Fig. 3 Eye diagram of 100Gbit/s signal (photodiode bandwidth 30 GHz)
Insets: Eye diagrams showing clear and open eyes of two demultiplexed 10Gbit/s signals

Fig. 4 Measured BER of 100Gbit/s wavelength converted signal against received power at input to optical preamplifier

PRBS = 2^23 – 1
• back-to-back
• BER of converted signal

Eye diagrams of the 100Gbit/s signal as recorded with a 300Hz bandwidth photodiode are shown in Fig. 3. There is not sufficient resolution to resolve the 100Gbit/s eye diagram. However, the 100Gbit/s signal was subsequently demultiplexed into ten signal streams of 10Gbit/s [9] and the eye diagrams of these demultiplexed signals show clear and open eyes. The eye diagrams of the second and ninth demultiplexed signals are shown as an example in the lower left and right inset of Fig. 3. The BER of the converted 100Gbit/s signal, as shown in Fig. 4, was measured after demultiplexing back to 10Gbit/s and feeding this signal to an optically preamplified PIN receiver. Thus, the received power was measured for 10Gbit/s. The penalty is due to format conversion (>2dB), extinction ratio degradation (>0.5dB), the pattern dependence of long words (>3dB) and signal-to-noise ratio degradation. All ten demultiplexed signals gave a BER within 1dB around the depicted curve. The polarization sensitivity against the input signal was below 2dB.

Conclusions: We have performed the first 100Gbit/s wavelength conversion experiment exploiting cross-phase modulation in an SOA. A novel compact and fully packaged SOA delayed-interference wavelength converter was employed to perform the experiments. BER measurements show that these are the best SOA based wavelength conversion results ever obtained at 100Gbit/s.

Acknowledgments: T.L. Koch and M. Zirngibl are acknowledged for support of this work. P.A. Besse is acknowledged for fruitful discussions with J. Leuthold.

References

3.7ps pulse generation at ≥30GHz by dual-drive electroabsorption modulator

V. Kaman, Yi-Jen Chiu, S.Z. Zhang and J.E. Bowers

The authors describe optical short pulse generation at frequencies ≥30GHz by a dual-drive scheme of a high-saturation power travelling-wave electroabsorption modulator. Sub-pspalmto-transform-limited pulses are achieved with ≥2dB dynamic extinction ratio and low polarization sensitivity.

Introduction: Optical fibre transmission based on single channel optical time division multiplexing (OTDM) has recently attracted a lot of attention as a means of upgrading future TDM systems [1, 2]. Switched-driven electroabsorption (EA) modulators play a key role in OTDM systems as optical short pulse generators and optical demultiplexers. Owing to advances in high-speed electrical TDM, it is inevitable that next-generation OTDM systems will operate at a base rate of 40Gbit/s with optical multiplexing to 160Gbit/s or more [3]. Therefore, it is important to investigate the high-frequency switching performance of EA modulators. Owing to its nonlinear index of refraction characteristic, a highly reverse biased EA modulator with an applied sinusoidal RF signal is capable of producing switching windows with duty ratios as small as 7.2% [4]. However, since the optical loss depends strongly on the insertion loss and the duty ratio of the pulses, the average optical output power and consequently the signal-to-noise ratio (SNR), especially at high frequencies, can be very low. Therefore, an EA modulator with a high-saturation input power is required [5]. Another limiting factor at high-frequency operation is the available RF power as well as the response of the modulator, which can result in broader pulses with degraded extinction ratios than is theoretically predicted [6]. In this Letter, we demonstrate ≥30GHz pulse generation of a high-saturation power travelling-wave EA modulator. A novel dual-drive scheme is employed to effectively double the RF drive and to achieve <15% duty ratios, which we believe is the smallest duty ratios ever reported for frequencies using a single EA modulator.
Experimental setup. The travelling-wave EA modulator, fabricated using MOCVD grown InGaAs-InGaAsP quantum wells, is similar to the device used in the previously demonstrated 30Gb/s data modulation experiment [7]. The fibre-to-fibre insertion loss at 1555 nm was 10.8 dB while the maximum extinction ratio was 36.4 and 40.3 dB at a reverse bias of −6 V for the TE and TM polarisations, respectively. It is important to mention that the optical input power was +7.5 dBm, which demonstrates the high saturation power characteristic of this 2 µm wide, 300 µm long modulator. The 3dBc bandwidth of the device was 26 GHz.

![Fig. 1 Experimental setup for dual-drive scheme of EA modulator](image1)

Fig. 1 Experimental setup for dual-drive scheme of EA modulator

- Optical path
- Optical path
- Optical output is a typical 40 GHz waveform

Fig. 2 Pulsedwidth against reverse bias for 30GHz modulation

- Single drive
- Dual drive
- Upper inset: autocorrelation traces of pulses
- Lower inset: optical spectrum for dual-drive modulation

Fig. 3 Pulsedwidth against reverse bias for 40GHz dual-drive modulation

Upper inset: autocorrelation trace of pulse
Lower inset: optical spectrum

High-frequency operation. Fig. 2 shows the obtained pulsedwidths as a function of reverse bias at 30 GHz. The RF amplifiers generated 7 Vpp into a 50 Ω load. Using only a single drive (the other electrode was terminated in 50 Ω), a minimum pulsedwidth of 4.7 ps was achieved at a reverse bias of −5.5 V. Under the dual-drive modulation, an almost-transform-limited pulsedwidth of 3.7 ps was obtained with a low polarization sensitivity of 0.3 ps. This result corresponds to a duty ratio of ~11% at 30 GHz. Further pulse compression was not observed when the EA modulator was followed by dispersion-compensating fibre. The inset in Fig. 2 shows the autocorrelation trace of the pulses achieved for single and dual modulation. The optical spectrum obtained for the dual-drive operation is also shown as an inset in Fig. 2. The bandwidth was 0.84 nm, resulting in a time-bandwidth product of 0.39. It is important to mention that shorter pulsedwidths were obtained at higher reverse biases at the expense of degraded SNR and dynamic extinction ratio.

The EA modulator was also driven with 40 GHz 7 Vpp dual RF signals, Fig. 3 shows the pulsedwidths obtained as a function of reverse bias. A minimum pulsedwidth of 3 ps with an optical bandwidth of 0.83 nm was achieved at −5 V (insets to Fig. 3), which corresponds to a duty ratio of 14.4%. These results indicate that 160 to 40 Gb/s optical demultiplexing should be feasible with an optical power penalty of <1 dB [8].

Summary. We have successfully demonstrated optical short pulse generation at frequencies ≥ 30 GHz using a dual-drive scheme in a travelling-wave EA modulator. Sub-ps pulses were obtained with low polarization sensitivity (0.3 ps), high dynamic extinction ratio (> 20 dB), high optical input power (+7.5 dBm) and high average optical output power (>−25 dBm).

Acknowledgment. This work was supported by DARPA under the MOST program.

© IEE 2000

Electronics Letters Online No: 20000817
DOI: 10.1049/el:20000817

V. Kannan, Yi-Jen Chiu, S.Z. Zhang and J.E. Bowers (Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA)

E-mail: kannan@eppo.ucsb.edu

S.Z. Zhang: Currently at Zafire, Inc., San Jose, CA 95134, USA
Interferometric crosstalk reduction by phase scrambling in WDM integrated cross-connects

E. Tangdiongga, R. Jonker, H. de Waardt and G.D. Khoe

Interferometric crosstalk mitigation in a four-channel 2.5Gbit/s InP-based 2 X 2 cross-connect using phase scrambling is reported. Bit error rate performance is improved from a large power penalty indicated by a floor at 10⁻⁸ to a penalty of <1dB.

Introduction: A phase scrambling (PS) technique has been investigated as a means for mitigating the detrimental effects of interferometric noise in optical links [1]. This type of noise may occur in integrated wavelength-selective devices such as InP-based optical cross-connects (OXC's). Owing to the compact size of a few millimetres and the switching speed of a few nanoseconds, the InP-based OXC is very attractive for packet switching applications. As a disadvantage, InP-based OXC's still show moderate crosstalk levels [2], although considerable improvements have been achieved recently [3]. A theoretical study of PS for a single-channel point-to-point transmission has been published in [4]. In this Letter, we report for the first time the application of the PS technique to a multi-channel 2 x 2 InP-based OXC in order to improve its performance. Without the PS, a 2.5Gbit/s bit-rate transmission showed poor performance due to interferometric crosstalk and bit error rate (BER) floors occurring at 10⁻⁸. By using the PS, error-free transmission with a penalty of <0.5dB is obtained. This result demonstrates clearly the potential of the PS technique in WDM networks employing OXC's for which the crosstalk performance does not yet fully comply with the stringent telecom requirements.

Experimental setup: A four-channel integrated InP-based OXC was used in the experimental setup (Fig. 1). Four DFB lasers provided CW sources at wavelengths of 1551.0, 1554.2, 1557.4 and 1560.6nm. Pseudorandom nonreturn-to-zero (NRZ) data of a sequence length of 2¹⁸ − 1 was encoded at a bit rate of 2.5Gbit/s using an external modulator to generate optical signals with narrow spectra. The four channels were subsequently scrambled in phase by the phase scrambler section to broaden their spectra, and amplified by an EDFA before being split to create two paths for feeding both input ports of the OXC. To obtain two uncorrelated input signals, we inserted a delay fibre in one arm before the input. The delay fibre was chosen to be much longer than the coherence length of each laser source. Two polarisation controllers were used to maximise the detrimental effects of interferometric beating noise. The combination of the power splitter and polarisation controllers created a worst-case condition in the setup: wavelength and polarisation alignment. The experimental results represent, therefore, the worst-case crosstalk performance that may occur in WDM networks. To couple the signals into and out of the OXC, we adopted the same technique as [5]. After travelling through the single-channel array OXC, the channels were amplified to compensate for fibre-to-fibre losses. The BER evaluation for each channel was performed by an optical demultiplexer (bandwidth 90GHz) for channel selection and a variable attenuator before the receiver for input power adjustment. The receiver consisted of an InGaAs pin photodiode followed by a variable gain electrical amplifier to boost the photocurrent. The electrical bandwidth of the receiver circuit is 1.8GHz, which is sufficient to detect 2.5Gbit/s signals without significant signal distortion. The phase scrambler section was realised by using a phase modulator driven by a noise signal. The noise signal was made by mixing a 200MHz band-limit white noise source with an RF signal. The obtained noise signal caused a phase deviation of the value π and it was centred at the RF frequency of 2.5GHz. The spectrum of the 2.5Gbit/s signal due to the PS is shown in Fig. 2. Compared to the original spectrum, there is a phase scrambler induced spectral broadening of 75nm (measured at −20dB). This spectral broadening will cause an additional penalty of <1dB after 200km standard fibre due to chromatic dispersion [4].