To Ask or Not to Ask: A Foundation for the Optimization of Human-Robot Collaborations

Herbert Cai and Yasamin Mostofi

Department of Electrical and Computer Engineering
University of California Santa Barbara
Outline

• Human-Robot Collaboration
• When to ask human for help
 – Math understanding of extent of human capability
 – Implication for field operation
 ➢ Sensing, path planning and decision making
• Optimizing human-robot collaboration in target classification
 – Sensing, human help, energy usage
 – Understanding underlying patterns
• Optimizing human-robot collaboration in surveillance
 – Path planning, sensing, human help, energy usage
• Conclusions
Human-Robot Networks

• Humans:
 – Can solve complex problems
 – Valuable units
 – Limited time

• Robots:
 – Can go to places hard for human
 – Cost per unit less

• How to best optimize the interaction?

Original image courtesy of US Navy

Herbert Cai and Yasamin Mostofi
Human-Robot Networks

• Humans:
 – Can solve complex problems
 – Valuable units
 – Limited time

• Robots:
 – Can go to places hard for human
 – Cost per unit less

• How to best optimize the interaction?
To Ask or Not to Ask

- Humans can do complex visual tasks
- Visual recognition with missing info, noise, coarse resolution
- Far from modeling how humans do it
- Robot only needs to assess extent of human visual performance
- How can the robots best optimize cooperation based on this?

Should I ask, get more information, or use my own judgment?
To Ask or Not to Ask: A Foundation for the Optimization of Human-Robot Collaboration

• Providing robots with a new understanding of human visual performance
• Profound implications for field decision making, sensing, navigation and communication

Herbert Cai and Yasamin Mostofi
Understanding Human Visual Performance

• Target classification in the presence of noise
• Need human and robot correct classification probabilities

Gaussian noise
Performance Curves

- **Human**: Amazon Mechanical Turk (MTurk)
- **Robot**: Minimum distance detector
Collaborative Target Classification

- N sites, M available inquiries to human
- Human and robot correct classification probabilities (p_h and p_r)
- E_{max} total motion energy to visit all sites
 - Predefined routes to sites
 - E_k: motion energy to visit site k
 - High correct classification probability (\tilde{p}) for visited sites

Original image courtesy of IEEE Spectrum
Collaborative Target Classification

- Maximizing probability of correct classification under constraints

\[
\max_{\gamma, \eta} \quad \gamma^T (p_h - p_r) + \eta^T (\tilde{p}1 - p_r)
\]

- Gain from asking human
- Gain from site visit

\[
\text{s.t.} \quad \eta^T \mathcal{E} \leq \mathcal{E}_{\text{max}}, \quad 1^T \gamma \leq M
\]

- Motion energy constraint
- Total queries allowed

\[
\gamma, \eta, \gamma + \eta \in \{0, 1\}^N
\]

- Ask or not ask
- Visit or not visit

Herbert Cai and Yasamin Mostofi
Emerging Underlying Pattern

- 2000 sites, 500 questions, 25% energy
Emerging Underlying Pattern (cont.)

- Relaxing binary constraints
- Karush-Kuhn-Tucker (KKT) conditions
- Lemma: Let η^* and γ^* denote optimum decision vectors for two sites k and l.

 1) If $\gamma^*_k = 1$, $\eta^*_k = 0$, $\gamma^*_l = 0$ and $\eta^*_l = 0$,

 then $p_{h,k} - p_{r,k} \geq p_{h,l} - p_{r,l}$ \textbf{Greater benefit from asking human}

 2) If $\gamma^*_k = 0$, $\eta^*_k = 1$, $\gamma^*_l = 0$ and $\eta^*_l = 0$,

 then $\frac{\bar{p} - p_{r,k}}{E_k} \geq \frac{\bar{p} - p_{r,l}}{E_l}$ \textbf{Higher gain normalized by energy cost}
Energy Saving

- 10 sites, 4 allowed questions
- Baseline: no knowledge of human performance

<table>
<thead>
<tr>
<th>Target Ave. Correct Classification Prob.</th>
<th>% Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>66.67%</td>
</tr>
<tr>
<td>0.75</td>
<td>44.30%</td>
</tr>
<tr>
<td>0.8</td>
<td>27.83%</td>
</tr>
<tr>
<td>0.85</td>
<td>6.3%</td>
</tr>
<tr>
<td>0.9</td>
<td>0.71%</td>
</tr>
<tr>
<td>0.915</td>
<td>Inf</td>
</tr>
</tbody>
</table>
Bandwidth Saving

- 10 sites, 30% energy
 - Near optimal performance (4.3% worse) with 40% less BW usage
Bandwidth Saving (cont.)

- 10 sites, 30% energy
- Baseline: no knowledge of human performance

<table>
<thead>
<tr>
<th>Target Ave. Correct Classification Prob.</th>
<th>% Bandwidth Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>37.04%</td>
</tr>
<tr>
<td>0.75</td>
<td>48.61%</td>
</tr>
<tr>
<td>0.8</td>
<td>33.18%</td>
</tr>
<tr>
<td>0.85</td>
<td>7.33%</td>
</tr>
<tr>
<td>0.875</td>
<td>Inf</td>
</tr>
</tbody>
</table>
Collaborative Surveillance

- Optimization of path planning, sensing and communication
- \(N \) sites, \(M \) available inquiries to human
- Human and robot correct classification probabilities as functions of sensing distance
- \(E_{\text{max}} \) total motion energy
 - No predefine routes
Path Planning and Query Optimization

• Problem Formulation

\[
\max_{x, \gamma} \frac{1}{N} \left(\sum_{k=1}^{N} (1 - \gamma_k) \max_{x_i} p_{r,k}(x_i) + \gamma_k \max_{x_i} p_{h,k}(x_i) \right)
\]

s.t. \[\sum_{k=1}^{N} \gamma_k \leq M, \quad \mathcal{E}(x) \leq \mathcal{E}_{\text{max}},\]

\[\|x_k - x_{k+1}\|_2 \leq \delta_r, \quad \forall k = 1, 2, ..., x_{\text{num}} - 1,\]

\[\gamma_k \in \{0, 1\}, \quad \forall k = 1, 2, ..., N,\]
Path Planning and Query Optimization

• Problem Formulation

\[
\begin{align*}
\text{max.} & \quad \frac{1}{N} \left(\sum_{k=1}^{N} (1 - \gamma_k) \max_{x_i} p_{r,k}(x_i) + \gamma_k \max_{x_i} p_{h,k}(x_i) \right) \\
\text{s.t.} & \quad \sum_{k=1}^{N} \gamma_k \leq M, \quad \mathcal{E}(x) \leq \mathcal{E}_{\text{max}} \\\n& \quad \|x_k - x_{k+1}\|_2 \leq \delta_r, \quad \forall k = 1, 2, \ldots, x_{\text{num}} - 1 \\\n& \quad \gamma_k \in \{0, 1\}, \quad \forall k = 1, 2, \ldots, N
\end{align*}
\]

- Trajectory
- Best robot performance
- Best human performance
- Total queries allowed
- Motion energy budget
- Speed limit
- Ask or not ask

Herbert Cai and Yasamin Mostofi
Path Planning and Query Optimization

• Problem Formulation

\[
\begin{align*}
\text{max. } & \quad \frac{1}{N} \left(\sum_{k=1}^{N} (1 - \gamma_k) \max_{x_i} p_{r,k}(x_i) + \gamma_k \max_{x_i} p_{h,k}(x_i) \right) \\
\text{s.t. } & \quad \sum_{k=1}^{N} \gamma_k \leq M, \quad \mathcal{E}(x) \leq \mathcal{E}_{\text{max}}, \\
& \quad \|x_k - x_{k+1}\|_2 \leq \delta_r, \quad \forall k = 1, 2, \ldots, x_{\text{num}} - 1, \\
& \quad \gamma_k \in \{0, 1\}, \quad \forall k = 1, 2, \ldots, N,
\end{align*}
\]

Challenging to solve due to binary constraints and route design
Rapidly Exploring Random Tree Star (RRT*)

- Sampling-based motion planning algorithm
 - Proposed by Karaman et al.
- Fast and efficient
- Can easily embed our binary constraints

Modified RRT*

- Motion energy budget as a constraint on the total length of the path
- Select/update which sites to ask at each end node
 - Ask the M sites with largest difference between best human and best robot performance
 - \(\max_{x_i} p_{h,k}(x_i) - \max_{x_j} p_{r,k}(x_j) \)
 - Can prove that this is the optimal thing to do
- Evaluate objective function at each end node
Collaborative Surveillance

Circle size: sensing difficulty
Cross: ask human
Bar: performance gain from asking human

Final Position
Start Position

10 sites and 3 given questions
Energy Saving

• Compared to not asking questions

<table>
<thead>
<tr>
<th># of Queries</th>
<th>% Energy Saving as Compared to No Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>44.96%</td>
</tr>
<tr>
<td>5</td>
<td>69.39%</td>
</tr>
<tr>
<td>10</td>
<td>93.99%</td>
</tr>
</tbody>
</table>

– Target correct classification probability 0.8
– Can save energy considerably even with a small number of questions
 ➢ 45% energy reduction with 2 questions
Bandwidth Saving

- 10 sites, 6 allowed questions
 - Near optimal performance (3.8% worse) with 40% less BW usage
Conclusions

• Human Robot Collaborations
• How to combine strengths of both
• Understanding extent of human visual performance
• Implication for robotic field operation
• To Ask or Not to Ask problem
 – When to ask for human help
 – When to rely on own judgement
 – When to incur motion energy and sense more
• Target classification and field surveillance
 – Underlying patterns
 – Energy and bandwidth saving
Thank you!

This work was supported in part by NSF NeTS award # 1321171.