January 10, 2003

Jerry D. Gibson Winter 2003 January 10, 2003

Multimedia Compression ECE 594/MAT 594

What is Compression?

acceptable reproduction of the original Represent a source in digital form with as few bits as possible while still providing an

Components of a Compression Problem

- Source
- Rate
- Distortion Measure

source <i>X</i> with average distortion less than or equal to <i>D</i> is the rate distortion function <i>R</i> (<i>D</i>) defined as $R(D) = \min_{\substack{f_{\hat{X} X}(\hat{X} x) \in P_D}} I(X; \hat{X})$ where $I(X; \hat{X}) = \iint f_X(x) f_{\hat{X} X}(\hat{x} \mid x) \log \frac{f_{\hat{X} X}(\hat{x} \mid x)}{f_{\hat{X}}(\hat{x})} dxdt$	The minimum rate required to represent a
---	--

Goal of Source Compression

- Represent speech with as few bits as and intelligibility possible with an acceptable loss in quality
- Fix the rate and minimize distortion—D(R)
- Fix the acceptable distortion level and minimize the rate—R(D)

Synonyms for Data Compression

- Signal Compression
- Signal Coding
- Source Coding
- Source Coding with a Fidelity Criterion
- Lossy (Noisy) Source Coding
- Lossless (Noiseless) Source Coding
- Data Compaction

More Synonyms

- Redundancy Removal
- Bandwidth Compression

MAJOR SETS IN DATA COMPRESSION

Speech Coding Categories

- ➤ Wideband Speech 50 to 7000 Hz ≻Narrowband Speech — 200 to 3400 Hz ➤ Wideband Audio — 20 to 20,000 Hz
- Number of channels
- Stereo
- Five channel surround

Uncompressed B	t Kates for Audio	Speec	h and
Source (Hz)	Sampling <u>Rate</u>	Bits Per Sample	Bit <u>Rate</u>
Telephone Speech 200-3400	8000 samples/s	12	96 kbits/s
Wideband Speech 50-7000	16000	14	224 kbits/s
Wideband Audio 20-200 Mbits/s (2 Channels)	00 44.1 ks/s		5/chan 1.412 (2 channels)

Approximate I	Bit Rates for Uncompressed Sources
H	
(200–3400 Hz):	96 kbps
Wideband speech	16,000 samples/second \times 14 bits/sample =
(50–7000 Hz):	224 kbps
Wideband audio	44,100 samples/second \times 2 channels \times
(20–20,000 Hz):	16 bits/sample = 1.412 Mbps
Images:	512×512 pixel color image $\times 24$ bits/pixel =
	6.3 Mbits/image
Video:	640×480 pixel color image $\times 24$ bits/pixel \times
	30 images/second = 221 Mbps
HDTV:	1280 × 720 pixel color image × 60 images/second
	\times 24 bits/pixel = 1.3 Gbps

Audio Sampling Rates

44.1 48	20.0 20.0	Compact disc (CD) audio Digital audiotape (DAT)
16	7.0	Teleconferencing (audio)
8	3.2	Voice telephony
h (kHz) Sampling Rate (kHz)	Bandwidt	Application

Video Sampling Rates

$\begin{array}{c} (3) 360 \times 288 \times 30 = 3 \\ 720 \times 576 \times 30 = 12 \\ 1980 \times 790 \times 60 = 60 \end{array}$	CIF (videoconferencing CCIR (TV)
Lines/Frame × Pixels/Line × Sampling Rate Frames/Second = (million pixels per second	Format

IIU-I Facsimile Standards

)	Vertical Resolution	Horizontal Resolution	Lines/	Pixels/
Normal resolution 20.7 cm (8.27 inches)				
by 29.2 cm (11.7 inches) High resolution	3.85	œ	1188	1728
20.7 cm (8.27 inches) bv 29.2 cm (11.7 inches)	7.7	œ	2376	1728
by 29.2 cm (11.7 inches)	1.1	0	2210	0711

lmage	
and	
Videc	
) Horr	
nats	

Computer image SVGA 10 VGA 10	Formats U Analog video NTSC (Americas, Asia) PAL (Europe) VHS	
024 640	sable lorizontal ines [*] 338 411 338	
768 480	Pixels per Line 426 420 280	
786,5005 307,0005	Pixels per Frame 150,0005 172,0005 95,0005	T ^+ ^
60 	Frames Bandwidt per Transmiss Second Rate 29.97 4 MHz 25.00 5 MHz 29.97 ~4 MHz	Dominod

	Usable	Pixels	Total Pixels	Frames	Required Bandwidth/ Transmission
Formats	Horizontal Lines [®]	per Line	per Frame	per Second	Transmissión Rate
Motion picture fi	ilm				
35mm	(not a rast	er-	500,000	24	
16mm	scanned in	וage)	125,000	24	
Digital video					
QCIF (H.261)	144	176	25,000	15-30	56 kbps-2 N
CIF (H.261)	288	352	100,000	15–30	56 kbps-2 N
HDTV	806	1920	1,550,000	50	140 Mbps
MPEG		0.00		0 0	
-				I	and higher

*Ellminates werease lines and includes the utilization ratio.

H.324 Video Formats

Format	Pixels	H.261	H.263
SQCIF	128×96	optional	require
QCIF	176×144	required	require
CIF	352×288	optional	optiona
4 CIF	704×576	n/a	optiona
16 CIF	1408×1152	n/a	optiona

Networks and Network Services

6-54 Mbits/s in 5GHz band	802.11 a(wireless)
1, 2, 5.5, 11, and 22 Mbits/s in 2.4 GHz band	802.11(wireless)
100 Mbits/s	FDDI
1,000 Mbits/s	Gigabit Ethernet
100 Mbits/s	Fast Ethernet
10 Mbits/s	Ethernet
N x 51.84 Mbits/s	OC-N/STS-N
20-40 Mbits/s	CATV
12.96-55.2 Mbits/s	VDSL
16-640 Kbits/s (upstream)	
1.544-8.448 Mbits/s (downstream)	ADSL
64-128 Kbits/s	ISDN
28.8-56 Kbits/s	POTS

Design Distortion Measures

- Mean Squared Error
- Mathematically Tractable
- Not Necessarily Perceptually Meaningful
- Important for Initial Rankings
- Frequency-Weighted Squared Error
- **Perceptually-Based Distortion Measures**

Performance Evaluation

- Speech
- Listening Tests, including
- MOS
- DRT
- DAM
- Distance Measures
- Audio—Listening tests—transparency

Images and Video--Viewing

Applications of Speech Coding

- Wireline Telephony
- Videoconferencing
- Digital Cellular
- IP Telephony
- Voice Mail
- Speech Storage

Multimedia Over Networks

- Principal Issues
- Connectivity or Access
- Interoperability
- Performance
- Implementations
- Choices

Channels and Platforms

- Heterogeneous Communications Channels
- Channel Bandwidths
- Channel Qualities
- Heterogeneous Platforms, Terminals, or Handsets
- Processing Capability
- Power Consumption
- Presentation Capability

User Preferences

- Availability of Services
- Cost
- Choice of QoS

Speech Coding Standards

➤ Narrowband speech

- GSM-AMR, G.729, G.723, G.728, IS-127(EVRC), IS-96(QCELP), IS-95(VSELP)
- G.711(PCM), G.721(ADPCM), G.726(ADPCM)
- LPC-10, MELP,...

➤ Wideband speech

- G.722 (ADPCM)
- G.722.1 (Transform)
- AMR-WB (CELP)

➤ Wideband audio

- MPEG-1,2,4
- Philips PASC
- Sony ATRAC
- DOLBY AC-3

Coder **Telephone Bandwidth Speech Coding** <u>vits/s)QualityLD-</u>CELP164.0 MOS(G.728)RPE Standards

Telephone Bandwidth Speech Coding Standards (2)

EFR	8	3.8 MOS
(IS-641)		
EVRC	0.8-8.55	3.8 MOS
(IS-127-2)	(variable)	
CS-ACELP	∞	4.0 MOS
(G.729)		
CS-ACELP	∞	3.75 MOS
(G.729A)		
MPC-MLQ	5.3-6.4	3.5 MOS
(G.723.1)		
ACELP	4.75-12.2	3.5-4.1 MOS
(NB-AMR)		

January 10, 2003

UCSB

Narrowband AMR Speech Codec

- ➤ NB-AMR was originally standardized for GSM by ETSI in 1998.
- \gg NB-AMR has 8 rates (all ACELP): 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2 12.2 kbits/s
- ➤ 12.2 kbps ---- GSM EFR
- 7.4 kbps ---- TDMA136 EFR
- ≻8 kHz sampling rate

Wideband AMR Speech Codec

- ≻ WB-AMR has 9 rates: 6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.25, 23.05, 23.85 kbits/s
- ➤ 16 kHz sampling rate
- ➤ Separate codec from NB-AMR
- ➤ WB-AMR has just been standardized by 3GPP in June, 2001 for GSM/3G systems

Toll Quality Speech Coding Timeline

- Log PCM 64 kbps 1972
- ADPCM 32 kbps 1984
- SBC 16 kbps 1984
- 1980 APC with perceptual weighting 16 kbps
- Multipulse LPC 16 kbps 1982
- Codebook Excited LPC 8 kbps 1995

	SOW M
73	4.2
89	4.0
70	4.0
65	3.2
54	2.2
	55700000000000000000000000000000000000

(mage/	
	Video	
	Compres	נ
	nois	•
	Stand	<u>ר</u>
	ards	_

Source	Standard	Rates
Video telephone Px64	ITU-T H.261	56 kbps–2 Mbps
Black-and-white, color,		
multispectral images	JPEG	0.25-2 bits/pixel
Moving pictures and audio	MPEG-1	1.5 Mbps
Broadcast-quality pictures and audio	MPEG-2	6–10 Mbps
High-quality audio for MPEG	HDTV	64/128/192 kbps
		per channel
Video	H.263	\leq 28.8 kbps

January 10, 2003

H.310 (1996) H.324 (1995) H.323 (1996) Standard H.320 (1990) PSTN ISDN Network ATM/B-ISDN LANs/Internet Video H.262 H.261 H.263 H.261 Audio G.711 G.711 MPEG-1 G.723.1

Selected Videoconferencing

Standards--Basic Modes

January 10, 2003

Redundancy Removal From Speech

Weighting filtering

5 0

0.5

1.5

2.5

ω

ω 5

Ϋ́z N

Key Advances

- **Perceptual Distortion Measures**
- Digital Signal Processing
- Analysis-by-Synthesis Structures
- Codebook Excitation
- Single Gain for All Pulses

Other Issues in Speech Coding

- ➤ Scalable Coding
- SNR Scalability
- Bandwidth Scalability
- Variable and Adaptive Multirate Coders
- Source Controlled for Speech Quality Enhancement
- Network Controlled for Load Control
- Joint Source/Channel Coding
- Robustness and Error Concealment

Other Issues in Speech Coding (Cont'd)

- Tandem Coding
- Background Impairments
- Transcoding
- Delay
- Complexity
- Power Consumption

Key Components

- Lossless Coding
- Huffman and Arithmetic Coding
- **Reversible Variable Length Codes**
- Context Dependent Variable Length Codes
- Unequal Bit Protection
- Side Information (Lots!)
- Signal Processing at the Encoder

More Key Components

- Packetization
- Error Concealment
- Scalability
- SNR
- Spatial
- Temporal
- Bandwidth

More Key Components

- Variable Rate
- Source-Driven
- Network-Driven

Recent Standards to be Emphasized

- JPEG2000
- H.26L
- MPEG-4
- Multirate Speech and Audio

Scalable Coding

- Sometimes denoted as layered coding, embedded coding, or variable rate coding
- Scalable Coding consists of a core coder at the layers lowest bit rate plus one or more enhancement
- Quality improvement is achieved by sending only an incremental bit rate above the core layer
- Speech Scalable Coding: SNR scalability, Bandwidth scalability

UCSB

The Successive Refinement Problem

Applications of Scalable Coding

- Multicast transmission over the Internet
- Unequal error protection of the core and enhancement layers
- Multiple layers of quality selectable according to available bandwidth
- Range extension in wireless communications

MPEG-4 CELP Scalable Codec

Channel Coding Issues

 Unequal Error Protection with Recursive Systematic Convolutional (RSC) code outperforms the NSC (Hindelang et al), which is applied in 136.

BER

- ➤ No-tail-bits convolutional code can save 5 or 6 bits for forward error protection.
- ➤ Soft decision channel decoding
- Source-controlled error concealment

Convolutional Decoding

Multiframe block motion compensated coder

- Based on H.263 Code based on Telenor R&D H.263 software
- K Number of previous frames in Multiframe buffer
- lag Frame number which contains the matching block

Results - Compression

	daughter	Mother and			Foreman				Claire				Carphone		0	Sequence 1:	n
8	2	1	8	8	8	2	1	8	2	1	8	8	2	1	3	ŝ	XBX
9	9	9	22	21	20	20	20	6	6	9	17	16	16	16		QUANT	
1427.61	1522.51	1562.49	719.60	807.28	876.22	1018.41	82.8801	1557.13	1682.62	05.9011	1113.85	1249.51	1360.32	1478.57	(Inter)	bits/frame	Av. DCT
28.61	29.47	06.62	29.00	30.26	31.20	31.74	32.29	27.93	29.29	23.62	28.95	30.76	31.38	32.95	kbps	rate(Inter)	Av. data
33 19	33.56	33.55	28.59	28.84	28.97	28.74	28.60	39.19	39.11	00.02	30.37	30.55	30.41	30.25		PSNR-Y	Average
38.62	38.55	38.53	34.87	35.08	35.10	34.83	34.63	39.77	39.75	39.75	36.31	36.38	36.23	35.83		PSNR-Cb	Average
38.51	38.45	38.42	35.19	35.38	35.51	35.00	34.98	42.43	42.28	42.28	36.98	37.05	36.74	36.23		PSNR-Cr	Average

Table 1: Performance of SF-BMC and MF-BMC coders for different test video sequences of QCIF resolution at 12.5 fps.

Why Multiframe? : Reason 2 - Error robustness

Channel error performance – Bitstreams used

			Foreman					Carphone			Sequence	
8 (random lag)	8	2 (random lag)	2	1	8 (random lag)	80	2 (random lag)	2	1	(K)	gel	max
20	20	20	28	20	16	16	16	16	16		QUAN	
29.56	28.45	29.95	29.10	29.57	29.41	27.32	28.94	27.95	29.42	kbps	rate(Inter)	Av. data

Table 2: SF-BMC and MF-BMC bitstreams used in transmission error performance simulations. Test video sequences (132 frames) are of QCIF resolution at 12.5 fps.

January 10, 2003

- Decent quality at all but highest error rates
- No rate overhead

Smoothed description coding

Results

Performance example when p=0.25

No concealment (PSNR=20.50 dB)

(PSNR=28.58 dB) DC averaging + maximal smoothing

(PSNR=25.94 dB)DC averaging only

January 10, 2003 Maximal smoothing only (PSNR=26.63 dB)

January 10, 2003

Goldhill image with p=0.1 at 0.32 bpp. Without (left) and with (right) concealment.

Results

Comparison of refined SDC with MDC for *lena* image at rate 0.47 bpp

