue here is our 
ability to follow the mass-growing phase transitions. Some 
discussion of it is given later in this section. 

It is hoped that the mapping approach and the statisti- 
cal physics analogy would provide means for improving 
the analytic solution of the rate distortion problem. This 
is the reason why the emphasis in this paper is placed on 
the general approach rather than the specific derivable 
algorithms. Let us now consider a sketch of an algorithm 
based on the approach. The algorithm is given for scalars 
and for the squared error distortion measure so that we 
can give simple interpretation. Note that this example can 
easily be generalized to higher dimensions and to other 
distortion measures. 

A deterministic annealing algorithm sketch: 
1) Initialize p = (1/2u:) - E ,  K = 1, y I  = / d u x p ( x ) ,  

2) Update for i = l;.., K :  
and q ( y , )  = 1. 

where 

3 )  Compute 

4) Convergence test. If not satisfied, go to 2. 
5 )  Compute 

and save ( R ,  0). 
6) Increment ,8 and check condition for phase transi- 

tion for i = 1;.., K .  If critical p is reached for symbol j ,  
add a new symbol y,, , = y, + 6 and increment K. 

7) Go to 2. 
Note that the test for critical ,f3 in step 6, if considered 

expensive for high dimensions, can be replaced by a 
simple perturbation. In this case, we always keep two 
symbols at each location, and perturb them when we 
update 0. Until the critical ,l? is reached, they will be 
merged together by the iterations. At phase transition 
they will separate. 

The relation to the Lloyd algorithm for quantizer de- 
sign is easy to see. At a given ,!3, the iteration is a 
generalization of the nearest neighbor and the centroid 
conditions. The relation to maximum-likelihood estima- 
tion of parameters in normal mixtures is also obvious (for 
the use of deterministic annealing in multiscale clustering, 
see [22] and [201). 

The above simple algorithm does not attempt to detect 
mass-growing phase transitions. In Fig. 2, we show its 
performance on a uniform source (where indeed such 
phase transitions do occur). It is indistinguishable from 
the curve produced by BA. In fact, the MA curve is 
everywhere slightly better than the BA curve, but this can 
only be seen by zooming in (Fig. 3). This is explained by 
our ability to place the reproduction values precisely 
where they are needed, while BA is constrained to a fixed 
grid. Apparently, the mass-growing phase transitions did 
not cause noticeable harm because, whenever they were 
missed, a “compensating” split happened soon afterwards. 
Considering complexity, MA appears to be dramatically 
more efficient. No extensive experimentation was per- 
formed to substantiate this. But for the above example, 
the rate-distortion curve produced by MA using a very 
demanding convergence threshold at each p (maximum 
squared change in the parameters less than IO-’*), and 
an exponential annealing schedule ,8(n + 1) = I.O1/3(n), 
in the range 0.001 5 p < 0.5, was generated in 14 h. The 
BA solution, using the same convergence threshold and 
for the same set of p ,  using a fixed grid of only 16 points, 
ran for over a week on the same machine (Sun SparcSta- 
tion 2). Of course, these results do depend to some extent 
on the efficiency of the respective programs, but they do 
suggest that there is much to be gained by the new 
approach. 
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solutions of (9) also give optima of 
R I  

Fig. 2. Rate versus distortion for the same uniform source. The result 
using BA i s  not distinguishable from the result of MA at this scale. 

Fig. 3. Zooming in to show the rate distortion at distortion between 70 
and 90. BA produced the higher curve (but will improve at higher grid 
resolution). 

If yo  maximizes 4.1 and c(y,)  takes the value one, then 
yo is a point of support of y. All other solutions of (9) can 
be tracked using massless variables which will start grow- 
ing mass only when c(y,) becomes one. Note that we are 
still dealing with a discrete set of variables. One practical 
approach under consideration consists of tracking the 
zeros of derivatives of c(y>. 

On the other hand, work on a theoretical analysis is 
underway to determine the precise conditions for a 
“mass-growing’’ phase transition, and to predict the criti- 
cal p and the location of such growth. These ideas are 
being researched, as well as their implications on the 
problem of vector quantizer design. 

VII. SUMMARY 
A mapping approach has been suggested for rate distor- 

tion computation and analysis. For continuous source 
alphabet, it is equivalent to the Blahut algorithm in prin- 
ciple, but its fixed-point iterations are extensions of the 
Lloyd algorithm to random quantization. Using MA, we 
establish an analogy to statistical mechanics, where crawl- 
ing up the rate distortion curve is equivalent to annealing 
of the corresponding physical system. As long as the 
Shannon lower bound does not hold with equality, the 
optimizing reproduction variable is discrete, and the num- 
ber of symbols generally grows as the system undergoes 
phase transitions. The ‘‘pathological’’ case of Gaussian 
input results in a continuous output density at all positive 
rates. Normally, however, the discrete nature of the solu- 
tion makes the discretized mapping approach very attrac- 
tive, as few variables are sufficient to obtain the exact 
solution. Deterministic annealing can be used to generate 
the rate distortion curve, and the result is exact as long as 
second-order transitions are accurately followed. The 
analysis of phase transitions corresponding to symbol splits 
has been performed for the squared distance measure. 

APPENDIX 
A. Necessuiy Condition for Optimal Mopping 

We wish to minimize the functional 

1 

P [0.11 
F ( y )  = - - /&p(x) log/  dp(u)eCPd[X,yc‘‘)l (50) 

Let us now briefly discuss “mass-growing’’ phase transi- 
tions. As mentioned before, this issue is currently under 
investigation. H ~ ~ ~ ~ ~ ~ ,  ‘‘hand-waving” arguments 
can be given to explain the expected solution to the 
problem. The basic idea is that our optimality condition 
(9) gives not only the points of support of the reproduc- 
tion at given p,  but also all “invisible” points that may 

over the mapping y(u>. In order to obtain the necessary condi- 
tion, we apply the standard procedure in variational calculus. 
We require 

d 

d€ 
- F ( y  + €7)) l e = ”  = 0 

grow mass at lower temperature. To see this, we note that 
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for all admissible' perturbation functions q(u).  Applying the 
condition to (501, we get 

d 
/ d p ( u ) q ( u ) - d [ x ,  y ( u ) ] ~ f l ~ [ ~ > J ( " ) J  

= 0, dY 
p X P W  / dp(u )e -Pd l " .~ (~OI  

which can be rewritten as 

The equality for all admissible perturbations requires the 
expression in braces to vanish almost everywhere with respect to 
p(u), This gives the necessary condition for optimality as the 
corresponding Euler equation: 

p-almost everywhere. 

B. Proof of Theorem 2 
The theorem states that if the optimal reproduction support 

has an accumulation point, then the rate distortion function 
coincides with the Shannon lower bound. 

Let us assume that the support of the reproduction random 
variable Y has an accumulation point yo,  i.e., for every E > 0, 
there exists a 6 such that 0 < 161 < E and yo  - 6 is a point of 
support of Y. It must satisfy the condition for optimality (6) ,  
which we rewrite for the squared error distortion: 

where 

We rewrite the condition as 

(Note that the integrals in (51) and (52) are uniformly conver- 
gent.) Next, we observe that 

where H,,(z)  is the n,th Hermite polynomial with respect to the 
weight function e-p' . Substituting into (521, we get 

2Since we derive a necessary condition, we do not need to be too 
careful about how restrictive our definition of admissibility is. Hence, we 
simply require that admissible functions be measurable, that the inte- 
grals exist, and that changing the order of integration and differentiation 
(where needed) is allowed. 

The next step is to interchange summation with integration. For 
justification, consider the series 

" 1  c z N , ( Z ) 6 "  
I I  = 0 

as a series of functions of z .  The series of absolute values of all 
terms is the expansion in series of the function ep(161'+21s11zi). 
Thus, in particular, 

Hence, to use Lebesgue's dominated convergence theorem, all 
we need is to show that 

is integrable, which we do by breaking into two parts: 

Each part is integrable since, by the Kuhn-Tucker conditions 
for the optimal reproduction random variable (e.g., [lS]), 

This establishes the conditions for Lebesgue's dominated con- 
vergence theorem. 

We can now return to (54) and obtain 

" 1  
,,=, ?I---(" n - I ) !  

' )  

It is obvious from the power series on the left-hand side that for 
E > 0 small enough, it must be either identically zero, or nowhere 
zero for all 0 < 161 < E .  Since the latter contradicts our basic 
assumption that y ,  is an accumulation point, it must be identi- 
cally zero at some neighborhood of yo (which is the situation in 
Theorem 1). Consequently, all terms in (55) must vanish, and we 
write 

i.e., p( .x)A(x)  is orthogonal to all Hermitc polynomials of degree 
greater than zero. Using the fact that 

p ( x  l y , )  = p ( x ) A ( x ) e - B ( * - ' " )  (57) 

this result can be rewritten as 

An obvious solution to this set of equations is the Gaussian 
density 

(59) 
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We want to verify that it is the (substantially) unique distribution 
satisfying (58). We note that (58) determines all the moments of 
p ( x  I yo>, which therefore must be the same as the moments of 
the Gaussian of (59). But the moment sequence associated with 
Gaussians satisfies Carleman’s general criterion P71, [28, p. 191, 
and therefore it uniquely determines the corresponding distribu- 
tion. Hence, we have that (58) implies (59). 

(64) becomes 

j & p ( x ) h ’ ( x )  (x - y o ) e C P ( * - r o ” /  d p ( u ) g ( u )  . 

But we have not yet specified the function g(u) at U E I,, which 
we can always define so that 

J 0 d p ( u ) g ( u )  = 0. 

Hence, whenever the first term is not positive, we can choose 71 
such that the second term vanishes. The conclusion is that we 
haw strict inequality in (63) for all g iff the first term of (64) is 

The condition for phase transition-equality in (63)Fcan be 
restated as follows: there exists some point of support y, for 

[ ‘0 l2  
Combining (57) and (59), we get 

p ( x ) h ( x )  = (60)  

and positice. 

p ( x )  = j d p ( u ) e - P ~ x - r ~ ~ ~ ) l ~ ,  (61)  which we have 

j d x y ( x ) h ( x ) [ l  - 2 P ( x  -yo)2]e-Pi -x-yo) ’  = 0 

or, more compactly using the backward transition density defini- 
which imply that the Shannon lower bound coincides with the 
rate distortion function. 

C. Necessary Condition for Phase Transition 
tion, 

1 - 2pu;,,, = 0 (65) 
A necessary condition for y to be the optimal mapping where 

(minimum of F )  is 
2 I J ”  = j & ( x  - y , )2p(x)h(x)e-P(x-r , ’ ) ’  

d 
-F(y + €7)) I t = ( )  = 0,  Vg(u )  (62)  The critical value for /3 is thus 
d € 1 

and 

A necessary condition for bifurcation is to  have exact equality in 
(63) for some perturbation g (we disregard the question of 
higher derivatives as we are concerned with necessary condi- 
tions). After straightforward differentiation, we get the condition 
for equality in (63): 

We claim that the sum is positive for all g i fand only if the first 
term is. The “if’  part is trivial since the second term is obviously 
nonnegative. T o  prove the “only i f ’  part, we use the knowledge 
that the output is discrete. For the first term to be nonpositive, 
there must be at least one point of support y, of nonzero mass 
such that 

It is straightforward to extend the above derivation to the 
vector case. In the vector case, the condition for phase transition 
is that there exists a point of support y ,  for which the matrix 

I - 2PCXl , o >  

where C y , , < ,  is the covariance matrix of p(x Iy,), is no longer 
positive definite. The critical value for P is therefore 

where A,,, is the largest eigenvalue of C X l  v<,. 
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