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1 Introduction

1.1 Contents of this package

The package at hand, Version 3.1 of LVQ_PAK, contains amendments to ear-
lver versions, developed to attack large problems. The most important of them
is the possibility to read data files in pieces (see Section 7).

This package contains all programs necessary for the correct application of
certain LVQ (Learning Vector Quantization) algorithms in an arbitrary sta-
tistical classification or pattern recognition task, as well as a program for the
monitoring of the codebook vectors at any time during the learning process
[Kohonen et al. 1992] [Kohonen 1995].

NEW BOOK:

Complete description, with over 1500 literature references, of the SOM (Self-
Organizing Map) and LVQ algorithms can be found in the recently published
book Kohonen: Self-Organizing Maps (Springer Series in Information Sciences,
Vol 30, 1995). 362 pp.

To this package four options of the algorithms, the LVQ1 (as described in
[Kohonen 1990b]), the LVQ2.1 (as specified, e.g., in [Kohonen 1990a] and
[Kohonen 1990c¢]), the LVQ3 (as described in [Kohonen 1990b]) and the OLVQ1
([Kohonen 1992]), have been selected.

NOTE: This program package is copyrighted in the sense that it may be
used freely for scientific purposes. However, the package as a whole, or parts
thereof, cannot be included or used in any commercial application without
written permission granted by its producents. No programs contained in this
package may be copied for commercial distribution.

This program package is distributed in the hope that it will be useful, but
without any warranty. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any particular
purpose or works at all, unless he says so in writing.

1.2 Precautions

Few traditional 'neural network’ algorithms have been meant to directly oper-
ate on raw data, such as pixels of an image, or samples of speech waveforms
picked up from the time domain. Most pattern recognition tasks are preceded
by a preprocessing transformation that extracts invariant features from the
raw data, such as spectral components of acoustical signals, or elements of
co-occurrence matrices of pixels. Selection of a proper preprocessing trans-
formation for a particular task usually requires careful consideration, and no
general rules can be given here. It is cautioned that if this LVQ-package is



used for benchmarking against other methods, a proper preprocessing should
always be used.

In performing statistical experiments, a separate data set for training, and
another separate data set for testing must be used. If the number of required
learning steps is bigger than the number of training samples available, the
samples must be used re-iteratively in training, either in a cyclical or in a
randomly-sampled order.

1.3 The LVQ-algorithms
1.3.1 The LVQ1

Assume that a number of ’codebook vectors’ m; (free parameter vectors) are
placed into the input space to approximate various domains of the input vector
x by their quantized values. Usually several codebook vectors are assigned to
each class of x values, and z is then decided to belong to the same class to
which the nearest m; belongs. Let

¢ = argmin{ljz — m;|[} (1)

define the nearest m; to =, denoted by m..

Values for the m; that approximately minimize the misclassification errors in
the above nearest-neighbor classification can be found as asymptotic values
in the following learning process. Let z(t) be a sample of input and let the
m;(t) represent sequences of the m; in the discrete-time domain. Starting with
properly defined initial values (cf. Sec. 2.1), the following equations define the
basic LVQI1 process:

me(t+1) = m(t) + a(t)[z(t) — m.(t)]
if z and m, belong to the same class,

me(t+1) = me(t) — alt)lz(t) —m.(t)] (2)
if x and m, belong to different classes,

m;(t+1) = m;(t) for i #c.

Here 0 < a(t) < 1, and «(t) may be constant or decrease monotonically with
time. In the above basic LVQI it is recommended that « should initially be
smaller than 0.1; linear decrease in time is used in this package. In Version 3.1
it is possible to use also an inverse-time type function (see Section 5.3). (In
the optimized LVQ1, cf. Sec. 1.3.5, different values of « are used.)

1.3.2 The LVQ2.1

The classification decision in this algorithm is identical with that of the LVQ1.
In learning, however, two codebook vectors, m; and m; that are the nearest



neighbors to z, are now updated simultaneously. One of them must belong
to the correct class and the other to a wrong class, respectively. Moreover, x
must fall into a zone of values called 'window’, which is defined around the
midplane of m; and m;. Assume that d; and d; are the Euclidean distances
of  from m; and m;, respectively; then x is defined to fall in a 'window’ of
relative width w if

1—w

) > s, where s = TTw (3)
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A relative 'window’ width w of 0.2 to 0.3 is recommendable.
Algorithm:

mi(t+1) = my(t) — a(t)[z(t) — mi(D)],
mi(t+1) = m;(t) + a)[z(t) —m;@)]; (4)

where m; and m; are the two closest codebook vectors to z, whereby x and m;
belong to the same class, while z and m; belong to different classes, respec-
tively. Furthermore x must fall into the ’window’.

1.3.3 The LVQ3

The LVQ2 algorithm was based on the idea of differentially shifting the decision
borders towards the Bayes limits, while no attention was paid to what might
happen to the location of the m; in the long run if this process were continued.
Therefore it seems necessary to include corrections that ensure that the m;
continue approximating the class distributions, at least roughly. Combining
these ideas, we now obtain an improved algorithm that may be called LVQ3:

mi(t+1) = mi(t) — a(t)[z(t) —m,(1)],
m;(t+1) = my(t) + a(t)[z(t) —m;(1)],
where m; and m; are the two closest codebook vectors to =, whereby

x and m; belong to the same class, while z and m; belong to differ-
ent classes, respectively; furthermore x must fall into the 'window’;

mi(t+1) = my(t) +ea(t)[z(t) —mi(t)], (5)

for k € {i,7}, if 2, m;, and m; belong to the same class.

In a series of experiments, applicable values of ¢ between 0.1 and 0.5 were
found. The optimal value of € seems to depend on the size of the window, being
smaller for narrower windows. This algorithm seems to be self-stabilizing, i.e.,
the optimal placement of the m; does not change in continual learning.



1.3.4 Differences between the basic LVQ1, LVQ2.1 and LVQ3

The three options for the LVQ-algorithms, namely, the LVQ1, the LVQ2.1 and
the LVQ3 chosen to this package, yield almost similar accuracies, although a
different philosophy underlies each. The LVQ1 and the LVQ3 define a more
robust process, whereby the codebook vectors assume stationary values even
after extended learning periods. For the LVQ1 the learning rate can approx-
imately be optimized for quick convergence (as shown in Sec. 1.3.5). In the
LVQ2.1, the relative distances of the codebook vectors from the class borders
are optimized whereas there is no guarantee for the codebook vectors being
placed optimally to describe the forms of the class borders. Therefore the
LVQ2.1 should only be used in a differential fashion, using a small value of
learning rate and a relatively low number of training steps.

1.3.5 The optimized-learning-rate LVQ1 (OLVQ1)

The basic LVQ1 algorithm is now modified in such a way that an individual
learning rate «;(t) is assigned to each m;. We then get the following discrete-
time learning process. Let ¢ be defined by Eq. (1). Then

me(t+1) = me(t) + ae(t)[z(t) — me(t)]
if = is classified correctly,

me(t+1) = me(t) — ac(t)[z(t) — me(t)] (6)
if the classification of z is incorrect,

mi(t+1) = m;(t) fori#ec.

Next we address the problem of whether the o;(t) can be determined optimally
for fastest possible convergence of (6). If we express (6) in the form

m(t+1) = [1 — s(t)a.(t)|m.(t) + s(t)a.(t)z(t) (7)

where s(t) = +1 if the classification is correct and s(t) = —1 if the classification
is wrong, we first directly see that m.(t) is statistically independent of x(t).
It may also be obvious that the statistical accuracy of the learned codebook
vector values is optimal if the effects of the corrections made at different times,
when referring to the end of the learning period, are of equal weight. Notice
that m.(t + 1) contains a "trace” from xz(t) through the last term in (7), and
"traces” from the earlier z(t'),t' = 1,2, ...,t—1 through m.(t). The (absolute)
magnitude of the last "trace” from z(t) is scaled down by the factor a.(t), and,
for instance, the ”trace” from x(t—1) is scaled down by [1—s(t)a.(t)]-a.(t—1).
Now we first stipulate that these two scalings must be identical:

oc(t) = [1 = s(Hae(B)]aelt — 1) . (8)

7



If this condition is then made to hold for all ¢, by induction it can be shown
that the "traces” collected up to time t from all the earlier z will be scaled
down by an equal amount at the end, and thus the ”"optimal” values of a;(t)
are determined by the recursion

B a.(t—1)
Tl s(t)ag(t—1) ()

Any user of the LVQ_PAK can easily become convinced about that (9) really
provides for fast convergence. A precaution must be made, however: since
a.(t) can also increase, it is especially important that it does not rise above
the value 1; the learning program olvq! in this package is even more restrictive,
it never allows any «; to rise above its initial value. With this provision, the
initial values of the «; can be selected rather high, say, 0.3, whereby learning
is significantly speeded up, especially in the beginning, and the m; quickly find
their approximate asymptotic values.

[t must be warned, too, that (9) is not applicable to the LVQ2, since thereby
the a;, on the average, would not decrease, and the process would not converge.

a.(t)

2 General considerations

In the LVQ algorithms, vector quantization is not used to approximate to den-
sity functions of the class samples (described, e.g., in [Makhoul et al. 1985]),
but to directly define the class borders according to the nearest-neighbor rule.
The accuracy achievable in any classification task to which the LVQ algorithms
are applied and the time needed for learning depend on the following factors:

e an approximately optimal number of codebook vectors assigned to each
class and their initial values,

e the detailed algorithm, a proper learning rate applied during the steps,
and a proper criterion for the stopping of learning.

2.1 Initialization of the codebook vectors

In many practical applications such as speech recognition, even when the a
priori probabilities for the samples falling in different classes are very different,
a very good strategy already is to start with the same number of codebook
vectors in each class. An upper limit to the total number of codebook vectors
is set by the restricted recognition time and computing power available.

Since the class borders are represented piecewise linearly by segments of mid-
planes between codebook vectors of neighboring classes (borders of the so-
called Voronoi tessellations), it may seem to be an even better strategy for



optimal approximation of the borders that the average distances between the
adjacent codebook vectors (which depend on their numbers per class) should
be the same on both sides of the borders. Then, at least if the class distribu-
tions were symmetric, this would mean that the average shortest distances of
the codebook vectors (or alternatively, the medians of the shortest distances)
should be the same in every class. Because the final placement of the codebook
vectors is not known until at the end of the learning process, their distances
and thus their optimal numbers cannot be determined before that. This kind
of assignment of the codebook vectors to the various classes can therefore only
be made iteratively, for which there is a provision (program named balance) in
this package.

Once the tentative numbers of the codebook vectors for each class have been
fixed, for their initial values one can use first samples of the real training
data picked up from the respective classes. Since the codebook vectors should
always remain inside the respective class domains, for the above initial values
too one can only accept samples that are not misclassified. In other words, a
sample is first tentatively classified against all the other samples in the training
set, for instance by the k-nearest-neighbor (KNN) method, and accepted for a
possible initial value only if this tentative classification is the same as the class
identifier of the sample. (In the learning algorithm itself, however, no samples
must be excluded; they are thereby applied independent of whether they fall
on the correct side of the class border or not.)

In the program balance, the medians of the shortest distances between the
initial codebook vectors of each class are first computed. If the distances turn
out to be very different for the different classes, new codebook vectors may
be added to or old ones deleted from the deviating classes, and a tentative
training cycle based on the optimized-learning-rate LVQ1 algorithm (cf. Sec.
1.3.5) is run once. This procedure can be iterated a few times. (The exact
numbers of codebook vectors are not critical; the shortest distances may differ
by a factor of, say, 2 but not significantly more.)

For good piecewise linear approximation of the borders, the medians of the
shortest distances between the codebook vectors should also be somewhat
smaller than the standard deviations (= square roots of variances) of the in-
put samples in all the respective classes. These figures are displayed by the
program mandist for checking.

2.2 Learning

It is recommended that learning be always started with the optimized LVQ1
algorithm (cf. Sec. 1.3.5), which has very fast convergence; its asymptotic
recognition accuracy will be achieved after a number of learning steps that
is about 30 to 50 times the total number of codebook vectors. If the initial
learning period, as described in Sec. 2.1, is included in the initialization of the



codebook vectors, the optimized LVQ1 algorithm can be continued from those
codebook vector values that have been obtained in the initialization phase.

Often the optimized LVQ1 learning phase alone may be sufficient for practical
applications, especially if the learning time is critical. However, in an attempt
to improve recognition accuracy, one may continue with either the basic LVQI1,
the LVQ2.1 or the LVQ3, using a low initial value of learning rate, which is
then the same for all the classes.

2.3 Stopping rule

It often happens that the neural-network algorithms ’overlearn’; i.e., when
learning and test phases are alternated, the recognition accuracy is first im-
proved until an optimum is reached; after that, when learning is continued, the
accuracy starts to decrease slowly. A possible explanation in the present case
is that when the codebook vectors become very specifically tuned to the train-
ing data, the ability of the algorithm to generalize for new data suffers from
that. It is therefore necessary to stop the learning process after some ’optimal’
number of steps, say, 50 to 200 times the total number of the codebook vectors
(depending on particular algorithm and learning rate). Such a stopping rule
can only be found by experience, and it also depends on the input data.

Let us recall that the optimized-learning-rate LVQ1 may generally be stopped
after a number of steps that is 30 to 50 times the number of codebook vectors
(c.f. Sec. 2.2).

3 Installation of the program package

In the implementation of the LVQ programs we have tried to use as simple a
code as possible. Therefore the programs are supposed to compile in various
machines without any specific modifications made on the code. All programs
have been written in ANSI C.

No graphics are included in this package so that the programs may be run
equally well in all computers ranging from PC:s to Cray supercomputers. The
monitoring program sammon generates a list of coordinates of points (and an
encapsulated postscript code for visual inspection).

3.1 Getting the program code

The latest version — currently Version 3.1 — of the [vq_pak-program pack-
age is available for anonymous ftp user at the Internet ftp-site cochlea.hut.fi
(130.233.168.48). All programs and this documentation are stored in the direc-
tory /pub/lvg_pak. The files are in multiple formats to ease their downloading
and compiling.
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The directory /pub/lvq_pak contains the following files:

README — short description of the lvg_pak package
lvg_doc.ps — this document in (©)PostScript format
lvg_doc.ps.Z — same as above but compressed
lvg_doc.txt — this document in ASCII format
lvg_p3rl.exe — self-extracting MS-DOS archive file
lvg_pak-3.1.tar — UNIX tape archive file
lvg_pak-3.1.tar.Z — same as above but compressed

An example of FTP access is given below

unix> ftp cochlea.hut.fi (or 130.233.168.48)
Name: anonymous

Password: <your email address>

ftp> cd /pub/lvq_pak

ftp> binary

ftp> get lvq_pak-3.1.tar.Z

ftp> quit

unix>

3.2 Installation in UNIX

The archive file lvg_pak-3.1.tar.Z is intended to be used when installing lvg_pak
in UNIX systems. It needs to be uncompressed to get the file lvg_pak-3.1.tar.
If your system doesn’t support the BSD compress utility, you may download
the uncompressed file directly.

The tar archive contains the source code files, makefiles, and example data sets
of the package, all in one subdirectory called lvg_pak-3.1. In order to create
the subdirectory and extract all the files you should use the command tar zovf
lvg_pak-3.1. (The switches of tar unfortunately vary, so you may need omit the
'0’.)

The package contains a makefile called makefile.unix for compilation in UNIX
systems. Before executing the make command, it has to be copied to the name
makefile. The file, makefile.uniz, should work as such in most systems.

We have written the source code for an ANSI standard C compiler and environ-
ment. If the cc compiler of your system doesn’t fulfill these requirements, we
recommend you to port the public domain GNU gcc compiler in your computer.
When using gce, the makefile macro definition CC=cc has to be changed ac-
cordingly to CC=gcc. The makefile also contains some other platform specific
definitions, like optimizer and linker switches, that may need to be revised.
In order to summarize, the installation procedure is as follows:

> uncompress lvg_pak-3.1.tar.Z

> tar zovf lvq_pak-3.1.tar

11



> cd lvg_pak-3.1

> cp makefile.uniz makefile

> make

After a successful make of the executables, you may test them by executing
> make example

which performs the commands as listed in section “5.4 Using the command
lines (an example)”.

3.3 Installation in DOS

The archive file lvg_p3ri.exe is intended to be used when installing lvg_pak in
MS-DOS computers. It is a self-extracting packed archive compatible with the
public domain [ha utility. If your system supports UNIX tar archiving and
compress file compressing utilities, you may as well use lvg_pak-3.1.tar and
lvg_pak-3.1.tar.Z archives.

The lvq_p3rl.exe archive contains the source code files, makefiles, and example
data sets of the package, all in one subdirectory called lvg_pak.3r1. In order
to create the subdirectory and extract all the files simply use the command
lvg_p3ri.

The package contains a makefile called makefile.dos for building up the object
files. Before using the make command, makefile.dos has to be copied to the
name makefile. It is intended to be used with the Borland Make Version 3.6
and the Borland C++ compiler Version 3.1, and may need to be revised if used
with other compilation tools. Even with Borland C you may want to set some
compiler switches, e.g., floating point options, according to your hardware.

In order to summarize, the installation procedure is as follows:

> lvg_p3ri

> cd lvg_pak.3r1

> copy makefile.dos makefile

> make

After a successful make of the executables, you may test them by executing
> make example

which performs the commands as listed in section “5.4 Using the command
lines (an example)”.

3.4 Hardware requirements

The archive files are about 270 kbytes in size, whereas the extracted files take
about 750 kbytes. When compiled and linked in MS-DOS, the executables are
about 65 kbytes each. It is recommended to have at least 640 kbytes RAM,
when using lvg_pak in MS-DOS.
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4 File formats

All data files (input vectors and codebooks) are stored as ASCII files for their
easy editing and checking. The files that contain training data and test data
are formally similar, and can be used interchangeably.

4.1 Data file formats

The input data is stored in ASCII-form as a list of entries, one line being re-
served for each vectorial sample. Each line consists of n floating-point numbers
followed by the class label (that can be any string). The first line of the file is
reserved for status knowledge of the entries; in the present version it is used
to define the dimensionality of the data vector. The data files can contain
comment lines that begin with '#’, and are ignored.

The program classify can read unlabeled data vectors. So in these data files
the class label can be ignored (the program classify can read also previously
labeled data vectors). In all other cases the input data vectors must have

labels.

If some components of some data vectors are missing (due to data collection
failures or any other reason) those components should be marked with 'z’
(replacing the numerical value). For example, a part of a 5-dimensional data

file might look like:

1.1 2.0 0.5 4.0 5.5 aa
1.3 6.0 r 2.9 T aa
1.9 1.5 0.1 0.3 T aa

When vector distances are calculated for winner detection and when codebook
vectors are modified, the components marked with z are ignored (see Section
7).

An example: Consider a hypothetical data file exam.dat that represents shades
of colors in a three-component form. This file contains four samples, each one
comprising a three-dimensional data vector. (The dimensionality of the vectors
is given on the first line.) The labels can be any strings; here 'yellow’ and 'red’
are the names of the classes. The second line and the fifth line are comment
lines that are ignored while reading the file.

exam.dat:

13



3

# First the yellow entries
181.0 196.0 17.0 yellow
251.0 217.0 49.0 yellow
# Then the red entries
248.0 119.0 110.0 red
213.0 64.0 87.0 red

4.2 Codebook file formats

The codebook vectors are stored in ASCII-form. The format of the entries is
similar to that used in the input data files.

An example: The codebook file code.dat contains two codebook vectors that
approximate to the samples of the exam.dat file, one codebook vector being
assigned to each class.

code.dat:

3
224.2  209.0 36.8 yellow
2322 942 99.6 red

5 Application of this package

5.1 The interface program l[vg_run

The easiest way to use the lvg_pak-programs is to run them through the
lvg_run interface program, whereby no separate command lines are needed.
The lvg_run interactively asks the user about the needed parameters and takes
care of running the recommended subprograms in the correct order. Therefore
it is advised that the user should first use the lvg_run to learn the procedures,
even if he or she intends to apply the subprograms directly later on.

5.2 Using the programs directly

It is also possible to run each of the subprograms contained in this package
separately and directly from the console using command lines defined in Sec
6. The user should, however, take care of that the programs are then run in
the correct order: first proper initialization, then training, and then tests; and
that correct parameters are given (correspondence of the input and output files
of subsequent programs is particularly important). Direct use facilitates, e.g.,
combined application of learning algorithms.

14



Each program needs some parameters: file names, learning parameters, sizes
of codebooks, etc. All these must be given to the program in the beginning;
the programs are not interactive in the sense that they do not ask for any
parameters during their running.

5.3 Program parameters

Various programs need various parameters. All the parameters that are re-
quired by any program in this package have been listed below. The meaning
of the parameters is obvious in most cases. The parameters can be defined in
any order in the commands.

-noc Number of codebook vectors in the codebook.

-din Name of the input data file.

-dout Name of the output data file.

-cin Name of the file from which the codebook vectors are read.
-cout Name of the file to which the codebook vectors are stored.
-rlen Running length (number of steps) in training.

-alpha Initial learning rate parameter.

-epsilon Relative learning rate parameter (needed in the lvg3 program).
~win Window width parameter (needed in the lvg2 and lvg3 programs).
-knn Number of neighbors used in knn-classification.

-alpha_type The learning rate function type (in training routines). Pos-
sible choices are linear function (linear, the default) and in-
verse function (inverse_t). The linear function is defined as
a(t) = «(0)(1.0 — t/rlen) and the inverse function as «(t) =
Ca(0)/(C +t) to compute «(t) for an iteration step ¢. In the
package the constant C' is defined to be C' = rlen/100.0.

-version Gives the version number of LVQ_PAK.

It is always possible to give the -v parameter (verbose parameter), which defines
how much diagnostic output the program will generate. The values can range
from 0 upwards, whereby greater values will generate more output; the default
value is 1.

-v Verbose parameter defining the output level.

In most programs it is possible to give the -help 1 parameter, which lists the
required and optional parameters for the program.

-help Gives a list where the required and optional parameters are de-
scribed.

15



In the program [vg_run the user is prompted by bell sound when input is
requested. The bell can be silenced with the parameter -silent by giving some
greater value than 0.

-silent Silent parameter defining if the program lvg_run will give bell
sound in prompt.

In the initialization and training programs the random-number generator is
used to select the order of the training samples, etc. The parameter -rand
defines whether a new seed for the random number generator is given; when
any other number than zero is given, that number is used as seed, otherwise
the seed is read from the system clock. Default value is zero (system clock is

used).

-rand Parameter that defines whether a new seed for the random num-
ber generator is defined.

Some auxiliary programs, not usually needed by the user, require the following
parameters.

-label Class label (string).

-cfout Name of the classification information file.

Some examples of the use of parameters:
> evenimit -noc 200 -din examl.dat -cout codel.cod -knn 3

An initialization program was called above to create a total of 200 entries
into the codebook. The input entries out of which the codebook vectors were
formed were read from the file exam1.dat and the codebook was stored to the
file codel.cod. The entries selected for initial values of the codebook vectors
were supposed to fall inside the class borders, which was tested automatically
by knn-classification using the value k = 3.

> [vql -din examl.dat -cin codel.cod -cout codel.cod -rlen 10000 -alpha 0.05

A training program (lvgl) was called. The training entries were read from the
file ezam1.dat; the codebook to be trained was read from the file codel.cod
and the trained codebook vectors were resaved (in this case) to the same file
codel.cod. Training was defined to take 10000 steps, but if there are fewer
entries in the input file, the file is iterated randomly a sufficient number of
times. The initial learning rate was set to 0.05.

> accuracy -din exam2.dat -cin codel.cod

The recognition accuracy achieved with the codebook vectors stored in the file
codel.cod was tested using the test data file exam2.dat.
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5.4 Using the command lines (an example)

The example given in this section demonstrates the direct use of command
lines (it is thus not run under lvg_run). It is meant for an introduction to the
application of this package, and it may be helpful to study it in detail. (The
example may be run directly by the command make example.)

The data items used in the example are contained in this package. They consist
of two data sets, erl.dat and ex2.dat, one for training the codebook and the
other for testing, respectively. Each data set contains 1962 cepstral-coefficient
vectors picked up from continuous Finnish speech, from the same speaker.
Each vector has a dimensionality of 20 and has been labeled to represent one
phoneme.

Below, the data sets are processed, the codebooks are formed, and the recog-
nition accuracy is evaluated.

5.4.1 First stage: Codebook initialization

For the initialization of the codebook vectors one has to select first a set
of vectorial initial values that are picked up from the training data, one at
a time. All the entries used for initialization must fall within the borders of
the corresponding classes, which is automatically checked by knn-classification.
The initialization program takes care of that. The number of codebook vectors
also has to be decided at that point. For this speech recognition example a
total number of about 200 codebook vectors seems to be a good choice.

The program eveninit selects the initial codebook entries from a given file with
the same number of entries allocated to each class. (The program propinit
would select the initial values so that their numbers in the respective classes
are proportional to their a priori probabilities.)

> evenimit -din exl.dat -cout exle.cod -noc 200

Now the codebook entries have been selected. This time we did not get the
same number of entries to all classes because in certain classes there were not
enough sample entries (e.g. in class D there were only four samples).

We can now check the number of entries selected for each class and the medians
of the shortest distances using the program mindist.

> mandist -cin exle.cod

The recognition accuracy depends on the number of codebook entries allo-
cated to each class. There does not exist any simple rule to find out the best

distribution of the codebook vectors. In this example we use the method of
iteratively balancing the medians of the shortest distances in all classes.

The program balance first computes the medians of the shortest distances for
each class and corrects the distribution so that into those classes in which the
distance is greater than the average, entries are added, and from those classes
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in which the distance is smaller than the average, some entries are deleted.
Thereafter one learning cycle of the optimized-learning-rate LVQ, or the olvg1!
procedure, is automatically run within the program. After this the medians of
the shortest distances are computed again and displayed. (This program may
be iterated, if necessary.)

> balance -din exl.dat -cin exle.cod -cout ex1b.cod

A global-parameter file for the learning-rate parameters, relating to the code-
book -cout, is also created by this program, and the recursively updated values
of these parameters are left in this file, from which they are automatically read
when next time calling the olvgl program (c.f. below).

Now the codebook has been initialized and learning can begin.

5.4.2 Second stage: Codebook training

The codebook will now be trained by the fastest and most robust of all the
Learning Vector Quantization algorithms, namely, the optimized-learning-rate
LVQ1, olvql.

> olvql -din exl.dat -cin exlb.cod -cout exlo.cod -rlen 5000

The length of the training run has to be decided in the beginning. One should
notice that if the program balance was used in initialization, one cycle of olvg!
was already included in it; therefore this training phase can be shorter by that
amount. The initial values for the learning-rate parameters are automatically
read from the global-parameter file, which was created by the program balance.
For the run length, 5000 steps have here been chosen. In this example we do
not use any fine-tuning by additional training programs.

It may have become obvious from the general description of the LVQ that an
unknown vector is always classified by determining its nearest neighbor in the
trained codebook.

5.4.3 Third stage: Evaluation of the recognition accuracy

Now the codebook entries have been trained to their final values and the
resulting recognition accuracy relative to the codebook can be tested. In the
package there exists another speech entry file, ex2.dat, that is statistically
independent of the file exl.dat used in training. This file may be used for
testing the trained codebook. The program accuracy can be used to test the
recognition accuracy relating to any codebook vector file and test data file.

> accuracy -din ex2.dat -cin exlo.cod

This program computes the recognition accuracy for each class separately and
also the average over all the classes. The recognition accuracy resulting in this
example is expected to be 90.1 %.
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5.4.4 Fourth stage: Codebook visualization

NOTE: This stage is helpful but not necessary.

The trained codebook is now ready to be used for classification. In this package
there are some visualization programs by which the distribution and clustering
of any data entries (training samples or codebook vectors) can be checked.

The program sammon generates a mapping [Sammon Jr. 1969] from an n-
dimensional data space to the two-dimensional plane. The two-dimensional
mapping approximates to Euclidean distances of the data space, and thus
visualizes the clustering of the data. The list of the mapped points can be
visualized two-dimensionally. If option -epsis given an encapsulated postscript
image of the result is produced.

> sammon -cin exlo.cod -cout exlo.sam -rlen 100

The sammon program will store the two-dimensional image points in a similar
fashion as the input data entries are stored.

6 Description of the programs of this package

6.1 Initialization programs

The initialization programs initialize the codebook vectors. The total number
of codebook vectors is given as one parameter (-noc).

e cveninit - This program selects an equal number of codebook vectors to
each class and sets their initial values. The codebook vectors are picked
up from the file defined by the parameter -din and the selected vectors
are left in the file defined by the parameter -cout. Misclassified entries are
rejected by the knn-classification check automatically (whereby k may be
defined by the parameter -knn; its default value is 5).

> eveninit -noc 200 -din file.dat -cout file.cod [-knn 7]

The codebook vectors must be complete in all cases. Therefore, if the
data input vectors are incomplete, eveninit first runs a replacement rou-
tine, where missing components are replaced by mean values of the cor-
responding components taking the class membership into account.

e propinit - This program defines the number of codebook vectors for each
class in proportion to the a priori probabilities of the classes.

> propinit -noc 200 -din file.dat -cout file.cod [-knn 7]

The codebook vectors must be complete in all cases. Therefore, if the
data input vectors are incomplete, propinit first runs a replacement rou-
tine, where missing components are replaced by mean values of the cor-
responding components taking the class membership into account.
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e balance - This program adjusts the numbers of codebook vectors stored

6.2

in the file defined by the parameter -cin and using training data stored in
the file defined by the parameter -din so that the medians of the shortest
distances between the codebook vectors in all classes are equalized. One
learning cycle (all the data vectors in the training file are used once)
based on the optimized-learning-rate LVQ1 algorithm is included in this
program, whereby the ’learned’ codebook vectors are left in the file indi-
cated by the -cout parameter. Every time when this program is called,
the initial learning rate parameters of the optimized-learning-rate LVQ1
algorithm, for reasons explained in Sec. 1.3.5, are set to 0.3, and when
the program has been run, the values determined by Eq. (1) are left in a
global parameter file associated with the respective codebook vector file.
Notice that even if the program balance is iterated several times, only
the last iteration is taken into account in olvql learning.

> balance -din file.dat -cin codel.cod -cout code2.cod [-knn 7]

Training programs

olvql - This is the optimized-learning-rate LVQ1 algorithm, recommended
for the main learning algorithm. It must always be preceded by an ini-
tialization program ewveninit or propinit and possibly by the program
balance, too. No explicit learning rate parameters are defined in the
command. If the initialization stage was terminated with the balance
program, optimized default values for the learning rate parameters were
left by that program in the respective parameter file, from which they are
automatically read by the olvgl. If for initialization only the eveninit or
the propinit program was used, the default values of the initial learning
rates were set equal to 0.3 in those programs.

The training data is taken from the file defined by the parameter -din,
and the codebook vectors from the file defined by the parameter -cin,
respectively. The trained codebook vectors are left in the file defined by
the parameter -cout (which can be the same as -cin). The number of
training steps is defined by the parameter -rlen.

> olvql -din file.dat -cin filel.cod -cout file2.cod -rlen 10000 [-alpha_type
inverse_t] [-snapinterval 1000] [-snapfile file.snap]

lvgl - The original LVQ1 algorithm. It can be used (with low -alpha
value) for an additional fine-tuning stage in learning. The training data
is taken from the file defined by -din and the codebook vectors to be fine
tuned from the file defined by -cin; the tuned codebook vectors are left
in the file defined by -cout.

> lvgl -din file.dat -cin filel.cod -cout file2.cod -alpha 0.05 -rlen 40000
[-alpha_type inverse_t] [~snapinterval 1000] [-snapfile file.snap]
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e [vg2 - The LVQ2.1 version of the LVQ algorithms. It can be used (with

6.3

6.4

6.5

low -alpha value) for another additional fine-tuning stage in learning.
The relative width of the 'window’ into which the training data must fall
is defined by the parameter -win.

> lvg2 -din file.dat -cin filel.cod -cout file2.cod -alpha 0.05 -rlen 40000
~win 0.3 [-alpha_type inverse_t] [-snapinterval 1000] [-snapfile file.snap]

lvg3 - The LVQ3 version of the LVQ algorithms. It can be used (with low
-alpha value) for additional fine-tuning stage in learning. The relative
learning rate parameter -epsilon is used (multiplied by the parameter
-alpha) when both of the nearest codebook vectors belong to the same
class. The relative width of the 'window’ into which the training data
must fall is defined by the parameter -win.

> lvq3 -din file.dat -cin filel.cod -cout file2.cod -alpha 0.05 -epsilon 0.1
-rlen 40000 -win 0.3 [-alpha_type inverse_t] [-snapinterval 1000] [-
snapfile file.snap]/

Recognition accuracy program

accuracy - The recognition accuracy is evaluated. The codebook vectors
are taken from the file defined by the parameter -cin, and the test entries
from the file defined by the parameter -din, respectively. Optionally this
program creates a classification information file needed in testing the
statistical significance of the difference between two classifiers by using
program mcnemar.

> accuracy -din file.dat -cin file.cod [-cfout file.cfo]

Classification program

classify - The classifications of unknown data vectors are found. The
codebook vectors are taken from the file defined by the parameter -cin,
and the entries to be classified from the file defined by the parameter
-din, respectively. The classification results are saved to the file defined
by the parameter -dout. Optionally this program creates a classification
file that contains only the labels of classified vectors.

> classify -din file.dat -cin file.cod -dout file.cla [-cfout file.cfo]

Monitoring programs

showlabs - Displays the class labels and the numbers of entries in each
class of a given file.

> showlabs -cin file.cod
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o miundist - Displays the medians of the shortest distances between code-
book vectors in each class and the standard deviations of entries in each
class in the corresponding input data file (if given).

> mindist -cin file.cod [-din data.dat]

e stddev - Displays the medians of the shortest distances between data
vectors in each class and the standard deviations of entries in each class.

> stddev -din data.dat

e sammon - Generates the Sammon mapping [Sammon Jr. 1969] from n-
dimensional input vectors to 2-dimensional points on a plane whereby the
distances between the image vectors tend to approximate to Euclidean
distances of the input vectors. If option -eps is given an encapsulated
postscript image of the result is produced. Name of the eps-file is gener-
ated by using the output file basename (up to the last dot in the name)
and adding the ending _sa.eps to the output filename. If option -ps is
given a postscript image of the result is produced. Name of the ps-file is
generated by using the output file basename (up to the last dot in the
name) and adding the ending _sa.ps to the output filename.

In the following example, if the option -eps I is given, an eps file named
file_sa.eps is generated.

> sammon -cin file.cod -cout file.sam -rlen 100 [-rand 1] [-eps 1] [-ps 1]

e mcnemar- Computes the statistical significance of the difference between
classification results of two classifiers that have been tested with the same
data. As input, two classification information files created by accuracy
are required.

> mcnemar filel.cfo file2.cfo

6.6 Auxiliary subprograms

These programs are normally not applied by the user. They are mainly used
by the other programs as subroutines.

e climin - Eliminates those entries in a given file that are classified to the
wrong class when using the knn-classifier. The purpose is to ignore those
entries that lie on the wrong side of the class borders when initializing
the codebook vectors. (Here 7 nearest neighbors are used in the classifi-
cation.)

> elimin -din file.dat -cout file.elim -knn 7

e cxtract - Selects and saves only those entries that belong to a given class
(here class 'K’ is given).

> extract -din file.dat -cout file.ext -label K
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e pick - Picks a given number of entries from a file.

> pick -din file.dat -cout file.pic -noc 10

e setlabel - Sets the labels of the codebook vectors in a codebook by finding
a given number of nearest entries in the entry file and selecting the label
by majority voting over them.

> setlabel -din file.dat -cin filel.cod -cout file2.cod -knn 5

e knntest - The recognition accuracy is computed using the k-nearest-
neighbors classifier. Each entry is classified using majority voting with
respect to a given number of nearest neighbors in the codebook. This
algorithm is primarily meant for a subprogram in the initialization of the
codebook vectors, but can be used as an independent classifier, too.

> knntest -din file.dat -cin file.cod -knn 5

7 Advanced features

Some more advanced features has been added into the LVQ_PAK program
package in Version 3.0. These features are intended to ease the usage of the
package by offering ways to use e.g. compressed data files directly and to save
snapshots of the map during the training run.

The advanced features include:

e Missing components in input data entries are allowed

e Buffered loading (the whole data file need not be loaded into memory at
once)

e Reading and writing of:

— compressed files
— stdin/stdout

— piped command
e Snapshots of the codebook during teaching

e Environment variables

Missing components in input data entries

In many applications, sensor failures, recording errors and resource limita-
tions can prevent data collection to complete each input vector. Such in-
complete training examples still contain useful information, however, and can
be used in pattern recognition. For example, partial data can still be used
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to determine the distribution statistics of the available vector components
[Samad et al. 1992][Kaski 1995].

For incomplete input data vectors the LVQ_PAK has the possibility to mark the
missing values by a predefined string ("2’ by default). The LVQ_PAK routines
will compute the distance calculations and reference vector modification steps
using the available data components.

NOTE: If there are missing components in the data files, some functions may
produce misleading results. For example, if an input vector is compared against
several data vectors where some of the vectors have missing components, the
distances are not comparable, because there are then different number of com-
ponents in different cases. On the other hand, if an incomplete data vector
is compared against a set of complete codebook vectors, the distances are
comparable, because in all cases there are an identical number of components.

NOTE: If some specific component is missing in all input data vectors, the
results conserning that component are meaningless. The component should be
removed from the data files.

Buffered loading

This means that the whole data set doesn’t have to be loaded in memory
all the time. LVQ_PAK can be set, for example, to hold max 10000 lines of
data in memory at a time. When the 10000 data vectors have been used, the
next 10000 data vectors are loaded over the old ones. The buffered reading is
transparent to the user and it works also with compressed files.

Note that when the whole file has been read once and we want to reread it,
the file has to be rewound (for regular files) or the uncompressing command
has to be rerun. This is done automatically and the user need not to worry
about it, but some restrictions are enforced on the input file: If the source is a
pipe, it can’t be rewound. Regular files, compressed files and standard input
(if it is a file) work. Pipes work fine if you don’t have to rewind them, ie. there
is no end in the data, or the number of iterations is smaller than the number
of data vectors.

-buffer Defines the number of lines of input data file that are read at a
time.

Most programs support the buffered reading of data files. It is activated with
the command line option -buffer followed with the maximum number of data
vectors to be kept in memory. For example, to read the input data file 10000
lines at a time one uses:

> [vql -buffer 10000 ...
Reading and writing compressed files

To read or write compressed files just put the suffix .gz at the end of the
filename. The file is automatically uncompressed or compressed as the file is
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being read or written. LVQ_PAK uses 'gzip’ for compressing and uncompress-
ing. It can also read files compressed with regular UNIX compress-command.
The commands used for compressing and decompressing can be changed with
command line options or at compile time.

Example: with lvg1, to use a compressed data file for teaching:
> [vql -din data.dat.gz . ..
Reading and writing stdin/stdout

To use standard input or output, use the minus sign (*-’) as a filename. Data
is then read from stdin and written to stdout. For example, to read training
data from stdin with vsom:

> lvgl -din - ...
Reading and writing piped commands

If you use a filename that starts with the UNIX pipe character (’|’), the filename
is executed as a command. If the file is opened for writing the output of the
LVQ command is piped to the command as standard input. Likewise, when
the file is opened for reading the output of the command is read by the LVQ
programs.

For example:

> lvql -cin ”|eveninit ... " ...

would start the program eveninit when it wants to read the initial codebook.
However, the same thing could be done with:

> eveninit .. .| lvgl -cin - ...

Snapshots

Saves snapshots of the codebook during training.

-snapinterval Interval between snapshots.

-snapfile  Name of the snapfile. If the name given contains string '%d’, the
number of iterations taken so far is included to the filename.

The interval between snapshots is specified with the option -snapinterval. The
snapshot filename can be specified with the option -snapfile. If no filename
is given, the name of the output code file is used. The filename is actually
passed to 'sprintf(3)” as the format string and the number of iterations so far
is passed as the next argument. For example:

> lvql -snapinterval 10000 -snapfile "ex.%d.cod” ...

gives you snapshots files every 10000 iterations with names starting with:
ex.10000.cod, ex.20000.cod, ex.30000.cod, etc.

Environmental variables

Some defaults can be set with environment variables:

LVQSOM_COMPRESS_COMMAND Defines the command used to compress files.
Default: ”gzip -9 -¢ >%s”
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LVQSOM_UNCOMPRESS_.COMMAND Defines the command used to decom-
press files. Default: ”gzip -d -¢ %s”

LVQSOM_MASK_STR Defines the string which is used to replace missing input
vector components. Default: ”x”

Other new options

-mask_str  Defines the string which is used to replace missing input vector
components.

-compress_cmd  Defines the compress command.

-uncompress_cmd Defines the uncompress command.

By default the components of the data vectors that are marked with 'z’ are
ignored. This string can be changed with the -mask_str option. For example,

> [vql -mask_str "MIS” ...

would ignore components thats are marked with string 'MIS” instead of ’z’.
The string is case insensitive.

The command used to compress files can be changed by giving the option -
compress_cmd. Similarly the uncompress command can be changed by giving
the option -uncompress_cmd.

8 Comments and experiences of the use of
this package

Comments and experiences of the installation and use of these programs are
welcome, and may be sent to the e-mail address lvg@cochlea.hut.fi.

8.1 Changes in the package

No changes to the central recognition algorithms have been made; the latter
have been used successfully as such over many years. Therefore, if you already
have used previous Versions of LVQ_PAK, you should not notice any significant
differences in accuracies yielded by the Version 3.1, neither. However, the total
computing time, on account of the improved balance program as well as some
improvements in the best matching unit search, will now be shorter. The
following are the details that have been changed from the Version 1.0:

0. The only change made to Version 1.1 was a bug fix in the allocation of
memory.
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10.

11.

12.

. In Version 2.0 the following changes have been made: For the recursion

of a(t) in Eq. (9), another justification (cf. text) has now been found.
Thereby the indexing in Eq. (9) is slightly changed from Versions 1.0
and 1.1. This change has a negligible effect on the numerical results, but
in publications you should refer to the new form.

. The program balance has been made faster in several ways, by avoid-

ing unnecessary operations. In Versions 1.0 and 1.1 it eventually also
changed the number of codebook vectors defined in the command line.
In Version 2.0 this number is kept constant. If no samples after the knn
test are left in some class, one codebook vector, picked from the samples,
is anyway taken to it.

. Since the random-number generators in different computers are not iden-

tical, we have programmed our own formula into the procedures; now the
examples computed by the different machines are supposed to yield iden-
tical results (provided that they use a similar arithmetic).

. The LVQ3 algorithm has been added.

Several amendments, which are invisible to the user but make the system
more logical, have been made to control programs.

In Version 2.1 the following changes have been made: It is now possible
to put comment lines into the data files. The comment lines begin with
'#’ and they are ignored while reading the data.

. We have included a program classify, that produces the classifications of

unknown data vectors.
It is possible to use unlabeled data vectors with the program classify.

If there are equal vectors in the input data set of the sammon program,
it now discards all of them except one. Previously such vectors corrupted
the computation of the Sammon mapping.

We have corrected one error in the documentation. The Eq. 5 is now in
the correct form.

The routines for the search of the best matching unit are improved.
For each codebook vector the computation of the distance between the
sample vector and the codebook vector is terminated if the subdistance is
already greater than the distance for the current best matching unit. This
improvement will decrease the computing time considerably for longer
vector lengths.

In Version 3.0 it is possible to have missing components in input data
vectors.

27



13.

14.

15.

16.

17.

In Version 3.0 it is possible to use an inverse function as a learning rate
function «f(t).

In Version 3.0 it is possible to read the input data files in pieces, i.e. to
have only a portion of the whole data in main memory at a time. This
will enable using the SOM_PAK programs in PC-machines with large
data files.

In version 3.0 there are several new ’advanced’ features to allow reading
and writing of compressed files, stdin and stdout, and piped commands.

In version 3.0 it is now possible to save ’snapshots’ of the state of code-
book during training.

The only change made to Version 3.1 was a bug fix in the random ordering
of data.
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