High Efficiency Oxide-Confined High-Index-Contrast Broad-Area Lasers with Reduced Threshold Current Density and Improved Near-Field Profile

Di Liang and Douglas C. Hall
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556
Phone: (574) 631-8631, Fax: (574) 631-4393, Email: dbhall@nd.edu

With the advance of crystal growth technique, high power diode lasers have become a highly favorable light source for solid-state laser pumping, direct material processing and medical applications. A gain-guided or weak index-guided broad-area laser structure with an aperture size of \( w = 50 \mu m - 200 \mu m \) is normally employed to maximize the output power while minimizing the waveguide scattering loss and non-radiative recombination. The poor lateral electrical and optical confinement, however, make current spreading unavoidable and lead to filamentation, a nonlinear effect, limiting the maximum output power achievable while keeping the facet load below the threshold of catastrophic optical damage.

We have recently developed a simple, self-aligned ridge waveguide laser fabrication process for high-performance GaAs-based narrow-stripe devices [1]. A high-index-contrast (HIC) structure is formed by deep etching (through the waveguide core layer), followed by non-selective \( \text{O}_2 \)-enhanced wet thermal oxidation [2] to grow a uniform thickness layer of high-quality native oxide (200–300 nm) at the sidewalls of the etch-exposed high Al-composition cladding layers and low Al-composition core layer and active region. As shown by the schematic inset in Fig. 1, the oxide-confined waveguide sidewall totally eliminates the lateral current spreading while simultaneously providing a strong lateral index step of \( \Delta n \approx 1.7 \). All devices in this work are fabricated in an 808 nm single quantum well graded-index separate-confinement heterostructure (GRINSCH) with no facet coating or heatsinking employed, and are tested p-side up with 1% duty cycle current pulses at room temperature. A high average slope efficiency of 1.32 W/A (corresponding to a differential quantum efficiency of \( \eta_d = 86\% \)) is demonstrated (Fig. 1) in a 490 \( \mu m \) long bar length for aperture sizes \( w \) ranging from 40 \( \mu m \) to 120 \( \mu m \). Conventional weak index-guided broad-area devices are also made from the same material to comparatively study the benefit of good lateral electrical and optical confinement in our HIC oxide-confined devices. Fig. 2 compares the laser threshold current densities versus aperture size for similar cavity length structures, and shows a reduction of up to 1.74X at \( w = 40 \mu m \).

Good thermal dissipation is also found in oxide-confined devices primarily because the deeply etched structure and thin native oxide place the high-conductivity deposited p-side metallization in close proximity to the active region sidewall. This is evident from the data of Fig. 3 which shows that the heat dissipation enables a steady output power increase without thermal roll-over up to 5.4X above threshold (\( I_{th} = 74 \) mA) in a \( w = 40 \mu m \) oxide-confined device under a fast-dc sweep, while a shorter weak index-guided device with the same aperture size starts rolling over at 4X threshold and ceases lasing. Fig. 4 shows near-field images for the same two devices under cw operation. The near-field profile in Fig. 4(a) clearly exhibits filamentation due to the spatial-hole burning effect for the conventional device at injection currents of 120 mA and 130 mA. Fig. 4(b), however, shows a much more uniform near-field profile, indicating that a better beam quality can be achieved in HIC broad-area laser structures.

Fig. 1. Pulsed light-current (LI) characteristic and current-voltage relationship of high-index-contrast (HIC) broad-area lasers with aperture size varying from 40 μm to 120 μm and a cavity length of 490 μm, showing an average slope efficiency of 1.32 W/A.

Fig. 2. Threshold current density vs. laser stripe width for HIC and conventional weak index-guided devices with similar cavity length. Up to 1.74X threshold current density reduction is achieved at w=40 μm.

Fig. 3. Fast-dc LI characteristic of a HIC laser and a weak index-guided laser with the same 40 μm aperture size.

Fig. 4. Continuous wave (cw), 300 K near-field patterns of (a) weak index-guided and (b) HIC devices.