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Exploiting Object Similarity for Robotic Visual Recognition
Hong Cai and Yasamin Mostofi

Abstract—In this paper, we are interested in robotic visual
object classification using a Deep Convolutional Neural Network
(DCNN) classifier. We show that the correlation coefficient of
the automatically-learned DCNN features of two object im-
ages carries robust information on their similarity, and can
be utilized to significantly improve the robot’s classification
accuracy, without additional training. More specifically, we first
probabilistically analyze how the feature correlation carries vital
similarity information and build a Correlation-based Markov
Random Field (CoMRF) for joint object labeling. Given query
and motion budgets, we then propose an optimization framework
to plan the robot’s query and path based on our CoMRF. This
gives the robot a new way to optimally decide which object sites
to move close to for better sensing and for which objects to ask
a remote human for help with classification, which considerably
improves the overall classification. We extensively evaluate our
proposed approach on 2 large datasets (e.g., drone imagery,
indoor scenes) and several real-world robotic experiments. The
results show that our proposed approach significantly outper-
forms the benchmarks.

Index Terms—Object Detection, Segmentation, and Categoriza-
tion; Deep Learning in Robotics and Automation; AI-Based
Methods; Co-Optimization of Robotic Path Planning, Querying,
and Visual Recognition

I. INTRODUCTION

Consider a robotic operation where a robot is tasked with
visual sensing and classification in an area, an example of
which is shown in Fig. 1. The robot takes several object images
with its camera and uses a trained Deep Convolutional Neural
Network (DCNN) classifier to label them to a given set of
classes. If its classification confidence is low for some of the
images, it then has to plan how to use its limited resources
(e.g., motion energy budget, queries) to move closer to some
of the object locations for better sensing, and/or to ask a
remote human operator to help with the classification. Such
visual task scenarios are commonly seen in real-world robotic
applications, such as scene understanding, search and rescue,
and surveillance.

In this paper, we are interested in enhancing the per-
formance of robotic visual classification by exploiting the
similarity structure among the robot’s visual inputs. We show
that such similarity structure can be freely and robustly in-
ferred from the output of a trained DCNN classifier. More
specifically, we show that the Pearson correlation coefficient
of the feature vectors of two object images from the output
of a trained DCNN classifier carries reliable information on
the similarity of the two corresponding objects (i.e., do they
belong to the same class?), even if the individual classification
accuracy of each object was not very high. This then allows us
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Fig. 1: A robot is tasked with classifying objects on our campus. It
may have low confidence in some of its initial classifications. Given
a limited human query budget and a motion budget, the robot then
needs to decide which object locations it should visit to sense better,
and which object images it should ask a remote human operator to
classify, in order to improve its overall classification performance. By
using the correlation coefficient of the feature vectors from a trained
DCNN classifier, the robot can robustly capture image similarities
(e.g., objects 2 and 3 belong to the same class), which has a significant
implication for its field decision-making and joint labeling, as we
show in this paper. Readers are referred to the color pdf to better
view the images in this paper.

to design a Markov Random Field (MRF)-based joint labeling
framework, where the similarity information is utilized to
reduce the classification uncertainty. For instance, in Fig. 1,
there are two images (2 and 3) of the same class (person)
but in different poses. The robot’s vision initially misclassifies
them to a truck and a car. However, if the robot is aware that
they belong to the same class (while it cannot properly classify
them), then it can correctly classify both to persons using our
MRF joint labeling framework. We then show the implication
of this correlation-based joint labeling for the robot’s field
decision-making by co-optimizing its query, path, and visual
labeling. We next discuss the state of the art in vision, robotics,
and machine learning, as related to this paper.

State of the Art: In computer vision, machine learning
and deep neural networks have significantly advanced the
state of the art, in areas such as detection [1], segmenta-
tion [2], and DCNN architectural design [3]–[6]. While most
research efforts have focused on making the machine better
at processing individual visual inputs, relationship among a
number of visual inputs can also be exploited to design better
vision systems, as some recent papers show. For instance,
Galleguillos et al. [7] utilize object co-occurrence and spa-
tial context to design categorization algorithms. Torralba et
al. [8] study place-object co-recognition, where the semantic
consistency between an object and the current place is taken
into account. In image segmentation, pixel-level relationship is
utilized in the classification of each pixel [2]. Spatial-temporal
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correlation has also been considered in video applications [9],
[10]. More related to our work are those that consider ob-
ject/image similarity. Several papers have proposed DCNN-
based similarity metrics, which require dedicated training to
learn a similarity measure for a specific application (e.g.,
patch matching, image retrieval, image error assessment) [11]–
[15]. A few papers have explored off-the-shelf DCNN features
for applications such as clustering [16], [17]. As for visual
detection and classification, a few papers have utilized pairwise
object/image similarity to improve the recognition accuracy
[18]–[20]. However, these methods use simple hand-crafted
features (e.g., color histogram), which will not work well in
complex visual tasks that can involve many object classes,
different poses/views of the same object class, and/or images
degradations.1

The robotics community has also started to exploit the re-
lationship among visual inputs for robotic vision applications.
For instance, for object labeling, Koppula et al. [21] incor-
porate geometric context among objects, and Ali et al. [22]
utilize the co-occurrence relationship. Ruiz et al. [23] utilize
semantic knowledge to derive compatibilities among objects
and rooms for joint recognition. However, these methods
require additional training in order to use these contextual
relations. For instance, extensive training is needed to utilize
geometric relations for joint labeling in [21].

In some cases, the machine can obtain a few ground-truth
labels via querying to improve its performance. Most related to
this work are those that optimize the query selection based on a
correlation model (e.g., an MRF). In [24], Krause et al. utilize
information theoretic metrics (e.g., mutual information) to
select queries most beneficial to labeling the remaining un-
queried instances. Recently, Wang et al. [25] use Bayesian
lower bounds to optimize the selection, which outperforms
the earlier information theoretic methods. Another related
subject is active learning, which studies how to select labeled
samples to better train a learning algorithm (e.g., [9], [26],
[27]). The formulation of active learning, however, is different
from our problem, as we do not consider retraining the vision
algorithm during deployment in this work. In the context of
robotics, several papers have studied how to optimize the
robot’s motion to acquire more information and improve its
visual sensing [28]–[30]. These existing papers, however, do
not take into account the correlation among the visual targets.

As discussed above, while several types of relationship
between visual inputs have been exploited in robotic vision,
object similarity has not been exploited in robotics. It is our
hypothesis that the similarity between two visual inputs
can be inferred robustly from the output of a trained
DCNN classifier, without any additional training. This
would then have a significant implication for the robot’s visual
classification, and its field decision-making in terms of visual
sensing, path planning, and querying, as we shall show in this

1Note that in order to classify the objects in a scene, a robot would first
need to extract the relevant object regions from the acquired image. An end-
to-end detection network is typically utilized in such cases, which performs
both localization and classification simultaneously. However, the state-of-the-
art detection networks can miss objects when they are visually challenging.
As such, we utilize a saliency and depth-based localization algorithm in our
experiments, as we shall see in Sec. VII.

paper. We next explicitly discuss the contributions of the paper.

Statement of Contributions:
1. We probabilistically analyze the correlation coefficient

between the features of two images from a trained DCNN
classifier in an extensive study based on 180,000 image pairs
from 39 classes, for 3 commonly-used state-of-the-art DCNN
architectures. We show that the correlation coefficient can
capture pairwise image similarity robustly, even when the
images are subject to low illumination and low resolution, or
are misclassified. This similarity measure comes for free from
the DCNN classifier, requiring no additional training.

2. Based on the probabilistic characterization of this pair-
wise image similarity metric, we build a correlation-based
MRF (CoMRF) for joint labeling, which allows the robot
to better label the objects based on the correlation structure.
Given query and motion budgets, we propose a CoMRF-
based query-motion co-optimization approach to jointly plan
the robot’s query and path. This allows the robot to optimally
decide which objects it should visit for better sensing, and
for which visual inputs it should ask for human help. As we
shall see, by utilizing the proposed framework, the robot can
improve its visual performance significantly, under the motion
and query budgets. In other words, our proposed method
reduces the robot’s motion and query/communication burdens
for labeling, while achieving the same task quality.

3. By using 1) a large COCO-based test set, 2) the challeng-
ing large-scale drone imagery dataset of VisDrone, and 3) the
large indoor scene dataset of NYU-v2, we extensively evaluate
our proposed approach on joint labeling, query selection, and
path planning, across a large variety of realistic scenarios. The
results show that our proposed approach significantly outper-
forms the state of the art (e.g., outperforms [20] by 0.240 in
terms of classification accuracy). We then run several real-
world robotic experiments to further demonstrate the efficacy
of our proposed CoMRF-based query-motion co-optimization
algorithm. The results verify that our approach considerably
outperforms the benchmark.

The rest of the paper is organized as follows. In Sec. II,
we introduce our object similarity metric and confirm its
reliability based on extensive studies. We further propose
CoMRF for joint labeling. In Sec. III, we develop our query-
motion co-optimization algorithm based on our CoMRF. In
Sec. IV and V, we evaluate our proposed approach on joint
labeling, query selection, and path planning, on a large COCO-
based test set and a large-scale drone imagery dataset, re-
spectively. In Sec. VII, we further demonstrate the efficacy of
our proposed algorithm with several robotic experiments. We
discuss a few more aspects of our methodology in Sec. VIII
and finally conclude in Sec. IX.

II. CORRELATION-BASED MARKOV RANDOM FIELD

In this section, we first establish that the correlation co-
efficient between two feature vectors, from a DCNN-based
classifier, provides a reliable metric for characterizing the
probability that the two images belong to the same class. We
then show how to build a correlation-based Markov Random
Field (CoMRF) for joint object labeling, which captures and
utilizes our pairwise probabilistic object similarity metric.
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(a) pairs of original images
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(b) pairs of degraded images
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(c) pairs with at least one misclassification

Fig. 2: (a) In each CDF-PDF figure pair of a DCNN classifier (e.g., the two leftmost figures of AlexNet), the left figure shows the CDFs of
the feature correlation of same-class (blue solid) and different-class (red dashed) pairs, and the right figure shows the PDFs of the feature
correlation of same-class and different-class pairs. (b) CDFs and PDFs of the feature correlation after degrading the images by low resolution
and low illumination. (c) CDFs and PDFs of the feature correlation with at least one misclassification in each image pair.

A. Image Similarity and Feature Correlation

Consider a pair of images, each containing an object of in-
terest. The images have passed through a trained DCNN clas-
sifier, which automatically provides a feature vector for each
image. In contrast to hand-crafted features, this automated
feature vector contains robust information on the essence of
an object, which allows for capturing image similarity reliably,
without additional training, as we show in this section.

To test our hypothesis about this image similarity metric, we
construct a large image classification dataset, which contains
39 object classes, including a variety of daily objects (e.g.,
person, car). There are 76,505 images in total, collected
from the COCO dataset [31] and ImageNet [32]. Most of
the images are obtained from the COCO detection dataset
by extracting object image patches based on the provided
bounding box annotations, in order to better represent what
the robot would see in real-world classification tasks (e.g.,
images that can be small, have occlusion/clutter, and have
non-ideal lighting/contrast). We divide this dataset into 38,555
training images, 19,350 validation images, and 18,600 test
images.2 Utilizing this dataset, we have trained DCNN clas-
sifiers using the following three commonly-used state-of-the-
art architectures: AlexNet [3], MobileNet-v2 [5], and ResNet-
18 [6], with their respective accuracies over the validation set
as follows: 0.800, 0.873, and 0.873. We refer to these as the
base classifiers in the paper. By utilizing these three different
network architectures, we will establish the generalizability of
our metric to different networks. Each trained DCNN classifier

2Detailed descriptions of this dataset can be found in Appendix A.

then automatically provides a feature vector for an input image
from the layer prior to the final output layer. For instance, in
the case of AlexNet, this feature vector is provided by the
activations on the 7th layer, which is a fully-connected layer
prior to the final output layer. The test set is reserved for
evaluating our proposed methodology in Sec. IV.

Remark 1: We note that we could have used an existing
trained classifier to test our image similarity metric. However,
we chose to train a classifier in order to train on classes more
relevant to the types of objects that an unmanned vehicle
may see (e.g., people, bikes, cars). The unmanned vehicle will
then use this classifier for our real-world experimental tests in
Sec. VII. We thus emphasize that the aforementioned training
is simply to train a classifier and our proposed image similarity
metric is freely available from any DCNN classifier.

During the training of a DCNN classifier, the network learns
relevant features to feed to the output layer, which is a linear
operator. As such, the DCNN is trained to derive features to
linearly separate images of different classes. Motivated by this
generic design of DCNN classifiers, we utilize the Pearson
linear correlation coefficient to measure the similarity between
a pair of images. More specifically, given a feature vector
for each image in a pair of images, we compute the Pearson
linear correlation coefficient of the feature vectors of the two
images. We refer to this metric as the feature correlation.
We next empirically analyze its distribution. Fig. 2 (a) shows
the Cumulative Distribution Functions (CDFs) and Probability
Density Functions (PDFs) of the feature correlation of 180,000
random image pairs from the validation set, based on the
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Base Correlation Prob. above threshold
classifier threshold different-class same-class
AlexNet 0.3 0.009 0.473

MobileNet-v2 0.4 0.009 0.720
ResNet-18 0.4 0.009 0.693

TABLE I: Correlation thresholds for the three DCNN classifiers.
The third and fourth columns show the probability of false correlation
(different-class declared as same-class) and the probability of a same-
class pair having a correlation above the threshold, respectively.

features provided by the trained AlexNet, MobileNet-v2, and
ResNet-18, respectively. More specifically, in each CDF-PDF
pair (e.g., the two leftmost figures of AlexNet in Fig. 2 (a)), the
blue solid curve of the left figure shows the CDF of the feature
correlation of a pair of object images, given these two objects
belong to the same class, which we denote as a same-class
pair. The red dashed curve then shows the CDF of the feature
correlation of a pair of objects belonging to different classes,
which we denote as a different-class pair. It can be seen that,
for each DCNN classifier, there is a considerable difference
between these two distributions. For a different-class pair, the
feature correlation is more likely to be small, while for a
same-class pair, there is a higher chance of a high correlation.
Similarly, the PDF curves show that the distributions of the
correlation coefficient are well separated for same-class and
different-class pairs. This further motivates utilizing feature
correlation to deduce whether two objects belong to the same
class. To do so, we need a threshold, above which to declare
two objects in the same class and below which to declare
otherwise. We choose a threshold such that the probability
of false correlation (different-class declared as same-class) is
very small. For instance, for AlexNet, we can see that the
probability of a different-class pair having a correlation above
0.3 is less than 0.010, while 47.3% of the same-class pairs
have a correlation above 0.3. We then use 0.3 as our threshold
for AlexNet in our experiments. Similarly, we select thresholds
for the MobileNet-v2 and ResNet-18 classifiers such that the
probability of false correlation is very small, while a large
percentage of same-class pairs still have a correlation above
the threshold. This allows us to capture many of the same-class
objects, while ensuring a very small probability of mistaking
a different-class pair for a same-class pair. The respective
thresholds for the three DCNN classifiers are summarized in
Table I, along with the probability of false correlation and the
probability of same-class pairs having a correlation above the
threshold. When two images have a high feature correlation,
there is a high probability that they belong to the same class.
Therefore, when designing our CoMRF in Sec. II-B, every
two images with a feature correlation above the threshold are
connected by an edge and are more likely to have the same
label in the joint labeling process.

Robustness to Visual Differences: As two instances of the
same object class can be very different visually, it is impor-
tant that our image similarity metric declares many of such
instances to be in the same class. We extensively study our
dataset from this angle, in order to ensure that it contains a
variety of poses/views for each object class. The PDF/CDF
plots of Fig. 2 (a), for instance, are obtained from a general

dataset (the validation part of our constructed dataset) with
visually-diverse instances of each object class. Fig. 3 shows
10 random samples of bicycle for instance. Using the AlexNet
classifier and based on the threshold of 0.3, a link is drawn
between two objects if their feature correlation is above 0.3.
As can be seen, despite the drastic visual differences, the
resulting graph is dense (55.56% of all possible pairwise links
are captured), indicating that the feature correlation robustly
captures same-class objects.

Robustness to Image Degradation: In practice, robot sensing
may suffer from various degradations, such as low resolution
and low illumination. As our approach relies on the feature
correlation of image pairs, it is important to understand its
robustness to image degradation. In other words, the difference
between the feature correlation distributions of same-class and
different-class pairs should still be large enough. To evaluate
this, we have corrupted the validation set images by randomly
reducing resolution and illumination. Fig. 2 (b) shows the
CDF/PDF of the feature correlation for the corrupted image
dataset and the three network architectures. As can be seen,
although the difference between the two distributions has
become smaller, they are still robustly different.

Robustness to Misclassification: The feature correlation
can identify same-class objects, even when the classifier
misclassifies them. This is important as when there are mis-
classified images, the feature correlation should still robustly
capture the similarity, which can then be utilized to correct the
misclassifications. The initial image pool used to plot Fig. 2 (a)
includes several image pairs with at least one misclassified
image. In order to more explicitly show the robustness of the
feature correlation to misclassification, Fig. 2 (c) shows the
feature correlation distributions of same-class and different-
class pairs when at least one of the images in a pair is
misclassified. It can be seen that, for each DCNN classifier,
using the corresponding threshold, the feature correlation still
captures many same-class pairs with a small false correlation
probability (less than 0.018 for all three DCNN classifiers) in
this challenging setting. Fig. 1 shows an example of this where,
using the AlexNet classifier, the two human images (2 and 3)
are initially misclassified as a truck and a car. Utilizing the
feature correlation, the robot can infer that they are highly
likely to be in the same class, which allows it to jointly label
them correctly, using the method we propose in Sec. II-B.3

B. Correlation-based Markov Random Field (CoMRF)

So far, we have established that feature correlation provides
a reliable metric for image similarity. We next show how it
can be used for joint labeling. Suppose that we have N images,
each containing an object-of-interest (defined as an object
belonging to the set of classes with which the classifier was
trained). We next construct our CoMRF based on the pairwise
feature correlations.4

3Even when the robot’s initial classifications are correct, it may have low
confidence on some of the images. In such cases, the robot can still benefit
tremendously from our similarity metric, which can be utilized to reduce the
uncertainty in the robot’s classification decisions using our CoMRF method
of Sec. II-B.

4Readers are referred to the MRF literature for more details on the
terminology (e.g., [33], [34]).
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Fig. 3: Robustness of our metric to visual variations – visualization
of the feature correlation among 10 random bicycle images. Two
images are connected if their AlexNet-based feature correlation is
above the threshold. The number of edges in this graph is 55.56% of
that of a 10-node complete graph, indicating that many of the pairs
are correctly declared as same-class despite drastic visual differences.

In our MRF, each object image is represented by a node and
two nodes are connected by an edge if their pairwise feature
correlation is above a certain threshold sT (e.g., the threshold
for the AlexNet classifier is 0.3, as discussed in Sec. II-A).
The overall potential function of the CoMRF is then given as
follows:

P(x1, ...,xN) =
N

∏
i=1

φi(xi)∏
(i, j)∈L

ψ(xi,x j), (1)

where xi ∈ {1, ...,Nc} is the label variable of the ith image with
Nc denoting the total number of object classes, φi(xi) is the
node potential function, L = {(i, j)|si, j ≥ sT} is the set of pairs
with feature correlation si, j above sT, and ψ(xi,x j) is the edge
potential function.

Node Potential: For each node i, φi(xi) = pXi(xi), where
pXi(xi) is the probability distribution over the classes from the
classifier’s output and xi ∈ {1, ...,Nc} is the label variable.

Edge Potential: Given that there is an edge between
nodes i and j, we denote the probability that these two nodes
have the same label as psame = p(xi = x j|si, j ≥ sT), where si, j
is the feature correlation between nodes i and j. If xi = x j,
we assume that it is equally probable for nodes i and j to
belong to any one of the Nc classes. Similarly, if xi 6= x j, then
we assume that it is equally probable for nodes i and j to
take any pairwise combination of the Nc classes. The edge
potential function is then constructed as follows: ψ(xi,x j) =
psame/Nc, if xi = x j = k, ∀k ∈ {1, ...,Nc}, and ψ(xi,x j) = (1−
psame)/(N2

c −Nc), if xi 6= x j, ∀xi,x j ∈ {1, ...,Nc}.
In a specific joint labeling task instance, given that the

objects present belong to Np ≤ Nc classes (subset out of the
total Nc classes seen in training) and the threshold is sT, psame
can be written as follows using the Bayes rule:

psame = p(xi = x j|si, j ≥ sT)

=
p(si, j ≥ sT|xi = x j)p(xi = x j)

p(si, j ≥ sT|xi = x j)p(xi = x j)+ p(si, j ≥ sT|xi 6= x j)p(xi 6= x j)
,

where p(xi = x j) = Np/N2
p and p(xi 6= x j) = Np(Np− 1)/N2

p
are the prior probabilities that two nodes belong to the same
class and different classes, respectively.

Since this is dependent on Np, which the robot does not
know during the operation, we average psame over the distri-
bution of Np. For instance, in practice, we do not expect Np to
be larger than 10 in a task instance. Thus, we assume that Np is
uniform over {1, ...,10}, and numerically evaluate E[psame] to
be 0.928, 0.904, and 0.878 for AlexNet, MobileNet-v2, and

ResNet-18, respectively. For the rest of the paper, for each
DCNN classifier, we then set psame = E[psame] in our CoMRF
implementation. In order to compute the posterior distribution
of the nodes, we use Loopy Belief Propagation (LBP), which
is an approximate inference algorithm [33]. The final estimated
label for a node is then given by x̂i = argmax p̃Xi(xi), where
p̃Xi is the posterior marginal distribution of node i over the Nc
classes, after running LBP on CoMRF.5

III. OPTIMIZATION OF QUERYING AND PATH PLANNING

Consider the case where the robot is tasked with object
classification in an area. The robot does an initial classifica-
tion based on visual sensing and the state-of-the-art DCNN
classifier. However, its classification confidence may not be
high for several objects. The robot is given a query budget to
ask for human help and/or a motion budget to move to some of
the object locations to sense better. In this section, we propose
our methodology for co-optimizing query selection and path
planning, based on the CoMRF. More specifically, when the
robot visits a site to better sense an object, or queries the
human, it can obtain the correct label of the corresponding
object with a high probability. Given these new labels, the
robot can perform conditional inference over CoMRF and
update all the remaining labels. Thus, the robot’s sensing and
query directly affect its joint labeling.

Ideally, the robot should select a subset of nodes to query
and/or visit such that the posterior joint uncertainty of all the
nodes on the MRF is minimized. However, the computational
complexity of finding the optimum to this problem is very
high, and existing methods either resort to greedy schemes or
are limited to chain-structure graphs [24], [36]. Therefore, we
instead consider a neighborhood uncertainty measure that
can still capture the feature correlation and object similarity.
More specifically, for each node, we propose an uncertainty
measure that takes into account both its individual uncertainty
and the uncertainty of its neighboring nodes in CoMRF. This
is because as the correct label is applied to a node, not only
is its own uncertainty eliminated, but the uncertainty of the
neighbors will also be reduced. This measure then provides
a way to quantify the amount of (neighborhood) uncertainty
reduction, should a node be given the correct label. Our
uncertainty measure is then as follows, for each node i,

ri = (1− ci)+w∑
j∈A(i)

(1− c j), ∀i ∈ {1, ...,N}, (2)

where ci = max p̃Xi(xi), with p̃Xi being the posterior marginal
distribution of node i (after LBP), xi ∈ {1, ...,Nc} is the label
variable. 1−ci is then a measure of the individual uncertainty
of node i. The second term measures the uncertainty of the
neighboring nodes of node i, where A(i) denotes the neighbor
set of node i. w ≥ 0 weighs the respective importance of the
individual and neighborhood uncertainties.6

Given this uncertainty measure, we next formulate our query
selection and path planning co-optimization, which selects

5We use the publicly available MRF library [35] for our implementation.
6We set w = 5 in our implementation, based on running AlexNet on the

validation set. The weight w = 5 is then used for all three DCNN classifiers
for all the experiments in Sec. IV, V, and VII
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Algorithm 1: Proposed query selection and path planning co-
optimization (CoMRF-Opt)

max.
γ,η ,z,u

(γ +η) · [r, 0]T

s.t. (1) ∑
j∈{A(i)∪i}

γ j +η j ≤ 1, ∀i ∈ {1, ...,N},

(2)
N+1

∑
i=1

N+1

∑
j=1

zi, jdi, j ≤ E ,

(3)
N+1

∑
j=1

zi, j =
N+1

∑
j=1

z j,i = ηi, ∀i ∈ {1, ...,N +1},

(4) ui−u j +1≤ N · (1− zi, j), ∀i, j ∈ {2, ...,N +1},
(5) 1T

γ ≤M, (6) γ +η � 1,
(7) γN+1 = 0, ηN+1 = 1,

(8) γ,η ∈ {0,1}N+1, z ∈ {0,1}(N+1)2
, u ∈ [2,N +1]N

the nodes that maximize uncertainty reduction and avoids
choosing highly-correlated nodes, under limited query and
motion budgets.7 We assume that the robot has to return to its
initial position after completing the close-up sensings, forming
a tour. The optimization formulation is described in Alg. 1,
where N is the total number of objects that the robot has
initially sensed, γ = [γ1, ...,γN+1] denotes the binary decisions
of querying the nodes, η = [η1, ...,ηN+1] denotes the binary
decisions of visiting the nodes, γN+1 and ηN+1 are augmented
variables for the robot’s initial position, r = [r1, ...,rN ] is the
uncertainty vector from Eq. (2), E is the motion budget in
terms of total traveled distance, and M is the query budget.
γi=1 indicates that the robot will query object i (with 0
denoting otherwise). ηi = 1 indicates that the robot will visit
object i (with 0 denoting otherwise).

In Constraint (1), we impose that for each node i, at most
one node can be selected from the set of node i and its neigh-
bors, which prevents the simultaneous selection of highly-
correlated nodes. Constraints (2)-(4) are related to the robot’s
tour planning. Constraint (2) limits the total traveled distance
by E , where di, j is the distance between objects i and j,
and zi, j ∈ {0,1} indicates whether to include edge (i, j) in
the tour. Constraint (3) restricts that an object location can
only be entered and exited once if it is in the tour (ηi = 1).
Constraint (4) is the Miller-Tucker-Zemlin (MTZ) constraint
that eliminates sub-tours [37]. Constraint (5) limits the number
of queries by M. Constraint (6) prohibits the robot from both
querying an object and visiting it. Constraint (7) ensures that
the initial robot position is part of the tour. The last set of
constraints enforce that all the decision variables (γ , η , and z)
are binary, and that the MTZ variables are in [2,N +1].

In the solution of Alg. 1, it is possible that not all the
given query and motion budgets are utilized, since we enforce
Constraint (1) to avoid selecting highly-similar nodes. Suppose
that Ω is the set of nodes queried or visited in this solution. If
there are any unused queries and/or motion budget, the robot
then re-runs a slightly-modified version of Alg. 1, where w= 0,
Constraint (1) is removed, and the nodes in Ω are enforced

7In this optimization formulation, the robot is assumed to obtain the correct
label if it visits an object. In the experiments of Sec. VII-C, the reported
performance is based on the actual obtained images after the visits.

to be queried or visited. In this way, the robot prioritizes
the selection of the most important nodes in CoMRF, while
ensuring that all the resources are properly utilized. For the
rest of the paper, we refer to our proposed query selection and
path planning approach as CoMRF-Opt.8

IV. PERFORMANCE EVALUATION ON LARGE
COCO-BASED TEST SET

In this section, we evaluate our proposed CoMRF-based co-
optimization approach on joint labeling, query selection, and
path planning on the large COCO-based test set described in
Sec. II-A. We first assume no query or motion budgets for
the robot, and evaluate our proposed joint labeling method.
We then allow several queries for the robot (no motion) and
evaluate our query selection method. Lastly, we incorporate
the element of motion and evaluate our query-motion co-
optimization approach by simulating the motion.

A. Joint Labeling

In this part, we assume zero query and motion budgets
for the robot, and analyze the joint labeling performance.
We compare with the state-of-the-art methods of Cao et
al. [19] and Hayder et al. [20], which are similarity-based
approaches that use hand-crafted image features to deduce
image similarity for joint labeling. We further compare with
the benchmark of directly using the base classifier’s output, to
which we refer as “independent”.9

For each test case, we randomly draw Np classes from the
total Nc = 39 classes. For each selected class, we then sample
NI images. In this section, we use Np = 2 and NI = 50, and
report the average classification accuracy over 100 random test
cases. To make the classification task more challenging, the
images are randomly sampled from the set of images whose
AlexNet initial classification confidence is below 0.9.

Table II compares the performance of the independent
approach, Cao et al., Hayder et al., and our proposed CoMRF-
based joint labeling. We can see that our approach consider-
ably outperforms the independent approach when using any of
the DCNN classifiers, with an average improvement of 0.195
in terms of classification accuracy. On the other hand, Cao
et al. and Hayder et al. provide only slight improvement in
the case of AlexNet, and underperform, as compared to the
base classifier, in the cases of the other two DCNNs. This
is because their hand-crafted features cannot properly capture
object similarity, especially when there is a large number of
classes with a wide variety of poses and views for each class.

B. Query Selection

We next evaluate our proposed query selection approach
(using Alg. 1 with a zero motion budget). In this evaluation,
we compare with Wang et al. [25], which is a state-of-the-
art Bayesian approach. Since this approach is for selecting
queries on a given MRF and not on image similarity, we use

8The optimization in Alg. 1 is a Mixed Integer Linear Program (MILP)
and we use Matlab’s MILP solver in Secs. IV, V, VI, and VII.

9More details of these methods can be found in Appendix B.
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Base classifier Independent (base classifier output) Cao et al. [19] Hayder et al. [20] CoMRF (proposed)
AlexNet 0.437 0.438 0.543 0.673

MobileNet-v2 0.708 0.422 0.587 0.900
ResNet-18 0.724 0.422 0.604 0.881
average 0.623 0.427 0.578 0.818

TABLE II: Performance comparison of joint labeling methods (case of no query or motion). It can be seen that our proposed joint labeling
method improves the base classifier by 0.195, on average, in terms of classification accuracy. On the other hand, Cao et al. and Hayder et
al. perform similar or worse as compared to the initial classification.
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Fig. 4: Joint labeling and query selection performance (no motion) on the COCO-based test set. The query budget is given as a fraction of
the total number of nodes.
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Fig. 5: Query selection and path planning performance on the COCO-based test set. The robot is given a query budget equal to 5% of the
total number of nodes and the motion budget ranges from 0m to 20m.

our CoMRF, but then apply their query strategy instead of our
proposed Alg. 1. We also include a benchmark that greedily
selects the nodes with the highest individual uncertainties
(from the base classifier), without utilizing any correlation,
to which we refer as “independent”.10

The test cases used in this part are the same as in Sec. IV-A,
and the reported classification accuracy is averaged over the
100 test cases. Fig. 4 compares the performance of our
CoMRF-Opt (red solid) with the independent approach (blue
dashed) and Wang et al. (green dashed), when using the three
base classifiers, respectively. As can be seen, our proposed
approach considerably outperforms both of them. For instance,
when using AlexNet as the base classifier, given a budget of
40 queries, CoMRF-Opt achieves a classification accuracy of
0.957, as compared to 0.878 of Wang et al. and 0.704 of the
independent approach. As for the other two DCNNs, although
CoMRF already achieves a high initial classification accuracy
of ∼ 0.900, CoMRF-Opt is still able to further improve it to
∼ 0.990 with 20 queries, significantly outperforming Wang et
al. and the independent approach. Furthermore, our proposed
approach enables significant resource savings. For instance,
for the case of AlexNet, in order to achieve an average
classification accuracy of 0.900, our proposed method requires
25 queries, while Wang et al. and the independent benchmark

10More details of these methods can be found in Appendix B.

require 50 and 80 queries, respectively, as shown in Fig. 4 (a).
This is equivalent to respective reductions of 50% and 68.75%
in terms of communication resources.

Since Cao et al. and Hayder et al. only perform comparable
to or worse than the base classifier, and Wang et al. only
provides near-linear improvement with respect to the number
of given queries, we will not include them for comparison in
the rest of the paper.

C. Query Selection and Path Planning

In this section, we take motion into account and evaluate
our CoMRF-based query-motion co-optimization approach on
our COCO-based test set by running the robot in a simulated
motion environment. More specifically, for each test case, we
randomly draw Np = 2 classes from the total Nc = 39 classes
and for each selected class, we randomly sample NI = 10
images from the set of images whose AlexNet initial classifica-
tion confidence is below 0.9. These 20 images/objects are then
randomly placed in a 10m×10m simulation environment. In
each test case, given a query budget and a motion budget,
the robot needs to decide for which object images it should
query the remote human operator and which object locations
it should visit to sense better. We give the robot a query
budget equal to 5% of the total number of nodes and a motion
budget ranging from 0m to 20m. We compare our proposed
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Fig. 6: Joint labeling and query selection performance (no motion) on the VisDrone dataset, for the same-flight scenario. The query budget
is given as a fraction of the total number of nodes.
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Fig. 7: Joint labeling and query selection performance (no motion) on the VisDrone dataset, for the multi-flight scenario. The query budget
is given as a fraction of the total number of nodes.

CoMRF-Opt (Alg. 1) with the independent approach that does
not take into account any correlation.11 We report the average
classification accuracy over 100 random test cases.

Fig. 5 shows the classification performance of CoMRF-Opt
(red solid) and that of the independent approach (blue dashed),
for the cases of the three DCNN base classifiers, respectively.
It can be seen that CoMRF-Opt significantly outperforms the
independent approach for any given motion budget and for all
three DCNNs. For instance, in the case of MobileNet-v2, given
a motion budget of 10m, CoMRF-Opt achieves a classification
accuracy of 0.945, which is considerably higher than that
of the independent benchmark (0.826). For a larger query
budget, our proposed approach has a similar performance
improvement over the benchmark. For instance, given a query
budget of 15% and a motion budget of 10m, CoMRF-Opt has a
classification accuracy of 0.978 and the benchmark’s accuracy
is 0.880, when using MobileNet-v2. As the amount of given
resources increases considerably, however, both approaches’
performance will approach 1 eventually, as expected.

Overall, these results confirm that our proposed feature
correlation metric robustly captures image similarity and our
CoMRF-based approach improves classification performance
considerably. For the joint labeling task, the accuracy of our
proposed approach is significantly higher than those of the
state of the art. By comparing with Wang et al., we can see
that our proposed CoMRF-based query strategy outperforms
one of the best existing approaches. By including motion in the
experiments, we further validate our proposed CoMRF-based
query-motion co-optimization methodology.

11For the independent approach, the path planning part is conducted by
running a modified version of Alg. 1, where r in the objective function is
replaced by a vector of the individual uncertainties, given by the base classifier,
and Constraint (1) is removed.

V. PERFORMANCE EVALUATION ON A LARGE-SCALE
DRONE IMAGERY DATASET

In this section, we evaluate the performance of our pro-
posed CoMRF-based joint labeling and query-motion co-
optimization methodology on a large drone imagery dataset.
We use the publicly-available VisDrone dataset [38],12 which
is a challenging large-scale dataset with images captured by
drone-mounted cameras that cover various cities, environ-
ments, object classes, and object densities. As images taken by
drones have very different views as compared to images taken
on the ground (e.g., COCO images), evaluating performance
on the VisDrone dataset will further verify the robustness and
generalizability of our proposed feature correlation-based sim-
ilarity metric and the CoMRF-based co-optimization approach.
While using the VisDrone data, we consider a subset of their
object classes (7 out of 10) that overlaps with the classes of
our training set described in Sec. II-A, which includes person,
pedestrian, car, bus, truck, motorcycle, and bicycle. The two
classes of person and pedestrian are treated as one class in
our evaluation. The object image patches are obtained based
on the provided bounding box annotations.

In the following parts of this section, we first evaluate
the performance of joint labeling and query selection by
assuming a zero motion budget. We then allow a non-zero
motion budget and evaluate our proposed query-motion co-
optimization approach in a simulation environment.

A. Joint Labeling and Query Selection

In the joint labeling and query selection evaluation, we
consider two realistic drone visual sensing scenarios. In the
first scenario, in each test case, the images are taken from
the same flight. This captures a real-world scenario where the

12The dataset is publicly available from http://aiskyeye.com/.

http://aiskyeye.com/
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Fig. 8: Query selection and path planning performance on the VisDrone dataset. The robot is given a query budget equal to 5% of the total
number of nodes and the motion budget ranges from 0m to 20m.

AlexNet MobileNet-v2 ResNet-18Np Average NI Independent CoMRF-Opt Independent CoMRF-Opt Independent CoMRF-Opt
≤ 3 41 0.593 0.862 0.804 0.916 0.777 0.909
4 27 0.602 0.844 0.815 0.917 0.796 0.909
5 22 0.585 0.846 0.797 0.921 0.770 0.918
6 18 0.617 0.798 0.799 0.887 0.787 0.862

TABLE III: Average classification performance given different number of classes present (Np) in a test case. The first column shows the
number of classes present in a test case. The second column shows the average number of objects per class in a test case for different Np
values. The remaining columns show the average classification accuracy of the benchmark of making independent decisions and our proposed
CoMRF-based approach, given different Np values, for the base classifiers of AlexNet, MobileNet-v2, and ResNet-18, respectively.

drone utilizes not only the correlation among objects within
the same image, but also that among objects from different
images taken during the same flight, in order to improve its
onboard DCNN classifier’s accuracy. We refer to this scenario
as the same-flight scenario. Secondly, we consider a scenario
where in each test case, the images are randomly drawn from
the entire dataset. This captures another practical scenario
where there are multiple drones performing visual tasks in
different environments, while there is a central agent (e.g., a
leader drone or a ground robot) that receives images from these
drones and performs joint labeling. We refer to this scenario
as the multi-flight scenario. In both scenarios, each test case
contains at least 100 objects from images from either the same
flight or multiple random flights, and we report the average
classification accuracy over 100 random test cases for each
scenario. Note that, unlike in the previous section, the number
of classes present (Np) and the number of images per class
(NI) are not controlled here. In other words, there can be any
number of at least 2 object classes present and the number of
images for each class can take any value in each test case.

Fig. 6 shows the performance of our proposed joint labeling
and query selection approach, as compared to the benchmark,
in the same-flight scenario. It can be seen that our proposed
approach significantly outperforms the benchmark in terms of
classification accuracy, when using any of the three DCNN
base classifiers. For instance, when using AlexNet, given a
query budget equal to 30% of the number of nodes, CoMRF-
Opt achieves an accuracy of 0.854, which is 0.424 higher than
that of the base classifier (0.430). Similar large improvements
can be seen for the cases of MobileNet-v2 and ResNet-18.

Fig. 7 compares our proposed CoMRF-based approach with
the independent benchmark, in the multi-flight scenario. Sim-
ilarly, it can be seen that our proposed approach significantly
outperforms the independent approach, for all three DCNNs.
For instance, in the case of AlexNet, given a query budget
equal to 30% of the number of nodes, CoMRF-Opt achieves

an accuracy of 0.792, while the benchmark has an accuracy
of 0.447, which is 0.345 lower. It can also be observed that
the performance improvement provided by CoMRF-Opt is
slightly less in the multi-flight scenario, as compared to that in
the same-flight scenario, since there could be less correlation
across images taken from different flights, as expected.

Next, we study how the classification performance varies
w.r.t. the number of classes present (Np) in a test case, in
order to understand the effect of Np on our proposed approach.
More specifically, based on the 100 same-flight test cases,
we calculate the average classification accuracy for each Np,
where the accuracy is averaged over the test cases with the
same Np and the query budget ranging from 0 to 1. The
results are shown in Table III. The first column shows the
different Np values, where Np = 2 and Np = 3 are grouped
together to allow for at least 10 cases for averaging. The
second column shows the average number of objects per class
(NI) in a test case, for each Np. The remaining entries show the
average classification accuracies of the benchmark of making
independent decisions and our CoMRF-based approach. It can
be seen that for each base classifier, the benchmark performs
similarly across different Np values, which is as expected as
it classifies each object image individually and is thus not
affected by Np. As for our approach, for each base classifier,
we can see that the average classification accuracy is also
similar across different Np values. The accuracy is slightly
lower when Np = 6, as the average NI (number of objects per
class) is smaller in this case, which means that there is less
underlying correlation to be exploited. However, as we can see,
our CoMRF-based approach still significantly outperforms the
benchmark in this case. These results verify that our proposed
approach performs consistently across different Np values.

B. Query Selection and Path Planning

In this part, we provide a non-zero motion budget to the
robot and evaluate our proposed query-motion co-optimization
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Fig. 9: Joint labeling and query selection performance (no motion) on the NYU-v2 dataset. The query budget is given as a fraction of the
total number of nodes.
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Fig. 10: Query selection and path planning performance on the NYU-v2 dataset. The robot is given a query budget equal to 5% of the total
number of nodes and the motion budget ranges from 0m to 20m.

approach. In each test case, an image (with 15 to 25 objects)
is randomly drawn from the VisDrone dataset and the objects
in this image are randomly placed in a 10m×10m simulation
environment. By running our proposed algorithm in this set-
ting, we capture a realistic scenario where a drone has acquired
an image of the field, and needs to plan its next motion steps
to better view the objects and/or select some of the object
images to query the remote human operator. We average the
performance over 100 random test cases.

Fig. 8 shows the performance of our proposed CoMRF-
Opt query-motion co-optimization and that of the independent
approach, for the three DCNN base classifiers, respectively. It
can be seen that overall, CoMRF-Opt significantly outperforms
the independent approach. For instance, when using ResNet-
18, given a motion budget of 10m, CoMRF-Opt achieves a
classification accuracy of 0.921, as compared to an accuracy
of 0.707 by the independent benchmark.

Overall, these results confirm the efficacy of our pro-
posed CoMRF-based joint labeling and query-motion co-
optimization approach, showing that CoMRF-Opt can achieve
significantly higher classification accuracies as compared to
the benchmark of making independent decisions. Further-
more, the visually-challenging VisDrone-based evaluation also
demonstrates the robustness and generalizability of our pro-
posed feature correlation and co-optimization approach.

VI. PERFORMANCE EVALUATION ON A LARGE INDOOR
SCENE DATASET

We further evaluate the performance of our proposed
CoMRF-based joint labeling and co-optimization methodology
on the popular indoor scene dataset of NYU-v2 [39].13 This
large indoor dataset contains a variety of scenes (e.g., kitchens,

13The dataset is publicly available from https://cs.nyu.edu/∼silberman/
datasets/nyu depth v2.html.

offices) and a large number of various objects. As indoor
objects can be challenging to recognize, e.g., due to occlusion
and clutter, this evaluation will further verify the robustness of
our proposed approach. In the evaluation, we consider a set of
19 object classes that are present in both the NYU-v2 dataset
and our training set in Sec. II-A. The object image patches
are obtained based on the provided annotations.

In the evaluation, we use the objects of the same scene for
each test case, which captures a real-world situation where
a robot enters a scene and needs to recognize the objects in
the scene. We randomly select 100 test cases (i.e., 100 scenes)
from the dataset, each contains at least 10 objects. The reported
performance is averaged over the 100 test cases. Next, we
present the evaluation on joint labeling, query selection, and
query-motion co-optimization for our proposed approach.

A. Joint Labeling and Query Selection

Fig. 9 shows the performance of our proposed joint labeling
and query selection approach, as compared to the benchmark
of making independent decisions. It can be seen that our
proposed approach significantly outperforms the independent
approach, when using any of the three DCNN base classifiers.
For instance, given a query budget equal to 30% of the
number of nodes, CoMRF-Opt achieves an accuracy of 0.815,
0.911, and 0.922, considerably outperforming the benchmark
by 0.225, 0.170, and 0.214, respectively, when using the base
classifiers of AlexNet, MobileNet-v2, and ResNet-18.

B. Query Selection and Path Planning

In this part, the robot is given a non-zero motion budget.
In each test case, the objects from the same scene are ran-
domly placed in a 10m× 10m simulation environment. Our
evaluation in this section captures a real-world scenario where
a robot is tasked with recognizing the objects in an indoor

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Fig. 11: The diagram shows the robot’s steps in an experiment using
our proposed approach. The dashed line between the two “CoMRF”
blocks indicates that they are the same MRF, based on the initial
classification and feature extraction. The top CoMRF is then further
updated with the image labels obtained from visit or query.

scene, and needs to plan its motion steps to better view the
objects and/or select some of the object images to query the
remote human operator.

Fig. 10 shows the performance of our proposed CoMRF-
Opt query-motion co-optimization approach and that of the
independent one, for the three DCNN base classifiers. It can
be seen that CoMRF-Opt significantly outperforms the inde-
pendent approach. For instance, when using AlexNet, given a
motion budget of 10m, CoMRF-Opt achieves a classification
accuracy of 0.853, as compared to an accuracy of 0.572 by
the independent benchmark.

Overall, these results further confirm the efficacy and robust-
ness of our proposed CoMRF-based joint labeling and query-
motion co-optimization approach for indoor scenes, showing
that it can achieve a significantly higher classification accuracy
as compared to making independent decisions.

VII. ROBOTIC EXPERIMENTS

In this section, we evaluate our proposed query selection
and path planning approach (CoMRF-Opt) with several robotic
experiments on our campus. We also compare its performance
with the benchmark of making independent decisions. We
have conducted a total of six experiments. In the first three
experiments, we evaluate the query selection part, where the
robot takes several images around it and is allowed to ask for
human help under a query budget (zero motion budget). In
the remaining three experiments, we provide the robot with a
motion budget, adding path planning into the robot’s decision-
making. The real-world robotic experiments are conducted
with the robot running the AlexNet classifier onboard.

A. Experiment Overview

In the experiments, we use a Pioneer 3-AT robot, equipped
with a ZED camera (with depth sensing) and a laptop. Fig. 11
shows the robot’s steps during an experiment. The robot first
takes several images of its surroundings. For each image,
the robot extracts Regions-Of-Interest (ROIs), each of which
potentially contains an object-of-interest.14 These potential

14The ROI extraction algorithm utilizes the depth and the saliency map
of [40]. This algorithm is designed to find coarse ROIs, each of which may
contain an object-of-interest, rather than providing tight bounding boxes.

Fig. 12: Object images obtained by the robot in Exp. 1 on our
campus. A line between two images indicates that there is an edge
between them in the corresponding CoMRF. See the color pdf to
better view all the experiment images.
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Fig. 13: Performance (classification accuracy) of CoMRF and the
independent approach w.r.t. the number of allowed queries in Exp. 1
(shown in Fig. 12).

objects are then fed into a background rejector, which is a
binary classifier that determines whether an image contains
an object-of-interest (e.g., one of the 39 object classes vs.
a background wall).15 Once the background image patches
are rejected, the robot passes the object image patches, each
containing an object-of-interest, to its onboard DCNN classi-
fier (described in Sec. II-A), which provides the classification
output and feature vector for each object image. The robot
then constructs the CoMRF for these objects, and optimizes
(in real time) the queries and motion using Alg. 1. Given
the optimized decisions, the robot performs the corresponding
queries and/or further sensing, after which it obtains the labels
for the queried/visited nodes and updates the remaining nodes
on the CoMRF, using LBP as discussed in Sec. II-B.

B. Query Selection

In the first three experiments, the robot is tasked with object
classification on our campus, and is allowed to query a remote
human operator for help. We assume that when the robot
queries about an object, it receives the correct label.

1) Experiment 1: Fig. 12 shows the images taken by the
robot in this experiment on our campus. The CoMRF is
constructed based on the extracted features and the chosen
correlation threshold discussed in Sec. II. In this CoMRF, there

15Details of the ROI extraction algorithm and the background rejection
classifier can be found in Appendices C and D.
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Fig. 14: Object images obtained by the robot in Exp. 2 on our
campus. A line between two images indicates that there is an edge
between them in the corresponding CoMRF.
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Fig. 15: Performance (classification accuracy) of CoMRF and the
independent approach w.r.t. the number of allowed queries in Exp. 2
(shown in Fig. 14).

is an edge between images 2 and 3, and an edge between
images 5 and 6, as can be seen.16

The robot then performs joint labeling and query selection
using this CoMRF, and we compare its performance with
the independent approach. Fig. 13 shows the two methods’
accuracies with respect to the number of queries. Initially,
the classifier mislabels all six images. Although the AlexNet
classifier has a good accuracy of 0.800 over the validation
set, its performance degrades in real-world scenarios due to
low resolution and non-ideal lighting. When there are no
allowed queries, CoMRF improves the initial classification by
correctly labeling images 2 and 3 to persons (using feature
correlation and joint labeling). Given some queries, we can
see that CoMRF-Opt outperforms the independent benchmark
significantly. For instance, when given 4 queries, CoMRF-Opt
chooses images 1, 3, 4, and 6, and achieves a 1.000 accuracy.
On the other hand, the independent approach chooses both
nodes 2 and 3 among the 4 queries, which is unnecessary as
they are highly similar, and achieves a 0.667 accuracy.

2) Experiment 2: Fig. 14 shows the images taken by the
robot in this campus experiment. In this CoMRF, there is an
edge between images 1 and 2, an edge between images 3 and 4,
and an edge between images 4 and 7, as can be seen. In
particular, the three bicycle images (3, 4, and 7) form a

16As discussed in Sec. II-A, the robot may not capture exhaustively all
the pairwise same-class objects as we set the threshold high to make the
probability of false correlation very small. But as these experiments indicate,
what it captures can lead to significant performance improvements for free,
by utilizing our proposed similarity metric.

Fig. 16: Object images obtained by the robot in Exp. 3 on our
campus. A line between two images indicates that there is an edge
between them in the corresponding CoMRF.
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Fig. 17: Performance (classification accuracy) of CoMRF and the
independent approach w.r.t. the number of allowed queries in Exp. 3
(shown in Fig. 16).

connected component in the graph.
When there are no queries, CoMRF improves the initial

classification by correctly labeling node 3 as a bicycle. Ini-
tially, nodes 3 and 4 are mislabeled as a potted plant and
a bench, respectively, which are the most likely candidates
from the classifier for these two nodes, while bicycle is the
second most likely for both nodes. After the similarity between
nodes 3 and 4 has been captured in CoMRF, the probability
of belonging to the bicycle class increases for both nodes, and
for node 3, bicycle becomes the most probable class.

When the robot is given several queries, CoMRF-
Opt outperforms the independent approach significantly.
For instance, when given 4 queries, CoMRF-Opt chooses
nodes 2, 4, 5, and 6, and achieves a 1.000 accuracy. The
independent approach, on the other hand, chooses both
nodes 1 and 2 among the 4 queries, which are highly cor-
related, only achieving a 0.571 accuracy.

3) Experiment 3: Fig. 16 shows the images taken by the
robot in this campus experiment. In this CoMRF, the persons’
images form a connected component, with images 1, 2, and 4
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Fig. 18: Object images obtained by the robot in Exp. 4 on our
campus. A line between two images indicates that there is an edge
between them in the corresponding CoMRF.

Fig. 19: Blue circles indicate the object locations and the red
square indicates the robot’s initial position in Exp. 4 of Fig. 18.
The green dashed line indicates an edge in the CoMRF. (a)-(b) show
the respective path planning results of the independent approach and
CoMRF-Opt, where the solid black line indicates the sensing tour.

fully interconnected and image 5 connected to image 4. There
is also an edge between the bicycle images 6 and 7.

Initially, the based classifier of AlexNet correctly recognizes
images 1 and 4, but misclassifies the rest. By applying
CoMRF, the robot is then able to classify image 2 as a
person, thus improving the classification accuracy without
using any queries. When the robot is given a few chances
to query, CoMRF-Opt outperforms the independent approach
significantly. For instance, when given 3 queries, CoMRF-Opt
chooses nodes 3, 5, and 7, and achieves a 100% classification
accuracy. On the other hand, the independent approach chooses
nodes 4, 6, and 7, among which nodes 6 and 7 are highly
correlated, and only achieves a 0.571 accuracy.

C. Query Selection and Path Planning

In this part, we present robotic experiments where the robot
is given a non-zero motion budget. When the robot visits an
object, it moves towards the object and takes a close-up image.
For an object visited by the robot, the label is given by the
actual DCNN classification output based on the close-up image
obtained during the visit.17 The object locations are estimated
based on the depth information.

1) Experiment 4: Fig. 18 shows the objects initially cap-
tured by the robot in this experiment, all of which are misclas-
sified initially by the base classifier. As can be seen, CoMRF
puts an edge between images 1 and 2. Fig. 19 shows the object
locations and the robot’s initial position. The green dashed line
indicates an edge between objects 1 and 2 in the CoMRF. In
this experiment, the robot is given no queries and is allowed a

17For the independent approach, we assume that the robot obtains the
correct label of the visited node when calculating its performance.

Fig. 20: Object images obtained by the robot in Exp. 5 on our
campus. A line between two images indicates that there is an edge
between them in the corresponding CoMRF.

Fig. 21: Blue circles indicate the object locations and the red
square indicates the robot’s initial position in Exp. 5 of Fig. 20.
The green dashed line indicates an edge in the CoMRF. (a)-(b) show
the respective path planning results of the independent approach and
CoMRF-Opt, where the solid black line indicates the sensing tour
and the purple diamond indicates the queried object.

total travel distance of 8m. Fig. 19 (a) and (b) show the results
of the independent benchmark and our approach, respectively.
The independent approach does not take advantage of the
feature correlation and chooses to visit the standalone node 3.
On the other hand, our proposed CoMRF-based path planning
approach of Sec. III is aware of the correlation and chooses
to visit node 2. After node 2 is better sensed and correctly
labeled as a person, CoMRF propagates this information to
node 1 (via joint labeling) and then also correctly classifies
node 1. Therefore, under the same motion budget, CoMRF-
Opt correctly classifies one more node as compared to the
benchmark and improves the accuracy by 100% over the
benchmark.

2) Experiment 5: Fig. 20 shows the object images captured
by the robot in this experiment. In the CoMRF, there is an edge
between images 1 and 2, and an edge between images 3 and 4.
Fig. 21 shows the object locations and the robot’s initial
position. In this case, the robot is given 1 query and is
allowed a total travel distance of 16m. Fig. 21 (a) shows
the result of the independent approach. As can be seen, the
robot visits nodes 3 and 5, and queries node 4. However,
since nodes 3 and 4 are highly correlated, it is unnecessary
to obtain labels for both of them. On the other hand, as
shown in Fig. 21 (b), CoMRF-Opt queries node 1, and visits
nodes 4 and 5, which are not highly correlated. Furthermore,
due to their influence on their neighboring nodes, CoMRF
correctly labels the remaining nodes after the querying and
sensing. In this case, the independent approach only obtains a
classification accuracy of 0.600, while CoMRF-Opt provides
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Fig. 22: Object images obtained by the robot in Exp. 6 on our
campus. A line between two images indicates that there is an edge
between them in the corresponding CoMRF.

Fig. 23: Blue circles indicate the object locations and the red
square indicates the robot’s initial position in Exp. 6 of Fig. 22.
The green dashed line indicates an edge in the CoMRF. (a)-(b) show
the respective path planning results of the independent approach and
CoMRF-Opt, where the solid black line indicates the sensing tour
and the purple diamond indicates the queried object.

fully correct classifications, significantly improving the accu-
racy of the benchmark by 0.400.

3) Experiment 6: Fig. 22 shows the object images captured
by the robot in Exp. 6. In the CoMRF, there is an edge between
images 1 and 5, and an edge between images 3 and 4. Fig. 23
shows the object locations and the robot’s initial position. In
this case, the robot is given 1 query and is allowed a total
travel distance of 11m. Fig. 23 (a) and (b) shows the result
of the independent approach and CoMRF-Opt, respectively.
Initially, the robot correctly recognizes images 3 and 4 as
benches. By using our proposed approach, the robot visits node
2 and queries node 1, after which it is able to propagate the
newly-acquired information to node 5 and correctly classifies
all the images. On the other hand, the independent approach
correctly classifies node 2 and 5 via query/visit, but cannot
rectify its initial misclassification of node 1. In this case, the
independent approach obtains a final classification accuracy of
0.800, while CoMRF-Opt has a perfect accuracy, considerably
outperforming the benchmark by 0.200.

D. Joint Classification of Objects from Multiple Scenes

In this part, we consider a joint classification scenario where
the robot is required to classify the object images that it has
acquired during earlier visits of several scenes. This setting
captures the case where the robot is not required to produce
the classification results on the spot and thus allows the robot
to discover a richer correlation structure from a larger image
pool. In this evaluation, all the 34 object images obtained from
our experiments are jointly classified. Although some of the
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Fig. 24: Performance (classification accuracy) of CoMRF and the
independent approach w.r.t. the number of allowed queries, when
jointly classifying all the experimental images (shown in Figs. 12,
14, 16, 18, 20, and 22).

people appear more than once in this pool, they appear in
very different conditions, e.g., clothing, poses, views, lighting,
contrast, and scenes. As such, two images of the same person
taken at different times/locations cannot be trivially declared
to be connected in the graph and their similarity has to be
determined by their corresponding DCNN features.

Fig. 24 shows the respective classification accuracies of our
proposed approach and the independent benchmark in this
case. It can be seen that by taking into account the similarity
information of all the images, CoMRF is able to greatly
improve the classification accuracy without using any queries,
from 0.112 to 0.765. By using only 14 queries, CoMRF-Opt
achieves a 100% accuracy, while the independent approach
requires 33 queries to correctly classify all the images.

Overall, our robotic experiments confirm that the correlation
coefficient of two feature vectors, from a DCNN classifier,
provides key information on object similarity, and that our pro-
posed CoMRF-based query-motion co-optimization consider-
ably improves the robot’s classification accuracy, as compared
to the benchmark of making independent decisions.

VIII. DISCUSSION

In this section, we discuss a few more aspects related to our
proposed methodology.

A. CoMRF on Other DCNNs

We have shown extensive evaluation of our proposed
CoMRF-based approach using the AlexNet, MobileNet-v2,
and ResNet-18 DCNN architectures. These are the commonly-
used state-of-the-art architectures which are typically suitable
for mobile computing (e.g., service robots, drones).

There are even deeper architectures that can be used for
classification, at the cost of higher computation and memory
requirements. Our proposed correlation-based image similarity
and joint labeling are also applicable to such larger and deeper
networks, such as Inception-v3 [4] and ResNet-101 [6]. To
illustrate this, we have trained these two networks using the
training set of Sec. II-A. As shown in Fig. 25, for these two
DCNNs, there is a large separation between the distributions
of the feature correlation of different-class and same-class
pairs. We then run the same joint labeling evaluation, as
in Table II of Sec. IV, using these deeper base classifiers.
By using Inception-v3, our proposed approach achieves a
classification accuracy of 0.937, as compared to the base
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Fig. 25: Each figure shows the CDFs of the feature correlation of
same-class (blue solid) and different-class (red dashed) pairs, based
on the Inception-v3 and ResNet-101 classifiers, respectively.

classifier’s accuracy of 0.814, and by using ResNet-101, our
approach achieves a high accuracy of 0.959, as compared
to the initial accuracy of 0.818. This demonstrates that our
proposed CoMRF is also able to provide a large accuracy
improvement with deeper DCNN classifiers.

Furthermore, the performance improvement provided by our
proposed query/motion optimization approach also applies to
these deeper DCNNs. For instance, when we run the same-
flight query selection evaluation on the VisDrone dataset (as
described in Sec. V-A), using these two deeper classifiers, with
a query budget equal to 10% of the number of objects, our pro-
posed CoMRF-Opt improves the accuracy of the independent
benchmark from 0.636 to 0.793 in the case of Inception-v3
and from 0.689 to 0.844 in the case of ResNet-101.

B. Computation Time

In this part, we discuss the computation efficiency of
CoMRF-Opt. The timing experiments were run in Matlab on
a 3.40 GHz Intel Core i7 PC. The reported times are averaged
over 100 problem instances. For a test case with 100 object
images/nodes, our proposed query selection algorithm (zero
motion budget) only takes an average of 0.012s to produce a
solution. As for the query-motion co-optimization (non-zero
query and motion), it takes an average of 0.101s, 1.363s,
20.217s, and 101.585s to solve a problem with 10, 20, 30,
and 40 object images, respectively.

In the path planning part of our algorithm, the number of
binary variables increases quadratically with respect to the
number of objects, as the robot needs to decide whether to
include an edge between every pair of object locations in its
trip (see variable zi, j in Alg. 1). However, in a practical mobile
robotic visual sensing scenario, it is not very likely that the
robot would need to solve the optimization problem with a
very large number of sensing locations. For instance, some of
the objects may be near each other and can thus share one
sensing location. As such, the robot can group nearby objects
and solve the planning problem with fewer locations, when
the total number of objects in the scene is large.

C. Detection Networks

In this paper, we did not use end-to-end detection architec-
tures (e.g., Faster-RCNN [1]). This is because such detection
networks tend to miss a lot of objects, especially in practical
robotic settings where the visual recognition can be difficult
due to non-ideal lighting, low resolution, small object size,

and uncommon viewpoints, as we have observed in the early
stage of this study. In fact, on the COCO detection leaderboard,
the best method has an average recall of 0.727 for medium-
sized objects, indicating that it can miss many objects. In
addition, the commonly-used Faster-RCNN with ResNet-101
pipeline only has an average recall of 0.553.18 Using such
detection models makes it difficult for the robot to improve its
recognition performance, as it would not even discover several
objects in the first place. Thus, in our robotic experiments,
we utilize a saliency and depth-based method to discover
potential objects near the robot, independent of the recognition
difficulty for the onboard DCNN. This ROI extraction method
works effectively for our campus experiments even though
there are many visually hard-to-detect objects. Its performance,
however, may degrade when there is a lot of visual clutter
and/or the target objects are not salient, which may result in
inaccurate localization or missing objects. Therefore, as part of
future work, one could develop a localization/detection model
that can discover visually-challenging targets across different
scenarios, and integrate our CoMRF-based approach with it.

IX. CONCLUSIONS

In this paper, we introduced a training-free object similarity
measure, which is based on the correlation of feature vectors
provided by a DCNN classifier, to improve robotic visual clas-
sification under limited resources. We first probabilistically an-
alyzed the correlation coefficient of the feature vectors of a pair
of images from an already-trained DCNN classifier, showing
that it provides robust information on their similarity, without
requiring any additional training. Based on this analysis, we
built a correlation-based Markov Random Field (CoMRF) for
joint object labeling. Given a query budget and a motion
budget, we then proposed a query-motion co-optimization
framework to jointly optimize the robot’s query, path, and
visual labeling, based on our CoMRF. By using a large COCO-
based test set, a large-scale drone imagery dataset, and a
large indoor scene dataset, our extensive evaluations showed
that our proposed object similarity metric and the resulting
CoMRF-based joint labeling and co-optimization methodology
significantly improves the overall classification performance.
Our several real-world robotic experiments on our campus
further showcased the superior performance of our proposed
CoMRF-based query-motion co-optimization approach.
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APPENDIX A
CONSTRUCTED IMAGE CLASSIFICATION DATASET

In this dataset, there is a total of 39 object classes consisting
of a variety of commonly-seen objects, and a total of 76,505
images, which are collected from COCO detection dataset [31]
and ImageNet [32]. Most of the images are obtained from the
COCO detection dataset by extracting object image patches
based on the bounding box annotations, in order to better
represent what the robot would see in real-world visual tasks.
The complete list of object classes, and the numbers of images
in the training, validation, and test sets are given in Table IV.

APPENDIX B
DESCRIPTIONS OF EXISTING METHODS INCLUDED IN THE

PERFORMANCE COMPARIONS

We provide detailed descriptions for the existing methods
included in the performance comparisons in Sec. IV.

Joing Labeling
Independent: This is a benchmark method that directly uses

the trained DCNN base classifier’s output, without considering
any correlation.

Cao et al. [19]: This method learns image similarity using
hand-crafted features (e.g., SIFT) via a Bayesian approach,
after which a propagation algorithm jointly labels all the
nodes. Since their algorithm requires an initial set of correct
labels, we provide it with 20% of the ground-truth labels in
the comparison of Table II.

Hayder et al. [20]: This method uses a Conditional Random
Field (CRF) to jointly label nodes, where the edge potential is
given by a similarity measure learned from data using hand-
crafted features (e.g., Local Binary Pattern) and the node
potential is based on the classifier output. To compare this
method on our test set, we train their similarity measure on
our dataset for the edge potential of their CRF and use our
DCNN base classifier’s output for the node potential.

Query Selection
Independent: This is a benchmark method that selects the

nodes greedily based on their respective individual uncertainty
(based on the base classifier’s output).

http://image-net.org/explore
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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Object class Training Validation Test
person 1000 500 500
bicycle 1000 500 500

car 1000 500 500
motorcycle 905 400 300

airplane 1000 500 500
bus 1000 500 300

train 1000 500 500
truck 1000 500 500
boat 1000 500 500

bench 1000 500 500
bird 1000 500 500
cat 1000 500 500
dog 1000 500 500

horse 1000 500 500
sheep 1000 500 500
cow 1000 500 500

elephant 1000 500 500
zebra 1000 500 500
giraffe 1000 500 500

backpack 950 500 400
umbrella 700 450 300
suitcase 1000 500 300
bottle 1000 500 500
cup 1000 500 500

banana 1000 500 500
apple 1000 500 500

sandwich 1000 500 500
orange 1000 500 500
broccoli 1000 500 500
carrot 1000 500 500
pizza 1000 500 500
donut 1000 500 500
cake 1000 500 500
chair 1000 500 500

potted plant 1000 500 500
laptop 1000 500 500
book 1000 500 500
clock 1000 500 500

teddy bear 1000 500 500
total 38555 19350 18600

TABLE IV: List of object classes in our dataset, along with the
numbers of images in the training/validation/test sets.

Wang et al. [25]: Given an undirected probabilistic graphi-
cal model (e.g., MRF), this approach selects the nodes to query
such that a lower bound of the expected label estimation error
of the remaining nodes is minimized.

APPENDIX C
REGION-OF-INTEREST (ROI) EXTRACTION ALGORITHM

In the robotic experiments of Sec. VII, we used a simple
saliency and depth-based algorithm to find coarse ROIs from
the captured images, each of which may contain an object-of-
interest. The algorithm is summarized in Alg. 2.

APPENDIX D
BACKGROUND REJECTION CLASSIFIER

Given an image patch from the ROI extraction algorithm,
in order to determine whether this image patch does contain
an object-of-interest (e.g., an object that belongs to one of the
39 classes vs. a background wall), we train a binary classifier
using the AlexNet architecture.

We build the training set for this binary classifier as follows.
For objects-of-interest, we use all the training images from
our large image classification dataset. For background image
patches, we randomly sample image patches that do not

Algorithm 2: Region-of-interest extraction

INPUT: Image I and its depth map D with Nw and Nh being its width and
height (in number of pixels), an upper bound for depth values dmax.

STEP 1: Compute a saliency map S for I, using the method of [40].

STEP 2: Let Pd = {(i, j) |D(i, j) ∈ (0,dmax)}, which is the set of pixel
indices with valid depth values.

STEP 3: Let Ps = {(i, j) |Si, j ≥ Sth, (i, j) ∈ Pd}, where Sth is a saliency
threshold. In our implementation, we set it to be the 75th percentile of
the saliency values of the pixels in Pd .

STEP 4: Let IROI be a ROI indicator map for I. We set IROI(i, j) = 1
if(i, j) ∈ Ps and 0 otherwise. IROI is then dilated with a 10×10 kernel.

STEP 5: Find all the connected components (of positive-valued pixels) in
IROI . A tight bounding box is drawn around each connected component,
and then expanded by increasing its height and width in proportion to
the dimensions of the enclosed connected component. The box’s height
and width are then further expanded by 60 pixels.

STEP 6: Among all the boxes, two boxes are merged under any of the
following two conditions: 1) the ratio between their intersected area
over the union of their areas is above 0.2, or 2) the ratio between their
intersected area over the minimum of their areas is above 0.9. The
boxes after the merging are the final ROIs.

overlap with any objects-of-interest from the COCO dataset. A
validation set is built similarly. The trained binary classifier has
an accuracy of 0.950 on the validation set for distinguishing
between object-of-interest images and background images.
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