Index

<table>
<thead>
<tr>
<th>Action</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>11</td>
</tr>
<tr>
<td>action space</td>
<td>21, 38, 78, 80, 93, 111, 117, 121</td>
</tr>
<tr>
<td></td>
<td>mixed, 33, 97</td>
</tr>
<tr>
<td></td>
<td>pure, 33</td>
</tr>
<tr>
<td>advertising campaign game</td>
<td>11–13, 17, 32</td>
</tr>
<tr>
<td>alternate play</td>
<td>13, 23, 67</td>
</tr>
<tr>
<td>battle of the sexes game</td>
<td>96, 100, 103, 105</td>
</tr>
<tr>
<td>behavioral policy</td>
<td>79</td>
</tr>
<tr>
<td>best-response equivalent games</td>
<td>98, 99, 119</td>
</tr>
<tr>
<td>bilateral symmetric game</td>
<td>129</td>
</tr>
<tr>
<td>bimatrix game</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>mixed, 97</td>
</tr>
<tr>
<td>Brouwer’s fixed-point Theorem</td>
<td>98, 114</td>
</tr>
<tr>
<td>budget balanced utility</td>
<td>133</td>
</tr>
<tr>
<td>chicken game</td>
<td>13–15, 18</td>
</tr>
<tr>
<td>closed-loop game</td>
<td>16</td>
</tr>
<tr>
<td>closed-loop policy</td>
<td>13</td>
</tr>
<tr>
<td>computational complexity</td>
<td>27, 160</td>
</tr>
<tr>
<td>congestion game</td>
<td>130</td>
</tr>
<tr>
<td>conservative force</td>
<td>124</td>
</tr>
<tr>
<td>convex</td>
<td></td>
</tr>
<tr>
<td>combination</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>hull, 46</td>
</tr>
<tr>
<td></td>
<td>set, 46, 55</td>
</tr>
<tr>
<td>cooperative solution</td>
<td>6</td>
</tr>
<tr>
<td>cost-to-go</td>
<td></td>
</tr>
<tr>
<td>continuous time</td>
<td>166, 170</td>
</tr>
<tr>
<td>discrete time</td>
<td>156, 176</td>
</tr>
<tr>
<td>crime deterrence game</td>
<td>32</td>
</tr>
<tr>
<td>CVX, 56</td>
<td></td>
</tr>
<tr>
<td>decoupled game</td>
<td>128</td>
</tr>
<tr>
<td>difference Riccati equation</td>
<td>162</td>
</tr>
<tr>
<td>differential game</td>
<td>151</td>
</tr>
<tr>
<td>one player</td>
<td>165–173</td>
</tr>
<tr>
<td>pursuit evasion</td>
<td>192–193</td>
</tr>
<tr>
<td>variable termination time</td>
<td>154, 170–171, 191</td>
</tr>
<tr>
<td>zero sum</td>
<td>187–193</td>
</tr>
<tr>
<td>differential Riccati equation</td>
<td>170</td>
</tr>
<tr>
<td>directionally-local minimum</td>
<td>117, 119</td>
</tr>
<tr>
<td>discount factor</td>
<td>14</td>
</tr>
<tr>
<td>distributed resource allocation</td>
<td>132</td>
</tr>
<tr>
<td>distributed welfare games</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>budget balanced, 133</td>
</tr>
<tr>
<td>distribution rule</td>
<td>133</td>
</tr>
<tr>
<td>dominant saddle-point equilibrium</td>
<td>58</td>
</tr>
<tr>
<td>dominating policy</td>
<td></td>
</tr>
<tr>
<td>strictly, 57</td>
<td></td>
</tr>
<tr>
<td>weakly, 58</td>
<td></td>
</tr>
<tr>
<td>dummy game</td>
<td>121, 127</td>
</tr>
<tr>
<td>dynamic game</td>
<td></td>
</tr>
<tr>
<td>continuous time</td>
<td>151</td>
</tr>
<tr>
<td>one player, 165–173</td>
<td></td>
</tr>
<tr>
<td>zero sum, 187–193</td>
<td></td>
</tr>
<tr>
<td>discrete time</td>
<td>149</td>
</tr>
<tr>
<td>one player, 155–164</td>
<td></td>
</tr>
<tr>
<td>zero sum, 175</td>
<td></td>
</tr>
<tr>
<td>dynamic programming</td>
<td>73, 82, 160</td>
</tr>
<tr>
<td>continuous time</td>
<td></td>
</tr>
<tr>
<td>one player, 166–168</td>
<td></td>
</tr>
<tr>
<td>zero sum, 187–189</td>
<td></td>
</tr>
<tr>
<td>discrete time</td>
<td></td>
</tr>
<tr>
<td>one player, 156</td>
<td></td>
</tr>
<tr>
<td>zero sum, 176</td>
<td></td>
</tr>
<tr>
<td>exercise</td>
<td></td>
</tr>
<tr>
<td>best-response equivalence</td>
<td>101–102</td>
</tr>
<tr>
<td>chess</td>
<td>75</td>
</tr>
<tr>
<td>convex set</td>
<td>61</td>
</tr>
<tr>
<td>CVX, 60–61, 85–89</td>
<td></td>
</tr>
<tr>
<td>extensive form</td>
<td>75</td>
</tr>
<tr>
<td>behavioral policies</td>
<td>85–90</td>
</tr>
<tr>
<td>behavioral saddle-point equilibrium</td>
<td>85–90</td>
</tr>
<tr>
<td>feedback game</td>
<td>70, 75</td>
</tr>
<tr>
<td>mixed saddle-point equilibria</td>
<td>83–85</td>
</tr>
<tr>
<td>perfect information</td>
<td>75</td>
</tr>
<tr>
<td>recursive computation</td>
<td>75</td>
</tr>
<tr>
<td>fictitious play</td>
<td>143–144</td>
</tr>
<tr>
<td>linear quadratic game</td>
<td>163</td>
</tr>
<tr>
<td>MATLAB, 60–61, 85–89, 108–110, 141–145</td>
<td></td>
</tr>
<tr>
<td>mixed Nash equilibrium computation</td>
<td>108–110</td>
</tr>
</tbody>
</table>
mixed saddle-point equilibrium, 50–51, 61
mixed saddle-point equilibrium computation
 graphical method, 59–60
 linear program, 60–61
Nash equilibrium, 102
 completely mixed, 110
 multi-stage games, 18
 multiple, 17–18
 order interchangeability, 100–102
potential game, 124–126, 139–145
 bilateral symmetric game, 140–141
 bimatrix game, 124–126
 congestion game, 145
 decoupled game, 139, 145
dummy game, 145
mixed policies, 125–126
prisoners’ dilemma game, 124–126
Sudoku, 139–143, 145
sum game, 126
wonderful life utility, 141
quadratic game
 zero sum, 44, 180, 189
resistive circuit design game, 40–42
robust design, 40–42
rock-paper-scissors game, 50
saddle-point equilibria, 9, 28–29, 40–44
 alternate play, 29
 graphical method, 83–85
 mixed policies, 40–42, 79
 policy domination, 83–85
saddle-point value, 44
security level, 28–29, 102
security policies, 40–43
state-feedback policy
 continuous time, 171–173
 discrete time, 163–164
 symmetric games, 50–51
tic-tac-toe game, 182–185
extensive form game representation, 12, 63–75
 multi stage, 149
feedback behavioral saddle-point equilibrium, 81, 82
feedback multi-stage game, 70, 82, 83
feedback pure saddle-point equilibrium, 70, 72, 73
fictitious play, 136
 belief, 136
 best response, 137
full information, 3
game-over state, 154, 170
 global minimum, 117–119
 global welfare cost, 132
 separable, 132
H-infinity norm
 continuous time, 191
 discrete time, 181
half space, 47
Hamilton-Jacobi-Bellman-Isaac equation, 187, 189–191, 193
Hamilton-Jacobi-Bellman equation, 167, 169, 170
hyperplane, 47
 inwards-pointing normal, 47
 normal, 47
identical interests game, 95, 117, 119, 121, 127
induced norm
 continuous time, 190
 discrete time, 181
infimum, 38, 94, 112
infinite horizon game, 150, 152
information
 set, 64, 73, 74, 79, 81, 82
 structure, 3, 12, 64, 150, 156, 159, 160, 166–168, 171, 178, 181, 188, 189, 191, 192
 state feedback, 175, 187
integral quadratic cost, 169, 189
lady in the lake game, 17
large population paradigm, 32
linear program, 55
linear quadratic differential game
 one player, 169–170
 zero sum, 189–191
linear quadratic dynamic game
 continuous time
 one player, 169–170
 zero sum, 189–191
 discrete time
 one player, 162–163
 zero sum, 179–185
marginal contribution utility, 132
MATLAB
 linprog, 55
 max, 23
 min, 23
 quadprog, 106
fictitious play, 137–139, 143–144
improvement path, 135–136, 141–143, 145
solving one-player finite game, 161–162
solving potential game, 135–139, 141–145
solving zero-sum finite game, 179
tic-tac-toe game, 182–185
matrix form game representation, 66
maximally reduced game, 58
maximum, 39
minimax
 pair, 94
 policy tuple, 112
Minimax Theorem, 36, 45–51, 82
minimum, 38
mixed equilibrium
 computation using linear equation, 105
 computation using quadratic program, 106
mixed policy, 31, 33, 77, 97, 113, 114
mixed saddle-point equilibrium computation
 graphical method, 53
 linear program, 54
mixed value, 50, 78
monotone function, 100
multi-stage game, 13, 64, 70
multiplayer game, 111
Nash equilibrium, 5, 6, 9, 94, 112, 113, 117, 119
 admissible, 96, 112, 118
 completely mixed, 104, 105, 114
 computation for potential games, 134–139
 inner point, 104, 114
 mixed, 98, 114
 pure, 95
Nash outcome, 94, 112
 mixed, 98
network routing game, 8–10, 36
non-feedback game, 83
non-zero-sum game, 5
noncooperative game, 4, 95
open-loop game, 16, 150, 152
open-loop policy, 12, 155
 continuous time, 165, 166, 170
 one player, 167
 discrete time, 156
 one player, 157, 159
optimization of linear functions over simplices, 35
order interchangeability property, 27, 39, 78, 81, 83, 97, 98, 118
Pareto-optimal solution, 7
partially known matrix game, 28
partial information, 3
path
 improvement, 134, 135
 mixed, 136
 pure, 134
perfect information game, 68, 74
perfect state-feedback game, 151, 152
policy, 11
potential, 121, 124
 exact, 119, 122
 ordinal, 119
potential game, 121
 bimatrix, 120
 exact, 119, 120, 122
 interval action spaces, 122
 mixed, 120
 ordinal, 119
 pure, 120
price of anarchy, 134
prisoners’ dilemma game, 95, 100
probability simplex, 33, 35
proofs
 direct, 26
 equivalence, 26, 123
pure game in normal form, 113
pure policy, 64, 77
pursuit-evasion game, 16, 192–193
quadratic program, 106
 indefinite, 106
rationality, 3
regret, 23, 24, 94, 95, 112
repeated games, 13
repeated game paradigm, 32
resistive circuit design game, 39–42
risk averse solution, 22
robust design, 7–8, 39
rock-paper-scissors game, 31, 37, 40, 50–51, 105
rope-pulling game, 4–7
saddle-point equilibrium, 9, 38, 39, 94
 behavioral, 80, 81
 completely mixed, 104, 105
 dominant, 58
 inner point, 104
 mixed, 34, 36, 50, 78
 pure, 25, 26, 72
 recursive computation, 68, 73, 82
 state feedback, 177, 181, 187, 190, 191
saddle-point value, 38
 behavioral, 80, 81
 mixed, 34, 36
 pure, 25, 26
secure solution, 22
security level, 22, 38, 39, 94, 112
 average, 33, 34, 36, 45, 98, 114
 pure, 95
security policy, 6, 9, 22, 38, 39, 94, 112
 behavioral, 81
 mixed, 33, 34, 36, 50, 78, 98
 pure, 95
Separating Hyperplane Theorem, 47
Shapley value utility, 133
simultaneous play, 12, 24
single-stage game, 13, 68
stage-additive cost, 150, 155, 175
 quadratic, 162, 180
state-feedback game, 151, 152
state-feedback policy, 155
 continuous time, 165, 171, 187, 190, 191
 one player, 167
 discrete time, 177, 181
 one player, 158, 159
state of the game, 149
state space, 149
Sudoku, 130
sum game, 122
supermodular cost, 134
supremum, 38, 39, 94, 112
symmetric game, 50–51
tax-payers auditing game, 32
tensor, 113
terminal cost, 150
Theorem of the Alternative for Matrices, 47
tic-tac-toe game, 161, 182–185
time-consistent policy, 158, 159, 162, 167, 171
value function
 continuous time, 166, 170
 discrete time, 156
vehicle routing game
 heterogeneous, 132
 homogeneous, 130
war deterrence game, 32
war of attrition game, 13–15, 18
Weierstrass’ Theorem, 34, 35
wireless power control game, 128–129
wonderful life utility, 132, 133
zebra in the lake game, 16–17, 152, 154
zero-sum game, 4, 93, 94
 matrix, 21