When Human Visual Performance is Imperfect —
How to Optimize the Collaboration between One
Human Operator and Multiple Field Robots

Hong Cai and Yasamin Mostofi

Abstract In this chapter, we consider a robotic field exploration and classification
task where the field robots have a limited communication with a remote human
operator, and also have constrained motion energy budgets. We then extend our
previously-proposed paradigm for human-robot collaboration [4, 5] to the case of
multiple robots. In this paradigm, the robots predict human visual performance,
which is not necessarily perfect, and optimize seeking help from humans accord-
ingly [4, 5]. More specifically, given a probabilistic model of human visual perfor-
mance from [4], in this chapter we show how multiple robots can properly optimize
motion, sensing, and seeking help. We mathematically and numerically analyze the
properties of robots’ optimum decisions, in terms of when to ask humans for help,
when to rely on their own judgment and when to gather more information from the
field. Our theoretical results shed light on the properties of the optimum solution.
Moreover, simulation results demonstrate the efficacy of our proposed approach and
confirm that it can save resources considerably.

Key words: Human-Robot Collaboration, Robots Asking for Human Help, Human
Visual Performance, Optimization, Field Exploration and Classification, Vision
1 Introduction

In recent years, there have been great technological developments in robotics, in
areas such as navigation, motion planning and group coordination. However, while
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robots are becoming capable of more complicated tasks, there still exist many tasks
which robots simply cannot perform to a satisfactory level when compared to hu-
mans. A complex visual task, such as recognition and classification in the presence
of uncertainty, is one example of such tasks [2]. Thus, proper incorporation of hu-
man assistance will be very important to robotic missions.

More recently, the research community has been looking into the role of hu-
mans and different aspects of human-robot collaboration. In control and robotics,
for instance, the Drift Diffusion Model from cognitive psychology [7, 14] has been
heavily utilized in modeling human decision making and the overall collaboration.
Chipalkatty [8] shows how to incorporate human factors into a Model Predictive
Control framework, in which human commands are predicted ahead of time. Uti-
lizing machine learning, researchers have also looked into transferring human skills
to robots [15] and incorporating human feedback to robot learning [12]. Several
human-machine interfaces have been studied. Srivastava [13] has designed a Deci-
sion Support System considering the ergonomic factors of the human operator to
optimize how the machine should provide information to the human operator. Bran-
son et al. [2] propose a collaboration interface that resembles the 20-question game
for bird classification. Experimental studies have been conducted on how humans
and robots interact and cooperate in simulated scenarios, such as urban search and
rescue operations [3, 10]. In [4-6], the fact that human visual performance is not
perfect is taken into account in the collaboration between one human operator and
a single field robot, emphasizing the importance of properly asking for human’s
help. More specifically, in [4, 6] we showed how to predict human visual perfor-
mance for the case where additive noise is the only source of uncertainty. In [5],
we proposed an automated machine learning-based approach that allows the robot
to probabilistically predict human visual performance for a visual input, with any
source of uncertainty, and experimentally validated our approach.

In this chapter, we are interested in the optimization of the human-robot colla-
boration in visual tasks such that the strengths of both are properly combined in task
planning and execution. We know that humans can do complex visual tasks, such as
recognition and classification, in the presence of a high level of uncertainty, while
robots can traverse harsh and potentially dangerous terrains. Human visual perfor-
mance, however, is not perfect as we established in [4,5]. We thus incorporate a new
paradigm, i.e., when to ask humans for help [4,5], into the optimization of the colla-
boration between a human operator and multiple robots. In this approach, the colla-
boration properly takes advantage of the human’s superior visual performance and
the robot’s exploration capability, while considering the fact that human visual per-
formance is not perfect, allowing the robots to ask for help in an optimized manner.
More specifically, consider a robotic field exploration and target classification task
where the robots have limited onboard energy budgets and share a limited number
of queries to the human operator. Due to these restrictions, the robots cannot query
the human operator all the time for help with classification. On the other hand, they
may not have sufficient resources or capabilities to explore the field (and reduce the
sensing uncertainty) to the level that their own classification over the whole field
becomes acceptable. In this chapter, we then show when the robots should ask the
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human for help, when they should rely on their own classification, and when they
should further explore the environment by co-optimizing their motion, sensing and
communication with the human operator.

In order to solve such co-optimization problems, the robots only need to un-
derstand the extent of human visual capabilities and their own performance. For
instance, a robot may collect data with a high level of uncertainty. Yet, the human
may be able to make sense out of this data and perform an accurate classification of
the target of interest. If a robot can properly understand this, it can then judge if it
should stop sensing and present the data to the human, or if it should gather more
sensing data. In Section 2, we summarize our previous work [4] on how to proba-
bilistically predict human and robot visual performances when additive noise is the
only source of uncertainty. In Sections 3, we then show how to optimize the colla-
boration between one human operator and multiple field robots when a probabilistic
metric of human visual performance is given. We mathematically characterize the
optimal decisions that arise from our optimization framework. Based on numerical
evaluations, we then verify the efficacy of our design in Section 4 and show that
significant resource savings can be achieved.

The work presented in this chapter is an extension of our previous work [4] to
a multi-robot setting. More specifically, in [4], we considered the fact that human
visual performance is not perfect in the collaboration of one robot and one human
operator. We showed how to predict human visual performance for the case where
additive noise is the main source of uncertainty. In this chapter, we extend [4] to a
multiple robots setting, with an emphasis on mathematical analysis. More specif-
ically, in this multi-robot setting, interesting new properties arise which we study
both mathematically and numerically. We note that while this chapter uses the pre-
diction of human visual performance from [4], a more realistic prediction of human
visual performance from [5] can be incorporated in the numerical results as part of
future work.

2 Human and Robot Performance in Target Classification [4]

In this section, we briefly summarize human and robot classification capabilities in
the presence of additive noise based on our previous work [4]. Consider the case
where the robot has discovered a target via taking a picture and needs to classify
it based on a given set of target possibilities. For example, Fig. 1 (left) shows 4
possible images that are shown to the robot prior to the task. The sensing of the
robot in the field, however, is in general subject to noise, low resolution, occlusion
and other uncertainties, which will degrade its classification accuracy. Fig. 1 (right)
shows a sample case where an image is corrupted by an additive Gaussian noise
with variance of 2. If the robot could accurately model all the uncertainties and use
the best detector accordingly, it would outperform the humans. This, however, is
not possible in realistic scenarios as it is impossible for the robot to know/model
every source of uncertainty or derive the optimal classifier due to the complexity of
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areal life visual task. This is why the robot can benefit from the collaboration with
the human tremendously by properly taking advantage of human visual abilities.
Human performance, however, is not perfect, which requires proper modeling.

Fig. 1: (left) Gray-scale test images of cat, leopard, lion and tiger used in our study [4]. (right) A
sample corrupted image (leopard) with noise variance of 2.

In our previous work [4], human and robot performance curves were obtained
for the following scenario. The robot takes an image on the field, which is corrupted
by an additive Gaussian noise with a known variance but an unknown mean, and
then undergoes a truncation process that is unknown to the robot. Fig. 2 shows the
performance curves of the human and the robot using noise variance as the metric.
The solid line shows the true probability of correct classification of the robot using
the minimum distance detector, which would have been the optimal detector under
zero-mean additive Gaussian noise. The dashed line shows the human performance
obtained from the data collected utilizing Amazon Mechanical Turk (MTurk). For
instance, in Fig. 1 (right), humans can achieve an average probability of correct
classification of 0.744, which is considerably higher than robot performance (0.5).

While this is a toy example, it captures a possible realistic scenario if additive
noise is the main source of performance degradation. For instance, the robot may
be able to assess its noise variance based on its distance to the target on the field
but may not know the mean of the added noise or the nonlinear truncation that has
happened at the pixel level. Our proposed approach of the next section will then
utilize these performance curves for the optimization of the overall performance.
We refer the readers to [5] for a more comprehensive prediction of human visual
performance for any input with any source of uncertainty.
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Fig. 2: Human and robot performance curves in target classification when additive noise is the
main source of performance degradation [4]. The human data is acquired using Amazon MTurk.
For more details, see [4].

3 Optimizing Human-Robot Collaboration for Target
Classification

We consider a setup in which the robots have an initial assessment (in the form of
acquired images) of N given sites. Each robot is given an individual motion energy
budget and they share a limited number of questions to ask the human operator.
Two multi-robot scenarios are considered in this section. In the first scenario, it is
assumed that each robot is assigned to a pre-determined set of sites to classify. For
each site that belongs to a robot’s assigned set, the robot has three choices: 1) rely on
its own classification (based on the initial sensing), 2) use a question and present the
data of the site to the human, or 3) spend motion energy to go to the site and sense
it better. The robot’s second decision of asking the human for help is affected by
the other robots’ decisions since they share a common number of allowed queries to
the remote operator. By studying this case, we capture a realistic situation in which
the robots explore the environment and perform their own tasks in geographically
separated locations while being monitored by the same remote human operator. In
the second scenario, we incorporate site allocation into the optimization framework.
Based on the initial sensing, each robot’s motion energy cost to visit the sites, and
the total number of allowed questions, the collaboration framework determines the
sites the robots should query the human about, the sites for which they should rely
on the initial sensing and the sites that should be visited. If a site is to be visited, the
collaboration approach also determines which robot should visit that site.
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3.1 Pre-determined Site Allocation

In this section, we first discuss the case with a pre-determined site allocation. Con-
sider the case where we have a total number of K robots and each robot is assigned
a priori to a set of N, sites. There is a total of N = ):le N sites. The sensing model
of the robots is the same as explained in the previous section. In summary, each
site contains one of T a priori known targets (see Fig. 1 (left) for an example with
T = 4 targets). The sensing is then corrupted by an additive Gaussian noise with
an unknown mean but a known variance, and is then truncated. The probabilities of
correct target classification of the ith site assigned to robot k, for k € {1,...,K} and
i €{1,...,N;}, are denoted by Pri,i and py . ; for the robot and the human respec-
tively. These probabilities are obtained from Fig. 2, based on the variance assessed
during the initial sensing. Note that although we assume a specific form of sensing
uncertainty (additive Gaussian noise) here, our proposed optimization framework is
general in that it only requires estimates of the human’s and the robot’s correct clas-
sification probabilities given a sensing input. The robots share a total of M allowed
questions to the remote human operator and each robot has an individual motion
energy budget of &4, x, where k is the index of the robot. Let &% ; denote the motion
energy cost to visit the ith site for the kth robot, which can be numerically evaluated
by the robot. If a robot chooses to visit a site, the probability of correct classifica-
tion increases to a high value of p > p,.i;, Vk =1,...,K,i = 1,..., N;. The objective
of this collaboration is then to decide which sites to present to the human, which
sites to visit and which sites to rely on the robots’ own classification based on the
initial sensing, in order to maximize the overall average probability of correct classi-
fication under resource constraints. Let p. denote the average probability of correct
classification of a site. We have

1 K N Ny Ny
Pe= Z (Z Ye,iPhiit ) MkiD+ Z(l —Yei) (1 = Mii) Prki)s
k=1 i=1 i=1 i=
1 K N Ne Ne
=N Z (Q_ Yei(Phki— Prai) + Z Mi(P— Pri) + Z Prii)s
k=1 i=1 i=1 i=

where ¥ ; is 1 if robot k seeks human’s help for its ith site and is 0 otherwise.
Similarly, 1y ; = 1 indicates that robot k will visit its ith site and 1 ; = 0 denotes
otherwise. We then have the following optimization problem:
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K
max. Y% (Prx = pra) + 1 (P1= pra)
? k=1

S.t. T]kTngé(;nax,k, Vk=1,...,K,

K 1
Y vi1<m, M
k=1

N+tm =<1, Vk=1,..K,
v.n € {0, 1},

where K is the total number of robots, Nj is the total number of sites that robot
k needs to classify, &,k is the motion energy budget for robot k, M is the
number of allowed questions for all the robots, pjx = [ph’k?l7 ~~~,Ph7k,Nk}T’ DPrk =
(Prits oo PracN) s Ve = Yt YN ) s e = Mt oo M )T s € = (60t oo G )"
y=0, ¥, m=nl,...nk" and N =YX | N;. The second constraint shows
the coupling among the robots since they are all querying the same human operator,
without which the optimization would be separable.

It can be seen that (pyx — pri) and (p1 — p,x) are important parameters as they
represent the performance gains by asking the human and visiting the sites respec-
tively. Note that we do not allow the robots to both query the human and make a
visit for the same site. This is because we have already assumed a high probability
of correct classification when a robot visits a site. Thus, allowing the robots to both
visit and ask about the same site will be a waste of resources in this case.

)

3.1.1 Zero Motion Energy

If &paxk = 0,Vk =1,...,K, problem (1) reduces to a 0-1 Knapsack Problem [11],
which is a combinatorial optimization problem that often arises in resource alloca-
tion scenarios. In this case, the robots only need to decide between asking the human
and relying on the initial classification, which is shown below.

max. ¥ (pn — pr)

st. 7I1<M, (2)
7e{0,1}",

where pj, = [pn1, ..., Panls Pr = [Pri,---» Prn], Pni and p,; denote the human’s and
the robot’s correct classification probabilities of a site i € {1,...,N}, ¥ = [#1, ..., W]
and 7; indicates whether the robots seek human help for site i. The optimal solu-
tion to this simplified problem can be obtained easily, which is summarized in the
following lemma.

Lemma 1 Suppose that all the N sites are sorted in a descending order according to
Ph,i— Pri such that py; — pri > pp,j— Pr,j for i < j. The optimal solution to problem
(2) is given by
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%=1, fori=1,...n,

3
7=0, fori=n+1,..N, )
where Y| ¥i = M.

Proof. The results can be easily verified. a

3.1.2 Zero Number of Allowed Queries

If M =0, problem (1) reduces to K separable 0-1 Knapsack Problems. The opti-
mization problem for the kth robot is shown as follows.

max. g (F1— pre)
Mk
s.t. nzéak < éamwc.,ka )
M € {0, 1}
Although the optimal solution to optimization problem (4) cannot be written di-
rectly in this case, its Linear Program (LP) relaxation provides a very close approx-

imation. The LP relaxation of problem (4) is obtained by replacing the last binary
constraint with 1; € [0, 1],

Lemma 2 Suppose that the sites are sorted in a descending order according to

(P — Prii)/ ki such that (p— prii)/ ki > (P — Prk.j)/ék.j for i < j. The optimal
solution to the LP relaxation of problem (4) is given by

Mki=1, fori=1,..,n—1,
Mi=0, fori=n+1,.. N,

nk,n -

)

M| oy

where & = Emaxk — Zl’.':_ll ériand n =min{j : Z{Zl Eki > Emaxk}-

Proof. A graphical proof can be found in [9] and a more formal proof can be found
in [11]. O

3.1.3 Considering the General Case

Problem (1) is in general a Mixed Integer Linear Program (MILP), which makes
theoretical analysis difficult. In order to bring a more analytical understanding to
this problem, we consider the following LP relaxation of problem (1), which is a
close approximation to the problem. The LP relaxation allows the decision variables
Y and 1 to take continuous values between 0 and 1.
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= T T
max. Y A (i — pri) + 1 (P1— prs)
? k=1
S.t. T]kTgk < Enaxgs Vk=1,.. K,
s ®)
Y W1<M,
k=1
’}/k+nkj11 Vk:17"'uK7
r.n €0 1]".

We can analyze this LP by applying Karush-Kuhn-Tucker (KKT) conditions [1].
We then have the following expression for the Lagrangian:

K
g(/}/ﬂn7w7lla/’l'2797€71<a Taé7‘l’) = 7(2 VkT(Ph,k*Pr.,k)JrnkT(ﬁI*Pr,k))
k=1

K K

+u(Y =M+ Y Ml 6 — Epaci) + 0T (y+ 1 — 1)+ 9" (y—1)
k=1 k=1

- ¢T}/+ KT(n - 1) - an7

where 11,A,0,y, ¢, k, @ are non-negative Lagrange multipliers, and A = [A1, ..., Ag].
The optimal solution (marked by %) then satisfies the following KKT conditions,
in addition to the primal/dual feasibility conditions:
1) Gradient condition, for k € {1,...,K} and i € {1,...,N }:

Vi L = Prki— Phi + W+ 65+ W — 0 =0, (©6)
VTI/Z;"% :Pnk,i_[a+l]:gk,i+9]:i+’€]zi_ (l)/f_’i =0. )

2) Complementary slackness: 0*o (y*+n*—1)=0, y*o(y*—1)=0, ¢*oy* =
0.k o (1" — 1) =0, 0 or* =0, u(XX 175~ M) =0, Ao (06 — Epar) =0,
where 0 denotes the vector with all entries equal to 0, o denotes the Hadamard
product, & = [&] ..., and &pax = [E a1 ~-~7(g)max,k]T~

The following lemmas characterize the optimal solution to the LP relaxation in
terms of the optimization parameters.

Lemma 3 Consider two sites i and j that belong to the pre-assigned sets of robot
ki and robot ky respectively.! Let y* and n* denote the optimal decision vectors. If
Yo =1Lng i =0.%,,;,=0andng, ; =0, then ppx, i — Prk, i 2 Phja,j — Pria,j-

Proof. Suppose that we have two sites i and j pre-assigned to robot k; and robot
ky respectively such that y; ; = 1,1 ; =0,%; ; =0 and 17, ; = 0. Applying the

complementary slackness conditions results in (/)k*1 ;= 9,(*2 ; = (]),:‘2 = 0. Then the
. .. . * * ’ . ’ ’ * .
gradient condition gives p,k, i — Ppk,.,i + le,i + ¢k1,i = Prky,j = Pha,j — q)kz,j' Since
. ox . AR T
le ,iv¢k1.i and v, are all nonnegative, it is necessary to have pjx, i — Pri,,i =
Phky.,j — Prks.j- U

! Note that robot k; and robot k, can be the same robot or two different robots.
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Lemma 3 says that if we have any two sites i and j, for which the robots will ask
the human and rely on the initial sensing respectively, then the performance gain
obtained from querying the human operator for site i should be higher than or equal
to that of site j.

Remark 1 Lemma 3 also holds for the original integer problem (1).

Lemma 4 Consider two sites i and j that have been assigned to robot k. Let Y* and
N* denote the optimal decision vectors. If ¥, = 0,1, = Ly,jj =0 and n,jj =0,

then (p— prii)/6i > (P — Prkj)/6k,j-

Proof. Suppose that we have two sites i and j assigned to robot k such that
Yei=0.n5; = l,y,;j =0 and n,zj = 0. We have oy, = 0 = K]’;j = 0 from
the complementary slackness conditions. Eq. 7 for 1;; then becomes: (p.x,; —
P)/6ki+ N+ 6+, =0, where 6, = 6/ ;/&; and ’Kllw' = K /6. Similarly,
we have (p.xj—P) /6 j+ M — a),’c,j = 0 when applying Vn;j.,iﬂ = 0. This results in
(Prici = D)/ Gi + X+ 6 i+ Ky = (Prj— P)/ 6k j+ A — @) ;. Since 6 ;, K ; and
a),’w. are all nonnegative, we have (5 — pyii)/6ki > (P — Pr.j)/ k. j- O

Lemma 4 says that within the set of sites assigned to a robot, if there are two sites
i and j, for which the robot will explore and rely on the initial sensing respectively,
then the visited site should have a higher performance gain normalized by the energy
2
cost.

Lemma 5 Consider two sites i and j that have been assigned to robot k. Let v* and
N* denote the optimal decision vectors. If v; = 1,n;; = 0,7;1. =0, 771:/' =1 and
Exi < i, j» then puii — Puk,j > 0.

Proof. Consider an optimal solution where we have v, = 1,1, =0,% ;=0 ng I
1 and &; < & j. We modify the current optimal solution to obtain a new feasible
solution in the following way: %, =y, =8, nj, =, + 0, ¥ ; =%, + 6, m ;=
Ni;— 6, where 6 > 0 is a small number such that ﬂci,néii,ﬂcwnéj € [0,1]. The
new objective function value becomes f' = f*+ A, where f* is the optimum and
A = 6(p— prii — (Phki — Prii) + Phk.j — Prij — (P — Prk,j))- Since the current
solution is optimal, we should have A <0, from which we have pj, x; — ppi,; > 0.
(|

Consider the case where sites i and j are assigned to robot k. The robot asks for
human help for site i and visits site j in the optimal solution. Lemma 5 says that in
this case, if the motion energy cost of the queried site is less than or equal to that
of the visited site, then the human performance of the queried site should be greater
than or equal to that of the visited site.

2 This lemma is similar to the 2nd condition of Lemma 1 of our previous work [4] as it concerns
only one robot.
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3.2 Optimized Site Allocation

In this section, we consider the second collaborative scenario with a human operator
and multiple field robots described earlier, where the optimization of site allocation
to the robots is also taken into account. Consider the case where there is a total of
N sites and K robots. The sensing model is the same as discussed in the previous
section. The probabilities of correct target classification of the ith site are denoted
by p.; and pp; for the robot and the human respectively. These probabilities are
obtained from Fig. 2, based on the variance assessed during the initial sensing. The
robots share a total of M allowed questions to the remote human operator and each
robot has an individual motion energy budget of &, x, Where k is the index of the
robot. Let éz‘k, denote the motion energy cost to visit the ith site for the kth robot.
If a robot chooses to visit a site, the probability of correct classification increases
to a high value of p. The objective of this collaboration is for the robots to decide
on which sites to present to the human, which sites to rely on the initial sensing
and which sites to visit. If a site is to be visited, this collaboration also determines
which robot should visit the site. Let p. denote the average probability of correct
classification of a site, which we would like to maximize. We have
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where ¥, is 1 if the robots seek human’s help for the ith site and is O otherwise.
Similarly, j;; = 1 indicates that robot k will visit the ith site and 7j; ; = 0 denotes
otherwise. The optimization problem is then given by

K
max. Y Al (p1—p,)+ 7 (P — br)
rn k=1
s.t. ﬁ[&<£maxk, Vk=1,...,K,

l

||Mw IA

1 ¥

M <1,

Y»nkG{O,l} , Vk=1,...K

where K is the total number of robots, N is the total number of sites to classify, &ax
is the motion energy budget for robot k, M is the total number of allowed questions,
Pn = [Pn1s - PuN]"s Br = [Pris - 7prN]T, 7=1T, W T = [ty ]’
f=[nl,....,qk" and & = [&rs s br ~]T. 7 and 7] determine whether the robots
should ask for human help and visit the sites respectively.
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Problem (8) is in the form of a Multiple Knapsack Problems (MKP) [11], which
is a natural extension to the basic 0-1 Knapsack Problem discussed in the previous
section. This problem arises commonly in optimal decision making and resource
allocation settings.

3.2.1 Zero Motion Energy
If &paxx = 0,Vk =1,..., K, problem (8) reduces to a 0-1 Knapsack Problem.

m%X' ?T(pNh_er)
st. 711<M, )
ye{0,1}".

The above reduced problem is very similar to problem (2) discussed previously.
The optimal solution to this special case can be obtained via the same procedure
outlined in Lemma 1.

3.2.2 Considering the General Case

In order to bring a more theoretical understanding to this setting, we consider the
LP relaxation of problem (8), which is given as follows.

max. Z (P1—pr) + 7" (n— Pr)

r:n
s.t. n{£k<£maxk, Vk=1,...K
71 <M, (10)
K
T+ Y =
k=1
7, € (0,11, Vk=1,...K

By allowing the decision variables ¥ and 7j to take continuous values in the in-
terval [0, 1], we can analyze this problem utilizing the KKT conditions, which leads
to the following two lemmas.

Lemma 6 Consider two sites i and j. Let ¥ and 7)* denote the optimal decision
vectors. If 77 =1, T, A, = 0, 77 = 0 and Y5 i ; = O, then Py — pri > pnj —
p~r,j-

Proof. The proof is similar to that of Lemma 3. a
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Lemma 6 says that if we have two sites i and j, for which the robots will ask
the human and rely on the initial sensing respectively, then the performance gain
obtained from asking the human should be greater for site .

Remark 2 Lemma 6 also holds for the original integer problem (8).

Lemma 7 Consider two sites i and j. Let ¥* and 7)* denote the optimal decision
vectors. If 77 =0, 7, = 1. 7 = O and T, 7, = O, then (5 pri) /Gy > (5~
Pr.j)/ék,.j» where ky is the index of the robot that visits site i.

Proof. The proof is similar to that of Lemma 4. a

Consider two sites i and j. Suppose that in an optimal solution, site i is visited
by robot k; and the classification of site j is based on the initial sensing. Lemma 7
says that the performance gain obtained from further sensing normalized by robot
k1’s motion energy cost should be higher for site i as compared to site j.

Lemma 8 Consider two sites i and j. Let ¥ and f* denote the optimal decision
vectors. If 7 =1, nkj =1 andé"k, §éok], then pp i — pp.j > 0.

Proof. The proof is similar to that of Lemma 5. a

Consider two sites i and j. Suppose that in an optimal solution, the robots query
the human about site i and have robot £ visit site j. Lemma 8 says that in this case,
if robot k’s motion energy cost of the queried site is less than or equal to that of the
visited site, then the human performance of the queried site should be greater than
or equal to that of the visited site.

Lemma 9 Consider two sites i and j and two robots k; and ky. Let ¥ and f*
denote the optimal motion decision vectors. Suppose that f],jhi =1, ﬁlﬁz,j =1 and
Ime {1,...,N} such that ¥}, = 0 and YX_, M = 0. Then the following conditions
must hold.

(]) (g}q i Sgkl oréZ}Ql Zéakzj,

(2) If@("k1 i< 5%. ,j» then 650k2 j 5k21 < &q J éak] i

(3) I.fgkz,l > éakz.]r then gkl,l éakl,./ < gkz,l éakz,j'

Proof. (1) Suppose that & ; > &, jand &, ; < &, ;. Wecanlet i, ; =0, =1,
fiy,; = 1 and 7, ;= 0, which will give us the same objective function value but
with a less motion energy consumption. The residual energy can be utilized such
that 1‘1,(l n = Ok, and nk m= = &,, where &, and &, are small positive numbers. This
constructed solution W111 be strictly better than the current optimal solution, which
is a contradiction. Thus we must have éakl i< ef}cw or é”}%, > é’kw.

(2) and (3) If Condition (2) or (3) fails, we can construct a new feasible solution
in a similar way as in the proof of Condition (1), which will be strictly better than
the current optimal solution, resulting in a contradiction. a
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Consider the case where there exists at least one site, for which the robots will
rely on the initial sensing. The first part of Lemma 9 says that in this case, if two
sites i and j are visited by two robots k| and k, respectively, then either it should be
less costly for robot k; to visit site i as compared to site j or it should be less costly
for robot &, to visit site j as compared to site i. Furthermore, the second part of the
lemma says that if it is less costly for robot ki to visit site i as compared to site j
(fkl i< @E’kl ) th~en r0b0~t ky’s motion energy cost of visiting site j should not exceed
that of site i by &, j — &, ;» which can be thought of as the motion energy saving of
robot k;. The third part can be interpreted in a similar manner. This lemma basically
shows that the robots’ decisions should be efficient in terms of motion energy usage.

4 Numerical Results

In this section, we show the performance of our collaboration design for field ex-
ploration and target classification. We first summarize the results for a case where
there is only one robot [4] to gain a more intuitive understanding of the optimal
behavior that arises from our optimization framework. We then show the numerical
results for the case of multiple robots. The optimization problems are solved with
the MILP solver of MATLAB by using the collected MTurk data of Fig. 2

4.1 Collaboration between the Human Operator and One Robot [4]

Consider the case where there is only one robot in the field. In this case, both multi-
robot formulations (problem (1) & problem (8)) reduce to the same optimization
problem, which is shown as follows.

max. }’T (ph _pr) + nT(ﬁl - pr)

v
T T
st. ' E <énax, 1'Y<M, (11
y+n =<1,
r.n e {0,1}".

In order to better understand the optimal solution, Fig. 3 shows an example of
the optimal decisions for the case of 2000 sites, with 500 allowed questions and
an energy budget equal to 25% of the total energy needed to visit all the sites. The
optimal decision for each site is marked based on solving problem (11). Interest-
ing behavior emerges as can be seen. For instance, we can observe that there are
clear separations between different decisions. The clearest patterns are two transi-
tion points that mark when the robot asks the human operator for help, as shown
with the dashed vertical lines in Fig. 3. Basically, the figure suggests that the robot
should not bug the human if the variance is smaller than a threshold or bigger than
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another threshold, independent of the motion cost of a site. This makes sense as the
robot itself will perform well for low variances and humans do not perform well for
high variances, suggesting an optimal query range. Furthermore, it shows that the
robot is more willing to spend motion energy if the sensing of a site has higher noise
variance. However, the robot in general only visits the sites where the energy cost is
not too high and relies more on itself for the sites with both high variance and high
energy cost.

]
Rely on self Ask Human ' Rely on self
I I @ Ask human
@ Rely on self
W Visit the site

Motion Energy Cost

0.5 1 15 2 2.5 3 3.5 4
Noise Variance

Fig. 3: An example of the optimal decisions with 2000 sites, 500 questions and an energy budget
of 25% of the total energy needed to visit all the sites. In this example, the collaboration is between
one operator and one robot. This result is from our previous work [4].

In the following part, we show the energy and bandwidth savings of our proposed
approach as compared to a benchmark methodology where human collaboration
is not fully optimized. In the benchmark approach, the robot optimizes its given
energy budget to best explore the field based on site variances, i.e., it chooses the
sites that maximize the sum of noise variances. It then randomly chooses from the
remaining sites to ask the human operator, given the total number of questions. In
other words, the robot optimizes its energy usage without any knowledge of the
human’s performance.

4.1.1 Energy Saving

Table 1 shows the amount of motion energy the robot saves for achieving a de-
sired probability of correct classification by using our approach as compared to the
benchmark. The first column shows the desired average probability of correct classi-
fication and the second column shows the percentage reduction of the needed energy
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by using our proposed approach as compared to the benchmark method. In this case,
there is a total of N = 10 sites and M = 4 given queries. The noise variance of each
site is randomly assigned from the interval [0.55,4]. j is set to 0.896, which is the
best achievable robot performance based on Fig. 2. The motion energy cost to visit
each site is also assigned randomly and the total given energy budget is taken to be
a percentage of the total energy required to visit all the sites. It can be seen that the
robot can reduce its energy consumption considerably by properly taking advantage
of its collaboration. For instance, it can achieve an average probability of correct
classification of 0.7 with 66.67% less energy consumption. The term “Inf” denotes
the cases where the benchmark cannot simply achieve the given target probability
of classification.

e s Come | e Sving in
0.7 66.67%
0.75 44.30%
0.8 27.83%
0.85 6.30%
0.9 0.71%
0.915 Inf

Table 1: Energy saving as compared to the benchmark in the one-operator-one-robot case.

4.1.2 Bandwidth Saving

Next, we show explicitly how our proposed approach can also result in a consider-
able communication bandwidth saving by reducing the number of questions. More
specifically, consider the cases with “large bandwidth” and “zero bandwidth”. In the
first case, the robot has no communication limitation and can probe the human with
as many questions as it wants to (10 in this case). In the latter, no access to a human
operator is available and thus the robot has to rely on itself to classify the gathered
data after it surveys the field. Fig. 4 compares the performance of our proposed ap-
proach with these two cases. The robot is given an energy budget of 30% of the total
energy needed to visit all the sites.

As expected, the case of “no bandwidth” performs considerably poorly as the
robot could not seek human help in classification. On the other hand, the case of
“large bandwidth” performs considerably well as the robot can ask for the human
operator’s help as many times as it wants. This, however, comes at a cost of ex-
cessive communication and thus a high bandwidth usage.? It can be seen that our
proposed approach can achieve a performance very close to this upper bound with a
much less bandwidth usage. For instance, we can see that by asking only 6 questions

3 Bandwidth usage is taken proportional to the number of questions.
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(40% bandwidth reduction), the robot can achieve an average probability of correct
classification of 0.888, which is only 4.3% less than the case of large bandwidth
(0.928 in this case).
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Fig. 4: Average probability of correct classification in the one-operator-one-robot collaboration as
a function of the total number of given queries. In this example, there is a total of 10 sites and the
given motion energy budget is 30% of what is needed to visit all the sites.

Table 2 shows the amount of bandwidth the robot can save by using our approach,
when trying to achieve a desired average probability of correct classification. The
first column shows the desired average probability of correct classification while the
second column shows the percentage reduction of the needed bandwidth by using
our proposed approach as compared to the benchmark. In this case, the robot is
given an energy budget of 30% of the total energy needed to visit all the sites. It
can be seen that the robot can reduce its bandwidth consumption considerably. For
instance, it can achieve an average probability of correct classification of 0.75 with
48.61% less bandwidth usage.

]z:"lz::i‘:i gvtf(')fgﬁ)‘:t Bandwidth Saving (in %)
07 37.04%
075 38.61%
03 33.18%
085 733%
0875 Tnf

Table 2: Bandwidth saving as compared to the benchmark in a one-operator-one-robot case.
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4.2 Pre-determined Site Allocation

In this section, we numerically demonstrate the efficacy of our approach for the
one-operator-multi-robot collaborative scenario when the allocation of the sites to
the robots is pre-determined. We first show an interesting pattern that characterizes
the conditions under which the robots will visit the sites and ask for human’s help
respectively. We then illustrate how our approach plans the collaborative operation
by showing an example solution to problem (1), after which we conduct numerical
evaluations to demonstrate how our proposed approach can save resources signifi-
cantly.

4.2.1 Patterns of Optimal Decisions

We solve problem (1) with 2 robots, where each robot is assigned to 1000 sites.
There is a total of 500 given queries and the energy budget is taken as 25% of
what is needed to visit all the sites in the pre-assigned set for each robot. The noise
variance of each site is randomly assigned from the interval [0.55,4]. p is set to
0.896, which is the best achievable robot performance based on Fig. 2. The motion
energy cost to visit each site is also assigned randomly.

Fig. 5 shows the optimal decisions of the first robot with the above parameters.
Green disks represent the decision of asking for human help, red diamonds represent
the decision of visiting the site and blue squares represent the decision of relying on
the initial sensing. It can be seen that the optimal behavior of a robot in the one-
operator-multi-robot setting is very similar to that of the one-operator-one-robot
case. More specifically, the robot will only query the human operator about sites
where the sites’ sensing variance is not too low or too high. The robot is more
willing to spend motion energy to move to sites with high noise variance for further
sensing as long as the energy cost is not too high. The optimal decisions of the
second robot have a similar pattern.

To better understand the impact of noise variance and motion energy cost on
the optimal decisions, we conduct the following analysis. From Fig. 2, we can see
that there is a noise variance range within which it is very beneficial to query the
human operator ([1.5,2.5]). Thus the distribution of the values of the noise variance
will have a considerable impact on the optimal decisions. For instance, suppose
that the noise variance of the sites is drawn from a Gaussian distribution that is
mainly concentrated in the interval [1.5,2.5]. Then, the robot can have a good gain
from asking for help if its motion budget is not too large. To further understand
these impacts, we perform simulations with 2 robots, each assigned to 200 sites.
We vary the distribution of the noise variance and the given motion energy budgets
for the two robots. Fig. 6 shows the probability density functions (PDFs) of the two
noise variance distributions that we will use in the simulations. The first (left) is a
truncated Gaussian distribution with mean 1.75 and variance 0.25. The values of the
noise variance are truncated so that they stay inside the interval [0.55,4]. The noise
variance produced from this distribution will be mainly within the range where it is
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Fig. 5: An example of the optimal decisions with 2 robots. Each robot is assigned to 1000 sites and
given an energy budget of 25% of the total energy needed to visit all its pre-assigned sites. The two
robots share a total number of 500 questions. The figure shows the decisions of robot 1.

most beneficial to query the human operator based on Fig. 2. The second distribution
is a uniform distribution over the interval [0.55,4].
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Fig. 6: (left) The PDF of the truncated Gaussian distribution. (right) The PDF of a uniform dis-
tribution. Both PDFs have the support of [0.55,4] and are used to generate noise variances in the
simulations.

Table 3 shows the average number of sites asked and visited by each robot. The
noise variance of the sites of robot 1 is drawn from the uniform distribution while
the noise variance of the sites of robot 2 is drawn from the truncated Gaussian dis-
tribution. There is a total of 100 allowed queries. Both robots are given 25% of what
is needed to visit all sites from their respective sets. The motion energy cost to visit
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each site is assigned randomly. The results are averaged over multiple simulations
so that the analysis is less dependent on the specific realizations of the two distribu-
tions. It can be seen that the average number of sites asked by robot 2 is significantly
greater than that by robot 1. This is because the noise variance of the sites of robot 2
mainly lie within the range where it is more beneficial to ask for help. The average
number of visited sites is almost the same for both robots as they are given the same
energy budget in terms of the percentage of the total energy required to visit all the
sites in their respective sets. Thus robot 1 has to rely more on the initial sensing for
classification. As we increase the total number of allowed questions, we expect the
difference between the number of questions used by the two robots to decrease.

Ave. # of Sites Visited

Ave. # of Sites Asked

Robot 1

95.65

344

Robot 2

96.3

65.6

Table 3: Average number of sites asked and visited by each robot. The noise variances for robot
1 and robot 2 are drawn from the uniform distribution and the truncated Gaussian distribution
respectively (see Fig. 6). Each robot is assigned to 200 sites and there is a total of 100 allowed
queries. Each robot is given an energy budget of 25% of what is needed to visit all the sites in its
respective set.

Next, we fix the noise variance distribution and study how different motion en-
ergy budgets affect the optimal decisions. Table 4 shows the average number of
sites asked and visited by each robot. The noise variance of the sites of both robots
are drawn from the uniform distribution. There is a total of 100 allowed queries.
In terms of energy budget, robot 1 and robot 2 are given 20% and 40% of what is
needed to visit all the sites in their respective sets. It can be seen that the average
number of queried sites by robot 1 is greater than that of robot 2. This makes sense
since the number of visited sites by robot 1 is smaller due to the smaller energy
budget.

Ave. # of Sites Visited

Ave. # of Sites Asked

Robot 1

85.2

59.5

Robot 2

119.6

40.5

Table 4: Average number of sites asked and visited by each robot. The noise variances for both
robots are drawn from the uniform distribution. Each robot is assigned to 200 sites and there is a
total of 100 allowed queries. Robot 1 is given an energy budget of 20% of what is needed to visit
all the sites in its set while robot 2 is given an energy budget of 40% of what is needed to visit all
the sites in its set.
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4.2.2 Example Solution

In this section, we study a sample solution to problem (1). We consider the case
with 2 robots, each assigned to 5 sites. The noise variance of each site is randomly
assigned from the interval [0.55,4]. p is set to 0.896. The motion energy cost to
visit each site is assigned randomly. There is a total of 3 allowed questions and
each robot is given an energy budget of 25% of what is needed to visit all the sites
in their respectively pre-determined sets. The planning results are summarized in
Table 5. The upper half and lower half of the table show the results for the two
robots respectively. The first column shows the indices of the sites. The second
column indicates whether a site is visited. The third column indicates whether a
site is selected to query the human operator. The fourth and fifth columns show the
performance gains associated with asking for help and visiting the sites respectively
((pn,i — pri) and (P — p.;)). The sixth column shows the motion energy costs for the
sites.

Site | Selected | Selected | Energy | Performance | Performance
Index| for Visit | for Query Cost Gain of Query | Gain of Visit
1 0 1 0.6474 0.3218 0.3365
2 1 0 0.1434 0.2917 0.3960
Robot 1 3 1 0 0.0227 0.1728 0.3960
4 1 0 0.1887 0.3511 0.3960
5 0 1 0.5020 0.3402 0.3960
6 1 0 0.2067 0.2138 0.3960
7 0 1 0.8360 0.3043 0.3960
Robot 2 8 0 0 0.6730 0.1712 0.1460
9 1 0 0.0168 0.3497 0.3960
10 0 0 0.4823 0.1795 0.1460

Table 5: Example solution to problem (1) with pre-determined site allocation. There
are 2 robots, each assigned to 5 sites. The robots share a total of 3 allowed questions.
Each robot is given an energy budget of 25% of what is required to visit all the site
in its own set.

For each robot’s respective set of sites, it can be seen that for the sites selected
for visit, their corresponding performance gains normalized by energy cost are the
highest among all unqueried sites, which is consistent with Lemma 4. As for sites
selected to query the human operator, we can see that the performance gain (5th
column) of these sites obtained from asking the human are the highest among all the
sites not selected for further sensing (marked by a gray color), which is consistent
with Lemma 3.
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4.2.3 Energy Saving

Table 6 shows the average amount of motion energy the robots save by using our
approach when aiming to achieve a given target probability of correct classification.
More specifically, the first column shows the target average probability of correct
classification while the second column shows the percentage reduction in the aver-
age needed energy when using our approach as compared to the benchmark method.
In the benchmark method, each robot selects the sites to visit by maximizing the to-
tal sum of variances at the sites, after which random sites are selected from the
aggregated unvisited ones to query the human operator. In other words, the robots
do not have the knowledge of human visual performance but know how their own
performance is related to the sensing variance. In the example of Table 6, there is
a total of 4 robots, each assigned to 10 sites. The robots share a total number of 10
given queries. The robots’ energy budgets are the same as each other in terms of the
percentage of the total energy needed to visit all the sites in their respective sets.
The noise variance of each site is randomly assigned from the interval [0.55,4]. p
is set to 0.896. The motion energy cost to visit each site is also assigned randomly.
It can be seen that the robots can reduce the energy consumption considerably by
taking advantage of the knowledge of human performance and properly optimizing
the collaboration accordingly. For instance, an average probability of correct classi-
fication of 0.65 is achieved with 57.14% less energy consumption.

Desired Ave. Correct Energy Saving (in %)
Classification Prob.

0.65 57.14%

0.7 27.78%

0.75 27.03%

0.8 18.75%

0.85 10.20%

0.9 Inf

Table 6: Energy saving as compared to the benchmark in the one-operator-multi-robot setting with
pre-assigned sites. In this case, there are 4 robots, each assigned 10 sites and the robots share a
total of 10 questions.

4.2.4 Bandwidth Saving

We next show how our approach can also result in a considerable communica-
tion bandwidth saving by reducing the number of questions while still achieving
the desired performance. We consider the cases with “large bandwidth” and “zero
bandwidth” as described in Section 4.1.2. Fig. 7 compares the performance of our
proposed approach with these two cases. As expected, the case of “no bandwidth”
performs considerably poorly as the robots could not seek human help in classifica-
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tion. On the other hand, the case of “large bandwidth” performs considerably well
as the robots can ask the human operator as many questions as they want to. It can be
seen that our proposed approach can achieve a performance very close to this upper
bound with a much less bandwidth usage. For instance, we can see that by asking
only 25 questions (37.5% bandwidth reduction), the robot can achieve an average
probability of correct classification of 0.817, which is only 2.4% less than the case
of large bandwidth (0.835 in this case).
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Fig. 7: Average probability of correct classification in a human-robot collaboration as a function
of the total number of given queries. In this example, there are 4 robots, each assigned to 10 sites.
Each robot is given a motion energy budget equal to 10% of what is needed to visit all the sites in
its assigned set.

Table 7 shows the amount of bandwidth usage the robots can save by using our
approach, when trying to achieve a desired average probability of correct classifi-
cation. More specifically, the first column shows the target average probability of
correct classification and the second column shows the percentage reduction of the
needed bandwidth by using our approach as compared to the benchmark. In this
case, each robot is given an energy budget of 10% of the total energy needed to
visit all the sites in its set. It can be seen that the robot can reduce its bandwidth
consumption considerably. For instance, it can achieve an average probability of
correct classification of 0.7 with 33.75% less bandwidth usage.

4.3 Optimized Site Allocation

In this section, we conduct numerical evaluations when our approach also optimizes
site allocation, as shown in problem (8). We first show patterns of the optimal deci-
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Desired Ave. Correct

Classification Prob. Bandwidth Saving (in %)

0.65 100%

0.7 33.75%
0.75 22.93%
0.8 14.29%

Table 7: Bandwidth saving as compared to the benchmark in the one-operator-multi-robot setting
with pre-assigned sites. In this case, there are 4 robots. Each robot is assigned to 10 sites and given
10% of what is needed to visit all the sites in its pre-assigned set.

sions and illustrate how our approach plans the collaborative operation by showing a
sample solution to problem (8). We then numerically demonstrate that our proposed
approach can save resources significantly.

4.3.1 Patterns of Optimal Decisions

We solve problem (8) with 2 robots and a total of 2000 sites. There is a total of 500
given queries. The energy budget is taken as 12.5% of what is needed to visit all
the sites for each robot. The noise variance of each site is randomly generated from
the interval [0.55,4]. j is set to 0.896. The motion energy cost to visit each site is
also assigned randomly for each robot. The pattern of optimal decisions in terms of
asking for human help, visiting a site and relying on the initial sensing for any one
of the two robots in this scenario is very similar to those shown in Fig. 3 and 5.

Here we show how the optimal decisions are related to the motion energy costs
of visiting the sites for the two robots. Fig. 8 and 9 show when the robots will visit a
site, when they will query the human operator and when they will rely on the initial
sensing. Green disks represent asking for human help, red diamonds indicate that
the site is visited by robot 1, yellow triangles indicate that the site is visited by robot
2 and blue squares represent the decision of relying on the initial sensing. It can be
seen that the two robots select sites that do not require too much motion energy to
visit. Note that it may cost the robots different amount of motion energy to visit the
same site. For a site that is costly to visit for both robots (sites that reside in the
top-right region of Fig. 8 and 9), the robots will either query the human operator
or rely on the initial sensing depending on the noise variance of the site. We note
that in Fig. 9, there is a number of sites for which the robots will rely on the initial
sensing even though the costs of visiting them is not high for at least one of the
robots. This is because the noise variances associated with these sites are already
low, eliminating the need for further sensing.



Optimizing the Collaboration between One Human Operator and Multiple Field Robots 25

]
1 ¢ Q o9 © @ Ask human
.0."‘0 J‘.". © 05 ) 0300 @ ¢ Visit by Robot1
0" * ;}*... ‘.. ° ® ;. A Visit by Robot2
0.8 ®) Q
o ’ “” I.'. 19) 4. : :’.
:;: 0.6 ‘ 4
XY ®
:30.4 "‘ &
: ® 000’
02 00
0
0

Energy Cost for Robot 1

Fig. 8: An example of the optimal decisions with 2 robots with 2000 sites, 500 questions. Each
robot’s energy budget is 12.5% of the total energy needed for it to visit all the sites.
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Fig. 9: An example of the optimal decisions with 2 robots with 2000 sites, 500 questions and Each
robot’s energy budget is 12.5% of the total energy needed for it to visit all the sites.

4.3.2 Example Solution

In this section, we show a sample numerical solution to problem (8). We consider
the case with 2 robots and 10 sites. The noise variance of each site is randomly
assigned from the interval [0.55,4]. j is set to 0.896. The motion energy cost to
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visit each site is also assigned randomly for each robot. There is a total of 2 allowed
questions and each robot is given 12.5% of what is needed for it to visit all the
sites. The planning results are summarized in Table 8. The first column shows the
indices of the sites. The second column indicates whether a site is visited by robot
1 and the third column indicates whether a site is visited by robot 2. The fourth
column indicates whether a site is selected to query the human operator. The fifth
and sixth columns show the motion energy costs for visiting the sites for robot 1 and
robot 2 respectively. The seventh and eighth columns show the performance gains
associated with asking for human help and visiting the sites respectively ((Pp; — pr;)

and (P — pr,))-

Site | Visited by|Visited by| Selected | Ener8Y | Energy | Performance |Performance
Index| Robot1 | Robot 2 |for Query Cost for | Cost for Gain of Ga.l n of
Robot 1 | Robot 2 Query Visit
1 0 0 0 0.9469 0.9705 0.2879 0.3960
2 0 0 1 0.8077 0.8802 0.3113 0.3960
3 1 0 0 0.1245 0.6473 0.1963 0.2028
4 0 1 0 0.9662 0.0892 0.1885 0.3960
5 0 0 0 0.6030 0.6419 0.2852 0.3960
6 0 1 0 0.6766 0.0732 0.3390 0.3960
7 0 0 0 0.2427 0.2997 0.1695 0.1460
8 0 0 1 0.9348 0.6253 0.3381 0.3960
9 0 1 0 0.5331 0.0288 0.1755 0.1460
10 1 0 0 0.0088 0.1586 0.1807 0.1860

Table 8: An example solution to problem (8) with an optimized site allocation. There are 2 robots
and 10 sites. There is a total of 2 allowed questions and each robot is given 12.5% of what is
required for it to visit all the sites.

We can see that if a robot visits a particular site, the performance gain from
visit normalized by this robot’s energy cost associated with this site is greater than
or equal to that of any other unvisited site, which is consistent with Lemma 7. We
note that although the performance gain achievable from visiting site 1 is larger than
those of sites 3, 9 and 10, site 1 is not visited while the latter three are visited. This is
because the motion energy required to visit site 1 is too high for both robots. As for
the sites selected for query, it can be seen that these sites have a significantly larger
performance gain from asking for human help as compared to any other unvisited
site, which is consistent with Lemma 6.

4.3.3 Energy Saving

Table 9 shows the amount of average motion energy the robots save by using our
approach when aiming to achieve a desired probability of correct classification. The
first column shows the desired average probability of correct classification while the
second column shows the percentage reduction of the needed energy by using our
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proposed approach as compared to a benchmark method similar to the one described
in the previous section. In the benchmark method, the robots select the sites to visit
by maximizing the total sum of sensing variances under the given energy budgets,
after which random sites are selected from the remaining ones to query the human
operator. In this case, there is a total of 4 robots with a total of 40 sites. The robots
are given 10 allowed queries. The robots’ energy budgets are the same as each other
in terms of the percentage of the total energy needed to visit all the sites. The noise
variance of each site is randomly assigned from the interval [0.55,4]. j is set to
0.896. The motion energy cost to visit each site is also assigned randomly for each
robot. It can be seen that the robots can reduce their average energy consumption
considerably by properly taking advantage of the knowledge of human visual per-
formance. For instance, an average probability of correct classification of 0.7 can be
achieved with a 40.00% less energy consumption.

st v St | ey savig i 0
0.65 75.00%
0.7 40.00%
0.75 25.00%
0.8 18.18%
0.85 10.53%
0.9 Inf

Table 9: Energy saving as compared to the case of no proper collaboration in the one-operator-
multi-robot setting with an optimized site allocation. In this case, there are 4 robots with 40 sites
and there is a total of 10 questions.

4.3.4 Bandwidth Saving

We next show how our approach can also result in a considerable communication
bandwidth saving by reducing the number of questions needed while still providing
a good performance. We consider the cases of “large bandwidth” and “zero band-
width” as described in Section 4.1.2. Fig. 10 compares the performance of our pro-
posed approach with these two cases. We can see that by asking only 20 questions
(50% bandwidth reduction), the robot can achieve an average probability of correct
classification of 0.857, which is only 0.8% less than the case of large bandwidth
(0.864 in this case).

Table 10 shows the amount of bandwidth that the robots can save by using our
approach, when trying to achieve a desired average probability of correct classifica-
tion. The first column shows the target average probability of correct classification
and the second column shows the percentage reduction of the needed bandwidth
by using our proposed approach as compared to the benchmark. In this case, each
robot is given an energy budget of 10% of the total energy needed for it to visit all
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Fig. 10: Average probability of correct classification in the one-operator-multi-robot collaboration
as a function of the total number of given queries. In this example, there are 4 robots with 40 sites
and each robot’s motion energy budget is 10% of what is needed for it to visit all the sites.

the sites. It can be seen that by properly designing the collaboration, we can reduce
the bandwidth consumption considerably. For instance, an average probability of
correct classification of 0.75 can be achieved with a 48.57% less bandwidth usage.

Desired Ave. Correct

Classification Prob. Bandwidth Saving (in %)

0.75 48.57%
0.8 25.23%
0.85 Inf

Table 10: Bandwidth saving as compared to the benchmark in the one-operator-multi-robot setting
with an optimized site allocation. In this case, there are 4 robots with 40 sites and each robot’s
motion energy budget is 10% of what is needed for it to visit all the sites.

Overall, we can see that by using our proposed collaboration approach, we can
reduce the motion energy and bandwidth consumptions considerably.

5 Conclusions

In this chapter, we extended our previously-proposed paradigm for human-robot
collaboration, namely, “when to ask for human’s help”, to the case of multiple
robots. More specifically, we considered a robotic field exploration and target classi-
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fication task where a number of robots have a limited communication with a remote
human operator and constrained motion energy budgets. The visual performance of
the human operator, however, is not perfect and is given via a probabilistic modeling
from [4]. We started with the case where the sites, which contain the objects to be
classified, are pre-assigned to the robots in order to understand optimum allocation
of other resources. We then extended our analysis to further include the optimization
of site allocation. Simulation results confirm that considerable resource savings can
be achieved using our proposed approach. Overall, our framework allows the robots
to collaboratively and optimally decide on when to ask humans for help, when to
rely on the initial sensing, and when to gather more information from the field.
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