
SOM PAKTheSelf-Organizing MapProgram PackageVersion 3.1 (April 7, 1995)
Prepared by theSOM Programming Team of theHelsinki University of TechnologyLaboratory of Computer and Information ScienceRakentajanaukio 2 C, SF-02150 EspooFINLANDCopyright c
1992-1995 byTeuvo KohonenJussi HynninenJari KangasJorma Laaksonen

1

Contents1 General 32 The principle of the SOM 43 Practical advices for the construction of good maps 64 Installation of the program package 84.1 Getting the program code : 84.2 Installation in UNIX : 94.3 Installation in DOS : 104.4 Hardware requirements : 105 File formats 105.1 Data �le format : 115.2 Map �le format : 126 Application of this package 136.1 The searching program v�nd : 136.2 Using the programs directly : 146.3 Program parameters : 146.4 Using the command lines (an example) : : : : : : : : : : : : : : 166.4.1 First stage: Map initialization : : : : : : : : : : : : : : : 166.4.2 Second stage: Map training : : : : : : : : : : : : : : : : 176.4.3 Third stage: Evaluation of the quantization error : : : : 176.4.4 Fourth stage: Map visualization : : : : : : : : : : : : : : 177 Description of the programs of this package 187.1 Initialization programs : 187.2 Training programs : 197.3 Quantization accuracy program : : : : : : : : : : : : : : : : : : 197.4 Monitoring programs : 207.5 Other programs : 218 Advanced features 219 Comments on and experiences of the use of this package 249.1 Changes in the package : 24References 272

1 GeneralThe package at hand, Version 3.1 of SOM PAK, contains several amendmentsto earlier versions, developed to attack large problems. The most important ofthem are: possibility to use incomplete data (i.e. di�erent vector componentsmissing in di�erent items), and description of data clusters using a grey scale.A number of other advanced features, already validated by extensive experiments,have also been added to this version (see Section 8).This software package contains all programs necessary for the correct applicationof the Self-Organizing Map (SOM) algorithm [Kohonen 1989][Kohonen 1990][Kohonen 1995] in the visualization of complex experimental data.NEW BOOK:Complete description, with over 1500 literature references, of the SOM and LVQ(Learning Vector Quantization) algorithms can be found in the recently publishedbook Kohonen: Self-Organizing Maps (Springer Series in Information Sciences,Vol 30, 1995). 362 pp.The Self-Organizing Map represents the result of a vector quantization al-gorithm that places a number of reference or codebook vectors into a high-dimensional input data space to approximate to its data sets in an orderedfashion. When local-order relations are de�ned between the reference vec-tors, the relative values of the latter are made to depend on each other as iftheir neighboring values would lie along an "elastic surface". By means of theself-organizing algorithm, this "surface" becomes de�ned as a kind of nonlinearregression of the reference vectors through the data points. A mapping from ahigh-dimensional data space <n onto, say, a two-dimensional lattice of pointsis thereby also de�ned. Such a mapping can e�ectively be used to visualizemetric ordering relations of input samples. In practice, the mapping is obtainedas an asymptotic state in a learning process.A typical application of this kind of SOM is in the analysis of complex experi-mental vectorial data such as process states, where the data elements may evenbe related to each other in a highly nonlinear fashion.The process in which the SOM is formed is an unsupervised learning process.Like any unsupervised classi�cation method, it may also be used to �nd clus-ters in the input data, and to identify an unknown data vector with one of theclusters. On the other hand, if the data are a priori known to fall in a �nitenumber of classes, identi�cation of an unknown data vector would optimally bedone by some supervised learning algorithm, say, the Learning Vector Quanti-zation (LVQ), which is related to the SOM. The corresponding software packageLVQ PAK is available at the same address as this package.The present program package is thus not intended for optimal classi�cation ofdata, but mainly for their interactive monitoring.NOTE: This program package is copyrighted in the sense that it may be usedfreely for scienti�c purposes. However, the package as a whole, or parts thereof,3

cannot be included or used in any commercial application without written per-mission granted by its producents. No programs contained in this package maybe copied for commercial distribution.This program package is distributed in the hope that it will be useful, butwithout any warranty. No author or distributor accepts responsibility toanyone for the consequences of using it or for whether it serves any particularpurpose or works at all.2 The principle of the SOMThere exist many versions of the SOM. The basic philosophy, however, is verysimple and already e�ective as such, and has been implemented by the proce-dures contained in this package.The SOM here de�nes a mapping from the input data space <n onto a regulartwo-dimensional array of nodes. With every node i, a parametric referencevector mi 2 <n is associated. The lattice type of the array can be de�ned asrectangular or hexagonal in this package; the latter is more e�ective for visualdisplay. An input vector x 2 <n is compared with the mi, and the best matchis de�ned as "response": the input is thus mapped onto this location.The array and the location of the response (image of input) on it are supposedto be presented as a graphic display. For a more insightful analysis, each compo-nent plane of the array (the numerical values of the corresponding componentsof the mi vectors) may also be displayed separately in the same format as thearray, using a gray scale to illustrate the values of the components. Althoughthis program package is intended for any UNIX or MS-DOS computer, someproblems are caused by di�erent standards used in the graphics systems. There-fore we give the output data as numerical arrays, and expect that the users caneasily convert them into graphic displays. Two programs are provided to con-vert the resulting map �les to encapsulated postscript image format (see Section7.4).One might say that the SOM is a "nonlinear projection" of the probabilitydensity function of the high-dimensional input data onto the two-dimensionaldisplay. Let x 2 <n be an input data vector. It may be compared with allthe mi in any metric; in practical applications, the smallest of the Euclideandistances jjx�mijj is usually made to de�ne the best-matching node, signi�edby the subscript c: jjx�mcjj = mini fjjx�mijjg ; orc = argmini fjjx�mijjg : (1)Thus x is mapped onto the node c relative to the parameter values mi.An "optimal" mapping would be one that maps the probability density function4

p(x) in the most "faithful" fashion, trying to preserve at least the local structuresof p(x). (You might think of p(x) as a
ower that is pressed!) De�nition of suchmi values, however, is far from trivial; a number of people have tried to de�nethem as optima of some objective (energy) function (see e.g. [Ritter et al. 1988],[Luttrell 1989], [Kohonen 1991], and [Erwin et al. 1992]). As the existence ofa satisfactory de�nition is still unclear, we have restricted ourselves in thispackage to the stochastic-approximation-type derivation [Kohonen 1991] thatde�nes the original form of the SOM learning procedure.During learning, those nodes that are topographically close in the array upto a certain distance will activate each other to learn from the same input.Without mathematical proof we state that useful values of the mi can be foundas convergence limits of the following learning process, whereby the initial valuesof the mi(0) can be arbitrary, e.g., random:mi(t+ 1) = mi(t) + hci(t)[x(t)�mi(t)] ; (2)where t is an integer, the discrete-time coordinate, and hci(t) is the so-calledneighborhood kernel; it is a function de�ned over the lattice points. Usuallyhci(t) = h(jjrc � rijj; t), where rc 2 <2 and ri 2 <2 are the radius vectors ofnodes c and i, respectively, in the array. With increasing jjrc�rijj, hci ! 0. Theaverage width and form of hci de�nes the "sti�ness" of the "elastic surface" to be�tted to the data points. Notice that it is usually not desirable to describe theexact form of p(x), especially if x is very-high-dimensional; it is more importantto be able to automatically �nd those dimensions and domains in the signalspace where x has signi�cant amounts of sample values!This package contains two options for the de�nition of hci(t). The simpler ofthem refers to a neighborhood set of array points around node c. Let thisindex set be denoted Nc (notice that we can de�ne Nc = Nc(t) as a functionof time), whereby hci = �(t) if i 2 Nc and hci = 0 if i 62 Nc, where �(t) issome monotonically decreasing function of time (0 < �(t) < 1). This kind ofkernel is nicknamed "bubble", because it relates to certain activity "bubbles"in laterally connected neural networks [Kohonen 1989]. Another widely appliedneighborhood kernel can be written in terms of the Gaussian function,hci = �(t) � exp �jjrc � rijj22�2(t) ! ; (3)where �(t) is another scalar-valued "learning rate", and the parameter �(t) de-�nes the width of the kernel; the latter corresponds to the radius of Nc above.Both �(t) and �(t) are some monotonically decreasing functions of time, andtheir exact forms are not critical; they could thus be selected linear. In thispackage it is furher possible to use a function of the type �(t) = A=(B + t),where A and B are constants; the inverse-time function is justi�ed theoretically,approximately at least, by the so-called stochastic approximation theory. It isadvisable to use the inverse-time type function with large maps and long train-5

ing runs, to allow more balanced �netuning of the reference vectors. E�ectivechoices for these functions and their parameters have so far only been deter-mined experimentally; such default de�nitions have been used in this package.The next step is calibration of the map, in order to be able to locate imagesof di�erent input data items on it. In the practical applications for which suchmaps are intended, it may be usually self-evident from daily routines how aparticular input data set ought to be interpreted. By inputting a number oftypical, manually analyzed data sets and looking where the best matches on themap according to Eq. (1) lie, the map or at least a subset of its nodes can belabeled to delineate a "coordinate system" or at least a set of characteristic ref-erence points on it according to their manual interpretation. Since this mappingis assumed to be continuous along some hypothetical "elastic surface", it maybe self-evident how the unknown data are interpreted by means of interpolationand extrapolation with respect to these calibrated points.3 Practical advices for the construction of goodmapsAlthough it is possible to obtain some kind of maps without taking into accountany precautions, nonetheless it is advisable to pay attention to the followingarguments in order that the resulting mappings were stable, well oriented, andleast ambiguous.Form of the array: As stated earlier, the hexagonal lattice is to be preferred forvisual inspection. The edges of the array ought to be rather rectangular thansquare, because the "elastic network" formed of the reference vectors mi mustbe oriented along with p(x) and stabilize in the learning process. Notice thatif the array were, e.g., circular, it would have no stable orientation in the dataspace; so any oblongated form is to be preferred. On the other hand, since themi have to approximate to the p(x), it would be desirable to �nd a form forthe edges of the array the dimensions of which roughly correspond to the majordimensions of p(x). Therefore, visual inspection of the rough form of p(x), e.g.,by Sammon's mapping (cf. [Sammon Jr. 1969] and Section 7.4) ought to bedone �rst.Learning with a small number of available training samples: Since for a goodstatistical accuracy the learning process (2) may require an appreciable number,say, 100'000 steps, and the number of available samples is usually much smaller,it is obvious that the samples must be used reiteratively in training. Severalalternatives then exist: the samples may be applied cyclically or in a randomlypermuted order, or picked up at random from the basic set (so-called bootstraplearning). It has turned out in practice that ordered cyclic application is notnoticeably worse than the other, mathematically better justi�able methods.Enhancement of rare cases: It may be obvious from the above that the SOMin some way tends to represent p(x). However, in many practical problems6

there may occur important cases (input data) with small statistical frequency,whereby they would not get a representation on the SOM. Therefore, suchimportant cases can be enhanced in learning by an arbitrary amount by takinga higher value of hci for these samples, or repeating these samples in a randomorder a su�cient number of times during the learning process. The weightparameters that correspond to the enhancement may be given in the trainingdata �le, and their determination should be done in cooperation with the usersof these maps (see Section 5.1).Quality of learning: Very di�erent learning processes can be de�ned startingwith di�erent initial values mi(0), and applying di�erent sequences of the train-ing vectors x(t) and di�erent learning parameters. It is obvious that someoptimal map for the same input data must exist. It may also be obvious thatwhen comparing maps that have the same "sti�ness" (same hci), the bestmap is expected to yield the smallest average quantization error because it isthen �tted best to the same data. The average quantization error, or themean of jjx � mcjj de�ned via inputting the training data once again is thena useful performance index. Therefore, an appreciable number (say, severaltens) of random initializations of the mi(0) ought to be tried, and the map withthe minimum quantization error selected. For this automatic choice there is aprocedure in this package.Especially with large maps, it is sometimes advisable to select the "best" SOMby computing a weighted distance measure Phcijjx � mijj2 where hci is theneighborhood function, and use that value instead of the quantization error incomparison. This measure is called the average distortion measure. In thispackage it is possible to use either the usual quantization error, or the weighteddistance measure (see Section 7.3) for the selection of the "best" match.Notice too that there would be no sense in comparing quantization errors fordi�erent hci, because, e.g., it is a trivial fact that the error is minimum if hci = �ci(Kronecker delta). With this kernel, however, there is no self-organizing powerleft. In general the quantization error depends strongly on hci.Missing input vector components: In many applications, sensor failures, record-ing errors and resource limitations can prevent data collection to complete eachinput vector. Such incomplete training examples still contain useful informa-tion, however. For example, partial data can still be used to determine the distri-bution statistics of the available vector components. Using the Self-OrganizingMap algorithm one can easily utilize partial training data [Samad et al. 1992][Kaski 1995].For incomplete input data vectors the SOM PAK has the possibility to mark themissing values by a prede�ned string ('x' by default). The SOM PAK routineswill compute the distance calculations and reference vector modi�cation stepsusing the available data components.NOTE: If some speci�c component is missing in all input data vectors, theresults conserning that component are meaningless. The component should beremoved from the data �les. 7

Scaling of the components: This is a very subtle problem. One may easilyrealize that the orientation, or ordered "regression" of the reference vectors inthe input space must depend on the scaling of the components (or dimensions)of the input data vectors. However, if the data elements have already beenrepresented in di�erent scales, there does not exist any simple rule to determinewhat kind of optimal rescaling should be used before entering the training datato the learning algorithm. One may try many heuristically justi�able rescalingsand check the quality of the resulting maps by means of Sammon's mapping oraverage quantization errors.Forcing representations to a wanted place on the map: Sometimes, especially formonitoring purposes, it may be desirable to map "normal" data onto speci�edlocations (say, into the middle) of the map. It is possible to a�ect the orientationand translation of the reference vectors in the input space, for instance, byforcing some "normal" data samples to be mapped to some speci�ed nodes.The �xed parameters that correspond to speci�ed locations may be given in thetraining data �le (see Section 5.1).4 Installation of the program packageIn the implementation of the SOM PAK programs we have tried to use as simplea code as possible. Therefore the programs are supposed to compile in variousmachines without any speci�c modi�cations made on the code. All programshave been written in ANSI C.The programs included in this basic package have not been provided with ex-plicit graphics facilities; this makes it possible to run the programs equally wellin all computers ranging from PCs to Cray supercomputers. The display pro-grams generate lists of coordinates of points, which can be visualized by anystandard graphics program.4.1 Getting the program codeThe latest version of the som pak-program package is available for anonymousftp user at the Internet site cochlea.hut.� (130.233.168.48). All programs andthis documentation are stored in the directory /pub/som pak. The �les are inmultiple formats to ease their downloading and compiling.The directory /pub/som pak contains the following �les:README { short description of the som pak packagesom doc.ps { this document in c
PostScript formatsom doc.ps.Z { same as above but compressedsom doc.txt { this document in ASCII formatsom p3r1.exe { self-extracting MS-DOS archive �lesom pak-3.1.tar { UNIX tape archive �lesom pak-3.1.tar.Z { same as above but compressed8

An example of FTP access is given belowunix> ftp cochlea.hut.� (or 130.233.168.48)Name: anonymousPassword: <your email address>ftp> cd /pub/som pakftp> binaryftp> get som pak-3.1.tar.Zftp> quitunix>4.2 Installation in UNIXThe archive �le som pak-3.1.tar.Z is intended to be used when installing som pakin UNIX systems. It needs to be uncompressed to get the �le som pak-3.1.tar.If your system doesn't support the BSD compress utility, you may downloadthe uncompressed �le directly.The tar archive contains the source code �les, make�les, and example data setsof the package, all in one subdirectory called som pak-3.1. In order to createthe subdirectory and extract all the �les you should use the command tar xovfsom pak-3.1. (The switches of tar unfortunately vary, so you may need omitthe 'o'.)The package contains a make�le called make�le.unix for compilation in UNIXsystems. Before executing the make command, one or the other of them has tobe copied to the name make�le. The make�le.unix is rather generic and shouldwork as such in most systems.We have written the source code for an ANSI standard C compiler and environ-ment. If the cc compiler of your system doesn't ful�ll these requirements, werecommend you to port the public domain GNU gcc compiler in your computer.When using gcc, the make�le macro de�nition CC=cc has to be changed ac-cordingly to CC=gcc. The make�le also contains some other platform speci�cde�nitions, like optimizer and linker switches, that may need to be revised.In order to summarize, the installation procedure is as follows:> uncompress som pak-3.1.tar.Z> tar xovf som pak-3.1.tar> cd som pak-3.1> cp make�le.unix make�le> makeAfter a successful make of the executables, you may test them by executing> make examplewhich performs the commands as listed in section \6.4 Using the command lines(an example)". 9

4.3 Installation in DOSThe archive �le som p3r1.exe is intended to be used when installing som pakin MS-DOS computers. It is a self-extracting packed archive compatible withthe public domain lha utility. If your system supports UNIX tar archiving andcompress �le compressing utilities, you may as well use som pak-3.1.tar andsom pak-3.1.tar.Z archives, as described in the previous section.The som p3r1.exe archive contains the source code �les, make�les, and exampledata sets of the package, all in one subdirectory called som pak.3r1. In orderto create the subdirectory and extract all the �les simply use the commandsom p3r1.The package contains a make�le called make�le.dos for building up the object�les. Before using the make command, make�le.dos has to be copied to thename make�le. It is intended to be used with the Borland Make Version 3.6and the Borland C++ compiler Version 3.1, and may need to be revised if usedwith other compilation tools. Even with Borland C you may want to set somecompiler switches, e.g.,
oating point options, according to your hardware.In order to summarize, the installation procedure is as follows:> som p3r1> cd som pak.3r1> copy make�le.dos make�le> makeAfter a successful make of the executables, you may test them by executing> make examplewhich performs the commands as listed in section \6.4 Using the command lines(an example)".Some of the more advanced features are not available in DOS Version of theprograms. These include the reading and writing of compressed �les and usageof piped commands.4.4 Hardware requirementsThe compressed archive �les are about 200 kbytes in size, whereas the extracted�les take about 500 kbytes. When compiled and linked in MS-DOS, the executa-bles are about 65 kbytes each. It is recommended to have at least 640 kbytesRAM, when using som pak in MS-DOS. The execution times of the programsdepend heavily on the hardware.5 File formatsAll data �les (input vectors and maps) are stored as ASCII �les for their easyediting and checking. The �les that contain training data and test data are10

formally similar, and can be used interchangeably.The data and map �le formats are similar to the formats used in the LVQ PAKprogram package. Thus the same data �les can be used in both (LVQ PAK andSOM PAK) packages.5.1 Data �le formatThe input data is stored in ASCII-form as a list of entries, one line being reservedfor each vectorial sample.The �rst line of the �le is reserved for status knowledge of the entries; in thepresent version it is used to de�ne the following items (these items MUST occurin the indicated order):� Dimensionality of the vectors (integer, compulsory).� Topology type, either hexa or rect (string, optional, case-sensitive).� Map dimension in x-direction (integer, optional).� Map dimension in y-direction (integer, optional).� Neighborhood type, either bubble or gaussian (string, optional, case-sen-sitive).In data �les the optional items are ignored.Subsequent lines consist of n
oating-point numbers followed by an optionalclass label (that can be any string) and two optional quali�ers (see below) thatdetermine the usage of the corresponding data entry in training programs. Thedata �les can also contain an arbitrary number of comment lines that beginwith '#', and are ignored. (One '#' for each comment line is needed.)If some components of some data vectors are missing (due to data collectionfailures or any other reason) those components should be marked with 'x' (re-placing the numerical value). For example, a part of a 5-dimensional data �lemight look like:1.1 2.0 0.5 4.0 5.51.3 6.0 x 2.9 x1.9 1.5 0.1 0.3 xWhen vector distances are calculated for winner detection and when codebookvectors are modi�ed, the components marked with x are ignored.An example data �le: Consider a hypothetical data �le exam.dat that representsshades of colors in a three-component form. This �le contains four samples,each one comprising a three-dimensional data vector. (The dimensionality ofthe vectors is given on the �rst line.) The labels can be any strings; here 'yellow'and 'red' are the names of the classes.exam.dat: 11

3# First the yellow entries181.0 196.0 17.0 yellow251.0 217.0 49.0 yellow# Then the red entries248.0 119.0 110.0 red213.0 64.0 87.0 redEach data line may have two optional quali�ers that determine the usage ofthe data entry during training. The quali�ers are of the form codeword=value,where spaces are not allowed between the parts of the quali�er. The optionalquali�ers are the following:� Enhancement factor: e.g. weight=3.The training rate for the corresponding input pattern vector is multipliedby this parameter so that the reference vectors are updated as if this inputvector were repeated 3 times during training (i.e., as if the same vectorhad been stored 2 extra times in the data �le).� Fixed-point quali�er: e.g. �xed=2,5.The map unit de�ned by the �xed-point coordinates (x = 2; y = 5) isselected instead of the best-matching unit for training. (See below for thede�nition of coordinates over the map.) If several inputs are forced toknown locations, a wanted orientation results in the map.The optional quali�ers are not used by default; see the de�nition of the param-eters -�xed and -weights.5.2 Map �le formatThe map �les are produced by the SOM PAK programs, and the user usuallydoes not need to examine them by hand.The reference vectors are stored in ASCII-form. The format of the entries issimilar to that used in the input data �les, except that the optional items onthe �rst line of data �les (topology type, x- and y-dimensions and neighborhoodtype) are now compulsory. In map �les it is possible to include several labelsfor each entry.An example: The map �le code.cod contains a map of three-dimensional vectors,with three times two map units. This map corresponds to the training vectorsin the exam.dat �le.code.cod:
12

3 hexa 3 2 bubble191.105 199.014 21.6269215.389 156.693 63.8977242.999 111.141 106.704241.07 214.011 44.4638231.183 140.824 67.8754217.914 71.7228 90.2189The x-coordinates of the map (column numbers) may be thought to range from0 to n� 1, where n is the x-dimension of the map, and the y-coordinates (rownumbers) from 0 to m�1, respectively, where m is the y-dimension of the map.The reference vectors of the map are stored in the map �le in the followingorder:1 The unit with coordinates (0; 0).2 The unit with coordinates (1; 0)....n The unit with coordinates (n� 1; 0).n+ 1 The unit with coordinates (0; 1)....nm The last unit is the one with coordinates (n� 1;m� 1).(0,0) (1,0) (2,0) (3,0)(0,1) (1,1) (2,1) (3,1)(0,2) (1,2) (2,2) (3,2)Rectangular
(0,0) (1,0) (2,0) (3,0)(0,1) (1,1) (2,1) (3,1)(0,2) (1,2) (2,2) (3,2)HexagonalIn the picture above the locations of the units in the two possible topologicalstructures are shown. The distance between two units in the map is computedas an Euclidean distance in the (two dimensional) map topology.6 Application of this package6.1 The searching program v�ndThe easiest way to use the som pak-programs is to run the v�nd-program, whichsearches for good mappings by automatically repeating di�erent random initial-izing and training procedures and their testing several times. The criterion ofa good mapping is a low quantization error.The v�nd-program asks all the required arguments interactively. The user onlyneeds to start the program without any parameters (except that the verbose13

parameter (-v), the learning rate function type parameter (-alpha type), thequantization error type parameter (-qetype) and the quali�er parameters (-�xedand -weights) can be given).6.2 Using the programs directlyUsually the subprograms contained in this package are run separately and di-rectly from the console using command lines de�ned in Section 7. The usershould take care of that the programs are then run in the correct order: �rstinitialization, then training, and then tests; and that the correct parameters aregiven (correspondence of the input and output �les of subsequent programs isparticularly important).Each program requires some parameters: �le names, learning parameters, sizesof maps, etc. All these must be given to the program in the beginning; theprograms are not interactive in the sense that they do not ask for any parametersduring their running.6.3 Program parametersVarious programs need various parameters. All the parameters that are requiredby any program in this package are listed below. The meaning of the parametersis obvious in most cases. The parameters can be given in any order in thecommands.-din Name of the input data �le.-dout Name of the output data �le.-cin Name of the �le from which the reference vectors are read.-cout Name of the �le to which the reference vectors are stored.-rlen Running length (number of steps) in training.-alpha Initial learning rate parameter. Decreases linearly to zero duringtraining.-radius Initial radius of the training area in som-algorithm. Decreaseslinearly to one during training.-xdim Number of units in the x-direction.-ydim Number of units in the y-direction.-topol The topology type used in the map. Possible choices are hexago-nal lattice (hexa) and rectangular lattice (rect).-neigh The neighborhood function type used. Possible choices are stepfunction (bubble) and Gaussian (gaussian).-plane The component plane of the reference vectors that is displayed inthe conversion routines. 14

-�xed De�nes whether the �xed-point quali�ers are used in the trainingprograms. The value one means that �xed-point quali�ers aretaken into account. Default value is zero.-weights De�nes whether the weighting quali�ers are used in the trainingprograms. The value one means that quali�ers are taken intoaccount. Default value is zero.-alpha type The learning rate function type (in vsom and v�nd). Possiblechoices are linear function (linear, the default) and inverse-timetype function (inverse t). The linear function is de�ned as �(t) =�(0)(1:0 � t=rlen) and the inverse-time type function as �(t) =�(0)C=(C + t) to compute �(t) for an iteration step t. In thepackage the constant C is de�ned C = rlen=100:0.-qetype The quantization error function type (in qerror and v�nd). Ifa value greater than zero is given then a weighted quantizationfunction is used.-version Gives the version number of SOM PAK.In addition to these, it is always possible to give the -v n parameter (verboseparameter), which de�nes how much diagnostic output the program will gen-erate. The value of n can range from 0 upwards, whereby greater values willgenerate more output; the default value is 1.-v Verbose parameter de�ning the output level.In most programs it is possible to give the -help 1 parameter, which lists therequired and optional parameters for the program.-help Gives a list where the required and optional parameters are de-scribed.In the initialization and training programs the random-number generator is usedto select the order of the training samples, etc. The parameter -rand de�neswhether a new seed for the random number generator is given; when any othernumber than zero is given, that number is used as the seed, otherwise the seedis read from the system clock. The default value is zero.-rand Parameter that de�nes whether a new seed for the random-numbergenerator is de�ned.Some examples of the use of the parameters:> randinit -xdim 12 -ydim 8 -din exam1.dat -cout code1.map -topol hexa -neighbubble 15

An initialization program was called above to create a map of 12 times 8 units.The input entries used in the initialization were read from the �le exam1.datand the map was stored to the �le code1.map. The topology of the map wasselected to be hexagonal and the neighborhood function was step function.> vsom -din exam1.dat -cin code1.map -cout code1.map -rlen 10000 -alpha 0.05-radius 10A training program was called. The training entries were read from the �leexam1.dat; the map to be trained was read from the �le code1.map and thetrained reference vectors were resaved to the same �le code1.map. Training wasde�ned to take 10000 steps, but if there were fewer entries in the input �le, the�le was iterated a su�cient number of times. The initial learning rate was setto 0.05 and the initial radius of the learning "bubble" was set to 10.> qerror -din exam2.dat -cin code1.mapThe quantization error relating to the reference vectors stored in the map �lecode1.cod was tested using the test data �le exam2.dat.6.4 Using the command lines (an example)The example given in this section demonstrates the direct use of command lines.It is meant for an introduction to the application of this package, and it maybe helpful to study it in detail. (The example may also be run directly andautomatically by the command make example.)The data items used in the example stem from practice and describe measure-ments taken from a real device. They are contained in this package and consistof four data sets: ex.dat, ex fts.dat, ex ndy.dat and ex fdy.dat. The �rst �le(ex.dat) contains 3840 vectorial samples of the device state measurements andis used for training the map, while the second �le (ex fts.dat) contains 246 ex-amples of faulty states of the device and is used for the calibration of the map.The other two �les contain samples collected during 24 hours of operation ofthe device. In ex ndy.dat the samples are from normally operating device andin ex fdy.dat from a device that is overheating. These sample �les have beenintended to demonstrate how the map can be used for device monitoring.Each vector in the �les has a dimensionality of 5.Below, the map is initialized and trained, the quantization error is evaluated,and the resulting map is visualized.6.4.1 First stage: Map initializationThe reference vectors of the map are �rst initialized to tentative values. Thelattice type of the map and the neighborhood function used in the trainingprocedures are also de�ned in the initialization.In the example the map is initialized using random numbers (the seed for therandom number generator is speci�ed with the -rand parameter). The lattice16

type is selected to be hexagonal (hexa) and the neighborhood function type isstep function (bubble). The map size is here 12 times 8 units.> randinit -din ex.dat -cout ex.cod -xdim 12 -ydim 8 -topol hexa -neigh bubble-rand 123Now the map has been initialized.6.4.2 Second stage: Map trainingThe map is trained by the self-organizing map algorithm using the programvsom.Training is done in two phases. The �rst of them is the ordering phase duringwhich the reference vectors of the map units are ordered. During the secondphase the values of the reference vectors are �ne-tuned.In the beginning the neighborhood radius is taken almost equal to the diam-eter of the map and decreases to one during training, while the learning ratedecreases to zero. (With lininit initialization the �rst phase (ordering) can beignored and only the second phase of training is needed.)> vsom -din ex.dat -cin ex.cod -cout ex.cod -rlen 1000 -alpha 0.05 -radius 10During the second phase the reference vectors in each unit converge to their'correct' values. The second phase is usually longer than the �rst one. Thelearning rate is thereby smaller. The neighborhood radius is also smaller on theaverage: in the beginning the units up to a distance of three are covered. Inthis example the training time of the second phase is ten times longer than inthe �rst phase.> vsom -din ex.dat -cin ex.cod -cout ex.cod -rlen 10000 -alpha 0.02 -radius 3After these two phases of training the map is ready to be tested and to be usedin monitoring applications.6.4.3 Third stage: Evaluation of the quantization errorWhen the entries in the map have been trained to their �nal values, the resultingquantization error can be evaluated. The training �le is used for this purpose.The program qerror is used to evaluate the average quantization error.> qerror -din ex.dat -cin ex.codThis program computes the quantization error over all the samples in the data�le. The average quantization error with the training set in this example isexpected to be 3.57.6.4.4 Fourth stage: Map visualizationThe trained map can now be used for visualization of data samples. In thispackage there are visualization programs, which make an image of the map17

(actually one selected component plane of it) and plot the trajectory of thebest-matching units vs. time upon it.Before visualization, the map units are calibrated using known input data sam-ples. The sample �le ex fts.dat contains labeled samples from states of an over-heating device.> vcal -din ex fts.dat -cin ex.cod -cout ex.codAfter calibration some of the units in the map have labels showing an area inthe map which corresponds to fatal states.The program visual generates a list of coordinates corresponding to all the best-matching units in the map for each data sample in the data �le. It also returnsthe quantization errors and the class labels of the best-matching units, if thelatter have been de�ned. The list of coordinates can then be processed forvarious graphical outputs.The data �le ex ndy.dat contains samples collected during 24 hours from adevice operating normally. The data �le ex fdy.dat contains samples collectedduring 24 hours from a device that has overheating problems during the day.> visual -din ex ndy.dat -cin ex.cod -dout ex.nvs> visual -din ex fdy.dat -cin ex.cod -dout ex.fvsThe program visual stores the three-dimensional image points (coordinate valuesof the responses and the quantization errors) in a similar fashion as the inputdata entries are stored.The package also includes program planes to convert the map planes to encapsu-lated postscript (eps) images and program umat to compute so called u-matrixvisualization [Ultsch, 1993] of the SOM reference vectors and to convert it toencapsulated postscript (eps) image.7 Description of the programs of this package7.1 Initialization programsThe initialization programs initialize the reference vectors.� randinit - This program initializes the reference vectors to random val-ues. The vector components are set to random values that are evenlydistributed in the area of corresponding data vector components. Thesize of the map is given by de�ning the x-dimension (-xdim) and the y-dimension (-ydim) of the map. The topology of the map is de�ned withoption (-topol) and is either hexagonal (hexa) or rectangular (rect). Theneighborhood function is de�ned with option (-neigh) and is either stepfunction (bubble) or Gaussian (gaussian).> randinit -xdim 16 -ydim 12 -din �le.dat -cout �le.cod -neigh bubble -topolhexa 18

� lininit - This program initializes the reference vectors in an orderly fashionalong a two-dimensional subspace spanned by the two principal eigenvec-tors of the input data vectors.> lininit -xdim 16 -ydim 12 -din �le.dat -cout �le.cod -neigh bubble -topolhexa7.2 Training programs� vsom - This program trains the reference vectors using the self-organizingmap algorithm. The topology type and the neighborhood function de-�ned in the initialization phase are used throughout the training. Theprogram �nds the best-matching unit for each input sample vector andupdates those units in the neighborhood of it according to the selectedneighborhood function.The initial value of the learning rate is de�ned and will decrease linearly tozero by the end of training. The initial value of the neighborhood radiusis also de�ned and it will decrease linearly to one during training (in theend only the nearest neighbors are trained). If the quali�er parameters(-�xed and -weight) are given a value greater than zero, the correspondingde�nitions in the pattern vector �le are used. The learning rate function� can be de�ned using the option -alpha type. Possible choices are linearand inverse t. The linear function is de�ned as �(t) = �(0)(1:0� t=rlen)and the inverse-time type function as �(t) = �(0)C=(C + t) to compute�(t) for an iteration step t. In the package the constant C is de�nedC = rlen=100:0.> vsom -din �le.dat -cin �le1.cod -cout �le2.cod -rlen 10000 -alpha 0.03-radius 10 [-�xed 1] [-weights 1] [-alpha type linear] [-snapinterval 200][-snap�le �le.snap]Notice that the degree of forcing data into speci�ed map units can becontrolled by alternating "�xed" and "non�xed" training cycles.7.3 Quantization accuracy program� qerror - The average quantization error is evaluated. For each input sam-ple vector the best-matching unit in the map is searched for and theaverage of the respective quantization errors is returned.> qerror -din �le.dat -cin �le.cod [-qetype 1] [radius 2]It is possible to compute a weighted quantization error Phcijjx�mijj2 foreach input sample and average these over the data �les. If option -qetypeis given a value greater than zero, then a weighted quantization error isused. Option -radius can be used to de�ne the neighborhood radius forthe weighting, default value for that is 1.0.19

7.4 Monitoring programs� visual - This program generates a list of coordinates corresponding to thebest-matching unit in the map for each data sample in the data �le. Italso gives the individual quantization errors made and the class labels ofthe best matching units if the latter have been de�ned. The programwill store the three-dimensional image points (coordinate values and thequantization error) in a similar fashion as the input data entries are stored.If a input vector consists of missing components only, the program willskip the vector. If option -noskip is given the program will indicate theexistence of such line by saving line '-1 -1 -1.0 EMPTY LINE' as a result.> visual -din �le.dat -cin �le.cod -dout �le.vis [-noskip 1]� sammon - Generates the Sammon mapping [Sammon Jr. 1969] from n-di-mensional input vectors to 2-dimensional points on a plane whereby thedistances between the image vectors tend to approximate to Euclideandistances of the input vectors. If option -eps is given an encapsulatedpostscript image of the result is produced. Name of the eps-�le is gener-ated by using the output �le basename (up to the last dot in the name)and adding the ending sa.eps to the output �lename. If option -ps isgiven a postscript image of the result is produced. Name of the ps-�leis generated by using the output �le basename (up to the last dot in thename) and adding the ending sa.ps to the output �lename.In the following example, if the option -eps 1 is given, an eps �le named�le sa.eps is generated.> sammon -cin �le.cod -cout �le.sam -rlen 100 [-eps 1] [-ps 1]� planes - This program generates an encapsulated postscript (eps) codefrom one selected component plane (speci�ed by the parameter -plane)of the map imaging the values of the components using gray levels. Ifthe parameter given is zero, then all planes are converted. If the inputdata �le is also given, the trajectory formed of the best-matching units isalso converted to a separate �le. The eps �les are named using the mapbasename (up to the last dot in the name) and adding px.eps (where x isreplaced by the plane index, starting from one) to it. The trajectory �leis named accordingly adding tr.eps to the basename. If the -ps optionis given a postscript code is generated instead and the produced �les arenamed replacing .eps by .ps.In the following example a �le named �le p1.eps is generated containingthe plane image. If the -din option is given, another �le �le tr.eps isgenerated containing the trajectory. If the -ps option is given then theproduced �le is named �le p1.ps.> planes -cin �le.cod [-plane 1] [-din �le.dat] [-ps 1]20

� umat - This program generates an encapsulated postscript (eps) code tovisualize the distances between reference vectors of neighboring map unitsusing gray levels. The display method has been described in [Ultsch, 1993][Iivarinen et al., 1994] [Kraaijveld et al., 1992]. The eps �le is named us-ing the map basename (up to the last dot in the name) and adding .epsto it.If the -average option is given the grey levels of the image are spatially�ltered by averaging, and if the -median option is given median �lteringis used. If the -ps option is given a postscript code is generated insteadand .ps ending in �lename is used.In the following example a �le named �le.eps is generated containing theimage.> umat -cin �le.cod [-average 1] [-median 1] [-ps 1]7.5 Other programs� vcal - This program labels the map units according to the samples in theinput data �le. The best-matching unit in the map corresponding to eachdata vector is searched for. The map units are then labeled according tothe majority of labels 'hitting' a particular map unit. The units that getno 'hits' are left unlabeled. Giving the option -numlabs one can select themaximum number of labels saved for each codebook vector. Default valueis one.> vcal -din �le.dat -cin �le.cod -cout �le.cod [-numlabs 2]8 Advanced featuresSome more advanced features has been added into the SOM PAK programpackage in Version 3.0. These features are intended to ease the usage of thepackage by o�ering ways to use e.g. compressed data �les directly and to savesnapshots of the map during the training run.The advanced features include:� Bu�ered loading (the whole data �le need not be loaded into memory atonce)� Reading and writing of:{ compressed �les{ stdin/stdout{ piped command� Snapshots of the codebook during teaching21

� Environment variablesBu�ered loadingThis means that the whole data set doesn't have to be loaded in memory all thetime. SOM PAK can be set, for example, to hold max 10000 lines of data inmemory at a time. When the 10000 data vectors have been used, the next 10000data vectors are loaded over the old ones. The bu�ered reading is transparentto the user and it works also with compressed �les.Note that when the whole �le has been read once and we want to reread it, the�le has to be rewound (for regular �les) or the uncompressing command has tobe rerun. This is done automatically and the user need not to worry about it,but some restrictions are enforced on the input �le: If the source is a pipe, itcan't be rewound. Regular �les, compressed �les and standard input (if it isa �le) work. Pipes work �ne if you don't have to rewind them, ie. there is noend in the data, or the number of iterations is smaller than the number of datavectors.-bu�er De�nes the number of lines of input data �le that are read at atime.Most programs support the bu�ered reading of data �les. It is activated withthe command line option -bu�er followed with the maximum number of datavectors to be kept in memory. For example, to read the input data �le 10000lines at a time one uses:> vsom -bu�er 10000 : : :Reading and writing compressed �lesTo read or write compressed �les just put the su�x .gz at the end of the �lename.The �le is automatically uncompressed or compressed as the �le is being read orwritten. SOM PAK uses 'gzip' for compressing and uncompressing. It can alsoread �les compressed with regular UNIX compress-command. The commandsused for compressing and decompressing can be changed with command lineoptions or at compile time.Example: with vsom, to use a compressed data �le for teaching:> vsom -din data.dat.gz : : :Reading and writing stdin/stdoutTo use standard input or output, use the minus sign ('-') as a �lename. Data isthen read from stdin and written to stdout. For example, to read training datafrom stdin with vsom:> vsom -din - : : :Reading and writing piped commandsIf you use a �lename that starts with the UNIX pipe character ('j'), the �lenameis executed as a command. If the �le is opened for writing the output of theSOM command is piped to the command as standard input. Likewise, when22

the �le is opened for reading the output of the command is read by the SOMprograms.For example:> vsom -cin "jrandinit : : : " : : :would start the program randinit when it wants to read the initial codebook.However, the same thing could be done with:> randinit : : : j vsom -cin - : : :SnapshotsSaves snapshots of the codebook during training (in vsom program).-snapinterval Interval between snapshots (in iterations).-snap�le Name of the snap�le. If the name given contains string '%d', thenumber of iterations taken so far is included to the �lename.The interval between snapshots is speci�ed with the option -snapinterval. Thesnapshot �lename can be speci�ed with the option -snap�le. If no �lename isgiven, the name of the output code �le is used. The �lename is actually passedto 'sprintf(3)' as the format string and the number of iterations so far is passedas the next argument. For example:> vsom -snapinterval 10000 -snap�le "ex.%d.cod" : : :gives you snapshots �les every 10000 iterations with names starting with: ex.10000.cod,ex.20000.cod, ex.30000.cod, etc.Environmental variablesSome defaults can be set with environment variables:LVQSOM COMPRESS COMMAND De�nes the command used to compress �les.Default: "gzip -9 -c >%s"LVQSOM UNCOMPRESS COMMAND De�nes the command used to decom-press �les. Default: "gzip -d -c %s"LVQSOM MASK STR De�nes the string which is used to replace missing inputvector components. Default: "x"Other new options-mask str De�nes the string which is used to replace missing input vectorcomponents.-compress cmd De�nes the compress command.-uncompress cmd De�nes the uncompress command.-numlabs De�nes the maximum number of labels a codebook entry can have(in vcal). 23

-noskip Do not skip those entries where there are only missing components(in visual).-average Filter the u-matrix image using averaging (in umat).-median Filter the u-matrix image using median �ltering (in umat).-eps Generate encapsulated postscript code (in sammon).-ps Generate postscript code (instead of encapsulated postscript) (inumat, planes and sammon).By default the components of the data vectors that are marked with 'x' areignored. This string can be changed with the -mask str option. For example,> vsom -mask str "MIS" : : :would ignore components thats are marked with string 'MIS' instead of 'x'. Thestring is case insensitive.The command used to compress �les can be changed by giving the option -compress cmd. Similarly the uncompress command can be changed by givingthe option -uncompress cmd.The vcal program can give several labels to each codebook entry. Using theoption -numlabs one can restrict the number of labels. Default value is to useat most one label per code.When input data has been automatically collected, it is possible that somevector components are missing. In extreme cases it is even possible that allcomponents are missing (i.e. there are no numerical values left). These datavectors are not usable in training programs, but for visualization they mightbe useful for example to mark time steps where the collection has been unfunc-tional. In visual program the default behaviour is to skip the empty entries,but they can be included into the visual result �le by giving an option -noskip.The resulting line would look out as '-1 -1 -1.0 EMPTY LINE'.9 Comments on and experiences of the use ofthis packageComments on and experiences of the installation and use of these programs arewelcome, and may be sent to the e-mail address som@cochlea.hut.�.9.1 Changes in the packageNo changes to the central algorithms have been made. The following are thedetails that have been changed from the Version 1.0:1. Those who have already used the Gaussian kernel, Eq. (3), in Version1.0 may have noticed that the learning rate in the beginning has been24

rather small. From Version 1.1 on we have now revised Eq. (3) into theform in which it has originally appeared in publications. Anyway it will benecessary to use parameter values that are di�erent from the 'bubble' case,and must be found experimentally. We recommend that for comparison,the 'bubble' kernel should always be tried �rst, and in the examples wehave given recommendable parameter values for it.2. The function 'strdup' that was used in some functions is not includedin the ANSI C standard. From Version 1.2 on we have written a newfunction 'ostrdup' that is functionally equivalent to 'strdup' and is usedthroughout the program code.3. There was an error in the function 'hexa dist' that introduced a small'random' factor in the distance calculation. That error has now beencorrected.4. In Version 3.0 it is possible to have missing components in input datavectors.5. In Version 3.0 it is possible to use a weighted quantization function.6. In Version 3.0 it is possible to use an inverse function as a learning ratefunction �(t).7. In Version 3.0 it is possible to read the input data �les in pieces, i.e. tohave only a portion of the whole data in main memory at a time. Thiswill enable using the SOM PAK programs in PC-machines with large data�les.8. In version 3.0 there are several new 'advanced' features to allow readingand writing of compressed �les, stdin and stdout, and piped commands.9. In version 3.0 it is now possible to save 'snapshots' of the state of codebookduring training.10. The only change made to Version 3.1 was a bug �x in the random orderingof data.

25

References[Erwin et al. 1992] Ed Erwin, Klaus Obermayer, Klaus Schulten. Self-organizing maps: Ordering, convergence properties and en-ergy functions. Biological Cybernetics, 67(1):47{55, 1992.[Iivarinen et al., 1994] J. Iivarinen, T. Kohonen, J. Kangas, S. Kaski Visu-alizing the clusters on the self-organizing map. Multi-ple Paradigms for Arti�cial Intelligence (SteP94), 122{126.Finnish Arti�cial Intelligence Society, 1994.[Kaski 1995] Sami Kaski, Teuvo Kohonen. Structures of Welfare andPoverty in the World Discovered by the Self-OrganizingMap. Report A24, Helsinki University of Technology, Lab-oratory of Computer and Information Technology, 1995.[Kohonen 1989] Teuvo Kohonen. Self-Organization and Associative Mem-ory. Springer-Verlag, Berlin-Heidelberg-New York-Tokio, 3edition, 1989.[Kohonen 1990] Teuvo Kohonen. The self-organizing map. Proceedings ofthe IEEE, 78(9):1464{1480, 1990.[Kohonen 1991] Teuvo Kohonen. Self-organizing maps: Optimization ap-proaches. In Proceedings of the International Conferenceon Arti�cial Neural Networks, pages 981{990, Espoo, Fin-land, June 1991.[Kohonen 1995] Teuvo Kohonen. Self-Organizing Maps. Springer-Verlag,Heidelberg, 1995.[Kraaijveld et al., 1992] M. A. Kraaijveld, J. Mao, A. K. Jain. A non-linearprojection method based on Kohonen's topology preservingmaps. Proceedings of the 11th International Conference onPattern Recognition (11ICPR), 41{45, Los Alamitos, CA.IEEE Comput. Soc. Press, 1992.[Luttrell 1989] S. Luttrell. Self-organization: a derivation from �rst prin-ciples of a class of learning algorithms. In Proceedings ofInternational Joint Conference on Neural Networks, pagesII{495{498, Washington, D.C., 1989.[Ritter et al. 1988] H. Ritter, K. Schulten. Kohonen self-organizing maps: ex-ploring their computational capabilities. In Proceedings ofIEEE International Conference on Neural Networks, pages109{116, San Diego, California, July 1988.26

[Samad et al. 1992] T. Samad, S. A. Harp. Self-organization with partial data.Network: Computation in Neural Systems, 3(2):205-212,1992.[Sammon Jr. 1969] John W. Sammon Jr. A nonlinear mapping for datastructure analysis. IEEE Transactions on Computers, C-18(5):401{409, May 1969.[Ultsch, 1993] A. Ultsch. Self organized feature maps for monitoring andknowledge aquisition of a chemical process. S. Gielen, B.Kappen, editors, Proceedings of the International Confer-ence on Arti�cial Neural Networks (ICANN93), 864{867,London. Springer-Verlag, 1993

27

