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Abstract—Distributed coding of correlated sources with memory
poses a number of considerable challenges that threaten its prac-
tical application, particularly (but not only) in the context of sensor
networks. This problem is strongly motivated by the obvious ob-
servation that most common sources exhibit temporal correlations
that may be at least as important as spatial or intersource corre-
lations. This paper presents an analysis of the underlying trade-
offs, paradigms for coding systems, and approaches for distributed
predictive coder design optimization. Motivated by practical lim-
itations on both complexity and delay (especially for dense sensor
networks) the focus here is on predictive coding. From the source
coding perspective, the most basic tradeoff (and difficulty) is due
to conflicts that arise between distributed coding and prediction,
wherein “standard” distributed quantization of the prediction er-
rors, if coupled with imposition of zero decoder drift, would drasti-
cally compromise the predictor performance and hence the ability
to exploit temporal correlations. Another challenge arises from in-
stabilities in the design of closed-loop predictors, whose impact
has been observed in the past, but is greatly exacerbated in the
case of distributed coding. In the distributed predictive coder de-
sign, we highlight the fundamental tradeoffs encountered within
a more general paradigm where decoder drift is allowable or un-
avoidable, and must be effectively accounted for and controlled.
We derive an overall design optimization method for distributed
predictive coding that avoids the pitfalls of naive distributed pre-
dictive quantization and produces an optimized low complexity
and low delay coding system. The proposed iterative algorithms
for distributed predictive coding subsume traditional single-source
predictive coding and memoryless distributed coding as extreme
special cases.

Index Terms—Distributed quantization, predictive coding,
sensor networks.

I. INTRODUCTION
HE theoretical foundation of the field of distributed source
T coding (DSC) was laid in the early seventies with the sem-
inal work of Slepian and Wolf [1], which was followed shortly
afterwards by Wyner and Ziv in [2]. A considerable revival of
interest, with focus on practical code design, has been witnessed

Manuscript received August 13, 2008; accepted April 23, 2009. First pub-
lished June 02, 2009; current version published September 16, 2009. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Christine Guillemot. The work was supported in part by
the NSF under grants 1IS-0329267 and CCF-0728986, the University of Cali-
fornia MICRO program, Applied Signal Technology Inc., Cisco Systems Inc.,
Dolby Laboratories Inc., Qualcomm Inc., and Sony Ericsson, Inc.. The mate-
rial in this paper was presented in part at the IEEE International Symposium on
Information Theory, June 2007, and the IEEE Information Theory Workshop,
September 2007.

The authors are with the Department of Electrical & Computer Engineering,
University of California, Santa Barbara, CA 93106 USA (e-mail: ankur@ece.
ucsb.edu; rose@ece.ucsb.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2024258

Encoder 1

Decoder

Encoder 2

Fig. 1. Distributed coding of two correlated sources.

since the late nineties, with the work of Pradhan and Ram-
chandran [3] as a notable precursor. The field eventually saw
the emergence of various distributed coding techniques, mostly
with an eye towards sensor networks (see reviews in [4] and [5]).
The basic setting in DSC involves multiple correlated sources
(e.g., data collected by spatially distributed sensors) whose in-
formation is sent to a fusion center without any intercommuni-
cation amongst transmitters (see Fig. 1). The main objective in
DSC is to exploit intersource correlations despite the fact that
each sensor source is encoded without access to other sources.
The only information available to a source encoder about other
sources involves their joint statistics (possibly extracted from
training data).

The main motivation for the work presented here springs from
the fact that most sources in the real-world are sources with
memory, i.e., they exhibit temporal correlations. In particular,
sensor networks will often produce data whose time correlations
are at least as important as their spatial (intersource) correla-
tions. Examples range from simple sensors monitoring slowly
varying physical quantities such as temperature or pressure, to
the extreme of video cameras collecting highly correlated frame
sequences.

Realizing the prevalence of sources with memory and the
importance of exploiting both temporal and intersource corre-
lation, we reformulate the problem within the representative
setting of distributed predictive coding (DPC) systems. Given
the historical focus on intersource correlations, most existing
DSC work naturally addressed memoryless sources where
one need not worry about temporal correlations. The implicit
assumption may have been that predictive coding per se is
a largely solved problem, and that extending DSC results to
incorporate prediction would require a straightforward inte-
gration phase. (An alternative argument may involve handling
long blocks of source data, as in vector quantization to exploit
time correlations, but the cost in delay and complexity may
be considerable). We shall, however, see that the generaliza-
tion from DSC to DPC is highly nontrivial due to conflicting
objectives of distributed coding versus efficient prediction in
DPC. In other words, optimal distributed coding (in terms of
current reconstruction quality) may severely compromise the
prediction loop at each source encoder. We therefore propose
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to investigate new DPC system paradigms and methods to
optimize their design.

There exists a channel coding “camp” of DSC research (see
[6] and [7]), where long delays may be employed to achieve
the desired performance, (e.g., using turbo/LDPC like codes
[8] and [9]). Distributed compressed sensing for sources with
memory has been proposed in [10] and [11]. It builds on the
principles of standard compressed sensing [12] and joint spar-
sity of the signals is utilized for efficient compression. How-
ever, the effect of source quantization has not been fully ad-
dressed, specifically for the case of coarse quantization of sensor
sources where the quantized signals may not be sparse in any
basis [10]. The other DSC research direction builds directly on
source coding methodologies. Algorithms for distributed vector
quantizer design have been proposed in [13]-[15] with major
or exclusive focus on memoryless sources. The source coding
perspective will be most relevant to us here. The temporal cor-
relations within a source can be exploited by blocking sources
into large vectors, but such a scheme will have high complexity
and will be extremely sensitive to initialization and poor local
optima [16]-[18]. Motivated by these observations, a notable
approach to predictive coding of correlated sources has been
proposed in [17] where a uniform quantization grid was im-
posed on the product space (across sources) of prediction errors,
on which the main support of the joint distribution was identi-
fied and a DSC code devised. The emphasis in that paper’s re-
sults was on the design of optimal predictor filters in such dis-
tributed setting and on how they deviate from the case of non-
distributed predictive coding. Also in [19], an algorithm for pre-
dictive coding of correlated sources exhibiting high intersource
correlation was given where different components (encoder and
decoders) were designed. However in both the previous set-
tings, neither the optimality of the algorithms was proven nor
the system can be guaranteed to be drift-free for all values of in-
tersource/temporal correlations. We have proposed optimal al-
gorithms with “zero-drift” and “controlled-drift” for distributed
predictive coding in [20] and [21]. The “controlled-drift” al-
gorithm includes the zero-drift approach as a special case that
emerges whenever the impact of potential drift overwhelms the
benefits of improved prediction. Both the DPC schemes also
subsume as special extreme cases a) separate predictive coding
of sources and b) memoryless distributed coding.

Another design difficulty whose origins are in standard pre-
dictive quantizer design [22] is exacerbated in the distributed
setting. On the one hand, open-loop design is simple and stable
but the quantizer is mismatched with the true prediction error
statistics (as the system eventually operates in closed loop). On
the other hand, if a distributed quantizer is designed in closed
loop, the effects of quantizer modifications are unpredictable as
quantization errors are fed back through the prediction loop and
can build up. Hence, the procedure is unstable and may not con-
verge. The effect is greatly exacerbated in the case of DPC. This
will be explained in more details in Sections II-B-4 and II-C.
To circumvent these difficulties, we have used the technique of
asymptotic closed-loop (ACL) design [23], [24] which we red-
erive for DPC system design. Within the ACL framework, the
design is effectively in open loop within iterations (eliminating
issues of error buildup through the prediction loop), while en-
suring that asymptotically, the prediction error statistics con-
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verge to closed-loop statistics. In other words, the prediction
loop is essentially closed asymptotically.

The organization of the rest of the paper is as follows. In
Section II, we state the problem formally, introduce notation,
specify the components of the DPC system and highlight the
need of ACL approach for DPC design. Section III describes the
zero-drift scheme while Section IV motivates and specifies the
components in controlled-drift based DPC design. Simulation
results are summarized in Section V followed by conclusions in
Section VL.

II. DISTRIBUTED PREDICTIVE CODING

A. Problem Statement and Preliminaries

Consider the simplest distributed source coding scenario of
Fig. 1. For brevity, we restrict the presentation to two sources
(generalization to an arbitrary number of sources is straight-
forward). Here X and Y are two continuous amplitude, corre-
lated (scalar or vector) sources with memory. The two source
encoders compress and transmit source information at rates 24
and R» bits per source sample respectively, to the central unit
(joint decoder). The objective is to minimize the following ex-
pected distortion cost:

D=E {ad(Xj) +(1- a)d(KY)} )

where d(-,-) is an appropriately defined distortion measure, X
and Y are the reconstruction values for X and Y respectively,
and o € [0, 1] is a weighting factor that accounts for the relative
importance of the sources at the decoder.

We further assume that predictive coding is employed to ex-
ploit temporal redundancies (we will restrict the scope to linear
prediction). The prediction errors e, (for X) and e, (for V)
will be correlated. Therefore, instead of the standard predictive
quantizer, a distributed quantizer needs to be designed to ex-
ploit intersource correlations. A mechanism to enable full lever-
aging of information from another correlated source requires
that the encoder and decoder reconstruction of the prediction
errors differ. We begin by describing the “zero-drift” approach
wherein both the source encoder and decoder have access to ex-
actly the same prediction error reconstruction for the prediction
loop and then propose a “controlled drift” approach where the
constraint of zero-drift is relaxed.

B. Zero Drift Approach

1) Encoder: The zero-drift distributed predictive encoder for
source X is depicted in Fig. 2. The input to the high resolution
quantizer @, is e, = X — Xene Where X, is the predicted
value of X at the encoder. ), maps the prediction error e, to
an index k representing Voronoi region Cy’ (a prototype can be
associated with each Voronoi region). Next, a lossy (many to
one) mapping which we refer to as the Wyner—Ziv (WZ) map-
ping is employed (the name loosely accounts for the fact that
the scenario involves lossy coding with side information whose
asymptotic performance bound was given in [2]). The WZ map-
ping block takes in k& and outputs index ¢ = v(k) for transmis-
sion over the communication channel, and which represents re-
gion RY = Uy, (x)=: Ci - The encoder codebook Cey produces
€z enc, the prediction error reconstruction value. An example of
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Fig.2. Block diagram of a DPC zero-drift encoder and a scalar example of WZ
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Fig. 3. DPC zero-drift decoder for source X .

WZ mapping for a scalar source with = 7and Z = 3, is given
in Fig. 2.

Note that the role of high-resolution quantizer is only to
discretize the source signal (e, ). This can be considered as a
fine quantizer and the WZ mapping block as the corresponding
coarse quantizer. The WZ mapping module exploits the inter-
source correlation by simply combining different regions of the
source (e, in this case) to the same index in order to reduce
the transmission rate. For example, in Fig. 2, the second and
seventh regions are mapped to the same index ¢+ = 2. At the
decoder, using information from the other correlated source
these regions can be distinguished. ~

The reconstructed residual € enc is added to Xy to obtain
X enc» the sample reconstruction value forAthe encoder prediction
loop. A linear predictor P, is applied to X, to predict the next
source sample. For Y, we similarly define the quantizer @,
regions C} and Rg. Here, the L Voronoi regions are mapped
to .J indexes via a WZ mapping w(l) = j. Next, we explain the
functioning of the distributed predictive decoder in the zero-drift
setting.

2) Decoder: The decoder module in charge of reproducing
X (see Fig. 3) receives indexes ¢ and j from sources X and Y
respectively. Index ¢ is first used to reconstruct €; enc S0 that the
encoder prediction loop can be exactly replicated without error
or potential drift to generate X,. and X, via the predictor
P,. Given the index pair (i, j), the decoder retrieves ¢, from
the decoder codebook, Qdec, and adds it to X.,. to obtain the
decoder reconstruction X .

3) Observations and Intuitive Considerations: Itis important
to note that the Wyner—Ziv mappings compromise the quality
of the sample reconstruction in the prediction loop in order to
exploit intersource correlation and improve the decoder recon-
struction. In particular, region RY = | kro(k)=i C} is typically
formed as a union of distant Voronoi cells C'; in the hope that
the information from source Y will allow the decoder to sepa-
rate them (see the example mapping in Fig. 2). A fundamental
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tradeoff emerges, as in order to exploit intersource correlations
between e, and e, to better reconstruct the current sample at
the decoder, we compromise the performance of the prediction
loop and hence the quality of future reconstruction.

We should also re-emphasize that X, is a (coarse) recon-
struction of X which only serves the prediction loop, and is gen-
erally different from X, the decoder reconstruction of X . Also
note that the “encoder codebook” C,y,. which is used in the pre-
diction loop at both the encoder and the decoder is, in general,
different from the “decoder codebook™ Cye. (used only at the
decoder).

4) Naive Approach for DPC Design: One can argue that pre-
dictive coding per se is largely a solved problem and a predic-
tive quantizer module can be straightforwardly integrated with
existing distributed memoryless coding methodologies (such as
in [15]) to obtain a DPC system. The idea in such a naive ap-
proach will be to first obtain a set of prediction error resid-
uals (ez, e, ). Let us assume that these are initialized with the
open-loop prediction errors. High rate quantizers are designed
based on these error statistics using a standard quantizer design
algorithm [25] (Ideally this design should be performed jointly
with other system components, but additional gains due to joint
design are expected to be very nominal. We therefore assume
that these high rate quantizers are directly designed indepen-
dently based on the error statistics). Then a distributed coder
will be designed to minimize the following distortion cost be-
tween the prediction errors

Elad(es,é,)+ (1 — a)d(ey, éy)] )
(see, e.g., DSC in [15]) (similar to the practice for traditional
single-source predictive quantizer, wherein the quantizer is de-
signed to minimize the distortion between prediction error and
its reconstruction). This will resemble the open-loop design in
traditional single-source predictive coding. Note that in the stan-
dard distributed coder algorithm, only the WZ mappings and
decoder codebooks will be designed. For the subsequent itera-
tions (of closed- loop predictive quantizer design) for source X,
€z,enc Will be calculated solely based on index ¢, since this is the
only common information guaranteed to be available at both the
encoder and decoder (index j from source Y is available only at
decoder). Next one computes €, ch( ), corresponding to trans-
mitted index ¢ as €, enc(Z) = (ez|el, € RY?). In other words,
similar to the practice in quantizer design, the encoder codebook
simply calculates €, Pm( /) as the centroid of region RY (we as-
sume squared error distortion measure for 51mphclty) Using
this, the sequences X, encs X enc and prediction errors e, will be
computed in closed loop. The crucial point to note in such a de-
sign is that ém7enc(7j) for index 4 is a very coarse estimate for e,..
For example, in Fig. 2, the high resolution quantizer divides the
source (em) space into seven separate regions. Now for index
1 = 2, €5 enc calculated as above will lie somewhere in reglons
in the middle of the line. This will cause the estimate XOnC
be coarse as well and degrade the performance of the prediction
loop. The prediction error statistics for subsequent samples will
differ greatly from those assumed during the distributed coder
design and may even cause instability as will be illustrated in the
results section. This shortcoming is primarily due to neglecting
the impact of the feedback prediction loop during the design of
the distributed coder. Hence, there is a major conflict between
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the objectives of distributed quantization and predictive coding,
and the corresponding tradeoff should be explicitly optimized.

5) Closed Loop Versus ACL Design: For conceptual sim-
plicity, let us consider first order linear prediction. We note that
the quantized error sample €, cnc at time n impacts the sequence
)N(enc and X from time n + 1 onwards due to the presence of the
prediction loop. On the other hand, é; at time n only impacts
the current X (at time n), as is explicitly depicted in Fig. 3.
Hence, if one tries to directly design a distributed quantizer for
the quantities being quantized, namely, the pair of prediction er-
rors {e,, e, } to minimize the distortion in (2) (as was done in
the naive approach), the role of prediction loop (affect of €, cnc)
on source reconstruction X is neglected. This actually implies
that the ultimate end-to-end distortion in (1) will not be mini-
mized.

However, if the DPC decoder were to perform in “open loop”
as shown in Fig. 4(b), then a particular sample of €, cn. Will af-
fect only the next sample (in case of rpth order linear predictor,
it will affect m future samples) of X and not all the samples
following it. Thus, if we can allow both €, e (through the pre-
diction loop) and é,, impact X simultaneously and not separate
distributed and predictive coding as was being done in naive
approach, the ultimate end-to-end distortion in (1) will be min-
imized. This is our main rationale of adopting the asymptotic
closed-loop (ACL) approach [23], [24] for DPC system design,
in which the design iterations are performed in open loop and the
prediction loop is essentially closed asymptotically. The func-
tioning of the ACL based DPC decoder will be explained in de-
tail in Section III. We also show DPC encoder in Fig. 4(a). An
important characteristic of the ACL technique is that the design
is performed in open loop but as the algorithm converges, the
prediction loop is effectively closed and the operation mimics
closed loop. In the next subsection, we briefly explain the ACL
approach for predictive quantizer design for a single source and
how ACL can be adapted for zero-drift DPC design.

C. Asymptotic Closed Loop for Predictive
Quantization (Review)

A predictive quantizer can be designed using an open-
loop (OL) or closed-loop (CL) approach [22]. In OL a training
set of prediction errors is generated from the original sequence
of samples and is independent of the quantizer. A greedy
design algorithm (e.g., Lloyd’s [25]) is therefore stable and
converges to a local minimum. However, the prediction loop
must be closed to operate the designed system, resulting in
prediction-error statistics that differ from those observed during
design. Hence, the system performance is suboptimal. In CL,
the system iterates in closed loop to generate new training data,
for redesign of the quantizer, until (hopefully) convergence.
However, since the training set changes with each iteration,
each redesigned quantizer is applied to error statistics it had
not been designed for. Moreover, the change in statistics is
generally unpredictable as, due to the prediction loop that feeds
back errors, there can be distortion build up as the sequence
is processed causing non-stationary statistics and actual diver-
gence (in terms of the performance cost). In general, there is no
guarantee that the algorithm will converge and the procedure
may be unstable [22].
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Fig. 4. DPC zero-drift encoder and decoder for source X during the design
phase. Note that the prediction is actually performed in open loop. (a) Encoder;
(b) decoder.

The asymptotic closed-loop (ACL) design approach [23],
[24] mitigates these shortcomings of traditional predictive
coder design. A subterfuge is employed wherein the design is
effectively performed in open loop, where each quantizer is
designed for the statistics of the exact signal it then quantizes to
produce a new sequence of reconstruction for the next iteration,
thereby circumventing stability issues. Asymptotically, the
loop is virtually closed in the sense that the design approaches
closed-loop statistics despite open-loop operation within each
iteration.

More specifically, for a given quantizer Q®=1) and recon-
struction sequence X ®=1) obtained at 1terat10n p — 1, a new

training set of prediction errors 7%?) = { en }n=1
iteration is generated as:

(P)_x —P[ ~(p— 1):|

for the pt"

(€)

where the subscript n denotes time and P is the predictor. Using
T®), a new quantizer Q) is designed and a new set of recon-
struction values for X is obtained by applying the new quantizer
on T itself as:

&9 = P [a50] + QW o],

It should be noted that the prediction is not from the preceding
sample reconstruction at the current iteration, but rather from the
fixed reconstruction sequence of the previous iteration. Hence,
unlike CL, the prediction errors to be quantized are fixed and do
not change as we modify the quantizer. Since the quantizer is ap-
plied to the exact error training set for which it was designed, it
is the best quantizer for the job and hence the distortion cost will

“)
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decrease. This will result in better prediction. A new prediction
error training set 7®*1 is then obtained and the procedure is
performed until a convergence criterion is met. Since the entire
design is performed in open loop, it is stable. At convergence,
the quantizer updates are vanishingly small Q®+1) ~ Q®),
Therefore, the reconstructed sequence is unchanged with iter-
ations, i.e., 27 ~ 2% implying P[] ~ PP
which means that asymptotically we are effectively predicting
from the previous sample reconstruction in the current iteration,
i.e., the loop is effectively closed. So, even though the algorithm
is always running in open loop, the design asymptotically ap-
proaches closed-loop conditions. More details about ACL are
given in [23] and [24].

III. ACL FOR ZERO-DRIFT DISTRIBUTED PREDICTIVE CODING

The ACL distributed predictive decoder (zero-drift approach)
for source X is shown in Fig. 4. Here WP j,(,,p denote the re-
ceived indexes in the p* b ACL iteration. eip ?mc » 1s the prediction
error estimate of the encoder codebook durm% iteration p for n ‘"
time sample. The other entities Xeﬁv ,1, , Xene,n, €tc., are corre-
spondingly defined. During the design iteration, the prediction
loop is open as shown. The distortion cost to be minimized is:

p®) = g [ad (X,X<P+1>) +(1—a)d (Y,Y(p“))} e

Note that during iteration p, we seek to minimize the ultimate
cost at iteration p + 1. Asymptotically, this makes no difference.
This setting is used to ensure that the direct impact of the present
error reconstruction (éip :Jlr)l), and previous error reconstruction

(é.srfe)mc,n) via the prediction loop on X 7(11;-1-11) is taken into ac-

count for effective update rules. Also, since the design is actu-
ally in open loop, éf,f ch,n affects X ®+1) at time n + 1 only.
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A. Update Rules: Zero-Drift DPC

For simplicity, we assume that d(-,-) is the squared error
distortion measure. The decoder codebook, encoder codebook,
Wyner—Ziv mappings and the predictor are updated iteratively
using the following steps:

1) Decoder Codebook (Cyc.): Entry (4,5), ¢ = 1:Z and
7 = 1:J is given by (6), shown at the bottom of the page.
Here {¢,(i,7)}® and {é,(i,5)}®*1) denote the decoder
codebook entry (4, 7) for ACL iteration p and p + 1 respec-
tively.

Encoder Codebook (C.,.): Entry i, = 1 : 7 is given by
(7), shown at the bottom of the page, where the resulting
prediction error of source X depends on 1) via e —

r.n+l —
<p ) [5;8;1; 11) +1)]. Note that eip ;1_ +)1 is shorthand for
(p+1)

é.(i g’:ll) Jrp1 ), the reconstructed value of eip +_|1_)1 Fur-
ther {€4 enc(i)}®) and {é, enc(7)}P*Y) respectively de-
note the encoder codebook entry ¢ during ACL iteration
pand p + 1.
WZ Mappings: For k = 1,..., K, assign k to index 7 =
{v(k)}®) such that (8), shown at the bottom of the page.
Here {v(k)}® and {v(k)}®@*+") denote the WZ mapping
for X during ACL iteration p and p + 1 respectively. Note
that the two subsets of source X samples corresponding to
prediction errors in iterations p and p + 1 (i.e., n : e&’: % S
Crandn : eip ;1__11_)1 € Cy) may overlap. We need to account
for the effect of each element in either subset, hence we
consider the union of these subsets via an “OR” condition
in the summand of (8).

4) Predictor: See Section III-B.
The corresponding update rules for source Y are similarly ob-
tained. Note that ¢ and 7 point to codebook entries, subscript n
indicates time, and superscript p indicates the ACL iteration. To
reduce clutter, superscripts were omitted where obvious, e.g.,
R; for R .

2)

Tn4+1—

3)

{626.)? = (20,3} = arg min 2 a(erih,0) ®)
n:(egff,tl),e(yl_’tl))eRiXRj
{eroncli}?) = {eaancli}*" =argmin 37 ad (210 8000) + (- ((Z0.400)] 0
n:s‘(fleRi
(R} = {o() "+ =ars_min_ > o (201, PO [50 D p enci)] + 20 (1,5857))
Sf’Leck or ei”j}r)lec
+ (1=a)d (gns1, PO [300 +ey.ene (19| + 6 (i.5557) ) - ®)
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In order to account for the impact of adjustments to, e.g., the
decoder codebook, the update rule must involve values indexed
by p + 1; see Fig. 4. We hence increment the iteration counter
p < p+ 2 at the end of each ACL iteration. This automatically
implies that the encoder and decoder codebooks, and WZ map-
ping entries, are unchanged between p and p + 1, as is made
explicit in the update equations. Effectively, we use the ACL
counter sequence p = 1,3,5,.... Note that this subterfuge to
enable proper update rules makes no asymptotic difference.

B. Predictor Optimization

To obtain an effective update rule for the predictor, we keep
the various codebooks and WZ mappings fixed, and set to zero
the partial derivative of the distortion cost in (5) with respect
to the predlctor For the fixed set of reconstructed sequence

~(p—1)

{Zenen },,—q» the prediction error at iteration p is calculated as

) = wa = PO 3070 ] ©)
For notational simplicity, we break the distortion cost in (5) as
D® = oD 4 (1 oz)Dg(,p), where D) and Dép) are the
contributions to the distortion from sources X and Y, respec-
tively: D) = E[d(X, X®+D)] and DI = E[d(Y,V@+D)).

The term Dép ) can be rewritten as follows:

N
- . 2
D(p) NZ Xn—XT(LpH)] (10)
n=1
1A 2
=5 2 [Xa e - x| an
n=1
1A 2
= > [Xa - et - PORE) ] (12)

3
Il
-

+x220)))

13)

I
==
WE

P (1

3
Il
-

where we replaced expectation with sample averaging over NV
samples in the training set.

While minimizing the distortion cost D®) in (5) with re-
spect to P(p ) , we neglect the effect of ad ustmg predictor P(p )
on the reconstructed prediction error € P + , which is effec-
tively a coarse quantizer output (1mplemented by a high reso-
lution quantizer followed by WZ mapping). This approxima-
tion is standard practice in predictor optimization in traditional
(single-source) predictive quantizer design [22], [26].

Setting VPI(P)D(p) = VPJEP)D?) = 0, we obtain the matrix

equation

1 o -(p—1)

Yl )
+x20] =0 s

x,enc,n— 1+

— ¢t _ p) ( 6(P)
[ 5(p)
x,enc,n— 1
where superscript 1" denotes matrix transposition. The solution
is
Agrp) ( B J(CP)) -

PP = (15)
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where
N T
Agrp) = Z (X’ﬂ - éa}::l)) (é(zI,)e)znc,n—l + Xe(zgc 'rlr,) 1) (16)
n=1
and
N ~ ~ T
Bi(”p) - Z( ipinc n—1 +X§£:’}L>—1) (é;(tl,)e)!nc,n—l +X&£fi;r1L)—1)
n=1

7)

C. Algorithm Description

In ACL iteration p, the various codebooks, WZ mappings and
the predictors are updated iteratively. Convergence is guaran-
teed within an ACL iteration since the update steps (each con-
sisting of optimizing one module while fixing the others) are
monotone non-increasing in the distortion (5).

For the next ACL iteration, the sequence ég 2}16) is calculated
using the index sequence i(P*1). The reconstructed sequence

XEHY is obtained as

X+1) — X(p) + plpt1)

enc Z ,enc

(18)

and kept fixed for ACL iteration p 4 2. Recall that since the
update rules involve parameters in iteration p and p + 1, we
increment the iteration counter p «— p + 2. Next the predicted
sequence is computed as

X+l — p(p)X(p+1)_

enc enc

19)

We initialize the predictor for the ACL iteration p + 2 as
PP = PP and proceed to the next ACL iteration. A flow-
chart describing the algorithm is given in Fig. 5.

IV. CONTROLLED DRIFT APPROACH

A. Motivation and Description

In the zero drift approach, to avoid any potential mismatch
the encoder codebook for source X (see Figs. 2 and 4) was re-
stricted to have index 7 as input. However, the source encoder
for X has complete knowledge of the prediction error (e, ) itself
or effectively the index k (which is the output of high resolution
quantizer used primarily to discretize the source), while the de-
coder has additional knowledge about the prediction error from
the correlated source Y, in the form of index j. This implies that
there exist some (elusive) additional information that could be
exploited, if an appropriate means were devised. This may be
done by using different codebooks for the prediction loop at the
decoder and encoder, specifically assigning k as the input to the
encoder codebook, while the decoder loop codebook has ¢ and
7 as inputs. This flexibility enables better exploitation of inter-
source correlation, at the cost of some drift in the system. How-
ever, appropriate design of encoder and loop codebooks will op-
timize the precise overall performance while accounting for and
managing the drift. Note that the controlled-drift approach actu-
ally subsumes the zero-drift scheme as an extreme special case
where the encoder and loop codebooks are effectively the same
and depend only on :. The encoder and decoder employed for
the controlled drift approach during system operation are de-
picted in Fig. 6 and Fig. 7. However, during the ACL design,
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Fig. 5. Flowchart of asymptotic closed-loop design procedure for distributed
predictive coding.
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Quantizer
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€x.enc

Rl: Xﬁ]l(‘,

Fig. 6. Controlled-drift DPC encoder.

the prediction loop is open as shown for the decoder in Fig. 8.
We next specify the update rules for controlled drift DPC which
parallel those of zero-drift DPC.
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Fig. 7. Controlled-drift DPC decoder.
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Fig. 8. Controlled-drift DPC decoder during design phase.

due to the multiple indexing involved; in a nutshell we alternate
between optimization of the decoder codebook, encoder code-
book, loop codebook, WZ mapping and predictor. The update
rules below are specified in terms of the subset of distortion
terms that depend on the parameters being updated; while
avoiding overly detailed notation. As mentioned earlier in the
zero-drift approach, the various codebooks and WZ mapping
corresponding to p and p + 1 are same and we increment the
ACL iteration counter as p «— p + 2.

1) Decoder Codebook (Cyec): Entry (4,7), i =

7 = 1: J is obtained as

{e.(i, )}
= {&.(i,5) TV

=arg min Z

A (p+1) L (p+1)
n'(ez,7z+1’ey,7z+l

1 : 7 and

) d (xn-l—la :’i’l(gc))p,n—l—I +¢) ‘
€ER; XR]'
(20)

2) Loop Codebook (Cioop): Entry (4,7),i =1:Z and j =
1: J is obtained as (21), shown at the bottom of the page,

where eﬁf’ + +)1 is shorthand notation for &, (i ,(f’:ll), .7(5:—11 ).
3) Encoder Codebook (C.y.): Entry k, k = 1 : K is ob-

tained as (22), shown at the bottom of the next page, where
the resulting prediction error of source at encoder X de-

B. Update Rules: Controlled Drift DPC pends on ( via egp:+)1 = Tnp1 — o [xt(enc }L) + ¢J. and
. . . s(p+1)  A(p+1) (p+1)
As earlier, we assume mean squared error distortion for xpn+1’ eyz,)n+1 are the reconstructed value of emz,)n+1 and
simplicity. The notation in what follows is necessarily heavy e?(f : +)1, respectively.
[ toop(is N = {lnpoop (o)} ) =argmin 3 d(wapn P (300 4 0) +600) @D

(p)

n.(el

n Vei/pv)l) ER; XR;
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4) WZ Mappings: For £k = 1 : K, assign k to index ¢ =
{v(k)}® such that [see (23), shown at the bottom of the
page].

5) Predictor: See the predictor update in zero-drift DPC ap-
proach.

To reduce clutter, we have again omitted the superscripts
where obvious, e.g., R; rather than R etc. We optimize the pre-
dictor for both the zero-drift and controlled-drift DPC schemes
using the update rules derived in Section III-B. However, one
may still do better in the case of controlled-drift scheme by
allowing different prediction filters at the encoder and decoder.
In our experiments, we observed that adjusting the prediction
filters yielded modest performance gains and thus we skip here
the derivation of optimal prediction filters in the controlled-drift
setting.

V. SIMULATION RESULTS

A. Performance Evaluation

The following Gauss—Markov source model is used for sim-
ulations:

Xn = /Banl +w, and Y, = ’VYnfl + un (24)
where w,, u, are ii.d., zero-mean, unit variance, jointly
Gaussian scalar sources with correlation coefficient p. A
training set of size 5000 scalars is generated. We use mean
squared error distortion for all simulations. The predictors P,
and P, are first-order linear predictors. Simulation results are
depicted in Fig. 9. In all simulations, the weighting coefficient
of (1) is set to & = 0.5 so that equal importance is given to
both sources at the decoder. The number of prototypes is 60
for each source.

In the first experiment, 3 = v = 0.8 and p = 0.97. Both
sources are encoded at the same rate. The weighted distortion
at the decoder is plotted versus the number of transmitted bits
for each source. We compare a) “non-distributed” predictive
coding, i.e., each source is compressed independently using
standard predictive coding; b) memoryless distributed coding,
i.e., no prediction is performed and a simple distributed source
coder to exploit intersource correlation (this is simply designing
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a distributed quantizer for the source pair (X,Y) using a stan-
dard distributed quantizer algorithm, see, e.g., [15] or [18]);
c¢) zero-drift distributed predictive coding (DPC-ZD); and d)
controlled-drift distributed predictive coding (DPC-CD). The
two DPC schemes (with or without drift) clearly outperform
the other two compression schemes and gains of ~1.7 dB are
achieved (e.g., at Ry = Rs = 2 bits/sample) by the DPC-CD
scheme over traditional predictive coding or memoryless dis-
tributed coding. We do not include the “naive” approach for
DPC design (see Section II-B-4)) in this comparison due to
severe instabilities exacerbated by the naive scheme as shown
in the next subsection.

In the second experiment, p = 0.96 and the transmission
rates for the sources are fixed at 2 bits/sample. The temporal
correlation 3(= +y) is varied in this experiment. Note that
the source variances change as we vary . So we need to
normalize weighted distortion by the weighted source vari-
ances. Hence, we employ the SNR defined as (o E[X?] + (1 —
Q)E[Y?))/(aE[(X — X))+ (1 — a)E[(Y — Y)?]) which
is a better performance metric in this experiment. We plot
SNR versus temporal correlation 3(= +). Note that the mem-
oryless distributed coding scheme performs same as we vary
the temporal correlation while the performance of traditional
predictive coding, which exploits temporal memory, becomes
better with increasing temporal correlation. The DPC schemes,
which utilize both temporal and intersource correlations consis-
tently outperform traditional predictive coding or memoryless
distributed coding and gains up to 1.6 dB are achieved, e.g., at
g = 0.8.

In the third experiment, 5 = v = 0.6 and R; = Ry = 2
bits/sample. We plot the weighted distortion versus intersource
correlation p. The DPC-CD scheme achieves gains up to 1.1 dB
(at p = 0.95) over traditional predictive coding or memoryless
distributed coding. It is noteworthy that at low values of inter-
source correlation, the cost of a mismatch between the encoder
and decoder estimates tends to overwhelm the benefits due ex-
ploiting such limited intersource correlation, and thereby com-
promise the overall prediction loop performance. The DPC-CD
scheme thus automatically converges to a solution that mimics
the zero drift scheme in such circumstances. On the other hand,
athigh intersource correlations whose potential benefits are con-
siderate, the DPC-CD scheme offers additional gains over the

{éir,onc(k)}(p) = {éLch(k)}(P‘i‘l) = arg In(in Z Oéd (xn+17jf§c))p,n+1 + éif:—il-)1> + (1 - a)d (yn+17 gl(gc))p,n-i-l + é!(/p;_‘il')l)

n:e(;f?leck
(22)
{o(k)}*) = {o(k)}
— aro : ~(p=1) | 4 5 +(p) s [ s(pt1)
arg ieI{IilﬂI.lI} Z ad (xn+1,Px (Jiloop,n + €z,loop (th )) T s (Z7jn+1 ))
n:eSfZLGCk or 811?:J1r)leck
+(1=)d (g1, Py (g + Evtoon (1:59) ) + 8 (1. 3757)) 23)
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tively. Figure (b) shows SNR versus temporal correlation. (a) Fixed intersource
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Fig. 10. Plot showing the convergence of various distributed predictive coding
algorithms. Here p = 0.98, 3 = v = 0.8, Ry = R> = 2 bits/sample.

zero drift approach by allowing a controlled amount of mis-
match between the encoder and decoder estimates and thereby
exploiting intersource correlation effectively.

B. Convergence

In Fig. 10, we show the convergence (in terms of weighted
distortion) of the controlled-drift and zero-drift DPC algorithms
versus the number of iterations of the algorithms. The algo-
rithms approach convergence in a small number of iterations
(typically 15-20). Since DPC system design will generally be
done offline and only once, the complexity should be manage-
able. Note that a naive combination of the distributed coding and
predictive coding modules results in a highly unstable subop-
timal system as was anticipated in Section II-B-4 that described
the naive approach.

We observed “limit cycles” in the DPC design procedure,
similar to the design of single source predictive quantizer [24].
This can be attributed to two interrelated reasons: a) during an
ACL iteration, the various modules (codebooks and WZ map-
pings) are each greedily optimized while keeping the others
fixed. This leads to convergence to a local minimum point. As
we recompute the reconstruction sequences and prediction er-
rors for the subsequent iterations, we may find different locally
optimal points thereby causing the “limit cycle”; b) the update of
WZ mappings (where different regions are mapped to indices) is
equivalent to a complex index-assignment problem that exacer-
bates suboptimalities. To overcome this shortcoming of limit cy-
cles, annealing based techniques can be employed. Note that an
annealing based algorithm for single-source predictive coding
via ACL was proposed in [24]. We observed in experiments that
these limit cycles are small in magnitude and in general do not
impact the algorithm performance.

C. Comments

We have run the various algorithms multiple times since
greedy descent will converge to a local minimum, depending
on initialization. It is straightforward to apply the proposed
algorithms to higher vector dimensions. However, this will
exacerbate the problem of local optima. We do have a proper
solution to this shortcoming, which we had developed for

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 28, 2009 at 19:07 from |IEEE Xplore. Restrictions apply.



SAXENA AND ROSE: DISTRIBUTED PREDICTIVE CODING FOR SPATIO-TEMPORALLY CORRELATED SOURCES

memoryless DSC [18], but extending and adopting such global
optimization techniques for DPC is beyond the scope of this
focused paper.

The main emphasis in this paper is on designing a distributed
predictive coding framework where the temporal correlations
within a source are exploited via a low-complexity, zero-delay
predictive coding approach. Hence, we have restricted compar-
ison to zero delay schemes only. We believe that combining our
proposed distributed predictive coding framework with other
schemes that exploit source memory (such as lattice vector
quantization) would yield further gains. Finally, we note that
the proposed methods are extendible to incorporate entropy
coding.

VI. CONCLUSION

In this paper, we proposed iterative descent algorithms for the
design of distributed predictive coding systems for spatio-tem-
porally correlated sources. This is the typical setting for sources
with memory in a sensor network. We have shown that straight-
forward integration of distributed coding and predictive coding
modules results in a highly suboptimal system and tends to
suffer from severe design instabilities. We then presented ap-
proaches, namely, zero-drift DPC and controlled drift DPC. The
zero-drift approach allows no mismatch between the encoder
and decoder prediction error estimates. To utilize intersource
correlation more efficiently, the constraint of zero-drift is re-
laxed in the controlled-drift approach. Simulation results show
that the two proposed distributed predictive schemes perform
significantly better than memoryless distributed coding and tra-
ditional single-source predictive coding schemes. Finally the
controlled-drift DPC scheme offers additional gains over the
zero-drift DPC scheme, especially for high intersource corre-
lations.
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