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1 Introduction1.1 Contents of this packageThe package at hand, Version 3.1 of LVQ PAK, contains amendments to ear-lier versions, developed to attack large problems. The most important of themis the possibility to read data �les in pieces (see Section 7).This package contains all programs necessary for the correct application ofcertain LVQ (Learning Vector Quantization) algorithms in an arbitrary sta-tistical classi�cation or pattern recognition task, as well as a program for themonitoring of the codebook vectors at any time during the learning process[Kohonen et al. 1992] [Kohonen 1995].NEW BOOK:Complete description, with over 1500 literature references, of the SOM (Self-Organizing Map) and LVQ algorithms can be found in the recently publishedbook Kohonen: Self-Organizing Maps (Springer Series in Information Sciences,Vol 30, 1995). 362 pp.To this package four options of the algorithms, the LVQ1 (as described in[Kohonen 1990b]), the LVQ2.1 (as speci�ed, e.g., in [Kohonen 1990a] and[Kohonen 1990c]), the LVQ3 (as described in [Kohonen 1990b]) and the OLVQ1([Kohonen 1992]), have been selected.NOTE: This program package is copyrighted in the sense that it may beused freely for scienti�c purposes. However, the package as a whole, or partsthereof, cannot be included or used in any commercial application withoutwritten permission granted by its producents. No programs contained in thispackage may be copied for commercial distribution.This program package is distributed in the hope that it will be useful, butwithout any warranty. No author or distributor accepts responsibility toanyone for the consequences of using it or for whether it serves any particularpurpose or works at all, unless he says so in writing.1.2 PrecautionsFew traditional 'neural network' algorithms have been meant to directly oper-ate on raw data, such as pixels of an image, or samples of speech waveformspicked up from the time domain. Most pattern recognition tasks are precededby a preprocessing transformation that extracts invariant features from theraw data, such as spectral components of acoustical signals, or elements ofco-occurrence matrices of pixels. Selection of a proper preprocessing trans-formation for a particular task usually requires careful consideration, and nogeneral rules can be given here. It is cautioned that if this LVQ-package is4



used for benchmarking against other methods, a proper preprocessing shouldalways be used.In performing statistical experiments, a separate data set for training, andanother separate data set for testing must be used. If the number of requiredlearning steps is bigger than the number of training samples available, thesamples must be used re-iteratively in training, either in a cyclical or in arandomly-sampled order.1.3 The LVQ-algorithms1.3.1 The LVQ1Assume that a number of 'codebook vectors' mi (free parameter vectors) areplaced into the input space to approximate various domains of the input vectorx by their quantized values. Usually several codebook vectors are assigned toeach class of x values, and x is then decided to belong to the same class towhich the nearest mi belongs. Letc = argmini fjjx�mijjg (1)de�ne the nearest mi to x, denoted by mc.Values for the mi that approximately minimize the misclassi�cation errors inthe above nearest-neighbor classi�cation can be found as asymptotic valuesin the following learning process. Let x(t) be a sample of input and let themi(t) represent sequences of the mi in the discrete-time domain. Starting withproperly de�ned initial values (cf. Sec. 2.1), the following equations de�ne thebasic LVQ1 process:mc(t+ 1) = mc(t) + �(t)[x(t)�mc(t)]if x and mc belong to the same class,mc(t+ 1) = mc(t)� �(t)[x(t)�mc(t)] (2)if x and mc belong to di�erent classes,mi(t+ 1) = mi(t) for i 6= c.Here 0 < �(t) < 1, and �(t) may be constant or decrease monotonically withtime. In the above basic LVQ1 it is recommended that � should initially besmaller than 0.1; linear decrease in time is used in this package. In Version 3.1it is possible to use also an inverse-time type function (see Section 5.3). (Inthe optimized LVQ1, cf. Sec. 1.3.5, di�erent values of � are used.)1.3.2 The LVQ2.1The classi�cation decision in this algorithm is identical with that of the LVQ1.In learning, however, two codebook vectors, mi and mj that are the nearest5



neighbors to x, are now updated simultaneously. One of them must belongto the correct class and the other to a wrong class, respectively. Moreover, xmust fall into a zone of values called 'window', which is de�ned around themidplane of mi and mj. Assume that di and dj are the Euclidean distancesof x from mi and mj, respectively; then x is de�ned to fall in a 'window' ofrelative width w if min(didj ; djdi ) > s, where s = 1� w1 + w: (3)A relative 'window' width w of 0.2 to 0.3 is recommendable.Algorithm: mi(t+ 1) = mi(t)� �(t)[x(t)�mi(t)],mj(t+ 1) = mj(t) + �(t)[x(t)�mj(t)], (4)where mi and mj are the two closest codebook vectors to x, whereby x and mjbelong to the same class, while x and mi belong to di�erent classes, respec-tively. Furthermore x must fall into the 'window'.1.3.3 The LVQ3The LVQ2 algorithm was based on the idea of di�erentially shifting the decisionborders towards the Bayes limits, while no attention was paid to what mighthappen to the location of the mi in the long run if this process were continued.Therefore it seems necessary to include corrections that ensure that the micontinue approximating the class distributions, at least roughly. Combiningthese ideas, we now obtain an improved algorithm that may be called LVQ3:mi(t+ 1) = mi(t)� �(t)[x(t)�mi(t)],mj(t+ 1) = mj(t) + �(t)[x(t)�mj(t)],wheremi andmj are the two closest codebook vectors to x, wherebyx and mj belong to the same class, while x and mi belong to di�er-ent classes, respectively; furthermore x must fall into the 'window';mk(t+ 1) = mk(t) + ��(t)[x(t)�mk(t)], (5)for k 2 fi; jg, if x;mi, and mj belong to the same class.In a series of experiments, applicable values of � between 0.1 and 0.5 werefound. The optimal value of � seems to depend on the size of the window, beingsmaller for narrower windows. This algorithm seems to be self-stabilizing, i.e.,the optimal placement of the mi does not change in continual learning.6



1.3.4 Di�erences between the basic LVQ1, LVQ2.1 and LVQ3The three options for the LVQ-algorithms, namely, the LVQ1, the LVQ2.1 andthe LVQ3 chosen to this package, yield almost similar accuracies, although adi�erent philosophy underlies each. The LVQ1 and the LVQ3 de�ne a morerobust process, whereby the codebook vectors assume stationary values evenafter extended learning periods. For the LVQ1 the learning rate can approx-imately be optimized for quick convergence (as shown in Sec. 1.3.5). In theLVQ2.1, the relative distances of the codebook vectors from the class bordersare optimized whereas there is no guarantee for the codebook vectors beingplaced optimally to describe the forms of the class borders. Therefore theLVQ2.1 should only be used in a di�erential fashion, using a small value oflearning rate and a relatively low number of training steps.1.3.5 The optimized-learning-rate LVQ1 (OLVQ1)The basic LVQ1 algorithm is now modi�ed in such a way that an individuallearning rate �i(t) is assigned to each mi. We then get the following discrete-time learning process. Let c be de�ned by Eq. (1). Thenmc(t+ 1) = mc(t) + �c(t)[x(t)�mc(t)]if x is classi�ed correctly,mc(t+ 1) = mc(t)� �c(t)[x(t)�mc(t)] (6)if the classi�cation of x is incorrect,mi(t+ 1) = mi(t) for i 6= c.Next we address the problem of whether the �i(t) can be determined optimallyfor fastest possible convergence of (6). If we express (6) in the formmc(t+ 1) = [1� s(t)�c(t)]mc(t) + s(t)�c(t)x(t) (7)where s(t) = +1 if the classi�cation is correct and s(t) = �1 if the classi�cationis wrong, we �rst directly see that mc(t) is statistically independent of x(t).It may also be obvious that the statistical accuracy of the learned codebookvector values is optimal if the e�ects of the corrections made at di�erent times,when referring to the end of the learning period, are of equal weight. Noticethat mc(t + 1) contains a "trace" from x(t) through the last term in (7), and"traces" from the earlier x(t0); t0 = 1; 2; : : : ; t�1 throughmc(t). The (absolute)magnitude of the last "trace" from x(t) is scaled down by the factor �c(t), and,for instance, the "trace" from x(t�1) is scaled down by [1�s(t)�c(t)]��c(t�1).Now we �rst stipulate that these two scalings must be identical:�c(t) = [1� s(t)�c(t)]�c(t� 1) : (8)7



If this condition is then made to hold for all t, by induction it can be shownthat the "traces" collected up to time t from all the earlier x will be scaleddown by an equal amount at the end, and thus the "optimal" values of �i(t)are determined by the recursion�c(t) = �c(t� 1)1 + s(t)�c(t� 1) : (9)Any user of the LVQ PAK can easily become convinced about that (9) reallyprovides for fast convergence. A precaution must be made, however: since�c(t) can also increase, it is especially important that it does not rise abovethe value 1; the learning program olvq1 in this package is even more restrictive,it never allows any �i to rise above its initial value. With this provision, theinitial values of the �i can be selected rather high, say, 0.3, whereby learningis signi�cantly speeded up, especially in the beginning, and the mi quickly �ndtheir approximate asymptotic values.It must be warned, too, that (9) is not applicable to the LVQ2, since therebythe �i, on the average, would not decrease, and the process would not converge.2 General considerationsIn the LVQ algorithms, vector quantization is not used to approximate to den-sity functions of the class samples (described, e.g., in [Makhoul et al. 1985]),but to directly de�ne the class borders according to the nearest-neighbor rule.The accuracy achievable in any classi�cation task to which the LVQ algorithmsare applied and the time needed for learning depend on the following factors:� an approximately optimal number of codebook vectors assigned to eachclass and their initial values,� the detailed algorithm, a proper learning rate applied during the steps,and a proper criterion for the stopping of learning.2.1 Initialization of the codebook vectorsIn many practical applications such as speech recognition, even when the apriori probabilities for the samples falling in di�erent classes are very di�erent,a very good strategy already is to start with the same number of codebookvectors in each class. An upper limit to the total number of codebook vectorsis set by the restricted recognition time and computing power available.Since the class borders are represented piecewise linearly by segments of mid-planes between codebook vectors of neighboring classes (borders of the so-called Voronoi tessellations), it may seem to be an even better strategy for8



optimal approximation of the borders that the average distances between theadjacent codebook vectors (which depend on their numbers per class) shouldbe the same on both sides of the borders. Then, at least if the class distribu-tions were symmetric, this would mean that the average shortest distances ofthe codebook vectors (or alternatively, the medians of the shortest distances)should be the same in every class. Because the �nal placement of the codebookvectors is not known until at the end of the learning process, their distancesand thus their optimal numbers cannot be determined before that. This kindof assignment of the codebook vectors to the various classes can therefore onlybe made iteratively, for which there is a provision (program named balance) inthis package.Once the tentative numbers of the codebook vectors for each class have been�xed, for their initial values one can use �rst samples of the real trainingdata picked up from the respective classes. Since the codebook vectors shouldalways remain inside the respective class domains, for the above initial valuestoo one can only accept samples that are not misclassi�ed. In other words, asample is �rst tentatively classi�ed against all the other samples in the trainingset, for instance by the k-nearest-neighbor (KNN) method, and accepted for apossible initial value only if this tentative classi�cation is the same as the classidenti�er of the sample. (In the learning algorithm itself, however, no samplesmust be excluded; they are thereby applied independent of whether they fallon the correct side of the class border or not.)In the program balance, the medians of the shortest distances between theinitial codebook vectors of each class are �rst computed. If the distances turnout to be very di�erent for the di�erent classes, new codebook vectors maybe added to or old ones deleted from the deviating classes, and a tentativetraining cycle based on the optimized-learning-rate LVQ1 algorithm (cf. Sec.1.3.5) is run once. This procedure can be iterated a few times. (The exactnumbers of codebook vectors are not critical; the shortest distances may di�erby a factor of, say, 2 but not signi�cantly more.)For good piecewise linear approximation of the borders, the medians of theshortest distances between the codebook vectors should also be somewhatsmaller than the standard deviations (= square roots of variances) of the in-put samples in all the respective classes. These �gures are displayed by theprogram mindist for checking.2.2 LearningIt is recommended that learning be always started with the optimized LVQ1algorithm (cf. Sec. 1.3.5), which has very fast convergence; its asymptoticrecognition accuracy will be achieved after a number of learning steps thatis about 30 to 50 times the total number of codebook vectors. If the initiallearning period, as described in Sec. 2.1, is included in the initialization of the9



codebook vectors, the optimized LVQ1 algorithm can be continued from thosecodebook vector values that have been obtained in the initialization phase.Often the optimized LVQ1 learning phase alone may be su�cient for practicalapplications, especially if the learning time is critical. However, in an attemptto improve recognition accuracy, one may continue with either the basic LVQ1,the LVQ2.1 or the LVQ3, using a low initial value of learning rate, which isthen the same for all the classes.2.3 Stopping ruleIt often happens that the neural-network algorithms 'overlearn'; i.e., whenlearning and test phases are alternated, the recognition accuracy is �rst im-proved until an optimum is reached; after that, when learning is continued, theaccuracy starts to decrease slowly. A possible explanation in the present caseis that when the codebook vectors become very speci�cally tuned to the train-ing data, the ability of the algorithm to generalize for new data su�ers fromthat. It is therefore necessary to stop the learning process after some 'optimal'number of steps, say, 50 to 200 times the total number of the codebook vectors(depending on particular algorithm and learning rate). Such a stopping rulecan only be found by experience, and it also depends on the input data.Let us recall that the optimized-learning-rate LVQ1 may generally be stoppedafter a number of steps that is 30 to 50 times the number of codebook vectors(c.f. Sec. 2.2).3 Installation of the program packageIn the implementation of the LVQ programs we have tried to use as simple acode as possible. Therefore the programs are supposed to compile in variousmachines without any speci�c modi�cations made on the code. All programshave been written in ANSI C.No graphics are included in this package so that the programs may be runequally well in all computers ranging from PC:s to Cray supercomputers. Themonitoring program sammon generates a list of coordinates of points (and anencapsulated postscript code for visual inspection).3.1 Getting the program codeThe latest version { currently Version 3.1 { of the lvq pak-program pack-age is available for anonymous ftp user at the Internet ftp-site cochlea.hut.�(130.233.168.48). All programs and this documentation are stored in the direc-tory /pub/lvq pak. The �les are in multiple formats to ease their downloadingand compiling. 10



The directory /pub/lvq pak contains the following �les:README { short description of the lvq pak packagelvq doc.ps { this document in c
PostScript formatlvq doc.ps.Z { same as above but compressedlvq doc.txt { this document in ASCII formatlvq p3r1.exe { self-extracting MS-DOS archive �lelvq pak-3.1.tar { UNIX tape archive �lelvq pak-3.1.tar.Z { same as above but compressedAn example of FTP access is given belowunix> ftp cochlea.hut.� (or 130.233.168.48)Name: anonymousPassword: <your email address>ftp> cd /pub/lvq pakftp> binaryftp> get lvq pak-3.1.tar.Zftp> quitunix>3.2 Installation in UNIXThe archive �le lvq pak-3.1.tar.Z is intended to be used when installing lvq pakin UNIX systems. It needs to be uncompressed to get the �le lvq pak-3.1.tar.If your system doesn't support the BSD compress utility, you may downloadthe uncompressed �le directly.The tar archive contains the source code �les, make�les, and example data setsof the package, all in one subdirectory called lvq pak-3.1. In order to createthe subdirectory and extract all the �les you should use the command tar xovflvq pak-3.1. (The switches of tar unfortunately vary, so you may need omit the'o'.)The package contains a make�le called make�le.unix for compilation in UNIXsystems. Before executing the make command, it has to be copied to the namemake�le. The �le, make�le.unix, should work as such in most systems.We have written the source code for an ANSI standard C compiler and environ-ment. If the cc compiler of your system doesn't ful�ll these requirements, werecommend you to port the public domain GNU gcc compiler in your computer.When using gcc, the make�le macro de�nition CC=cc has to be changed ac-cordingly to CC=gcc. The make�le also contains some other platform speci�cde�nitions, like optimizer and linker switches, that may need to be revised.In order to summarize, the installation procedure is as follows:> uncompress lvq pak-3.1.tar.Z> tar xovf lvq pak-3.1.tar 11



> cd lvq pak-3.1> cp make�le.unix make�le> makeAfter a successful make of the executables, you may test them by executing> make examplewhich performs the commands as listed in section \5.4 Using the commandlines (an example)".3.3 Installation in DOSThe archive �le lvq p3r1.exe is intended to be used when installing lvq pak inMS-DOS computers. It is a self-extracting packed archive compatible with thepublic domain lha utility. If your system supports UNIX tar archiving andcompress �le compressing utilities, you may as well use lvq pak-3.1.tar andlvq pak-3.1.tar.Z archives.The lvq p3r1.exe archive contains the source code �les, make�les, and exampledata sets of the package, all in one subdirectory called lvq pak.3r1. In orderto create the subdirectory and extract all the �les simply use the commandlvq p3r1.The package contains a make�le called make�le.dos for building up the object�les. Before using the make command, make�le.dos has to be copied to thename make�le. It is intended to be used with the Borland Make Version 3.6and the Borland C++ compiler Version 3.1, and may need to be revised if usedwith other compilation tools. Even with Borland C you may want to set somecompiler switches, e.g., 
oating point options, according to your hardware.In order to summarize, the installation procedure is as follows:> lvq p3r1> cd lvq pak.3r1> copy make�le.dos make�le> makeAfter a successful make of the executables, you may test them by executing> make examplewhich performs the commands as listed in section \5.4 Using the commandlines (an example)".3.4 Hardware requirementsThe archive �les are about 270 kbytes in size, whereas the extracted �les takeabout 750 kbytes. When compiled and linked in MS-DOS, the executables areabout 65 kbytes each. It is recommended to have at least 640 kbytes RAM,when using lvq pak in MS-DOS. 12



4 File formatsAll data �les (input vectors and codebooks) are stored as ASCII �les for theireasy editing and checking. The �les that contain training data and test dataare formally similar, and can be used interchangeably.4.1 Data �le formatsThe input data is stored in ASCII-form as a list of entries, one line being re-served for each vectorial sample. Each line consists of n 
oating-point numbersfollowed by the class label (that can be any string). The �rst line of the �le isreserved for status knowledge of the entries; in the present version it is usedto de�ne the dimensionality of the data vector. The data �les can containcomment lines that begin with '#', and are ignored.The program classify can read unlabeled data vectors. So in these data �lesthe class label can be ignored (the program classify can read also previouslylabeled data vectors). In all other cases the input data vectors must havelabels.If some components of some data vectors are missing (due to data collectionfailures or any other reason) those components should be marked with 'x'(replacing the numerical value). For example, a part of a 5-dimensional data�le might look like:1.1 2.0 0.5 4.0 5.5 aa1.3 6.0 x 2.9 x aa1.9 1.5 0.1 0.3 x aaWhen vector distances are calculated for winner detection and when codebookvectors are modi�ed, the components marked with x are ignored (see Section7).An example: Consider a hypothetical data �le exam.dat that represents shadesof colors in a three-component form. This �le contains four samples, each onecomprising a three-dimensional data vector. (The dimensionality of the vectorsis given on the �rst line.) The labels can be any strings; here 'yellow' and 'red'are the names of the classes. The second line and the �fth line are commentlines that are ignored while reading the �le.exam.dat:
13



3# First the yellow entries181.0 196.0 17.0 yellow251.0 217.0 49.0 yellow# Then the red entries248.0 119.0 110.0 red213.0 64.0 87.0 red4.2 Codebook �le formatsThe codebook vectors are stored in ASCII-form. The format of the entries issimilar to that used in the input data �les.An example: The codebook �le code.dat contains two codebook vectors thatapproximate to the samples of the exam.dat �le, one codebook vector beingassigned to each class.code.dat:3224.2 209.0 36.8 yellow232.2 94.2 99.6 red5 Application of this package5.1 The interface program lvq runThe easiest way to use the lvq pak-programs is to run them through thelvq run interface program, whereby no separate command lines are needed.The lvq run interactively asks the user about the needed parameters and takescare of running the recommended subprograms in the correct order. Thereforeit is advised that the user should �rst use the lvq run to learn the procedures,even if he or she intends to apply the subprograms directly later on.5.2 Using the programs directlyIt is also possible to run each of the subprograms contained in this packageseparately and directly from the console using command lines de�ned in Sec6. The user should, however, take care of that the programs are then run inthe correct order: �rst proper initialization, then training, and then tests; andthat correct parameters are given (correspondence of the input and output �lesof subsequent programs is particularly important). Direct use facilitates, e.g.,combined application of learning algorithms.14



Each program needs some parameters: �le names, learning parameters, sizesof codebooks, etc. All these must be given to the program in the beginning;the programs are not interactive in the sense that they do not ask for anyparameters during their running.5.3 Program parametersVarious programs need various parameters. All the parameters that are re-quired by any program in this package have been listed below. The meaningof the parameters is obvious in most cases. The parameters can be de�ned inany order in the commands.-noc Number of codebook vectors in the codebook.-din Name of the input data �le.-dout Name of the output data �le.-cin Name of the �le from which the codebook vectors are read.-cout Name of the �le to which the codebook vectors are stored.-rlen Running length (number of steps) in training.-alpha Initial learning rate parameter.-epsilon Relative learning rate parameter (needed in the lvq3 program).-win Window width parameter (needed in the lvq2 and lvq3 programs).-knn Number of neighbors used in knn-classi�cation.-alpha type The learning rate function type (in training routines). Pos-sible choices are linear function (linear, the default) and in-verse function (inverse t). The linear function is de�ned as�(t) = �(0)(1:0 � t=rlen) and the inverse function as �(t) =C�(0)=(C + t) to compute �(t) for an iteration step t. In thepackage the constant C is de�ned to be C = rlen=100:0.-version Gives the version number of LVQ PAK.It is always possible to give the -v parameter (verbose parameter), which de�neshow much diagnostic output the program will generate. The values can rangefrom 0 upwards, whereby greater values will generate more output; the defaultvalue is 1.-v Verbose parameter de�ning the output level.In most programs it is possible to give the -help 1 parameter, which lists therequired and optional parameters for the program.-help Gives a list where the required and optional parameters are de-scribed. 15



In the program lvq run the user is prompted by bell sound when input isrequested. The bell can be silenced with the parameter -silent by giving somegreater value than 0.-silent Silent parameter de�ning if the program lvq run will give bellsound in prompt.In the initialization and training programs the random-number generator isused to select the order of the training samples, etc. The parameter -randde�nes whether a new seed for the random number generator is given; whenany other number than zero is given, that number is used as seed, otherwisethe seed is read from the system clock. Default value is zero (system clock isused).-rand Parameter that de�nes whether a new seed for the random num-ber generator is de�ned.Some auxiliary programs, not usually needed by the user, require the followingparameters.-label Class label (string).-cfout Name of the classi�cation information �le.Some examples of the use of parameters:> eveninit -noc 200 -din exam1.dat -cout code1.cod -knn 3An initialization program was called above to create a total of 200 entriesinto the codebook. The input entries out of which the codebook vectors wereformed were read from the �le exam1.dat and the codebook was stored to the�le code1.cod. The entries selected for initial values of the codebook vectorswere supposed to fall inside the class borders, which was tested automaticallyby knn-classi�cation using the value k = 3.> lvq1 -din exam1.dat -cin code1.cod -cout code1.cod -rlen 10000 -alpha 0.05A training program (lvq1) was called. The training entries were read from the�le exam1.dat; the codebook to be trained was read from the �le code1.codand the trained codebook vectors were resaved (in this case) to the same �lecode1.cod. Training was de�ned to take 10000 steps, but if there are fewerentries in the input �le, the �le is iterated randomly a su�cient number oftimes. The initial learning rate was set to 0.05.> accuracy -din exam2.dat -cin code1.codThe recognition accuracy achieved with the codebook vectors stored in the �lecode1.cod was tested using the test data �le exam2.dat.16



5.4 Using the command lines (an example)The example given in this section demonstrates the direct use of commandlines (it is thus not run under lvq run). It is meant for an introduction to theapplication of this package, and it may be helpful to study it in detail. (Theexample may be run directly by the command make example.)The data items used in the example are contained in this package. They consistof two data sets, ex1.dat and ex2.dat, one for training the codebook and theother for testing, respectively. Each data set contains 1962 cepstral-coe�cientvectors picked up from continuous Finnish speech, from the same speaker.Each vector has a dimensionality of 20 and has been labeled to represent onephoneme.Below, the data sets are processed, the codebooks are formed, and the recog-nition accuracy is evaluated.5.4.1 First stage: Codebook initializationFor the initialization of the codebook vectors one has to select �rst a setof vectorial initial values that are picked up from the training data, one ata time. All the entries used for initialization must fall within the borders ofthe corresponding classes, which is automatically checked by knn-classi�cation.The initialization program takes care of that. The number of codebook vectorsalso has to be decided at that point. For this speech recognition example atotal number of about 200 codebook vectors seems to be a good choice.The program eveninit selects the initial codebook entries from a given �le withthe same number of entries allocated to each class. (The program propinitwould select the initial values so that their numbers in the respective classesare proportional to their a priori probabilities.)> eveninit -din ex1.dat -cout ex1e.cod -noc 200Now the codebook entries have been selected. This time we did not get thesame number of entries to all classes because in certain classes there were notenough sample entries (e.g. in class D there were only four samples).We can now check the number of entries selected for each class and the mediansof the shortest distances using the program mindist.> mindist -cin ex1e.codThe recognition accuracy depends on the number of codebook entries allo-cated to each class. There does not exist any simple rule to �nd out the bestdistribution of the codebook vectors. In this example we use the method ofiteratively balancing the medians of the shortest distances in all classes.The program balance �rst computes the medians of the shortest distances foreach class and corrects the distribution so that into those classes in which thedistance is greater than the average, entries are added, and from those classes17



in which the distance is smaller than the average, some entries are deleted.Thereafter one learning cycle of the optimized-learning-rate LVQ, or the olvq1procedure, is automatically run within the program. After this the medians ofthe shortest distances are computed again and displayed. (This program maybe iterated, if necessary.)> balance -din ex1.dat -cin ex1e.cod -cout ex1b.codA global-parameter �le for the learning-rate parameters, relating to the code-book -cout, is also created by this program, and the recursively updated valuesof these parameters are left in this �le, from which they are automatically readwhen next time calling the olvq1 program (c.f. below).Now the codebook has been initialized and learning can begin.5.4.2 Second stage: Codebook trainingThe codebook will now be trained by the fastest and most robust of all theLearning Vector Quantization algorithms, namely, the optimized-learning-rateLVQ1, olvq1.> olvq1 -din ex1.dat -cin ex1b.cod -cout ex1o.cod -rlen 5000The length of the training run has to be decided in the beginning. One shouldnotice that if the program balance was used in initialization, one cycle of olvq1was already included in it; therefore this training phase can be shorter by thatamount. The initial values for the learning-rate parameters are automaticallyread from the global-parameter �le, which was created by the program balance.For the run length, 5000 steps have here been chosen. In this example we donot use any �ne-tuning by additional training programs.It may have become obvious from the general description of the LVQ that anunknown vector is always classi�ed by determining its nearest neighbor in thetrained codebook.5.4.3 Third stage: Evaluation of the recognition accuracyNow the codebook entries have been trained to their �nal values and theresulting recognition accuracy relative to the codebook can be tested. In thepackage there exists another speech entry �le, ex2.dat, that is statisticallyindependent of the �le ex1.dat used in training. This �le may be used fortesting the trained codebook. The program accuracy can be used to test therecognition accuracy relating to any codebook vector �le and test data �le.> accuracy -din ex2.dat -cin ex1o.codThis program computes the recognition accuracy for each class separately andalso the average over all the classes. The recognition accuracy resulting in thisexample is expected to be 90.1 %. 18



5.4.4 Fourth stage: Codebook visualizationNOTE: This stage is helpful but not necessary.The trained codebook is now ready to be used for classi�cation. In this packagethere are some visualization programs by which the distribution and clusteringof any data entries (training samples or codebook vectors) can be checked.The program sammon generates a mapping [Sammon Jr. 1969] from an n-dimensional data space to the two-dimensional plane. The two-dimensionalmapping approximates to Euclidean distances of the data space, and thusvisualizes the clustering of the data. The list of the mapped points can bevisualized two-dimensionally. If option -eps is given an encapsulated postscriptimage of the result is produced.> sammon -cin ex1o.cod -cout ex1o.sam -rlen 100The sammon program will store the two-dimensional image points in a similarfashion as the input data entries are stored.6 Description of the programs of this package6.1 Initialization programsThe initialization programs initialize the codebook vectors. The total numberof codebook vectors is given as one parameter (-noc).� eveninit - This program selects an equal number of codebook vectors toeach class and sets their initial values. The codebook vectors are pickedup from the �le de�ned by the parameter -din and the selected vectorsare left in the �le de�ned by the parameter -cout. Misclassi�ed entries arerejected by the knn-classi�cation check automatically (whereby k may bede�ned by the parameter -knn; its default value is 5).> eveninit -noc 200 -din �le.dat -cout �le.cod [-knn 7]The codebook vectors must be complete in all cases. Therefore, if thedata input vectors are incomplete, eveninit �rst runs a replacement rou-tine, where missing components are replaced by mean values of the cor-responding components taking the class membership into account.� propinit - This program de�nes the number of codebook vectors for eachclass in proportion to the a priori probabilities of the classes.> propinit -noc 200 -din �le.dat -cout �le.cod [-knn 7]The codebook vectors must be complete in all cases. Therefore, if thedata input vectors are incomplete, propinit �rst runs a replacement rou-tine, where missing components are replaced by mean values of the cor-responding components taking the class membership into account.19



� balance - This program adjusts the numbers of codebook vectors storedin the �le de�ned by the parameter -cin and using training data stored inthe �le de�ned by the parameter -din so that the medians of the shortestdistances between the codebook vectors in all classes are equalized. Onelearning cycle (all the data vectors in the training �le are used once)based on the optimized-learning-rate LVQ1 algorithm is included in thisprogram, whereby the 'learned' codebook vectors are left in the �le indi-cated by the -cout parameter. Every time when this program is called,the initial learning rate parameters of the optimized-learning-rate LVQ1algorithm, for reasons explained in Sec. 1.3.5, are set to 0.3, and whenthe program has been run, the values determined by Eq. (1) are left in aglobal parameter �le associated with the respective codebook vector �le.Notice that even if the program balance is iterated several times, onlythe last iteration is taken into account in olvq1 learning.> balance -din �le.dat -cin code1.cod -cout code2.cod [-knn 7]6.2 Training programs� olvq1 - This is the optimized-learning-rate LVQ1 algorithm, recommendedfor the main learning algorithm. It must always be preceded by an ini-tialization program eveninit or propinit and possibly by the programbalance, too. No explicit learning rate parameters are de�ned in thecommand. If the initialization stage was terminated with the balanceprogram, optimized default values for the learning rate parameters wereleft by that program in the respective parameter �le, from which they areautomatically read by the olvq1. If for initialization only the eveninit orthe propinit program was used, the default values of the initial learningrates were set equal to 0.3 in those programs.The training data is taken from the �le de�ned by the parameter -din,and the codebook vectors from the �le de�ned by the parameter -cin,respectively. The trained codebook vectors are left in the �le de�ned bythe parameter -cout (which can be the same as -cin). The number oftraining steps is de�ned by the parameter -rlen.> olvq1 -din �le.dat -cin �le1.cod -cout �le2.cod -rlen 10000 [-alpha typeinverse t] [-snapinterval 1000] [-snap�le �le.snap]� lvq1 - The original LVQ1 algorithm. It can be used (with low -alphavalue) for an additional �ne-tuning stage in learning. The training datais taken from the �le de�ned by -din and the codebook vectors to be �netuned from the �le de�ned by -cin; the tuned codebook vectors are leftin the �le de�ned by -cout.> lvq1 -din �le.dat -cin �le1.cod -cout �le2.cod -alpha 0.05 -rlen 40000[-alpha type inverse t] [-snapinterval 1000] [-snap�le �le.snap]20



� lvq2 - The LVQ2.1 version of the LVQ algorithms. It can be used (withlow -alpha value) for another additional �ne-tuning stage in learning.The relative width of the 'window' into which the training data must fallis de�ned by the parameter -win.> lvq2 -din �le.dat -cin �le1.cod -cout �le2.cod -alpha 0.05 -rlen 40000-win 0.3 [-alpha type inverse t] [-snapinterval 1000] [-snap�le �le.snap]� lvq3 - The LVQ3 version of the LVQ algorithms. It can be used (with low-alpha value) for additional �ne-tuning stage in learning. The relativelearning rate parameter -epsilon is used (multiplied by the parameter-alpha) when both of the nearest codebook vectors belong to the sameclass. The relative width of the 'window' into which the training datamust fall is de�ned by the parameter -win.> lvq3 -din �le.dat -cin �le1.cod -cout �le2.cod -alpha 0.05 -epsilon 0.1-rlen 40000 -win 0.3 [-alpha type inverse t] [-snapinterval 1000] [-snap�le �le.snap]6.3 Recognition accuracy program� accuracy - The recognition accuracy is evaluated. The codebook vectorsare taken from the �le de�ned by the parameter -cin, and the test entriesfrom the �le de�ned by the parameter -din, respectively. Optionally thisprogram creates a classi�cation information �le needed in testing thestatistical signi�cance of the di�erence between two classi�ers by usingprogram mcnemar.> accuracy -din �le.dat -cin �le.cod [-cfout �le.cfo]6.4 Classi�cation program� classify - The classi�cations of unknown data vectors are found. Thecodebook vectors are taken from the �le de�ned by the parameter -cin,and the entries to be classi�ed from the �le de�ned by the parameter-din, respectively. The classi�cation results are saved to the �le de�nedby the parameter -dout. Optionally this program creates a classi�cation�le that contains only the labels of classi�ed vectors.> classify -din �le.dat -cin �le.cod -dout �le.cla [-cfout �le.cfo]6.5 Monitoring programs� showlabs - Displays the class labels and the numbers of entries in eachclass of a given �le.> showlabs -cin �le.cod 21



� mindist - Displays the medians of the shortest distances between code-book vectors in each class and the standard deviations of entries in eachclass in the corresponding input data �le (if given).> mindist -cin �le.cod [-din data.dat]� stddev - Displays the medians of the shortest distances between datavectors in each class and the standard deviations of entries in each class.> stddev -din data.dat� sammon - Generates the Sammon mapping [Sammon Jr. 1969] from n-dimensional input vectors to 2-dimensional points on a plane whereby thedistances between the image vectors tend to approximate to Euclideandistances of the input vectors. If option -eps is given an encapsulatedpostscript image of the result is produced. Name of the eps-�le is gener-ated by using the output �le basename (up to the last dot in the name)and adding the ending sa.eps to the output �lename. If option -ps isgiven a postscript image of the result is produced. Name of the ps-�le isgenerated by using the output �le basename (up to the last dot in thename) and adding the ending sa.ps to the output �lename.In the following example, if the option -eps 1 is given, an eps �le named�le sa.eps is generated.> sammon -cin �le.cod -cout �le.sam -rlen 100 [-rand 1] [-eps 1] [-ps 1]� mcnemar - Computes the statistical signi�cance of the di�erence betweenclassi�cation results of two classi�ers that have been tested with the samedata. As input, two classi�cation information �les created by accuracyare required.> mcnemar �le1.cfo �le2.cfo6.6 Auxiliary subprogramsThese programs are normally not applied by the user. They are mainly usedby the other programs as subroutines.� elimin - Eliminates those entries in a given �le that are classi�ed to thewrong class when using the knn-classi�er. The purpose is to ignore thoseentries that lie on the wrong side of the class borders when initializingthe codebook vectors. (Here 7 nearest neighbors are used in the classi�-cation.)> elimin -din �le.dat -cout �le.elim -knn 7� extract - Selects and saves only those entries that belong to a given class(here class 'K' is given).> extract -din �le.dat -cout �le.ext -label K22



� pick - Picks a given number of entries from a �le.> pick -din �le.dat -cout �le.pic -noc 10� setlabel - Sets the labels of the codebook vectors in a codebook by �ndinga given number of nearest entries in the entry �le and selecting the labelby majority voting over them.> setlabel -din �le.dat -cin �le1.cod -cout �le2.cod -knn 5� knntest - The recognition accuracy is computed using the k-nearest-neighbors classi�er. Each entry is classi�ed using majority voting withrespect to a given number of nearest neighbors in the codebook. Thisalgorithm is primarily meant for a subprogram in the initialization of thecodebook vectors, but can be used as an independent classi�er, too.> knntest -din �le.dat -cin �le.cod -knn 57 Advanced featuresSome more advanced features has been added into the LVQ PAK programpackage in Version 3.0. These features are intended to ease the usage of thepackage by o�ering ways to use e.g. compressed data �les directly and to savesnapshots of the map during the training run.The advanced features include:� Missing components in input data entries are allowed� Bu�ered loading (the whole data �le need not be loaded into memory atonce)� Reading and writing of:{ compressed �les{ stdin/stdout{ piped command� Snapshots of the codebook during teaching� Environment variablesMissing components in input data entriesIn many applications, sensor failures, recording errors and resource limita-tions can prevent data collection to complete each input vector. Such in-complete training examples still contain useful information, however, and canbe used in pattern recognition. For example, partial data can still be used23



to determine the distribution statistics of the available vector components[Samad et al. 1992][Kaski 1995].For incomplete input data vectors the LVQ PAK has the possibility to mark themissing values by a prede�ned string ('x' by default). The LVQ PAK routineswill compute the distance calculations and reference vector modi�cation stepsusing the available data components.NOTE: If there are missing components in the data �les, some functions mayproduce misleading results. For example, if an input vector is compared againstseveral data vectors where some of the vectors have missing components, thedistances are not comparable, because there are then di�erent number of com-ponents in di�erent cases. On the other hand, if an incomplete data vectoris compared against a set of complete codebook vectors, the distances arecomparable, because in all cases there are an identical number of components.NOTE: If some speci�c component is missing in all input data vectors, theresults conserning that component are meaningless. The component should beremoved from the data �les.Bu�ered loadingThis means that the whole data set doesn't have to be loaded in memoryall the time. LVQ PAK can be set, for example, to hold max 10000 lines ofdata in memory at a time. When the 10000 data vectors have been used, thenext 10000 data vectors are loaded over the old ones. The bu�ered reading istransparent to the user and it works also with compressed �les.Note that when the whole �le has been read once and we want to reread it,the �le has to be rewound (for regular �les) or the uncompressing commandhas to be rerun. This is done automatically and the user need not to worryabout it, but some restrictions are enforced on the input �le: If the source is apipe, it can't be rewound. Regular �les, compressed �les and standard input(if it is a �le) work. Pipes work �ne if you don't have to rewind them, ie. thereis no end in the data, or the number of iterations is smaller than the numberof data vectors.-bu�er De�nes the number of lines of input data �le that are read at atime.Most programs support the bu�ered reading of data �les. It is activated withthe command line option -bu�er followed with the maximum number of datavectors to be kept in memory. For example, to read the input data �le 10000lines at a time one uses:> lvq1 -bu�er 10000 : : :Reading and writing compressed �lesTo read or write compressed �les just put the su�x .gz at the end of the�lename. The �le is automatically uncompressed or compressed as the �le is24



being read or written. LVQ PAK uses 'gzip' for compressing and uncompress-ing. It can also read �les compressed with regular UNIX compress-command.The commands used for compressing and decompressing can be changed withcommand line options or at compile time.Example: with lvq1, to use a compressed data �le for teaching:> lvq1 -din data.dat.gz : : :Reading and writing stdin/stdoutTo use standard input or output, use the minus sign ('-') as a �lename. Datais then read from stdin and written to stdout. For example, to read trainingdata from stdin with vsom:> lvq1 -din - : : :Reading and writing piped commandsIf you use a �lename that starts with the UNIX pipe character ('j'), the �lenameis executed as a command. If the �le is opened for writing the output of theLVQ command is piped to the command as standard input. Likewise, whenthe �le is opened for reading the output of the command is read by the LVQprograms.For example:> lvq1 -cin "jeveninit : : : " : : :would start the program eveninit when it wants to read the initial codebook.However, the same thing could be done with:> eveninit : : : j lvq1 -cin - : : :SnapshotsSaves snapshots of the codebook during training.-snapinterval Interval between snapshots.-snap�le Name of the snap�le. If the name given contains string '%d', thenumber of iterations taken so far is included to the �lename.The interval between snapshots is speci�ed with the option -snapinterval. Thesnapshot �lename can be speci�ed with the option -snap�le. If no �lenameis given, the name of the output code �le is used. The �lename is actuallypassed to 'sprintf(3)' as the format string and the number of iterations so faris passed as the next argument. For example:> lvq1 -snapinterval 10000 -snap�le "ex.%d.cod" : : :gives you snapshots �les every 10000 iterations with names starting with:ex.10000.cod, ex.20000.cod, ex.30000.cod, etc.Environmental variablesSome defaults can be set with environment variables:LVQSOM COMPRESS COMMAND De�nes the command used to compress �les.Default: "gzip -9 -c >%s" 25



LVQSOM UNCOMPRESS COMMAND De�nes the command used to decom-press �les. Default: "gzip -d -c %s"LVQSOM MASK STR De�nes the string which is used to replace missing inputvector components. Default: "x"Other new options-mask str De�nes the string which is used to replace missing input vectorcomponents.-compress cmd De�nes the compress command.-uncompress cmd De�nes the uncompress command.By default the components of the data vectors that are marked with 'x' areignored. This string can be changed with the -mask str option. For example,> lvq1 -mask str "MIS" : : :would ignore components thats are marked with string 'MIS' instead of 'x'.The string is case insensitive.The command used to compress �les can be changed by giving the option -compress cmd. Similarly the uncompress command can be changed by givingthe option -uncompress cmd.8 Comments and experiences of the use ofthis packageComments and experiences of the installation and use of these programs arewelcome, and may be sent to the e-mail address lvq@cochlea.hut.�.8.1 Changes in the packageNo changes to the central recognition algorithms have been made; the latterhave been used successfully as such over many years. Therefore, if you alreadyhave used previous Versions of LVQ PAK, you should not notice any signi�cantdi�erences in accuracies yielded by the Version 3.1, neither. However, the totalcomputing time, on account of the improved balance program as well as someimprovements in the best matching unit search, will now be shorter. Thefollowing are the details that have been changed from the Version 1.0:0. The only change made to Version 1.1 was a bug �x in the allocation ofmemory. 26



1. In Version 2.0 the following changes have been made: For the recursionof �(t) in Eq. (9), another justi�cation (cf. text) has now been found.Thereby the indexing in Eq. (9) is slightly changed from Versions 1.0and 1.1. This change has a negligible e�ect on the numerical results, butin publications you should refer to the new form.2. The program balance has been made faster in several ways, by avoid-ing unnecessary operations. In Versions 1.0 and 1.1 it eventually alsochanged the number of codebook vectors de�ned in the command line.In Version 2.0 this number is kept constant. If no samples after the knntest are left in some class, one codebook vector, picked from the samples,is anyway taken to it.3. Since the random-number generators in di�erent computers are not iden-tical, we have programmed our own formula into the procedures; now theexamples computed by the di�erent machines are supposed to yield iden-tical results (provided that they use a similar arithmetic).4. The LVQ3 algorithm has been added.5. Several amendments, which are invisible to the user but make the systemmore logical, have been made to control programs.6. In Version 2.1 the following changes have been made: It is now possibleto put comment lines into the data �les. The comment lines begin with'#' and they are ignored while reading the data.7. We have included a program classify, that produces the classi�cations ofunknown data vectors.8. It is possible to use unlabeled data vectors with the program classify.9. If there are equal vectors in the input data set of the sammon program,it now discards all of them except one. Previously such vectors corruptedthe computation of the Sammon mapping.10. We have corrected one error in the documentation. The Eq. 5 is now inthe correct form.11. The routines for the search of the best matching unit are improved.For each codebook vector the computation of the distance between thesample vector and the codebook vector is terminated if the subdistance isalready greater than the distance for the current best matching unit. Thisimprovement will decrease the computing time considerably for longervector lengths.12. In Version 3.0 it is possible to have missing components in input datavectors. 27



13. In Version 3.0 it is possible to use an inverse function as a learning ratefunction �(t).14. In Version 3.0 it is possible to read the input data �les in pieces, i.e. tohave only a portion of the whole data in main memory at a time. Thiswill enable using the SOM PAK programs in PC-machines with largedata �les.15. In version 3.0 there are several new 'advanced' features to allow readingand writing of compressed �les, stdin and stdout, and piped commands.16. In version 3.0 it is now possible to save 'snapshots' of the state of code-book during training.17. The only change made to Version 3.1 was a bug �x in the random orderingof data.
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