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Motion-Communication Co-optimization with Cooperative Load Transfer
in Mobile Robotics: an Optimal Control Perspective†

U. Ali,∗ H. Cai,∗∗ Y. Mostofi,∗∗ and Y. Wardi∗

Abstract—This paper considers the co-optimization of motion
and communication in mobile robotic networks operating under
energy constraints. More specifically, we consider a team of
robots tasked with collectively transmitting a given amount
of data to a remote station, while operating in realistic com-
munication environments that experience path loss, shadowing,
and multipath fading. We are interested in designing the load
distribution, paths, and transmission power/rate schedules of the
robots in a way that minimizes the total energy required for
motion and communication. We use realistic models to quantify
the motion and transmission power. We then show how this
multi-agent problem can be efficiently solved using an optimal
control framework and mathematically characterize properties
of the optimal solution. We further extend the problem to an
online adaptation setting where the robots need to keep adjusting
their communication and motion decisions (e.g., paths, loads
to transfer, transmission rates/power) as more information on
the channel quality becomes available during the operation. We
show how this problem can be effectively solved in a distributed
manner and prove that this online distributed approach provides
performance guarantees. Extensive simulations with real channel
parameters demonstrate the efficacy of the proposed approach
and validate the theoretical results.

I. INTRODUCTION

The area of networked robotics and control has received
considerable attention in the past decade, with several major
issues such as coordination, control, decentralized decision
making, and task coordination heavily addressed in the litera-
ture [1], [2]. More recently, the field of communication-aware
robotics has started to attract attention [3]–[5]. Leveraging
the potential of the framework of networked control systems,
communication-aware robotics aims at optimizing a balance
between communication and control aspects of robotic systems
under energy constraints. More specifically, the two main
forms of energy consumption are due to robot motion and
communication transmission, and the problem of optimally
balancing them has been the focus of recent research [5]–
[11]. Ref. [6] considers motion planning for mobile relays
to minimize their transmission energy. While it does not
explicitly consider motion power, the provided simulation
results show that the computed paths come close to optimizing
the combined motion/communication energy. Ref. [7] extends
the algorithm of [6] to online maximize the lifetime of wireless
sensor networks by considering transmission costs as well
as motion energy costs. Ref. [8] presents an approximate
path planning technique based on Dijkstra’s algorithm for
minimizing the combined motion and communication en-
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ergy. Ref. [9] proposes an approach for minimizing the mo-
tion/communication energy costs in a relay network. First the
robots’ trajectories are computed for minimum motion energy,
then the transmission schedule is computed to minimize the
communication cost. Ref. [10] considers the combined energy
minimization in the framework of LQR model predictive
control, and develops a distributed algorithm for solving it.
A similar approach is followed in [11] for maximizing the
lifetime of wireless sensor networks.

All these works use approximate, deterministic disk models
(or path-loss models) for characterizing the channel quality. In
contrast, Ref. [5] considers a communication-aware problem
under realistic channel models for shadowing and multipath
fading. They pose the problem in a discrete-time setting, and
apply nonlinear programming to solving it. Ref. [12] develops
a specialized algorithm for optimal control problems and tests
it on a simple communication-aware problem. In this paper, we
consider a robotic team tasked with cooperatively transmitting
a given amount of data (load) to a remote station while in
motion. The robots start from the same initial point, but have
individual destinations to go to.

Statement of contributions: Using a realistic channel
model, and realistic motion and transmission power models,
we show how the robots can efficiently find the optimal
load distribution (how much data each robot should send),
optimal path, and transmission power/rates along the paths.
More specifically, we pose the problem in an optimal control
framework and use our algorithm developed in [12]. We
mathematically characterize properties of the optimum solu-
tion, which shows the coupling between the load distribution,
motion decisions, and communication decisions.

We then extend the setting to the case of online adaptation
and optimization scenario, where the robots have to adapt their
load distribution, and motion and communication decisions as
more channel information becomes available. As the robots
have an update on the channel quality during the operation,
their optimum load distribution and paths/transmission rates
may need to change. For instance, if the new channel knowl-
edge reveals that the route of a robot to its destination will
experience low quality links, then this robot may have to revise
its path and/or reduce its load, by transferring some of its
load to its neighbors so it can transmit the remaining load
with the required performance guarantee. We then show how
this online motion/communication/load co-adaptation problem
can be solved efficiently and in a distributed manner, and
prove that the proposed distributed solution has guarantees of
performance. Simulation results are also provided to explain
our approach and validate the theoretical results.

In the conference version of this paper, we only con-
sidered a single agent [13]. As such, joint load planning
and motion/communication co-optimization for multi-agent
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network was not considered there, and is dealt with in this
paper. Moreover, in this paper we show how to solve the
distributed online co-adaptation of load planning, motion, and
communication. To the best of our knowledge, no existing
literature has addressed multi-robot motion and communi-
cation co-optimization and online joint planning in realistic
communication environments.

The rest of the paper is organized as follows. Sec. II
develops the system model, formulates the problem of interest
to this paper, and presents the algorithm to be used in
later sections. Sec. III concerns the centralized multi-agent
problem and Sec. IV considers the distributed online multi-
agent problem. Sec. V concludes the paper.

II. PROBLEM FORMULATION

The motion-transmission power co-optimization problem in
mobile robotics concerns the path planning and transmission
scheduling of a robotic team, designed (computed) for an
optimal balance of transmission power and motion power. This
paper casts the problem in the optimal control framework,
whose control variables consist of the robots’ trajectories
and transmission schedules. The performance criterion (cost
functional) is a weighted sum of the robots’ motion energy
and transmission energy. To demonstrate our optimal con-
trol framework for solving such motion-communication co-
optimization problems, we consider a problem where a team
of robots is required to perform coordinated tasks.

Consider the case where a group of agents starts from the
same point and are tasked with transmitting a given amount of
data collectively to a remote base station within a prescribed
time interval. Every agent needs to go to a different destination
and thus experiences a different channel quality along its
path. Hence the problem is to design the motion/transmission
controls for each robot in such a way that the data transmission
load is optimally divided among the robots thereby minimizing
the joint motion-communication cost, while satisfying the
constraints on each robot’s position, velocity, and controls.

Suppose we have N identical robots and use subscript i
to denote Robot i’s state variables, control variables, and
constraint parameters. The motion of each robot along with
boundary boundary constraints can be described as follows.

ẋ1,i(t) = x2,i(t), x1,i(0) = Si, x1,i(t f ) = Di,

ẋ2,i(t) = ui(t), x2,i(0) = 0, x2,i(t f ) = 0, (1)
where the operation time interval is [0, t f ] for a given t f > 0,
Si ∈ R2 is the starting position, Di ∈ R2 is the destination
while x1,i(t), x2,i(t), ui(t) ∈ R2 denote the robot’s position,
velocity, and acceleration, respectively, at time t.

For the energy consumed during the motion, we use the
power model derived from first principles in [14] for a DC-
powered robot. Given non-negative constants k1, . . . ,k6, which
depend on the terrain traversed by the robot, the motion power,
denoted by Pm,i(t), is defined as

Pm,i(t) = k1‖ui(t)‖2 + k2‖x2,i(t)‖2 + k3‖x2,i(t)‖+ k4

+ k5‖ui(t)‖+ k6‖ui(t)‖ · ‖x2,i(t)‖. (2)

Next, we model the robot’s communication transmission
module. Let Qi denote the required number of bits that Robot i

has to transmit to the remote station and let B denote the
communication bandwidth, which is a constant. Denoting by
Ri(t) the spectral efficiency of the channel, the relationship
between these quantities is given by the following equation.∫ t f

0
Ri(t)dt =

Qi

B
:= ci, (3)

An equivalent representation of this equation, which will be
used in the sequel, is obtained by defining x3,i(t) as follows:

ẋ3,i(t) = Ri(t), x3,i(0) = 0, x3,i(t f ) = ci. (4)

The transmission power, Pc,i(t) is modeled using the prob-
abilistic framework of [5] as

Pc,i(t) =
2Ri(t)−1

K
E
[

1
Γrv(x1,i(t))

]
, (5)

where K is a constant depending on the minimum accept-
able Bit Error Rate (BER), Γrv(x1,i(t)) is a random variable
characterizing the Channel-to-Noise Ratio (CNR) at location
x1,i(t) and E[·] denotes expectation. The expectation term in
Eq. (5) can be computed based on a small number of a priori
channel measurements, as described in [15] and summarized
in Sec. II-A. We note that in the real-time setting discussed
below, such channel measurements are taken periodically and
the aggregated results are used to predict the channel quality
for a future horizon, as will be explained in the sequel.

Given the motion and transmission models, the cost func-
tional to be minimized is defined as

J :=
∫ t f

0

N

∑
i=1

(
Pc,i(t)+ γPm,i(t)

)
dt, (6)

for a given constant γ > 0 and with Pm(t) and Pc(t) defined
by Eqs. (2) and (5), respectively. The control variable for each
robot is the pair (ui(t),Ri(t)) ∈R2×R+, t ∈ [0, t f ].

As the robots perform a coordinated transmission task, the
data sent by each robot must sum up to the total required
amount of data, ctotal, resulting in the following constraint

N

∑
i=1

ci = ctotal. (7)

where ci as defined in Eq. (3) is the amount of data to be sent
by Agent i, that needs to be optimized and we will refer to it
as the data load of Agent i. Additionally, there are pointwise
constraints on the control variables of the form

0≤ ||ui(t)|| ≤ umax, 0≤ Ri(t)≤ Rmax, (8)
for given umax, Rmax > 0. The first problem considered in
this paper is the centralized multi-agent optimization problem,
which is stated as follows.
Problem 1. Minimize the cost functional (6) over the interval
[0, t f ] subject to the constraints (1), (4), (7), and (8).

Solving the centralized offline optimization problem 1 relies
on the channel quality predicted a priori based on channel
measurements collected in advance. During the operation, it is
possible for the robots to receive additional channel measure-
ments, which can be utilized to improve the channel predic-
tion. Thus, the second problem considered in this paper is the
online multi-agent co-optimization problem. More specifically,
the robots obtain additional channel measurements during the
operation and use them to update the predicted channel quality,
as well as recompute (adapt) the load distribution (c′is) and the
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motion/transmission controls to minimize the cost-to-go from
a given time t0 ∈ (0, t f ] to the final time t f . The online multi-
agent co-optimization problem can then be stated as follows.
Problem 2. Minimize the cost functional (6) over the entire
horizon [t0, t f ] subject to the constraints (1), (4), (7) and (8)
with updated boundary conditions, every few seconds.

Before we set out to solve these two problems, we first
briefly describe the online channel prediction framework and
the optimal control algorithm employed to solve them.
A. Online Channel Prediction

In order to plan the trajectory and communication parame-
ters, the robots need to assess the required transmission power
at any unvisited location, which depends on the channel qual-
ity, as shown in Eq. (5). In this section, we briefly summarize
our earlier results [15] on channel prediction, which will be
utilized for the rest of this paper. Assuming that the robots
adopt the common MQAM modulation when communicating
to the remote station, the required transmission power at time
t can be characterized by the following equation [16]:1

Pc, actual(t) =
2R(t)−1

KΓ(x1(t))
, (9)

where K = −1.5/ ln(5pb,th), pb,th is the desired Bit Error
Rate (BER) threshold at the receiver, R(t) is the spectral
efficiency at time t and Γ(x1(t)) is the instantaneous Channel-
to-Noise Ratio (CNR) at location x1(t). It has been shown
in the literature that the CNR can be modeled as a random
process with three major components: path loss, shadowing,
and multipath fading [16]. As shown in [15], based on a few a
priori channel measurements, the CNR (in dB) at an unvisited
location q can be best characterized by a Gaussian random
variable, Γrv, dB(q), whose mean and variance are given by

Γrv, dB(q) = Hqν̂ +ψ
T (q)ω−1(Y −HQν̂),

Σ(q) = ξ̂
2
dB + ρ̂

2
dB−ψ

T (q)ω−1
ψ(q),

where Y is the stacked vector of m a priori collected CNR
measurements, Q = {q1, ...,qm} denotes the measurement
locations, Hq = [1 − 10log10(‖q− qb‖)], qb is the location
of the remote station, HQ = [HT

q1
... HT

qm ]
T , ω = Ω+ ρ̂2

dB Im

with [Ω]i, j = ξ̂ 2
dB exp(−‖qi−q j‖/η̂), for i, j ∈ {1, ...,m}, and

ψ(q) = [ξ̂ 2
dB exp(−‖q− q1‖/η̂) ... ξ̂ 2

dB exp(−‖q− qm‖/η̂)]T .
The variables ν̂ = [K̂PL n̂PL]

T , ξ̂dB, η̂ , and ρ̂dB are the
estimated channel parameters based on the a priori channel
measurements. See [15] for more details on channel parameter
estimation and the channel prediction performance. Based on
this framework, the CNR at an unvisited location x1(t) can be
characterized as a lognormal random variable. The expected
transmission power Pc(t) is then given by

Pc(t) =
2R(t)−1

K
E
[

1
Γrv(x1(t))

]
. (10)

Note that for the lognormally-distributed Γrv(x1(t)), we have

E
[

1
Γrv(x1(t))

]
= exp

(
(ln10)2Σ(x1(t))

200

)
1

Γrv(x1(t))
, (11)

where Γrv(x1(t)) = 10Γrv, dB(x1(t))/10. Eq. (11) provides a pre-
dicted metric of the channel quality at x1(t) and we let

1We drop the subscript i in this section for conciseness. The computation
of transmission power is associated with a single robot.

s(x1(t)) =E[1/Γrv(x1(t))]. Note that s(x1(t)) can be computed
for any unvisited location x1. Thus, we can compute the
required transmission power (Eq. (10)) for any point in the
environment, which can then be used in the optimization.

This framework is also applicable to the setting where the
channel prediction is updated as additional channel measure-
ments become available to the robot. For instance, the robot
may have a few a priori channel measurements (e.g., by static
sensors in the field), based on which it computes an initial
prediction of the channel quality over the workspace. The
robot then travels along the path obtained from minimizing
J as defined in Problem 1 with this initial channel prediction.
As the robot moves, it is provided with additional channel
measurements (e.g., by gathering more samples along its
path, through crowdsourcing and/or by other robots in the
field), which enables it to improve the prediction accuracy
of the channel quality. This allows for online control and path
planning, which we shall see in Sec. IV.

B. Specialized Optimal Control Algorithm

Optimization algorithms typically are based on two com-
puted objects at a given iteration: a direction (e.g., of descent),
and a step size along it. Recently, we have developed an
algorithm [12] suitable for a class of power-aware optimal
control problems [13]. Cumulative experience with it reveals
some favorable computational properties including fast ap-
proach towards a local minimum. This does not mean fast
asymptotic convergence, which characterizes an algorithm’s
behavior close to a local minimum, but rather large strides
towards a region of a (local) minimum. A key innovation in
the algorithm is its choice of a descent direction, which is
not based on explicit gradient descent but rather follows an
alternative approach which, for a class of problems, requires
fewer computations. For completeness, the algorithm in [12] is
included in this paper and we next briefly explain its structure.

Consider the abstract Bolza optimal control problem where
the system’s dynamics are defined by the equation.

ẋ = f (x,u), x(0) := x0,

where x ∈ Rn, u ∈ Rk, and f : Rn×Rk → Rn is Lipschitz
continuous in x and continuous in u. Given a final time t f > 0,
a cost function L : Rn×Rk → R, and a terminal-state cost
function φ : Rn→R, define the cost functional as

J : =
∫ t f

0
L(x,u)dt +φ(x(t f )).

The optimal control problem considered is to minimize J
subject to the pointwise constraints u(t) ∈U , where U ⊂Rk

is an input constraint set. We make the following assumptions
on the considered optimal control problem, under which our
optimal control algorithm is designed.

Assumptions. The function f (x,u) is affine in u∈U for every
x ∈Rn, and the function L(x,u) is convex in u ∈U for every
x ∈Rn. The set U is compact and convex.

Let p(t), for t ∈ [0, t f ], denote the costate (adjoint) trajectory
defined by the equation

ṗ =−
(

∂ f
∂x

(x,u)
)T

p−
(

∂L
∂x

)T
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with the boundary condition p(t f ) = ∇φ(x(t f ), and let
H(x,u, p) := pT f (x,u)+L(x,u)

denote the Hamiltonian function (see, e.g., [17]). The kind of
problems for which this algorithm (outlined below) is suitable
have the property that, for given x ∈ Rn and p ∈ Rn, a
minimum value of the Hamiltonian H(x,w, p), over w ∈ U ,
can be computed via a simple, explicit formula.

Regarding the implementation, we assume that a finite grid
will be used. The computations of the state trajectory, costate
trajectory, and various integrals are assumed to be performed
via numerical approximations. We refer to the control function
u(t), t ∈ [0, t f ], by the boldface notation u. We note that
Algorithm 1 is an iterative method. The steps below are
performed in each iteration until the update step size is smaller
than a prescribed value.

Algorithm 1: Specialized Optimal Control Algorithm
Parameters: Constants α ∈ (0,1) and β ∈ (0,1).
Given a control u, compute the next control unext as follows:
Step 1 (Direction from u): Compute the state and costate
trajectories x(t) and p(t), t ∈ [0, t f ]. For every t ∈ [0, t f ],
compute a pointwise (t-dependent) minimizer of the
Hamiltonian u?(t) ∈U satisfying

u?(t) ∈ argmin
w∈U

{
H(x(t),w, p(t))

}
.

Define u? to be the function u?(t), t ∈ [0, t f ].2 Define the
direction from u to be d(t) := u?(t)−u(t), namely, in
functional notation, d = u?−u.
Step 2 (Step size along the direction d): Define

θ(u) =
∫ t f

0

(
H(x(t),u?(t), p(t))−H(x(t),u(t), p(t))

)
dt.

Compute ∆k ∈ {0,1, . . . ,} defined as
∆k = min{ j = 0,1, . . . | J(u+β

jd)− J(u)≤ αβ
j
θ(u)},

and set the step size, λ = β ∆k.
Step 3 (Update): Set unext to be unext = u+λd.

As we pointed out, the main innovation of the algorithm is
in the choice of the direction in Step 1, while Step 2 describes
a standard Armijo step size; See [18] for details.

III. MULTI-AGENT MOTION-COMMUNICATION
CO-OPTIMIZATION

Consider the multi-agent motion-communication optimal
control problem (Problem 1). To put the problem in a form
that is more amenable to Algorithm 1, we treat the terminal
constraints via a quadratic penalty function. We append the
terminal constraints in Eq. (1) and (7) to the cost J in
Problem 1 via penalty terms C1,i, C2,i, and C3, ∀ i = {1, ...,N},
which results in the cost functional

Jc :=
N

∑
i=1

(∫ t f

0

(
Pc,i(t)+ γPm,i(t)

)
dt +C1,i‖x1,i(t f )−Di‖2

+C2,i‖x2,i(t f )‖2
)
+C3‖

N

∑
i=1

x3,i(t f )− c‖2. (12)

The problem then becomes minimizing Jc, subject to the
dynamical constraints and the pointwise constraints on the

2There may arise measurability issues due to the explicit characterization
of u?(t) for all t in the uncountable set [0, t f ]. However, in a grid-based
implementation, these issues will be avoided since t will lie in a finite set.

control inputs as described in Problem 1. We use Algorithm 1
to solve this multi-agent optimal control problem. For each
agent i, if we let pi = pi(t) := (p1,i(t), p2,i(t), p3,i(t)) ∈R2×
R2×R denote the costate associated with each agent, then
the costate (adjoint) equations are given by

ṗ1,i(t) =−
2Ri −1

K
∂ s(x1,i)

∂x1,i
,3

ṗ2,i(t) =−p1,i− γ

(
2k2x2,i + k3

x2,i

‖x2,i‖
+ k6‖ui‖

x2,i

‖x2,i‖

)
,

ṗ3,i(t) = 0,
with boundary conditions

p1,i(t f ) = 2C1,i(x1,i(t f )−Di),

p2,i(t f ) = 2C2,ix2,i(t f ),

p3,i(t f ) = 2C3

(
N

∑
j=1

x3, j(t f )− c

)
, (13)

for i ∈ {1, ...,N}. Furthermore, the Hamiltonian is

H(x, [u,R], p) =
N

∑
i=1

(
pT

1,ix1,i + pT
2,iui + p3,iRi +

2Ri −1
K

s(x1,i)+

γ
(
k1‖ui‖2 + k2‖x2,i‖2 + k3‖x2,i‖+ k4 + k5‖ui‖+ k6‖ui‖‖x2,i‖

)
.

(14)
When the initial and final velocities are the same, then we

have k5 = k6 = 0 in Eq. (2) and (14) (see [14]). The minimizer
of this Hamiltonian, subject to the constraints on the control
variables, can be seen after some algebra to be as follows.

u?i =


−

p2,i

2γk1
, if

1
2γk1

‖p2,i‖ ≤ umax

−
p2,i

‖p2,i‖
umax, if

1
2γk1

‖p2,i‖> umax,

R?
i =


1

ln(2)
ln
(
−p3,iK

ln(2)s(x1,i)

)
, if p3,i ≤−

(ln(2)s(x1,i))

K

Rmax, if
1

ln(2)
ln
(
−p3,iK

ln(2)s(x1,i)

)
> Rmax

0, otherwise.

Based on these expressions, our first result then reveals the
relationship between the spectral efficiency and the channel
quality. For analysis purposes, we assume no maximum spec-
tral efficiency and assume that each agent needs to transmit a
non-zero amount of data all the time.
Theorem 1. For Agent i and for all i = 1, ...,N along the
optimal path, the relationship between the optimal spectral
efficiency R?

i (t) and the channel quality s(x1,i(t)) is given by

Ri(t)? = a−b ln(s(x1,i(t))), (15)
for some positive constants a and b.

Proof. From the expression of the minimizer of the Hamilto-
nian, we have when p3,i(t)≤− ln(2)s(x1,i(t))/K,

Ri(t)? =
1

ln(2)
ln
(
−p3,i(t)K

ln(2)s(x1,i(t))

)
,

where

ṗ3,i(t) = 0, p3,i(t f ) = 2C3

(
N

∑
j=1

x3, j(t f )− c

)
.

3Since s(x1,i) is continuously differentiable in the spatial variables, its
partial derivatives exist and can be computed both in the x and y directions.
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Along the optimal path and under the assumption that
R?

i (t) > 0 for all t ∈ [0, t f ], the product C3(∑
N
j=1 x3, j(t f )− c)

is some negative number, and represents the Lagrange mul-
tiplier in the limit as C3 → ∞. Since ṗ3,i(t) = 0, the costate
variable p3,i(t) is then constant for all t ∈ [0, t f ] and equal to
µ = 2C3(∑

N
j=1 x3, j(t f )−c) along the entire optimal trajectory.

Ri(t)? can then be expressed as
Ri(t)? = a−b ln(s(x1,i(t))),

where a = 1/ln(2) ln(µK/ln(2)) and b = 1/ln(2).
We next present application examples to demonstrate the

application of our framework and validate the relationships
presented in the above theorem.

A. Numerical Results
In this section, we show the performance of the pro-

posed approach in a realistic simulation environment. We first
evaluate the case where there is only one agent to analyze
the optimization results in details. In the single-agent case,
we solve Problem (12) with N = 1 and the single agent is
responsible for transmitting all the required data. This is then
followed by a case with multiple agents. We also provide
numerical results that confirm the validity of Theorems 1. We
note that all the differential equations are solved using the
Trapezoidal method of integration.

1) Single-Agent Case: Suppose that there is a single agent
that needs to transmit 160 bits/Hz to a remote station located
at xb = (5,5), while moving from the initial point S = (35,50)
to the destination D = (45,25). The operation comprised of
both motion and transmission has to be completed in 40
seconds. The motion parameters are k1 = 5.47, k2 = 0.77,
k3 = 10.10, and k4 = 4.24 [14]. The agent’s maximum accel-
eration and spectral efficiency are 1 m/s2 and 6 bits/sec/Hz,
respectively. The simulated channel parameters (estimated
from real wireless measurements [15]) are KPL = −41.34,
nPL = 3.86, ξdB = 3.20, η = 3.09 m and ρdB = 1.64. The
receiver thermal noise is −110 dBm and the BER threshold
is pb,th = 2× 10−6. The simulated channel is then predicted
based on 500 (0.2%) random samples in the field by applying
the framework summarized in Sec. II-A.

The balancing factor in Eq. (6) is set to γ = 0.5. The Armijo
parameters in Algorithm 1 are set to α = β = 0.5. The penalty
coefficients in Eq. (12) are set to C1 = 5, C2 = 2, and C3 = 5.
The initial controls are set to u(t) = 0 and R(t) = 0 for all t ∈
[0, t f ]. The numerical integrations performed by Algorithm 1
has an integration time step size of ∆t = 0.05 seconds. The
algorithm is run until ∆k in Algorithm 1 becomes greater than
50, indicating a descent step size in the order of 2−50.

Results of a typical simulation are shown in Figs. 1-4. Fig. 1
shows the plot of the cost value Jc in Problem (12) w.r.t. the
iteration number. The cost is reduced from the initial value
of 1.3171× 105 to the final value of 1.0937× 103 in 870
iterations. However, the major portion of cost reduction occurs
within the first 50 iterations, at which the cost is 6.0065×103.
Fig. 1 also shows a zoomed-in view of the tail of the cost,
confirming that there is no significant decrease in the cost
after the first 100 iterations. The algorithm was implemented
on an Intel dual-core computer with an i5 processor running at
2.7 GHz, and it took 33.87 seconds of CPU time for the 870
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Fig. 1: Cost w.r.t. the iteration’s index. Most of the cost reduction
occurs during the first few iterations. The tail of cost after the 100th

iteration is zoomed in for better visualization.

iterations. The fact that much of the cost reduction happens
during the first few iterations allows for using Algorithm 1 in
an online setting, which will be discussed in Sec. IV.

After 870 iterations, the total motion and communication
cost in Problem 1 is J = 1.0668× 103 (not including the
penalty terms). The final values of the state variables are
x1(t f ) = (43.76,25.3), x2(t f ) = (2.71,0.1777), and x3(t f ) =
159.1. We note a minor discrepancy from the desired final state
values of x1(t f ) = (45,25), x2(t f ) = (0,0), and x3(t f ) = 160.
The accuracy can be improved by choosing larger values of
C1, C2, and C3, and a smaller time step size ∆t, at the expense
of an increased CPU time.

The channel quality s(x1) := E[1/Γrv(x1)] over the
workspace and the path taken by the agent corresponding
to the optimal control are shown in Fig. 2. Smaller values
(corresponding to darker blue color) on the z-axis indicate
a better channel quality as measured by s(x1). The agent’s
starting and ending points are marked by a brown square and
a cyan disk, respectively. As can be seen, the agent avoids
the peaks (bad channel quality regions) and steers towards
regions with a relatively good channel quality (junction near
point (30,20)), before taking the final turn towards the goal.

The magnitude and direction of the agent’s acceleration at
different points along the path, as well as the time evolution
along the path, are shown in Fig. 3. The small vectors near the
junction point (30,20) indicates that the robot slows down in
this region to transmit the data, taking advantage of the good
channel quality. This is also demonstrated by the blue time
curve. Near the location with a good channel quality (marked
by the vertical dashed arrow), the time increases while the
robot’s position remains almost constant, indicating a close
to zero velocity. The large deceleration at the end in Fig. 3
indicates that the robot makes a stop at the destination.

Fig. 4 shows the robot’s spectral efficiency and the pre-
dicted channel quality along the optimal path. There is a
significant correlation between the robots transmission spectral
efficiency and the predicted channel quality, as can be seen in
Fig. 4 (Top) and (Middle). The negative log of the predicted
channel quality metric s(x1) is plotted in Fig. 4 (Bottom). As
shown in Theorem 1, the robot’s optimal spectral efficiency
is an affine function of the negative log of s(x1). This can be
verified by comparing the 1st and 3rd subplots of Fig. 4.4

4The obtained spectral efficiency is almost but not exactly an affine function
of −lns(x1) as indicated by Theorem 1 since the simulation is performed with
a discretized time step of 0.05 seconds rather than in continuous time.
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Fig. 2: The green curve represents the path followed by the robot,
veering towards regions with better channel qualities. The brown
square and the cyan disk represent the starting and end points,
respectively. Smaller values on the z-axis indicate a higher predicted
channel quality measured by s(x1). Note that the actual path is in the
plane and the path is plotted in 3D for better visualization. Readers
are referred to the color PDF for optimal viewing.
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Fig. 3: The green circles represent the path followed by the robot.
The red arrows represent the acceleration of the robot along its path.
The evolution of mission time w.r.t. the robot path is shown on the z-
axis. It can be seen that the acceleration is small near the junction of
(30, 20), where the robot slows down to take advantage of the good
channel quality for data transmission. Also, the robot position does
not change much as time increases near the vertical dashed arrow,
indicating a close to zero velocity at this point.
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Fig. 4: (Top) The robot’s spectral efficiency; (Middle) The predicted
channel quality metric; (Bottom) The negative log of the predicted
channel quality metric for a better comparison with the spectral
efficiency. Overall, the figure confirms the results of Theorem 1.

2) Multi-Agent Case: To demonstrate the application of
our approach to the multi-agent motion-communication co-
optimization, we present an example of 6 agents starting at
the same point (25, 30) and each having a different destination
as shown in Fig. 5. The total amount of data to be sent is
600 bits/Hz and the maximum spectral efficiency of each agent
is Rmax = 6 bits/sec/Hz. The time horizon is 40 seconds. Thus,

Fig. 5: Paths of the six robots starting from the same starting
point and going towards different goals, obtained from solving the
multi-agent optimal control problem (12). The red square denotes
the common starting point and the cyan disks denote the agents’
respective destinations. The optimal data assigned to each agent is
annotated in the legend. Smaller values in the color scheme represent
a higher predicted channel quality, as measured by s(x1). Readers are
referred to the color PDF for optimal viewing.

Agent Assigned Data Ave. of −ln s(x1) along Path
1 89.83 2.17
2 112.23 4.00
3 91.35 2.18
4 113.54 3.97
5 101.92 3.33
6 90.98 2.23

TABLE I: Assigned optimal amount of data and the predicated
channel quality (in terms of − lns(x1)) averaged over the optimal
path for each agent.

there does not exist an agent which can send all the data in
the given time horizon by itself. The maximum acceleration
for each agent is umax = 1 m/s2. The channel parameters are
the same as in the single-agent example of Section III-A1.

With the minimizers to the Hamiltonian available, we solve
Problem (12) using Algorithm 1 described in Sec. II-B to
compute the optimal controls. The resulting paths of the
optimization are shown in Fig. 5, where the red square denotes
the common starting point and the cyan disks denote the
respective destinations. Figs. 6 shows the optimal spectral
efficiency and the negative log of the predicted channel quality
metric (−ln s(x1,i)) along the optimal path for each agent. It
can be seen that there is a significant correlation between the
spectral efficiency and the predicted channel quality metric
for each robot, as indicated by Theorem 1. Along the optimal
path, the spectral efficiencies are higher in regions of good
channel (higher values of −ln s(x1)) and vice versa.

The optimal data distribution among the agents in bits/Hz
for the given application example is c1 = 89.83, c2 = 112.23,
c3 = 91.35, c4 = 113.54, c5 = 101.92, and c6 = 90.98, re-
spectively, summing up to 599.85. To better understand the
data distribution, we compare the assigned amount of data
with the average negative log of the predicted channel quality
metric along the optimal path for each agent in Table I. It can
be seen that for Agents 2 and 4, which have been assigned
the largest amounts of data, their average predicted channel
qualities (in terms of − ln s(x1)) along the optimal paths are
the best among all agents. For Agents 1, 3, and 6, which
have been assigned the least amounts of data, their average
predicted channel qualities are the worst. For Agent 5, its
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Fig. 6: The spectral efficiencies and the negative log of the predicted
channel quality metric along the optimal paths. The top figure shows
the results for Agents 2, 4, and 5. The bottom figure shows the results
for Agents 1, 3, and 6. The results validate Theorem 1.

predicted channel quality is worse than Agents 2 and 4, but
better than Agents 1, 3, and 6. As indicated by Theorem 1,
if an agent experiences a good channel quality, its optimal
spectral efficiency will be high and thus, it will be assigned
more data. The observations from Table I are consistent with
the results shown in Theorem 1.

IV. DISTRIBUTED ONLINE MULTI-AGENT
MOTION-COMMUNICATION CO-OPTIMIZATION

During the operation, additional channel measurements may
become available to the agents (e.g., collected on their paths,
provided by crowd-sourcing and/or communicated by other
agents in the field), which can be utilized to increase the
accuracy of the channel prediction. With a better predicted
channel, the agents then need to adapt their previously-
computed motion/transmission controls to reduce the over-
all energy consumption. More specifically, they need to re-
distribute the remaining load among themselves, revise their
paths, and decide on the new optimum communication trans-
mission rate/power along their paths.

One possible way of online adaptation is to solve the
original centralized problem (12) every time. This approach,
however, is suitable only initially when the agents are co-
located in a depot for example, while distributed strategies are
more suitable for online adaptation. Also, from the computa-
tional standpoint, although we have shown fast cost reduction
w.r.t. the number of iterations of Algorithm 1, solving the
entire original centralized problem in a real-time fashion, every
few seconds, is not viable.

In this section, we propose a distributed online strategy
for redistributing the agents’ communication loads, and up-
dating the motion/transmission controls, given new channel

measurements. For this, we first mathematically relate the
optimal data load difference of any two agents to channel
qualities over their respective optimal paths which allows the
agents to solve for the new optimum data loads by solving a
system of linear equations and these results are captured in
Theorem 2 below. We then show how the agents can achieve
the new optimum load distribution in a distributed manner, and
further update their paths. The proposed distributed algorithm
only requires each agent to solve a single-agent problem,
as opposed to the N-agent centralized one. This drastically
reduces the computation time by at least (100−100/N)% as
the per-iteration computation time scales linearly with N.
Theorem 2. For any two agents i, j ∈ {1, ...,N}, we have

R?
i (t)−R?

j(t) = b ln
(

s(x1, j(t))
s(x1,i(t))

)
(16)

and
c?i − c?j = b

∫ t f

0
ln
(

s(x1, j(t))
s(x1,i(t))

)
dt, (17)

where b = 1/ ln(2), R?
i (t) and R?

j(t) are the two agents’
respective optimal spectral efficiencies at time t, x1,i(t) and
x1, j(t) are points on the two agents’ respective optimal paths,
and c?i and c?j are the two agents’ respective optimal loads.

Proof. From the costate equations for the multi-agent case, we
see that, for Agent k, with k ∈ {1, ...,N},

ṗ3,k(t) = 0, p3,k(t f ) = 2C3

(
N

∑
j=1

x3, j(t f )− ctotal

)
,

where c is the total amount of data to be sent. It can be
seen that p3,k(t f ) is the same for each agent and ṗ3,k(t)
being zero implies that p3,k(t) is constant over [0, t f ], allowing
for the use of Eq. (15) from Theorem 1. Thus, we have
R?

i (t)= a−b ln(s(x1,i(t))) and R?
j(t)= a−b ln(s(x1, j(t))). Tak-

ing the difference between R?
i (t) and R?

j(t) results in Eq. (16).
Integrating R?

i (t)−R?
j(t) over [0, t f ] gives the difference in

data loads between Agents i and j in Eq. (17).
Corollary 1. Given the predicted channel quality along the
optimal paths, the optimal data loads of the agents can
be obtained from the solution to the following N linearly
independent equations:

N

∑
i=1

c?i = ctotal,

c?1− c?i = b
∫ t f

0
ln
(

s(x1,i(t))
s(x1,1(t))

)
dt, ∀ i ∈ {2, ...,N}.

Proof. In Theorem 2, Eq. (17) provides N − 1 independent
linear equations on the optimal loads c?i . Together with the
data constraint ∑

N
i=1 c?i = ctotal, we have N independent linear

equations, which uniquely determine c?i , ∀ i ∈ {1, ...,N}.
Corollary 2. Suppose that at time t0 ∈ [0, t f ], the predicted
channel quality is updated, which is denoted by snew(x1). Given
the paths, then the new optimal load for each agent c+i can
be computed as follows.

c+i =
ctotal,t0

N
+

(
Si−

1
N

N

∑
j=1

S j

)
, ∀ i = 1, ...N, (18)

where ctotal,t0 is the total remaining data to be sent at t0 and
Si = b

∫ t f
t0 −ln(snew(x1,i(t)))dt.
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Proof. Give the updated channel prediction snew(x1) and as-
suming that the initial paths are still optimal, we have the
following equation for the new optimal loads of two agents i
and j based on Eq. (17) of Theorem 2.

c+i − c+j = b
∫ t f

t0
ln
(

snew(x1, j(t))
snew(x1,i(t))

)
dt. (19)

A set of linear equations similar to those in Corollary 1 can
be formed, where the new individual loads sum up to ctotal,t0
and the pairwise load difference is given by Eq. (19). It can be
easily verified that Eq. (18) provides the solution to these linear
equations. Thus, Eq. (18) defines the new optimal loads.

From Corollary 2, it can be seen that to compute the
new optimal loads, each agent needs to know ctotal,t0/N and
∑

N
j=1 S j/N. The agents can efficiently solve for these two

parameters in a distributed manner by using average consensus
methods [19] or by utilizing a simple flooding algorithm [20],
both of which have been heavily studied in the literature. Once
the agents have computed their new optimum loads (c+i ), they
need to redistribute the data among themselves to achieve the
new optimum. In Algorithm 2, we show how the agents can
achieve this in an efficient distributed manner, by only com-
municating to their neighbors. Our approach can be considered
as a modified version of a general load balancing algorithm
based on the literature [19], [21], where we have incorporated
the updated channel information (encoded in the parameters
c+i ) in the load transfer operations.

Algorithm 2: Distributed Load Transfer (adapted from [19])

Parameters: c+i is the target load for Agent i and ci(k) is
Agent i’s load at iteration k.
For each agent i ∈ {1, ...,N}, repeat the following steps.
Step 1: Agent i broadcasts its ci(k)− c+i to all its neighbors.
Step 2: Agent i finds j = argmin

q∈Qi

cq(k)− c+q , where

Qi = {q | cq(k)− c+q ≤ ci(k)− c+i }∩Ni and Ni is the set of
Agent i’s neighbors. If Qi 6= /0, Agent i makes an offer of
(ci(k)− c+i − c j(k)+ c+j )/3 to Agent j.

Step 3: Agent i finds j = argmax
o∈Oi

co(k)− c+o , where Oi is the

set of agents making an offer to Agent i. If Oi 6= /0, Agent i
asks Agent j to transfer the offered load and rejects all the
other offers.
Step 4: If Agent i accepts Agent j’s offer, then Agent j sends
the offered load to Agent i.

The following proposition shows that Algorithm 2 con-
verges to the new optimal loads, and further describes the
convergence behavior w.r.t. the number of iterations.

Proposition 1. Consider Algorithm 3 below that is running
over a connected graph. Define V (k) = ∑

N
i=1(ci(k)− c+i )

2.
Then there exists a constant µ such that given ε > 0,

V (k)≤ εV (0), ∀ k ≥−µN2ln(ε).

Proof. Consider a new state variable for each agent i, xi(k) =
ci(k)− c+i . It can be easily verified that Algorithm 3 per-
forms the balancing algorithm of Nedic et al. [19] on xi(k),
∀ i ∈ {1, ...,N}. By Theorem 12 of [19], ∑

N
i=1(xi(k)− x̄)2 ≤

ε ∑
N
i=1(xi(0)− x̄)2,∀ k ≥ µN2ln(1/ε), where x̄ is the mean of

xi(k). By substituting xi(k) = ci(k)− c+i and x̄ = 0 into the
inequality, we obtain the result.

We next summarize the steps of the distributed online
motion-communication co-optimization in Algorithm 3. The
agents deploy Algorithm 3 every so often to account for new
channel learning.

Algorithm 3: Distributed Online Motion & Comm. Adaptation

Parameters: t0 is the current time, snew(x1) is the updated
channel prediction, ctotal,t0 is the total remaining load at t0, and
x1,i(t) is the previously-computed optimal path for Agent i.

Step 1: Each agent computes Si = b
∫ t f

t0 −ln(snew(x1,i(t)))dt.

Step 2: The agents share with each other their respective Si and
their remaining loads in a distributed manner (using average
consensus or flooding) to compute ctotal,t0/N and ∑

N
j=1 S j/N.

Step 3: The agents compute their respective new optimum load
according to Eq. (18):

c+i =
ctotal,t0

N
+

(
Si−

1
N

N

∑
j=1

S j

)
, ∀ i = 1, ...N,

and then transfer the loads, in a distributed manner, according
to Algorithm 2 to achieve the new optimum loads.
Step 4: For all i ∈ {1, ...N}, given the updated load c+i , Agent i
solves a single-agent problem for the remaining time [t0, t f ].

Remark 1. In Algorithm 3, it is assumed that all the agents
form a connected network, which, however, may not always
be possible during the operation. Instead, the agents may
form locally-connected networks or clusters with other nearby
agents. The distributed adaption of Algorithm 3 can then be
run in each cluster to re-distribute the loads and update the
paths, given updated channel knowledge.

In the following proposition, we show that the distributed
online adaptation scheme of Algorithm 3 guarantees im-
provement to the agents’ initial motion/transmission control
decisions (obtained either from the initial centralized solution,
or from the previous adaptation) and reduces the overall cost.

Proposition 2. Suppose that an initial solution to Prob-
lem (12) is obtained based on the previously-predicted channel
sinit(x1) with cost Jinit. Given an improved channel prediction
snew(x1), Algorithm 3 provides an adapted solution with cost
Jnew. We then have Jnew ≤ Jinit, where both costs are based on
Eq. (12) and the more accurate channel prediction snew(x1).

Proof. Given the updated channel prediction, first consider a
simplified optimal control problem,

min.
R

N

∑
i=1

∫ t f

t0

2Ri(t)−1
K

snew(x1,i(t))dt+C3‖
N

∑
i=1

x3,i(t f )−ctotal,t0‖
2

subject to the constraints (4) and (8). The control variables
only consist of the agents’ spectral efficiencies Ri, while the
agents’ motion controls are the same as in the initial solution.
Thus, ui(t) and x1,i(t) are simply pre-defined functions of time.
In this problem, there is only one state x3,i(t) for each agent,
which is as defined in Eq. (4).5 For each agent, the costate
equations and boundary conditions are given by

ṗ3,i(t) = 0, p3,i(t f ) = 2C3(
N

∑
i=1

x3,i(t f )− ctotal,t0).

5The subscript index 3 is kept to be consistent with the earlier formulations.
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The Hamiltonian associate with this problem is given by

H(x3,R, p3) =
N

∑
i=1

2Ri(t)−1
K

snew(x1,i(t))+ p3,iRi(t)

Based on a similar derivation as in the proof of Theorem 1,
the optimal spectral efficiency R?

i is given by
R?

i (t) = a−bln(snew(x1,i(t))). (20)

We can then construct a feasible solution to Problem (12)
where we use the transmission controls given by Eq. (20)
and the motion controls given by the initial solution. Denote
the cost of this constructed feasible solution as J1, which
is evaluated based on snew(x1). We then have J1 ≤ Jinit, as
the communication related costs are reduced in J1, while the
motion related costs stay the same as in Jinit.

It can be verified that Eq. (17) holds for the constructed
feasible solution above, indicating that the its load distribution
is the same as in Eq. (18). Thus, the constructed feasible so-
lution provides a feasible solution to each agent’s single-agent
optimization in Step 3 of Algorithm 3. Since Step 3 further
optimizes the motion/transmission controls of each agent given
the adapted loads, we then have Jnew ≤ J1 ≤ Jinit.
Remark 2. In Algorithm 3, it is assumed that the updated
channel prediction snew(x1) is the same for each agent. In
practice, it is possible that each agent receives different addi-
tional channel measurements, resulting in a different updated
channel prediction for each agent, snew,i(x1).6 In this case,
Algorithm 3 can still be used by replacing the common snew(x1)
with the individual snew,i(x1) in Step 1, when evaluating Si.
In addition, a similar result to Proposition 2 holds with the
cost evaluated by Eq. (12), and Agent i’s transmission power
computed using snew,i(x1), ∀ i ∈ {1, ...,N}.

A. Numerical Results
We next demonstrate the efficacy of our proposed distributed

online adaptation algorithm in a realistic wireless environ-
ment. We present an example with 2 agents to showcase
the details of the distributed online adaptation process. In
this simulation, Agents 1 and 2 start at the same point
of (10,40), and their destinations are (42,45) and (5,10),
respectively. The total amount of data to be transmitted is
195 bits/Hz. In this online adaptation scenario, the motion-
communication co-optimization problem is first solved once
in a centralized manner with an initial channel prediction
based on 100 random measurements. The agents then execute
the motion/transmission controls given by the initial solution.
After 10 seconds, the agents obtain 100 additional random
channel samples and update predicted channel based on the
cumulative pool of measurements. With the updated channel
prediction, the agents perform the distributed online adaptation
of Algorithm 3. In Step 4 of Algorithm 3, each agent runs Al-
gorithm 1 for the single-agent problem for 60 iterations (which
takes about 2.5 seconds on average), where the optimization
is initialized with the agent’s previously-obtained solution. We
only need such few iterations because: 1) Algorithm 1 can
rapidly reduce cost, and 2) the previously-obtained solution
provides a good starting point for the optimization with the

6For instance, an agent may collect some channel data on its own and/or
receive some data from other data-collecting robots in the vicinity.

Fig. 7: Green solid line shows the initial path based on 100 channel
measurements and yellow dashed line shows the path obtained from
performing online channel prediction and the distributed adaptation of
Algorithm 3 every 10 seconds. The square (disk) is the starting point
(destination). The initial (final) channel prediction is shown in the
top (bottom) figure with darker colors (lower values) indicating better
channel quality. Only Agent 1 is shown here, which has large path
updates. Readers are referred to the color PDF for optimal viewing.

updated channel prediction. This online update process is
performed every 10 seconds in the simulation. The channel
and optimization parameters are the same as in Sec. III-A1.

Fig. 7 shows Agent 1’s initial (green solid) and actual
(yellow dashed) paths, which has large path updates, with the
initial/final predicted channel in the background. Darker colors
(lower values) indicate better channel qualities. As we can see,
Agent 1 initially plans to steer towards good channel quality
regions (base station at (5,5)) before going to its destination.
During the operation, however, as Agent 1 discovers that the
channel quality near its initially-planned path is much worse
than the initial prediction, it transfers some load to Agent 2
to reduce its communication burden, as shown in Table II.
With much less transmission responsibility, Agent 1 focuses
more on motion efficiency and moves directly towards its
destination. Basically, Agent 1 realizes that it would incur too
much motion energy to send its previously-assigned load itself
so that it is better to have Agent 2 send most of its load instead.

Table II shows the initial load assignment as well as the
actual final load transmitted after online updates. It can be seen
that Agent 1 has transmitted 57.83% less data as compared to
the initial load. On the other hand, as Agent 2 travels in regions
which turn out to have a relatively good channel quality (after
online learning), it takes on a large portion of Agent 1’s initial
assignment and transmits more data than initially planned.
Additionally, Fig. 8 shows the two agents’ initial and adapted
spectral efficiencies w.r.t. time. As can be seen, Agent 1 keeps
decreasing its spectral efficiency since it encounters worse
channel quality. On the other hand, in order to transmit the
additional load given by Agent 1, Agent 2 has to increase its
spectral efficiency during the operation.

As shown in Table III, the total energy cost of the initial
solution is 836.92 Joules (evaluated based on Eq. (6)) and
that of the adapted final solution given by Algorithm 3
is 665.92 Joules, which is 20.43% less. It is noteworthy
that the communication energy saving is very significant,
which is 55.25%. This indicates that our proposed distributed
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Agent Initial Data Load Final Data Load
1 83 35
2 112 160

TABLE II: The 1st column shows the agents’ indices. The 2nd
column shows the initially-assigned loads. The 3rd column shows
the final transmitted load by each agent after online load adaptations
of Algorithm 3 as new channel information becomes available.

Energy Cost Comm. Motion Combined (Eq. (6))
Initial Sol. 286.29 550.62 836.92

Adapted Sol. 128.12 537.81 665.92
Savings 55.25% 2.33% 20.43%

TABLE III: The table shows the communication, motion, and
combined (Eq. (6)) energy costs by using the initial controls and
Algorithm 3, respectively, as well as the percentage energy savings
by using Algorithm 3 as compared to the initial solution.

online adaptation method of Algorithm 3 can effectively
reduce energy costs by adapting the agents’ loads and mo-
tion/transmission controls to updated channel information.

V. CONCLUSIONS

In this paper, we considered the motion-communication
co-optimization of a team of robots operating in realistic
communication environments, whose decisions were coupled
via a cooperative data transmission task. By utilizing realistic
motion and communication models, we formulated and solved
this problem in an optimal control framework. We showed
how to optimally design the load distribution, paths, and
transmission power/rate schedules for the robots such that the
total motion and communication energy costs are minimized,
and further mathematically characterized some properties of
the optimal solution. We then extended this problem to an
online adaptation setting where the robots need to coopera-
tively adjust their decisions (e.g., paths, loads to transfer, trans-
mission power/rates) based on updated channel knowledge
during the operation. We demonstrated how this problem can
be efficiently solved in a novel distributed manner, and proved
that this online distributed approach improves the performance.
Extensive simulations with real channel parameters demon-
strated the efficacy of the proposed approach and validated
the theoretical results.
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