Problem 1. Consider the following switched system
\[\dot{x} = A_\sigma x, \quad x(t) \in \mathbb{R}^n, \quad \sigma(t) \in \{1, 2\} \quad (1) \]
where the matrix \(A_1 \) is asymptotically stable and the matrix \(A_2 \) is unstable. Show that there exist constants \(\tau_D, \alpha > 0 \) such that (1) is uniformly asymptotically stable for any set of switching signals \(S \) for which
\[N_\sigma(\tau, t) \leq N_0 + \frac{t - \tau}{\tau_D}, \quad \text{and} \quad T_\sigma(\tau, t) \leq T_0 + \alpha(t - \tau), \quad \forall t > \tau \geq 0, \]
for every \((\sigma, x) \in S\). In the above equation, \(N_\sigma(\tau, t) \) denotes the number of discontinuities of \(\sigma \) in the open interval \((\tau, t)\) and \(T_\sigma(\tau, t) \) denotes the amount of time in the interval \((\tau, t)\) that \(\sigma \) is equal to 2, i.e., \(T_\sigma(\tau, t) := \int_\tau^t (\sigma(s) - 1) ds \).

Problem 2. Consider the following switched system
\[\dot{x} = A_\sigma x \quad x = x^- \quad (\sigma, x) \in S[\chi] \]
where \(S[\chi] \) is a current-state dependent set of switching signals for which \(x(t) \in \chi_{\sigma(t)} \), \(\forall t \geq 0 \), with
\[\chi_q := \{ z \in \mathbb{R}^n : E_q [\hat{z}] \geq 0 \} \quad \chi_q \cap \chi_p \subset \{ z \in \mathbb{R}^n : f'_{pq} [\hat{z}] = 0 \}, \quad \forall p, q \in Q. \]
The following was proved in class:

Theorem 1. Suppose that there exist symmetric matrices \(P_q \in \mathbb{R}^{(n+1) \times (n+1)}, \forall q \in Q \); vectors \(k_{pq} \in \mathbb{R}^{n+1}, \forall p, q \in Q \); constants \(\epsilon, \delta > 0 \); and symmetric matrices with nonnegative entries \(U_q, W_q, \forall q \in Q \) (not necessarily positive definite) such that (1) for every \(p, q \in Q \) for which \(\chi_q \) and \(\chi_p \) have a common boundary we have that
\[P_q - P_p = k_{pq} f'_{pq} + f_{pq} k_{pq} \]
and (2) for every \(q \in Q \)
\[\Pi^T A_q^T \Pi P_q + P_q \Pi^T A_q \Pi + E_q^T U_q E_q \leq -\epsilon \Pi^T \Pi \quad \quad P_q - E_q^T W_q E_q \geq \delta \Pi^T \Pi \]
where \(\Pi := [I_{n \times n}, 0_{1 \times n}] \), then the origin is uniformly exponentially stable. \(\square \)

Generalize this result for a switched system of the form
\[\dot{x} = A_\sigma x + b_\sigma \quad x = x^- \quad (\sigma, x) \in S[\chi]. \]
where each \(b_q, q \in Q \) is a constant vector.