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1 Introduction
Blind equalization algorithms attempt to identify a trans-
mitted symbol sequence in the presence of intersymbol in-
terference (ISI) without resorting to a training sequence.
Existing blind equalization algorithms can generally be clas-
sified into two categories: (a) those based on Bussgang tech-
niques and (b) those based on high-order The
Bussgang-type algorithms are derived by minimizing a non-
convex performance function using gradient-descent tech-
niques. As shown in Fig. 1 , the received signal is passed
through a linear transversal filter, yielding an estimate y(k)
of the transmitted sequence. This linear estimate is then
processed by a zero-memory nonlinearity, g[y(k)], to gen-
erate the ''desired response,' ' d(k—z), which is used in
the error signal of a gradient-descent algorithm. Several
types of nonlinearities have been studied by many au-
thors,28 leading to a family of Bussgang-type algorithms.
Although simple to implement, these algorithms exhibit slow
convergence and may converge to undesirable local mm-
ima.9 A comparative performance study of several Bussgang-
type algorithms is presented in Ref. 10, illustrating some
of their transient and steady-state convergence properties.
Blind adaptive algorithms based on high-order statistics use
cumulants of the received signal to directly extract phase
information about the channel.1' These algorithms have a
faster initial convergence rate than the Bussgang-type al-
gorithms, but they usually have a greater computational
complexity.
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Abstract. A new blind equalization algorithm is presented that incorpo-
rates a Bayesian channel estimator and a decision-feedback (DF) adap-
tive filter. The Bayesian algorithm operates as a preprocessor on the
received signal to provide an initial estimate of the channel coefficients.
It is an approximate maximum a posteriori (MAP) sequence estimator
that generates reliable estimates of the transmitted symbols. These de-
cisions are then filtered by an adaptive decision-feedback algorithm to
further reduce the intersymbol interference. The new algorithm is more
robustto catastrophic error propagation thanthe standard decision-feedback
equalizer (DFE), with only a modest increase in the computational com-
plexity.
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Incontrast to both of these approaches, blind equalization
algorithms that approximate the optimum maximum a pos-
tenon (MAP) sequence estimator12 for unknown channels
were recently introduced. 1345 These algorithms achieve blind
start-up and have rapid convergence (usually within 200
iterations), even for channels with deep spectral nulls. Joint
channel estimation and data recovery algorithms based on
the maximum-likelihood principle have also been pro-
posed. 16—18 However, because the sequence estimator in
these algorithms is a Viterbi decoder, the decisions have a
decoding delay that could be quite large. The MAP esti-
mator, on the other hand, produces delay-free decisions that
can be exploited to reduce the complexity of the algorithm,
as discussed in Secs. 2 and 3.

The exact MAP sequence estimator requires a separate
channel estimate for each possible symbol sequence, and
therefore its computational complexity grows exponentially
with time. To overcome this complexity problem, a subop-
timum Bayesian recursion14 was developed for the MAP
sequence probabilities by maintaining separate channel es-
timates for only MN + 1 subsequences, where M is the sym-
bol alphabet size and N,, + 1 is the (estimated) length of the
channel impulse response. The resulting algorithm can be
implemented using a bank of Kalman filters in which each
filter maintains a channel estimate conditioned on one of
the MT"1 subsequences. Note that the complexity of this
Bayesian method grows exponentially with the number of
symbols, whereas the complexity of Bussgang-type and
cumulant-based algorithms is essentially independent of M.
To reduce the complexity for large signal constellations,
reduced-state sequence estimation19 (RSSE) was employed.
In RSSE, the MN +1 subsequences are grouped into a coarser
partition of J MNb + l subsets, and the number of Kalman
channel estimators is correspondingly reduced. Finally, as
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a further simplification, the Kalman estimators were re-
placed by least-mean-square (LMS) adaptive filters, thus
avoiding updates of covariance-type matrices.

In this paper, we present a modified Bayesian algorithm
that incorporates decision feedback to further reduce the
computational complexity . Forchannels with a long impulse
response, the equalization process can be divided between
the parallel LMS Bayesian filter bank and a single decision-
feedback (DF) filter. The filter bank first removes the ISI
due to the dominant channel coefficients, and the feedback
filter compensates for the remaining 151 caused by the tail
of the channel impulse response. Since a channel typically
has only a few dominant coefficients, the complexity of this
combined BayesianlDF algorithm (BDFA) is considerably
less than that of the original Bayesian algorithm in Ref. 14.

By varying how the coefficient estimates are shared be-
tween the Bayesian filter bank and the DF filter, the oper-
ation of the BDFA can be varied between that of a decision-
feedback equalizer (DFE) and that of the full Bayesian al-
gorithm. Thus, there is a trade-off between the computa-
tional complexity of the algorithm and its initial error-rate
performance. In particular, the size of the Bayesian filter
bank should be sufficiently large to prevent any catastrophic
error propagation in the DF filter. The DF algorithm operates
smoothly with the Bayesian symbol detection algorithm and
it outperforms RSSE, which was originally developed to
reduce the complexity of the Viterbi algorithm (VA) for
maximum-likelihood sequence estimation19 (MLSE).

The paper is organized as follows. The MAP estimation
problem is briefly discussed in Sec. 2, and the LMS Baye-
sian equalization algorithm is reviewed using the notation
of Ref. 14. The motivation for incorporating decision feed-
back is also given, and its advantages over RSSE are dis-
cussed. The new Bayesian/decision-feedback algorithm is
then presented in Sec. 3. Computer simulations are given
in Sec. 4, and the properties of the BDFA are discussed in
Sec. 5. Conclusions are outlined in Sec. 6.

2 MAP Estimation Algorithm
In the original development of the suboptimal Bayesian
channel estimator, the following discrete-time channel model
was assumed14:

Nb

r(k)= bm(k)d(km)+n(k)
m=O

Detected
Symbol

A
d(k-i)

(1)

where r(k) is the output of a matched and prewhitening
filter at time k, d(k) is the most recent transmitted symbol,
and {bm(k)} are the time-varying ' 'channel' ' coefficients.
These coefficients are obtained as the convolution between
the actual channel impulse response, the matched filter im-
pulse response, and that of a prewhitening filter, which is
included to ensure that the additive noise n(k) is an uncor-
related process. This noise is assumed to be a complex
Gaussian sequence with zero mean and variance o-. Perfect
synchronization is implicitly assumed in the above model.

Define the following channel coefficient (column) vector:

(2)

which, in general, can be complex-valued. Of the MNb +1
possible subsequences comprising the data symbols asso-
ciated with Eq. (2), define the i'th subsequence as

d!'b={d(k),d(k_ 1),...,d1(k—Nb)}

which can be written in (row) vector notation as

h1(k) = [d1(k),d(k— 1),... ,dj(k—Nb)]

(3)

(4)

Finally, define the cumulative measurement sequence rk,
which represents the matched filter output collected up to
time k, as follows:

rk={r(k),r(k_ 1),...,r(O)} (5)

In the suboptimum MAP sequence estimator, the prob-
ability density function of the channel coefficient vector is
modeled as a complex Gaussian vector when conditioned
on the cumulative observations r1 and the i'th data sub-
sequence dk! i.e.,

p[b(k)Id",r' J 1), I] (6)

where X(x;m,P) is a circular multivariate Gaussian density
with mean vector m and covariance matrix P. The true
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Fig. 1 Bussgang configuration for blind equalization.
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density of b(k) conditioned on a given subsequence,
db is actually a weighted sum of Gaussian densities with
the weights given in terms of the MAP sequence probabil-
ities p(d 1,Nblrk_ 1) at time k — 1 . However, the density is
approximtted as being unimodal in Eq. (6) with mean de-
noted by b1(k — 1), assuming that one of the MAP sequence
probabilities is close to 1 and the others are nearly 0. This
approximation yields a blind equalizer based on a parallel
bank of adaptive filters. By assuming that the covariance
matrix is given by the identity matrix I, the weight updates
for the adaptive filters reduce to simple gradient-descent
algorithms.

The MAP estimate of subsequence d" is

p(dIrk) =!p[r(k)ld,rk_1

x p(d"'ir"1)
{j:d3k

1 NbEdkNb}

where c is a normalization constant. In the above expres-
sion, observe that subsequence d 1,Nb E d" implies
that the first N,, symbols in subsequence d1 Nb equal the
last Nb symbols in For example, with N, + 1 =4 and
assuming binary phase-shift keying (BPSK) (± 1), if
d""={—1,1,1,—-1} and d"={1,—1,1,1}, we have
d " E d" Under the approximation of Eq. (6), the
likelihood p[r(k)Id"",r' J is a Gaussian density, as
follows:

p [r(k)Id"" ,r" 1 =X[r(k);I,(k),cr(k)J

The mean I(k) corresponding to the symbol estimate based
on the i'th subsequence, is computed as

Nb

bi,m(k 1)d(k—m)
m=O

and the covariance is

o(k) =h,(k)h7(k) + r

where the superscript H denotes complex conjugate trans-
pose. This covariance has a simple form because of the
identity matrix in Eq. (6), and we further simplify it as
o(k) =2 Vi and Vk. The update for the conditional coef-
ficient measurement, b(k), is then given by

b(k) = b1(k— 1) + 1i(k)h(k)[r(k) — i(k)]

where x(k) is an adjustable gain factor that incorporates cr2.
To conplete the recursion, the "unconditional" channel

estimate, b1(k), must be derived. It is shown in Ref. 14 that
this can be expressed as aweighted linear combination of
the conditional estimates b7(k), with weights that are the
appropriately scaled MAP sequence probabilities, i.e.,

ab(k) , (12)
{j:dJ"bEdi' +1 Nb}

This result is derived from the fact that p [b(k + 1)
Id 1'1,r1'] is a Gaussian sum with coefficients a even
when p[b(k)Id",r" ] in Eq. (6) is approximated as a
unimodal Gaussian density. In effect, the conditioning on
symbol d(k —Nb) is removed by the summation in Eq. (12).
Note that we are updating MNb + conditional estimates in
Eq. (11), whereas only MNb "unconditional" estimates are
computed in Eq. (12). Each one of the "unconditional"
estimates is then copied to the appropriate M subfilters whose
subsequences differ only in symbol d(k). The complete
blind equalization algorithm is outlined in Table 1 and can

(7) be efficiently implemented using the parallel filter bank
structure shown in Fig. 2.

The blind equalizer structure can be viewed as a bank of
conditional channel estimators . Observe that there are
N =MNb+ 1 single-input, single-output adaptive finite-impulse-
iesponse (FIR) filters comprised of the coefficient estimates
b1(k— 1), i= 1, ..., The filter inputs are determined
by all possible subsequence vectors {h,(k)}, and each filter
output I(k) is generated according to the inner product in
Eq. (9). Thus, the output of the i'th FIR filter corresponds
to an estimate of the current received symbol r(k), assuming
that the i'th subsequence was transmitted (i.e. ,conditioned
on the i'th subsequence). The filter outputs are then com-
pared to the received sample r(k) to generate a set of in-

(8) novations or prediction error signals:

e(k)=r(k)—f1(k) , (14)

which are used in the conditional measurement updates in
Table 1.

The symbol decisions are determined from the MAP
(9) probability metrics. The optimum decision on symbol

d(k —Nb) is performed by computing the following marginal
probability over all possible symbol values for d(k —Nb):

(10) d(k —Nb) =arg max p(d(Nbrk)
d(k—Nb) {j:dj(k—Nb)=d(k—Nb)}

(15)

This MAP decision rule combined with the Bayesian update
formulas are similar to those used in Ref. 12, except there
they assumed that the channel was known a priori. The
work in Ref. 12 did not consider the problem of channel
estimation; thus, the likelihood computations are simpler

(11) than those required of the algorithm in this paper.
In practice, we have found that only one of the metrics,

converges to 1 , while all others approach 0. As
a result, only one term contributes substantially to the sum-
mation in Eq. (15). A suboptimal decision rule first deter-
mines the subsequence associated with the largest met-
ric, i.e.,

akNb=arg maxp(d"r") , (16)d'b
and the symbol is then chosen according to
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Fig. 2 Blind equalizer using parallel LMS adaptive filters.

—.4. b(k)

k,N
—4. p(d2 Dirk)

b(k)

k,N
p(dN birk)

d(k—Nb)=dj(k—Nb) (17)

Define Observation Vector
h1(k) = [d1(k) d(k — 14)]

Compute Signal Estimates
f1(k) = h1(k)b2(k — 1)

Compute Measurement Innovations
e(k) = r(k) —

Compute Conditional Channel Estimates
= — 1) + (k)h'(k)e1(k)

Update Probability Metrics

p(db1rIc) = [r(k);s(k),cr2}

Compute Unconditional Channel Estimates

p(drt)

Note that the suboptimal rule in Eq. 1V provides us with
a decision on the entire subsequence d' b corresponding to
the largest metric. This implies that we could have made a
decision at time k on any of the Nb + 1 symbols in dv',
whereas in Eq. (17) a decision is made only on symbol
d(k —Nb). We shall see how this particular choice allows
us to cascade a decision-feedback filter with the MAP es-
timator, thereby reducing its complexity.

One possible drawback to the Bayesian algorithm is that
MNb + 1 measurement updates must be computed at each
iteration. To alleviate this complexity problem, a simplified
algorithm using RSSE was 14 In this method,
the MNb + 1 subsequences are grouped into J MNb + 1 reduced-
state sequences according to the Ungerboek set partitioning
ri19'20 The trade-off between the level of perfor-

mance and the computational complexity is controlled by
the particular choice for J. RSSE introduces an inherent
decision feedback while computing the branch metrics. It
has been reporte&9 that for maximum-likelihood sequence

Adaptive I
___________ I Filter 1

1(k)

Likelihood

H Recursion F

H b1(kl) j
E _______ _______-

-
e1(k)

Computation ____________

H b2(k 1) 2(k)+
I Filter 2

,j Adaptive _____________

.
—

e2(k) Likelihood

HL Recursion F

A

Computation

Table 1 LMS Bayesian blind equalization algorithm.

1(k)= : 1(k)
{j:dbEdW6} �: p(d"9r5)
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estimation, the degradation caused by this decision feedback
is gradual as one reduces J from that of the full algorithm
( J=MNb+1) to that of the standard DFE ( J= 1).

The symbol-by-symbol MAP sequence estimation al-
gonthm in Ref. 12 is basically equivalent to MLSE since
the channel is known a priori. Hence, the performance/
complexity trade-off one would expect with RSSE applied
to the MAP algorithm is similar to the results reported for
the MLSE-based Viterbi algorithm (VA). However, when
the channel is unknown a priori and is being estimated
adaptively, the degradation in performance introduced by
RSSE can be unacceptably high. This was reported in our
previous 14 where we concluded that RSSE may not
be a suitable method for reducing the complexity of the
blind MAP estimator.

Various preprocessing techniques designed to reduce the
complexity of the Viterbi algorithm (for MLSE) by effec-
tively reducing the channel memory are not directly viable
for blind adaptation. Truncating the channel impulse re-
sponse to a specified length and shape (for which the Viterbi
decoder is designed) using a linear equalizer21'22 or a DFE23
requires off-line (batch) or on-line (training-based) esti-
mation of the preprocessor coefficients. Furthermore, the
DFE approach23 operates independently of the VA and does
not utilize the more reliable postdecoder decisions of the VA.

A method of combining a predictive DFE with the VA
was recently introduced,24 where a periodic interleaver/
deinterleaver pair is used to generate the same delay as in
the VA, enabling postdecoding decisions to be used by the
noise predictor. However, this approach24 and the improve-
ment proposed in Ref. 25 suffer from a long throughput
delay, which may be unacceptable for some telecommunica-
tions applications.

In contrast to the Viterbi algorithm, the symbol-by-sym-
bol MAP algorithm of Abend and Fritchman12 produces
delay-free decisions. These reliable, postdecoding decisions
can then be filtered by a decision-feedback postprocessor,
thereby effectively truncating the channel memory seen by
the MAP detector. Moreover, this postprocessor, like the
MAP filter bank, can be adapted blindly using a simple
gradient algorithm, as shown in Sec. 3.

3 Bayesian/DF Algorithm (BDFA)
Consider a linear transversal channel with an impulse re-
sponse spanning Nb + 1 + Na symbol intervals. Denoting the
first Nb + 1 channel coefficients by {bm(k)}, m =0, 1,.
Nb, and the remaining Na coefficients by {am(k)},
m = 1,2,. . . ,Na, the received signal r(k) can be expressed as

Ni,

r(k) mobmd1(k_m)
Na

+ am(k)d(k—Nb—m)+n(k)
m= 1

where n(k) is a zero-mean, complex white Gaussian noise
process with variance r. By partitioning the channel coef-
ficients in this way, we assume that {bm(k)} are the dominant
coefficients, e.g.,

b,(k)I Iaj(k)I,

ViE{0,...,Nb}, VjE{1,...,Na}, andVk . (19)

This condition may not always be an accurate representation
of most channels, but we use it here in our development of
the BDFA for combined channel and sequence estimation.
This assumption is further discussed in Sec . 5 , where we
summarize the properties of the BDFA.

Observe that Eq. (19) specifies that most of the energy
in r(k) is contributed by the {bm(k)} coefficients. To sig-
nificantly minimize the measurement innovations, the MAP
estimator should focus on these coefficients. Therefore, we
could construct a MAP estimator assuming an effective channel
memory of only Nb + 1 symbol intervals. The computational
savings from storing only MNb +1 states (compared to the
original MN1 +Na states) can be considerable, especially
for Na >> Nb and M> 2. Moreover, under the assumption
in Eq. (19), we intuitively expect that

p[r(k)Id",r 1
p [r(k)fd' +Na,rk_ lj Vj.dkNb = dr" (20)

indicating that the likelihoods are determined primarily by
the most recentNb + 1 symbols: {d,(k),d,(k— 1), . . . ,d,(k —Nb)}.
From Eq. (7), one would then expect the evolution of the
MAP sequence probabilities to be influenced mainly by
these Nb + 1 symbols. Thus, the MAP estimator with only
MNb +1 states should work satisfactorily as a sequence es-
timator, with a performance bounded above by the full es-
timator of A'j +Na states. The performance degradation
due to this ' 'undermodeling'

' is directly related to the Un-
canceled IS! contributed by the symbols weighted by the
{am(k)} coefficients.

A simple, low-complexity way to remove the remaining
ISI and estimate the entire channel impulse response is sug-
gested by Fig. 3 . A MAP estimator with MNb + 1 parallel
LMS adaptive filters (similar to the bank structure in Fig. 2)
is shown cascaded with a feedback filter of length Na . The
operation of the equalizer in Fig. 3 can be explained as
follows. At time k, the feedback filter contains the previous
MAP decisions {d(k—N,, — 1), . . . , d(k—Nb Na)}. The 151
contribution due to these symbols is removed by subtracting
the output of the feedback filter from r(k), yielding

s(k)=r(k)—d1(k)â(k— 1) (21)

where â(k — 1) is the feedback coefficient (column) vector
given by

(22)

and d1(k) is the corresponding signal (row) vector containing
the previous MAP decisions:

(18) df(k)=[d(k—Nb—1) d(kNbNa)] (23)

The LMS filter bank computes the estimates {(k)} of s(k),
and generates the MN + 1 innovations . These are used to
update the subfilters and probability metrics in exactly the
same way as the algorithm in Sec. 2 [except that here s(k)
and {(k)} are used instead of r(k) and {P1(k)}, respectively].
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Decisions

d(k-Nb)

The MAP estimator makes a decision on subsequence
using the same decision rule as in Eq. (16), which

provides a decision on the entire subsequence of length
Nb + 1. We then choose symbol d(k —Nb) according to Eq.
(17), and this becomes the current input of the decision-
feedback filter.

The coefficients â(k — 1) of the feedback filter are ad-
justed using the following gradient-descent algorithm:

â(k)=â(k— 1)+'ri(k)d7(k)e1(k) (24)

where 'r(k) is a scalar gain parameter and ef(k) is the in-
novations corresponding to that subsequence (among the
MN +1 subsequences of the MAP estimator) which has the
largest MAP metric in Eq. (7) at time k. The innovation
residual e1(k) is given by

e1(k) = s(k) —Sf(k) (25)

where Sf(k) is the estimate s(k) with the largest MAP met-
ric. Substituting and Eq. (21), yields

e1(k) = [r(k) —d1(k)ã(k— 1)] —hf(k)bf(k— 1) (26)

where the subfilter and subsequence c,,orresponding to the
largest MAP metric are denoted by bf(k —1) and h1(k),
respectively. The instantaneous gradient of e(k) with re-
spect to the feedback filter â(k —1) [i.e. , assuming that
bj(k— 1) is fixed] results in the LMS update in Eq. (24).
Comparing Eq. (24) with Eq. (1 1), we see that the updates
differ primarily by the choice of the scalar gains. Our ex-
perience suggests that choosing the DF filter gain 1(k) to
be less than the gain p(k) of the LMS adaptive filters in
the MAP estimator is necessary for good performance. Ap-
parently, the DF filter must adapt more slowly than the
subfilters of the Bayesian estimator.

The complete BDFA is summarized in Table 2. Com-
paring it with Table 1 , observe that this lower complexity
algorithm involves only an extra update equation cone-
sponding to the feedback filter. There is also an extra adder
at the input of the MAP estimator to subtract from r(k) the
estimate of the ISI contributed by the channel coefficients
{am(k)}.

Table 2 Bayesian/DF algorithm (BDFA).

Define Observation Vector

h(k) = [d1(k) d,(k —

Define Decision-Feedback Vector

a1(k)= {(k_Nb_i)

Subtract DF Output from Received Signal

s(k) = r(k)— 1(k)à(k— 1)

Compute Signal Estimates
1(k) = h(k)11(k — 1)

Compute Measurement Innovations
e(k) = s(k) —

Compute Conditional Channel Estimates
£(k) = 11(k — 1) + /L(k)h1(k)e1(k)

Update Probability Metrics

p(dbr) 1g [8(k); I(k), 72J >: p(dJrt_1)

Find Maximum Metric and Determine 1(k — iVj,ej(k)

Update Feedback Coefficients

â(k) = â(k — 1)+

Compute Unconditional Channel Estimates

ic)
1;(k)= >: (k) ,(ddk,Nb k

{.dNbedk+l} L.d " m r
.1. • ,

4 Computer Simulations
We now present several computer simulations of the BDFA.
The FIR channel had seven complex coefficients with the
following transfer function:

B(z) =0.444487+(— 0.0488658—jO.776700)z

+ ( — 0.440101 +jO.0555976)z2

+(O. 14+jO. 15)z3+(O.20+jO. 15)z4

+(O.04+jO.1O)z5+O.05z6 (27)
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(b)

Fig. 4 Channel frequency response B(o): (a) magnitude response
and (b) phase response.

From the frequency response in Fig. 4, observe that this
channel has inband nulls, which are very difficult to equalize
with a transversal filter (as is the case with Bussgang-type
blind algorithms). The eye patterns produced by this channel
are shown in Fig. 5 for BPSK and quadrature phase-shift
keying (QPSK) with SNR =10 dB and SNR = 20 dB , re-
spectively. Observe that in both cases the eye is closed prior
to equalization. During demodulation, BPSK signals can be
detected from either the in-phase or quadrature channel out-
puts alone. However, since we are also performing channel
estimation, we have used a complex equalizer even for
BPSK signaling. The SNR was defined in terms of the
average symbol energy Ea and the noise power N0 [i.e.,
SNR = lOlog(Ea/No)]. For convenience, energy-normalized
signal constellations were chosen such that Ea = 1. In ad-
dition, the bit interval was set equal to one. Thus, for BPSK

4.)
1.

p4

14

—2 0 2

(b)

Fig. 5 Eye patterns before equalization: (a) BPSK (SNR= 10 dB)
and (b) QPSK (SNR = 20 dB).

the transmitted symbol alphabet was 1 , while for QPSK
it was { 1/(2)1/2, i/(2)112}. The noise powerNo was varied
over a range of values in the simulations , and the probability
metric variance 2 was fixed at 0.01 for all computer runs.

Since the channel is time-invariant, the algorithm was
optimized to operate on stationary data. To reduce the mis-
adjustment error at steady state, the step sizes i(k) (MAP
section) and 'r(k) (DF section) were chosen to decay at the
rate 3 (i.e. , i(k)= and 'q(k) =k1) For BPSK, we
used 13 =0.99, l.L0 0.5, and iio 0. 1 , while for QPSK,
1= 0.999, ,io = 0. 15 , and10= 0.03. AllMN +1 coefficients

in the MAP filter bank were initialized to the same value,
i.e.,bj,m(O)=c, suchthatoIbj,m,(O)I2=(Nb+1)IcI2= 1
The coefficients and delay-line signals of the DF filter were
all initialized to zero. This initialization and the choice of
different gains for the MAP filter bank and the DF filter
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Fig. 6 Evolution of the probability metrics (BPSK): (a) SNR= 10dB
and (b) SNR = 20 dB.

were done to mitigate the degradation due to error propa-
gation during the initial iterations of the algorithm. In the
following plots, only one computer run is shown for the
probability metrics , whereas the coefficient error trajectories
were averaged over 10 independent runs. In addition, the
coefficient error curves were smoothed by a 10-weight
moving-average filter.

Figures 6 to 9 illustrate the convergence properties of
the BDFA. The MAP estimator had M3 states and the DF
filter had four coefficients; this choice was motivated by the
fact that the channel impulse response has most of its energy
in the first three weights (thus, Nb + 1 =3). Figure 6 shows
the evolution of the equalizer probability metrics [i.e. , the
quantities in Eq. (7)] for BPSK signaling and SNRs of 10 dB
and 20 dB . Since the MAP subfilters each have three coef-
ficients and M =2, there are eight possible subsequences
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Fig. 7 Coefficient error trajectories (BPSK): (a) SNR — 10 dB and
(b) SNR=20 dB.

and eight probability metrics. Observe that for the higher
SNR, one of the metrics converges to 1 in less than 100
iterations. Although the metric trajectories are noisier for
the lower SNR, there is still only one metric that dominates
after convergence. Figure 7 shows the trajectories for the
corresponding coefficient errors, which were obtained by
averaging the squared error between the actual channel coef-
ficients and those of the channel estimator with the largest
probability metric, i.e.,

E(k)=+ 1+Na[m01 1)bm(2

+miIâm(k_1)_am!2]
(28)
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Fig. 8 Evolution of the probability metrics (QPSK): (a) SNR = 20 dB
and (b) SNR=30 dB.

which also includes the coefficient error of the feedback
filter. Observe that for SNR — 20 dB , this error is less than
—40 dB by about 500 samples. By using a Kalman MAP
algorithm, this convergence can be made much faster, e.g.,
within 100 samples (see the simulations in Ref. 14).

Figures 8 and 9 show the corresponding results for QPSK
signaling and SNRs of 20 dB and 30 dB . In this case, since
M= 4, there are 64 possible subsequences of which we plot
only the eight largest metrics. Observe again that only one
metric dominates after convergence, and that the metric
trajectories are noisier for the lower SNR. In particular, for
SNR =30 dB, the BDFA metrics converge by 250samples,
while the coefficient error takes about 3500 samples to reach
steady state.

The bit error rate (BER) was also computed for BPSK
and QPSK signaling. Compensation was included for the

0 1000 2000 3000 4000
Number of Samples

(b)

Fig. 9 Coefficient error trajectories (QPSK): (a) SNR=20 dB and
(b) SNR=30 dB.

group delay of the channel, and the BER was measured
after reaching steady state, i.e. , we discarded the initial 500
samples before counting symbol errors . The standard de-
viation of the BER estimation error was kept to within 5%
by repeating the experiment a sufficient number of times.

For BPSK signaling, Fig. 10(a) shows the BER perfor-
mance of the BDFA compared with that ofthe undermodeled
MAP estimator (i.e. , without a DF filter). Observe that the
uncanceled ISI in the undermodeled 23-state MAP estimator
causes a significant degradation in the steady-state perfor-
mance. We have also included a performance curve for the
optimal MAP estimator (with a priori known channel) of
Abend and ri'2 In our earlier paper,14 we had re-
ported computer simulation results (on a different channel)
showing that the full MAP estimator, using both the Kalman
and LMS filters, achieves nearly the same performance as
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Fig. 11 SER performance curves (QPSK).

symbols, and with feedback of the detected symbols. In
particular, observe that the BDFA withjust a four-state MAP
detector, i.e., Nb + 1 =2 and Na =5, has a performance
about 4 dB better than that of the DFE using detected sym-
bols. This result illustrates that the order of the MAP section
need not exactly match the number of dominant channel
coefficients to achieve good performance.

Figure 1 1 compares the BDFA with a seven-coefficient
DFE for QPSK signaling. We have not evaluated the optimal
MAP bound here, since it involves simulating the Abend
and Fritchman algorithm over 47 = 16,384 states! The BDFA
used in the simulations has only 43 = 64 channels in the
MAP section, and a four-coefficient DF filter in cascade.
Observe that the BDFA has a symbol error rate (SER) per-
formance about 3 dB better than that of the DFE with de-
tected symbols.

15 20 Finally, the BDFA was also tested for 16 quadrature
amplitude modulation (QAM). Here again, the signal con-
stellation was energy normalized by choosing the inter-
symbol spacing to be 2(16/160)1/2 0.6324. A six-coefficient
channel with the following transfer function was used:

C(z) = (0.51 +jO.32) + (0.47 +jO. 18)z

+ (0.14 +jO. 15)z2 + (0.20 +jO. 15)z3
the algorithm in Ref. 12. Hence, this curve also represents
the performance of the full 27-state blind MAP algorithm.
Finally, for comparison purposes, the curve corresponding
to zero ISI is also shown, which was analytically evaluated
using the error function. In summary, we see that the BDFA
has a loss in SNR of about 2 dB compared to the optimal
MAP algorithm, but is superior to the undermodeled 2-
state MAP estimator by about 3 dB (for a BER = 10).

Figure 10(b) compares the BDFA to a seven-coefficient
DFE for BPSK signals. Observe that the performance of
the BDFA lies between that of the optimal MAP estimator
and the DFE. The performance of the DFE for the channel
in Eq. (27) was simulated with feedback of the correct

+(0.04 +jO. 10)z4 + 0.05z5 (29)

which has the frequency response shown in Fig. 12. The
eye pattern before equalization is shown in Fig. 13 . This
channel has only two dominant coefficients, so that the MAP
section has 162 =256 states; the DF section thus has four
coefficients. The algorithm parameters were 3 =0.998,
f.Lo 0.5, and 'rio= 0.1 , with an SNR =35 dB. Figure 14
shows a trajectory of the maximum metric (of the 256 met-
rics) and the averaged coefficient error. Observe that this
error is reduced below —30 dB in less than 3000 samples,
illustrating that the algorithm performs well even for high-
order signal constellations.
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5 Discussion
In this section, we describe some properties of the Bayesianl
DF algorithm that are based largely on simulation studies.
To understand the potential savings in complexity that is
possible, consider the real channels shown in Fig. 15 with
coefficients {bm}, m = 0,1,. . . ,1O. In the first channel, ob-
serve that most of the received signal energy is contributed
by coefficients {bo,. .. ,b3}. According to the model in Eq.
(19), Nb + 1 =4 would be a reasonable choice. Hence, we
require a MAP estimator with only M4 states in cascade
with a DF filter having seven coefficients. Simulations dem-
onstrate that the coefficient estimate vector of the blind
algorithm, [b(k — 1)Ta(k — 1)T]T, converges to the true

channel estimates [bo,b1 ,. . . ,b10]T. In contrast, the full MAP
sequence estimator would require subfilters. For ex-
ample, with M =2 (BPSK), the full MAP estimator would
have 2048 filters, each of length 1 1 , and these would be
updated every time instant. The BDFA would require only
16 subfilters, each of length four, and a single feedback
filter of length seven. Obviously, this is a considerable re-
duction in the computational complexity.

Consider the second real channel shown in Fig . 1 5 , which
does not satisfy the channel shape model in Eq. (19). Ob-
serve here that no choice OfNb (other than Nb =10, the total
length of the given channel) satisfies the condition in Eq.
(19). As a result, the BDFA will not, in general, provide
us with a complete set of channel estimates. However, as

4 a sequence estimator, the degradation in performance is
minimal. The reason for this can be argued as follows.
Suppose that we decide to limit the MAP complexity to M4
states , and cascade a seven-weight DF section to handle the
remaining coefficients. To minimize the residuals, the MAP
estimator will generally converge to the dominant coeffi-
cients of the impulse response, i.e. , {b2, . . . ,b5}. The "eye"
is opened sufficiently so that the feedback decisions are
reasonably accurate, and the DF filter converges to the tail
coefficients {b6, .. . ,b10}. This implies that b0 and b1 are not
estimated, and the 151 contributed by the symbols d(k) and
d(k — 1) is not canceled. As a result, the performance deg-
radation in SNR will be directly determined by these un-
canceled 151 terms. However, simulations over a wide Va-
riety of channels demonstrate that the loss in SNR incurred
due to this undermodeling is small—typically < 1 dB . For
example, note in Fig. 10(b) that the BDFA with only a four-
state MAP section has a performance within 1 dB of that
obtained by using an eight-state MAP section.

Our simulation studies also indicate that it is preferable
to choose different gain constants for the MAP filter bank
and the DF filter. We have found that choosing q(k) =
with 0.20 < y <0.25, usually provides good performance.
By controlling the gain of the feedback filter, we can mit-
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igate the effects of error propagation due to incorrect MAP
decisions. This is especially important during the first few
iterations when the MAP decisions are unreliable. Typi-
cally, the DF filter coefficients would be initialized to zero,
and they would be adapted with a step size that is smaller
than that used in the MAP section. Thus, the feedback
coefficients initially remain near zero and have minimal
influence on the received symbols. Once the MAP estimator
becomes more reliable, the DF filter then automatically re-
duces the ISI further by removing the effects of the tail of
the channel impulse response.

Note that this feature of having separate gains for the
MAP and feedback sections is not possible with RSSE.
Consequently, during the initial iterations of the RSSE-MAP

bm(k)

Fig. 15 (a) Channel satisfying the model in Eq. (19) and (b) channel
violating the model in Eq. (19).

estimator, the MAP metric computations may result in the
wrong reduced-state sequence being selected to represent
the particular subset. Using the incorrect representative state
is equivalent to propagating the wrong decisions through
the DF section. Also note that, in terms of complexity, the
RSSE-MAP algorithm still needs to store M' +Na sub-
sequences, although it needs only MNb +1 subfilters.

6 Conclusion
A new blind equalization algorithm has been presented that
is a low-complexity approximation to the optimal MAP
sequence estimator for a priori unknown channels. The
channel estimates are derived from a bank of parallel LMS
adaptive filters,14'15 whose innovations are used to update
a set of MAP (Bayesian) probability metrics. A decision-
feedback mechanism is employed to effectively truncate the
channel memory as seen by the MAP estimator. By con-
trolling the complexity apportionment between the Bayesian
and DF sections, the performance of the new algorithm
varies between that of the optimal MAP algorithm and the
standard DFE. Thus, there is a trade-offbetween the amount
of computational complexity that can be afforded and the
degree of robustness to catastrophic error propagation. The
rapid convergence properties of this algorithm, even for
channels with in-band nulls, makes it a suitable blind equal-
ization technique for narrowband applications. Being a com-
bined channel and sequence estimation scheme, the Bayesian!
DF algorithm (like the blind MAP algorithms in Ref. 14)
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