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Limbic System-Inspired Performance-Guaranteed
Control for Nonlinear Multi-Agent Systems

With Uncertainties
Ignacio Rubio Scola , Luis Rodolfo Garcia Carrillo , Member, IEEE, and João P. Hespanha , Fellow, IEEE

Abstract— We introduce a performance-guaranteed limbic
system-inspired control (LISIC) strategy for nonlinear multi-
agent systems (MASs) with uncertain high-order dynamics and
external perturbations, where each agent in the MAS incorpo-
rates a LISIC structure to support the consensus controller.
This novel approach, which we call double integrator LISIC
(DILISIC), is designed to imitate double integrator dynamics
after closing the agent-specific control loop, allowing the control
designer to apply consensus techniques specifically formulated
for double integrator agents. The objective of each DILISIC
structure is then to identify and compensate model differences
between the theoretical assumptions considered when tuning the
consensus protocol and the actual conditions encountered in
the real-time system to be controlled. A Lyapunov analysis is
provided to demonstrate the stability of the closed-loop MAS
enhanced with the DILISIC. Additionally, the stabilization of
a complex system via DILISIC is addressed in a synthetic
scenario: the consensus control of a team of flexible single-
link arms. The dynamics of these agents are of fourth order,
contain uncertainties, and are subject to external perturbations.
The numerical results validate the applicability of the proposed
method.

Index Terms— Biology elements in the loop, brain-like control
design, nonlinear multi-agent systems (MASs), performance-
guaranteed control, robust control.

I. INTRODUCTION

COORDINATION of autonomous and dynamic multi-
agent systems (MASs) is challenging because the dynam-

ics of the agents, which could be, for example, aerial, ground,
and water vehicles, or even a combination of them, are usually
not precisely known. Furthermore, MAS that execute mis-
sions in unstructured/uncertain environments is often subject
to perturbations and varying operational conditions [1], [2].
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Fig. 1. Components of the novel MAS control framework proposed is this
work. directly addresses Problems 1 and 2, while allows
overcoming Problem 3. All the components have a complexity appropriate
for real-time implementation, as desired in order to address Problem 4.

As robotic agents become advanced and complex, finding
control solutions with guaranteed performance and low com-
plexity becomes a challenging and relevant problem in the
domain of MAS with nonlinear uncertain dynamics.

A. Specific Problems Addressed and Key Results of the
Article

Four main challenges have been identified as crucial for
effective MAS performance. These challenges are discussed
next, along with the proposed solution, which is graphically
represented in Fig. 1.

1) Problem 1 (Lack of Knowledge of the State-Dependent
Functions and the Presence of Unknown Perturbations): If the
nonlinear dynamics were represented by an input affine model
with bounded internal states, with no perturbations, and the
nonlinear state-dependent functions were known, the control
problem would be trivial because these assumptions would
automatically guarantee the global existence of a solution (due
to boundedness) and convergence of the tracking error to zero.
The challenge to overcome is then the lack of knowledge of
the state-dependent functions and the addition of unknown
external perturbations.

Proposed Solution for Problem 1: We propose to estimate
the state-dependent functions using a novel learning-inspired
estimation and control algorithm which is capable of guar-
anteeing a specific performance degree to unknown exter-
nal perturbations. A numerical comparison with conventional
estimation methods is included to demonstrate the enhanced
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performance obtained when implementing the proposed novel
methodology. This observed performance improvement is our
principal motivation to support our work on a learning-inspired
algorithm.

2) Problem 2 (Inconsistency With the Computational Model
of the Limbic System): Learning-inspired controllers based
on the computational model of the limbic system have been
proposed, see, for example, [3] and [4] and references therein.
The majority of these methodologies are based on a modified
version of the computational model of the brain emotional
learning (BEL) system. In particular, both [3] and [4] omit
the Thalamus node, and the former also contains additional
bias parameters inside the orbitofrontal cortex (OFC). These
and other similar changes proposed in the related literature
are added to simplify the design of the controllers. These
modifications, however, are not consistent with the widely
accepted computational model of BEL presented in [5].

Proposed Solution for Problem 2: We propose a methodol-
ogy that contains no bias parameters and includes the Thala-
mus node. Therefore, we enforce a learning-inspired compu-
tational model that closely follows the BEL computational
model proposed in [5].

3) Problem 3 (Consensus for Nonlinear MAS): In the
existing literature, robust and adaptive solutions to linear
second-order consensus algorithms have been addressed thor-
oughly. On the other hand, consensus for nonlinear MAS is
still a challenging and relevant open problem.

Proposed Solution for Problem 3: We propose an origi-
nal approach consisting the implementation of agent-specific
learning-inspired controllers over agents with uncertain
high-order nonlinear dynamics with the objective of allowing
them to imitate agents with linear second-order closed-loop
dynamics. The technique is further enhanced with an integral
action for improving the performance with respect to two main
desirable properties: 1) maintaining the agent-specific closed-
loop stability during the learning process and 2) ensuring
stability in the case of unknown external perturbations. We call
this novel technique the double integrator limbic system
inspired control (DILISIC). Ultimately, DILISIC allows us to
incorporate control techniques specifically designed for MAS
whose agents have linear second-order dynamics, and apply
them in the domain of MAS whose agents have high-order
nonlinear dynamics.

4) Problem 4 (Computational Complexity Aligned With
Real-Time Requirements): Advanced solutions proposed for
nonlinear MAS consensus are, in general, computationally
demanding. The development of a controller with a level of
complexity considered to be implementable in real-time, and
preferably in embedded hardware, is a relevant but challenging
task.

Proposed Solution for Problem 4: The original solu-
tion consisting the combination of the DILISIC framework
with a selected robust and adaptive linear consensus algo-
rithm results in a low-complexity controller since the DIL-
ISIC structure is composed of a single-layered architecture.
Therefore, the implementation of DILISIC leads to a com-
putational complexity whose order is dictated by the con-
sensus algorithm selected by the designer. To demonstrate

applicability, we applied the novel DILISIC framework to the
seminal flocking algorithm presented in [6] and the robust
flocking algorithm introduced in [7], achieving a level of
complexity of order O(n), whose practical implementation is
feasible in real-time.

Remark 1: Each one of the four problems mentioned above
represents a major challenge, and in fact, there are some
research works proposing solutions for each one of them.
However, these solutions are tailored to address each one of the
problems separately, while the reality is that these problems
exist simultaneously in almost every real-time nonlinear MAS,
as illustrated in Fig. 1. In this work, we propose a compu-
tational method that addresses these problems simultaneously
under a holistic approach, which is an original and novel result
not available in the literature.

The rest of this manuscript is organized as follows.
Section II describes the existing related work in the litera-
ture. The problem statement is then presented in Section III.
The novel limbic system-inspired control (LISIC) controller
is introduced in Section IV, and our main result, i.e., the
double integrator closed-loop imitation DILISIC controller is
presented in Section V. Next, the performance analysis of the
proposed framework for MAS consensus control is provided
in Section VI by means of numerical results. Section VII
concludes the manuscript and provides current and future
directions of this research. The manuscript concludes with
an Appendix, which revisits robust consensus techniques for
agents with double integrator dynamics.

II. RELATED WORK

A. Low-Complexity Learning-Inspired Systems

Biologically inspired solutions have allowed solving com-
putationally complex control engineering problems whose
analytical solution is very hard or even impossible to obtain.
For example, a distributed neural adaptive control design
was proposed in [8] to achieve motion synchronization of a
group of networked nonholonomic agents with a leader agent.
Similarly, a computational model that mimics a group of parts
of the mammalian brain that are known to produce emotion,
namely, the amygdala, the OFC, the thalamus, and the sensory
input cortex, was developed in [5]. This framework, which
was named by its authors as the BEL model, was later used
in [9] for control systems purposes, leading to the so-called
BEL-based intelligent controller (BELBIC).

B. Learning Systems for Estimation of Nonlinear Functions

Classic control methodologies may require full knowledge
of the dynamics of the system to be stabilized. Reinforcement
learning (RL) recently appeared as an effective tool to deal
with uncertain dynamics and external disturbances. However,
as mentioned in [10], RL-inspired approaches are not always
accompanied with stability proofs, see, for example, the recent
work in [11], and generally have a complexity greater than
O(n), see for example the RL algorithm in [12], which has
a complexity of O(n log2(n)). BELBIC is categorized also as
a model-free controller, and therefore, it does not require full



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RUBIO SCOLA et al.: LIMBIC SYSTEM-INSPIRED PERFORMANCE-GUARANTEED CONTROL FOR NONLINEAR MASs 3

knowledge of the dynamics of the system to be controlled. Fur-
thermore, BELBIC has a single-layered architecture, leading
to a computational complexity of order O(n). This complexity
is relatively small if compared to other existing learning-based
intelligent controls, and represents an appealing characteristic
for real-time implementation purposes.

A different approach widely studied in the literature is
the use of radial basis functions (RBFs) for the estimation
of nonlinear functions. Sanner and Slotine [13] demonstrated
that an artificial neural network (NN) design with one hidden
layer of nodes possessing radial Gaussian input–output char-
acteristics is capable of uniformly approximating sufficiently
smooth functions on a compact set. Exploiting this property
in combination with Lyapunov stability analysis, a method for
using dynamic structure Gaussian RBFNN for adaptive control
of affine nonlinear systems has been presented in [14].

One of the main challenges associated with the implemen-
tation of RBFNN is that they need a large number of hidden
nodes to accomplish an acceptable approximation precision.
The number of hidden nodes is exponential growth with the
increase of input signals. Liu et al. [15] proposed to decrease
the number of inputs to decreasing the hidden nodes.

Engineering applications have been solved also by esti-
mating nonlinearities for feedback control using NNs with
associated Lyapunov stability proofs. In [16] a NN-based
output feedback control is proposed for reference tracking of
underactuated surface vessels (USVs) with input saturation
and uncertainties, with a NN-based observer that estimates
the velocity data of the USV. Also, in [17] an adaptive output
feedback control based on NNs is proposed to stabilize flexible
multi-link planar manipulators.

C. Implementation of BEL-Based Control

Implementations of BELBIC for solving complex
engineering problems in real-world scenarios have been
proposed, see for example [18] and [19]. In our recent
previous work, we proposed and implemented a BEL-inspired
tracking controller for a holonomic unmanned aircraft
system (UAS) in the presence of uncertain system dynamics
and disturbances [20]. Furthermore, we extended this method
for creating a BEL-inspired flocking controller which allowed
stabilizing a MAS in a similar challenging scenario [21]–[24].

A closely related robust controller based on an approxima-
tion of the limbic system model has been proposed in [3],
and recently also in [4] for a class of uncertain nonlinear
systems. However, this kind of approximation cannot be
strictly considered a control strategy based on the limbic
system model, due to the multiple structural modifications
made by the authors in the computational model, in order to
guarantee the convergence of their method.

In our previous work presented in [25], we introduced the
idea of a robust controller inspired by the mammalian limbic
system for a class of nonlinear systems through an integral
action. We further extended this results in [26], where we first
introduce the idea of mimicking a virtual double integrator to
support the overall MAS controller. In the present manuscript,
we incorporate both ideas in a unified approach and provide

all the theoretical framework required to ensure stability of
our solutions.

D. Nonlinear Consensus for Systems Affine in the Control

1) First and Second Order Systems: Chen et al. [27]
addressed the problem of consensus of nonlinear first and
second-order affine in the control systems with non-identical
partially unknown control directions and bounded input distur-
bances. Similarly, Chen et al. [28] solved the consensus con-
trol of nonlinear MAS with uncertain input disturbance using
fuzzy adaptive techniques, but assuming that the input is addi-
tive in the affine-in-control model. The problem of finite-time
consensus of second-order switched nonlinear MAS, where the
nonlinearities are additives to the input was considered in [29].

2) nth Order Systems: Yoo [30] solved the distributed
consensus tracking for multiple uncertain nth-order nonlinear
strict-feedback systems, but the system considered is different
since it is assumed that all the state derivatives are in affine-in-
control form with the input acting additively. In the work [31],
the authors proposed an adaptive neural consensus tracking
control for nonlinear nth order MAS using a finite-time filtered
backstepping command. Here, the additive nonlinearities are
unknown but the multiplicative ones are supposed to be
known. In [32] the leader-following consensus problem is
solved for a class of known Lipschitz nonlinear multi-agent
systems with known dynamics and an additive uncertainty,
where each agent transmits only its noisy output, at discrete
instants, and independently of its neighbors.

In contrast with these previous methods, we propose a
more general continuous nonlinear nth order system in an
affine-in-the-control form in the nth derivative with unknown
state-dependent functions and subject to additive unknown
perturbations.

3) nth Order Systems With Delays: In the work presented
in [33] the authors solved the problem of consensus for
nonlinear time-delay systems with unknown virtual control
coefficients through an adaptive neural control. The controller,
however, involves solving at each time step a definite integral
of the unknown functions of the systems. This characteris-
tic makes the implementation of this method infeasible in
real-time applications involving dynamic autonomous systems.
Our approach, in contrast, results in a low-complexity control
strategy suitable for real-time implementation.

4) Directed Topology Consensus: The robust consensus
tracking problem is studied in [34] for a class of heterogeneous
linear MAS with known dynamics, disturbances, and directed
communication topology. In [35], the leaderless consensus
problem is studied for scalar linearly parameterized MAS
under directed graphs with the combination of uncertain-
ties and the nonsymmetric Laplacian matrix. The consen-
sus of linear known time-variant MAS on directed graphs
through adaptive event-triggered control is studied in [36]. Our
methodology builds upon undirected topology consensus and
leaves the directed topology scenario as a potential extension.

E. Summary of Our Main Contributions

We introduce a novel biologically inspired agent-specific
controller for agents with high-order nonlinear dynamics
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constituting a (MAS) under undirected topology consensus.
We focus our attention on agents with a particular affine-
in-the-control model where the internal states are assumed
to be bounded but the nonlinear state-dependent functions
are unknown. The main challenge is to guarantee stability
under the lack of knowledge of the main state depending on
functions combined with the presence of external perturba-
tions. The proposed controller makes use of a computational
model structure that closely resembles the widely accepted
computational model of the limbic system encountered in the
human brain [5]. The main purpose of the limbic system
inspired control system is to estimate the unknown state
depending functions in order to guarantee stability and an H∞
performance index under external perturbations.

The fundamental characteristic pursued with the proposed
control framework is to drive the high-order nonlinear dynam-
ics of each agent to behave like the dynamics of a double
integrator. The proposed technique, which we call DILISIC,
allows us to consider the MAS stabilization problem from a
different perspective, and to exploit high-level control tech-
niques developed for double integrator consensus, which most
of the time are only effective in ideal scenarios or numerical
examples. Our goal is then to demonstrate that the novel
DILISIC can stabilize a MAS, with a guaranteed performance
in terms of consensus, trajectory tracking, and disturbance
rejection, despite the fact that the agents exhibit unknown
nonlinear state-dependent functions and disturbances.

The DILISIC framework proposed by us is combined with a
robust and adaptive linear consensus algorithm, which results
in a controller whose complexity is dictated by the high-level
controller. Therefore the control designer can arbitrarily select
an appropriate high-level control strategy with low complexity,
ensuring an effective implementation in real-time missions and
embedded systems.

III. PROBLEM STATEMENT

Consider an agent whose dynamics are consistent with a
class of nonlinear systems of order n, which are described by

x (n) = f
�
x
�+ g

�
x
�
u + d

�
x, t
�

(1)

where x = [x, ẋ, . . . , x (n−1)]T ∈ R
n is the state vector, ẋ is

the derivative of x with respect to (w.r.t.) time, x (n−1) is the
(n − 1)th ordered derivative of x w.r.t. time, and u ∈ R is the
control input. Assume the state vector x and the perturbation
d(x, t) are bounded by known positive constants �x� ≤ Mx

and �d(x, t)� ≤ Md , respectively. Assume also that g(x) > 0,
and 1/g(x) and f (x) are unknown continuous scalar functions.
Assume that the desired trajectory xd and its derivatives, up to
its nth order derivative, are smooth and bounded.

Remark 2: Some research works assume directly a bound
on f (x) and 1/g(x), see, for example, the methodology
proposed in [8], [37], and [38]. However, as discussed in
Problem 1 from Section I—Introduction, and from a practical
point of view, it is more realistic to bound the state vector x
and assume that f (x) and 1/g(x) are continuous implying a
boundedness on these functions. Our assumption and reason-
ing are consistent, for example, with the results presented in
[39]–[41] and [42].

We now define an auxiliary variable s depending on the
system’s tracking error and its derivatives as

s = e(n−1) +�n−1e(n−2) + · · · +�1e (2)

with the tracking error e = x − xd , and the terms �k (k =
1, 2, . . . , n − 1) as constants such that the roots of the poly-
nomial λn−1 + �n−1λ

n−2) + · · · + �1 = 0 have negative real
part. The derivative of the auxiliary variable s is calculated as

ṡ = f
�
x
�+ g

�
x
�
u + qa(t)+ d

�
x, t
�

(3)

with qa = −x (n)d + �n−1e(n−1) + · · · + �1ė. If the functions
f (x) and g(x) were known and d(x, t) = 0, it would be
possible to achieve the dynamics ṡ = −K s + ur with the
following exact matching control law:

u∗ = −� f
�
x
�+ qa + K s − ur

�
/g
�
x
�

(4)

with ur as an auxiliary input to be specified next.
In Section IV, we propose a methodology to overcome

the lack of knowledge of the state-dependent functions and
perturbations, which has the desirable characteristic of being
consistent with the computational model of the limbic system
in the human brain. We introduce the use of a low-complexity
learning algorithm to estimate functions f (x) and g(x), when
these are unknown, and then the addition of an integral action
in ur to guarantee an H∞ performance index.

IV. MAIN CONTRIBUTION: A NOVEL LISIC STRATEGY

An implementation of the control law in (4) would require
precise knowledge of the unknown functions f (x) and g(x).
To overcome this challenge, we shall construct online esti-
mates f̂ (x) and ĥ(x) of the functions f (x) and h(x) :=
1/g(x), respectively, that appear in the control law. In contrast
with our previous work [25], by estimating 1/g(x) instead
of g(x), we avoid the “division-by-zero” that would arise
when the estimate of g(x) crossed zero. We build f̂ (x) and
ĥ(x) using a combination of Gaussian RBF that emulates the
emotional learning structure of the mammal limbic system
originally proposed in [5]

f̂
�
x
� := f̂

�
x, V f ,W f

� = V T
f �A

�
s
�
x
��− W T

f �
�
s
�
x
��

ĥ
�
x
� := ĥ

�
x, Vh,Wh

� = V T
h �A

�
s
�
x
��− W T

h �
�
s
�
x
��

(5)

where the terms

V f = �
V f 1, V f 2, . . . , V f p, V f th

�T
W f = �

W f 1,W f 2, . . . ,W f p
�T

Vh = �
Vh1, Vh2, . . . , Vhp, Vhth

�T
Wh = �

Wh1,Wh2, . . . ,Whp
�T

are vectors of weight parameters. Amygdala and OFC weights
are represented by V and W weights, respectively. Their inter-
connection in the computational model is as shown in Fig. 3.

The terms � j are Gaussian RBF that can be represented
using the following structure:

� j = exp
�
−�s − μ j

�2
/σ 2

j

�
m = max

��
�1,�2, . . . ,�p

��
(6)
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Fig. 2. Limbic system in the mammalian brain (from [43]). This
amygdala-frontal circuit is known to be responsible of emotion regulation.
The most important parts of this system are: the , the ,

, and the . Diverse artificial computational models
take inspiration from this structure (e.g., [5]), adopting some of its parts, and
ignoring those considered not relevant for specific applications.

where s is the error dynamics described by (2), and μ j and σ j

are the corresponding mean and smoothing factor, respectively.
The RBF are � = [�1,�2, . . . ,�p]T and �A = [�,m]T,
m is an input coming from the Thalamus, and Vth is its
corresponding weight. Let the optimal weight parameters be
defined as follows:�

V ∗
f ,W ∗

f

� = arg min
V f ,W f

�
sup

x̃

		V T
f �A

�
x̃
�− W T

f �
�
x̃
�− f

�
x̃
�		


(7)�
V ∗

h ,W ∗
h

� = arg min
Vh ,Wh

�
sup

x̃

		V T
h �A

�
x̃
�− W T

h �
�
x̃
�− 1/g

�
x̃
�		

(8)

which are bounded by known positive constants �V ∗
f � ≤ M f v ,

�W ∗
f � ≤ M fw , �V ∗

h � ≤ Mhv , and �W ∗
h � ≤ Mhw , and x̃ is a

dummy variable.
In the sequel, we denote our estimates of f and h corre-

sponding the the optimal weights by

f̂ ∗�x� := f̂
�
x, V ∗

f ,W ∗
f

�
ĥ∗�x� := ĥ

�
x, V ∗

h ,W ∗
h

�
the approximation errors with respect to these estimates by

fe
�
x
� = f

�
x
�− f̂ ∗�x�

1/he
�
x
� = 1/h

�
x
�− 1/ĥ∗�x�

τ̃ = fe
�
x
�+ u/he

�
x
�

(9)

Fig. 3. Proposed limbic-system inspired computational model closely follows
the biological structure of the limbic system in the mammalian brain. The
analogy between the biological system shown in Fig. 2 and the proposed
computational system are highlighted by means of the following color code:

, , , . The sensory input is processed
in the Thalamus by means of multiple RBF, generating a set of p sensory
inputs. The output is an estimation of the unknown functions described in (5).

and the weight estimation errors by

Ṽ f = V ∗
f − V f Ṽh = V ∗

h − Vh

W̃ f = W ∗
f − W f W̃h = W ∗

h − Wh . (10)

Based on the following adaptation rules from [3]:

V̇ f = α f�A max
�
BT

e Pese, 0
�

Ẇ f = −β f�BT
e Pese

V̇h = αh�A max
�
BT

e Peseuh, 0
�

Ẇh = −βh�BT
e Peseuh

we propose the new adaptation rules in (11), as shown at the
bottom of the page, which include a projection algorithm to
guarantee boundedness of the weights V f , W f , Vh , and Wh .

Note that the update laws of the amygdala nodes are consis-
tent with the basic update rules in the emotional brain model
from [5], specifically, they can only increase. Correspondingly,
the OFC weights can both decrease and increase, and there-
fore, they can prevent inappropriate learning responses of the
amygdala.

In (11), α f , αh , β f , and βh are positive scalars and
uh = f̂ (x)+ qa + K s − ur .

We introduce an auxiliary state ξ(t) = � s(t)dt to augment
the system and improve performance through an integral action

�
ṡ
ξ̇


=
�−K 0

1 0


� �� �

Ae

�
s
ξ


+
�

1
0


����

Be

ur

V̇ f =
�
α f�A max

�
BT

e Pese, 0
�
, if

��V f �<M f v
�

or
��V f �= M f v and α f V T

f �A max
�
BT

e Pese, 0
�≤0

�
α f
�
�A−V T

f �AV f /�V f �
�

max
�
BT

e Pese, 0
�
, if

��V f � = M f v and α f V T
f �A max

�
BT

e Pese, 0
�
> 0
�

Ẇ f =
�

−β f�BT
e Pese, if

��W f � < M fw
�

or
��W f � = M fw and β f W T

f �BT
e Pese ≥ 0

�
−β f

�
�− W T

f �W f /�W f �
�
BT

e Pese, if
��W f � = M fw and β f W T

f �BT
e Pese < 0

�
V̇h =

�
αh�A max

�
BT

e Peseuh, 0
�
, if (�Vh�<Mhv ) or

��Vh�= Mhv and αhV
T

h �A max
�
BT

e Peseuh, 0
�≤0

�
αh
�
�A−V T

h �AVh/�Vh�
�

max
�
BT

e Peseuh, 0
�
, if

��Vh� = Mhv and αh V T
h �A max

�
BT

e Peseuh, 0
�
> 0
�

Ẇh =
�

−βh�BT
e Peseuh, if (�Wh� < Mhw) or

��Wh� = Mhw and βh W T
h �BT

e Peseuh ≥ 0
�

−βh
�
�− W T

h �Wh/�Wh�
�
BT

e Peseuh, if
��Wh� = Mhw and βh W T

h �BT
e Peseuh < 0

� (11)
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Fig. 4. Scheme of the novel LISIC controller proposed is this work. The
input is composed by two main components: the first one, shown in
color, depending on a limbic system structure that estimates functions f (x)
and g(x), and the second one, shown in color, depending on a state
feedback with an integration action.

then the auxiliary input term ur can be obtained by solving
the following Riccati equation:

0 = AT
e Pe + Pe Ae − Pe Be R−1 BT

e Pe + Qe (12)

ur = −BT
e Pese/r (13)

where se = [s ξ ]T, Qe = diag{Q, QI }, and R = ρ2r/(2ρ2−r),
with Qe = QT

e � 0 and 2ρ2 > r . This choice for ur guarantees
a degree of robustness for the closed-loop stability against
the external perturbation d , and also against the differences
between the functions f (x) and g(x) and their respective
estimations f̂ (x) and 1/ĥ(x). Additionally, the parameter ρ
defines the H∞ performance index. Fig. 4 illustrates the LISIC
control strategy, which will be formally introduced in our main
result, see Theorem 1.

Theorem 1 (LISIC Theorem): Consider the nonlinear sys-
tem in (1) together with the following control law:

u = −ĥ
�
x
��

f̂
�
x
�+ qa + K s − ur

�
(14)

where f̂ and ĥ are given by (5), with adaptation laws inspired
by the limbic system computational model as described in
(11), and ur as defined in (13). Along solutions to this system,
the error function s remain bounded and the H∞ tracking
performance criteria satisfies� T

0
sT

e Qesedt ≤ Ṽ f (0)T Ṽ f (0)/α f + W̃ f (0)T W̃ f (0)/β f

+ Ṽh(0)T Ṽh(0)/αh + W̃h(0)T W̃h(0)/βh

+ sT
e (0)PesT

e (0)+ ρ2
� T

0
τTτdt . (15)

Proof: The Pe matrix appearing in (12) is positive definite
and can be decomposed as

Pe =
�

P P2

PT
2 P3


. (16)

Pre- and post-multiplying (12) by se, we obtain

2sT
e AT

e Pese − sT
e Pe Be R−1 BT

e Pese + sT
e Qese = 0

⇒ −K s BT
e Pese + P2s2 + P3ξs − sT

e Pe Be BT
e Pese/r

= −�sT
e Qese + sT

e Pe Be BT
e Pese/ρ

2�/2. (17)

Using (3), (5), (9), and (14), and after some algebraic
manipulations, the derivative of s in closed-loop is

ṡ = f
�
x
�+ g

�
x
�
u + qa + d

= f̂ ∗�x�+ u/ĥ∗�x�+ qa + d + w̃

ṡ = f̃ + f̂ + �h̃ − h∗�� f̂ + qa + K s − ur
�
/ĥ∗ + qa + d + w̃

= f̃ + h̃
�

f̂ + qa + K s − ur
�
/ĥ∗ + d − K s + ur + w̃

= f̃ + h̃uh/ĥ
∗ + d − K s + ur + w̃

with f̃ (x) = f̂ ∗(x) − f̂ (x), h̃(x) = ĥ∗(x) − ĥ(x), and uh =
f̂ + qa + K s − ur , leading to

ṡ = Ṽ T
f �A − W̃ T

f �+ Ṽ T
h �Auh/ĥ

∗ − W̃ T
h �uh/ĥ

∗

− K s + ur + τ̃ + d (18)

with a term ur of the form

ur = −BT
e Pese/r = −(Ps + P2ξ)/r. (19)

The following Lyapunov function is used to prove the result:
Vx = Ṽ T

f Ṽ f
��

2α f
� + W̃ T

f W̃ f
��

2β f
� + Ṽ T

h Ṽh
��

2ĥ∗αh
�

+ W̃ T
h W̃h

��
2ĥ∗βh

� + sT
e Pese/2 (20)

based on the weight errors defined in (10). Taking derivatives
with respect to time, we obtain

V̇x = −Ṽ T
f V̇ f

�
α f − W̃ T

f Ẇ f
�
β f − Ṽ T

h V̇h
��

ĥ∗αh
�

− W̃ T
h Ẇh

��
ĥ∗βh

� + ṡT
e Pese (21)

where the last term can be computed using (18)

ṡT
e Pese = ṡ(Ps + P2ξ)+ P2s2 + P3sξ

= ṡ BT
e Pese + P2s2 + P3sξ

= �
Ṽ T

f �A − W̃ T
f �+ Ṽ T

h �Auh/ĥ
∗

− W̃ T
h �uh/ĥ

∗ − K s + ur

+ τ̃ + d
�
BT

e Pese + P2s2 + P3sξ. (22)

From (21) and (22), V̇x can be rewritten as

V̇x = Ṽ T
f

�
�A BT

e Pese − V̇ f /α f
�

− W̃ T
f

�
�BT

e Pese + Ẇ f /β f
�

+ Ṽ T
h

�
�A BT

e Peseuh − V̇h/αh
�
/ĥ∗

− W̃ T
h

�
�BT

e Peseuh + Ẇh/βh
�
/ĥ∗

− K s BT
e Pese − BT

e Pese BT
e Pese/r

+ P2s2 + P3sξ + (τ̃ + d)BT
e Pese. (23)

As a first case, we assume that the first line of the update
laws in (11) are active, and using (17), it is possible to rewrite
(23) as

V̇x ≤ −�sT
e Qese + sT

e Pe Be BT
e Pese/ρ

2�/2
+ Ṽ T

f �A
�
BT

e Pese − max
�
BT

e Pese, 0
��

+ Ṽh�
�
BT

e Peseuh − max
�
BT

e Peseuh, 0
���

ĥ∗

+ (τ̃ + d)BT
e Pese. (24)
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For the second case, i.e., when the update laws are defined
by the second line of (11), for each dynamic of the NN weights
we obtain

V̇x ≤ −�sT
e Qese + sT

e Pe Be BT
e Pese/ρ

2�/2
+ Ṽ T

f �A
�
BT

e Pese − max
�
BT

e Pese, 0
��

+ Ṽ T
h �A

�
BT

e Peseuh − max
�
BT

e Peseuh, 0
���

ĥ∗

+ (τ̃ + d)BT
e Pese

+ Ṽ T
f

�
V T

f �AV f /�V f �
�

max
�
BT

e Pese, 0
�

+ Ṽ T
h

�
V T

h �AVh/�Vh�
�

max
�
BT

e Peseuh, 0
�

− W̃ T
f

�
W T

f �W f /�Wh�
�
BT

e Pese

− W̃ T
g

�
W T

h �Wh/�Wh�
�
BT

e Peseuh . (25)

The new term depending on V f is analyzed, using (10) and
the respective conditions in equation (11) as

Ṽ T
f

�
V T

f �A max
�
BT

e Pese, 0
�
/�V f �

�� �� �
:=ζ1>0

V f = Ṽ T
f V f ζ1

= �
V ∗T

f − V T
f

�
V f ζ1 = V ∗T

f V f ζ1 − �V f �2ζ1

≤ ��V ∗
f � − �V f �

��V f �ζ1.

We know that in this case �V f � = M f v , �V ∗
f � ≤ M f v , and,

therefore, we can conclude that

Ṽ T
f

�
V T

f �AV f /�V f �
�

max
�
BT

e Pese, 0
�� ≤ 0.

A similar analysis can be done for the new terms depending
on Vh , W f , and Wh , therefore, we can conclude that the pro-
jection algorithm does not modify the Lyapunov equation (24).

Considering (24) and using the fact that a max(b, 0) ≤
max(ab, 0), ∀a, b ∈ R, then

V̇x ≤ −�sT
e Qese + sT

e Pe Be BT
e Pese/ρ

2�/2
+ �Ṽ f�A + Ṽh�uh/ĥ

∗��BT
e Pese − max

�
BT

e Pese, 0
��

+ (τ̃ + d)BT
e Pese.

Defining the worst case perturbation, in the sense of maxi-
mizing V̇x , as

τ = τ̃ + d + 		Ṽ f�A + Ṽh�uh/ĥ
∗		sign(τ̃ + d) (26)

with a maximum value for τ2 less than sT
e Qese/ρ

2, the fol-
lowing is obtained:
V̇x ≤ −�sT

e Qese + sT
e Pe Be BT

e Pese/ρ
2
�
/2 + τBT

e Pese. (27)

Adding and subtracting ρ2τ2/2 to the previous equation,
the following is obtained:

V̇x ≤ −sT
e Qese/2 − �BT

e Pese/ρ − ρτ
�2
/2 + ρ2τ2/2

V̇x ≤ −sT
e Qese/2 + ρ2τ2/2

= −sT Qs/2 − ξT QI ξ/2 + ρ2τ2/2. (28)

By integrating (28) from t = 0 to t = T , the H∞ tracking
performance criteria in (15) is attained. If τ ∈ L2, using
Barbalat’s Lemma [44] it can be proved that the error function
s asymptotically converges to zero.

Fig. 5. DILISIC structure: a LISIC controller scheme imitating the double
integrator behavior. A nonlinear agent affected by an external perturbation d
is placed in closed loop with a LISIC controller. This arrangement corrects
the error s between the system output x and a double integrator system that
generates xd from uDI.

V. NOVEL LISIC STRATEGY FOR MAS CONSENSUS

In terms of MAS consensus, the main objective is to design
a control signal ui for each agent i , in such a way that the col-
lective motion of all the agents exhibits an emergent behavior
arising from simple rules that are followed by individuals, and
does not involve any central coordination. For the novel frame-
work proposed in this research work, each agent i is designed
to incorporate a LISIC structure to support the overall consen-
sus controller. The objective of each LISICi control structure
is to identify and compensate model differences between what
was theoretically supposed when tuning the MAS controllers,
see (41)–(43), and the real practical conditions encountered
in the system. Another objective of the LISIC framework is
to enable the implementation of second-order MAS control
techniques into MAS whose agents exhibit nth-order nonlinear
dynamics, like those described by (1).

Even if a linear model is adopted for each agent, see
for example the MAS dynamics in (37) in the appendix,
the interconnection of the agents is done under a nonlinear
MAS protocol, as (41)–(43) show. This leads to a nonlinear
propagation of the MAS model uncertainties or external per-
turbations. The novel framework interfaces the LISIC structure
with the MAS by means of implementing a reference model
of a double integrator to create a virtual reference for the
s variable. The proposed interconnection framework, which
we call the Double Integrator-LISIC (DILISIC) is shown
in Fig. 5. The DILISIC system is composed of an agent
in a closed-loop with a LISIC, imitating the desired double
integrator dynamics.

Remark 3: In the absence of model mismatches and/or
perturbations, the LISIC strategy should not interfere with the
nominal MAS control.

A. Double Integrator Closed-Loop Behavior

We propose to use the LISIC structure to compensate
the differences between the high-order model of each agent
and a nominal system described by a double integrator.
By doing this, LISIC facilitates the implementation of any
consensus-inspired control strategy specifically designed for
second-order nonlinear agents.
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As a first step, consider a reference model representing the
double integrator dynamics

ẍd = uDI (29)

where the subscript (·)DI indicates the double integrator system
that the LISIC closed-loop should imitate, and we consider
that uDI ∈ Cn−2. Next, the system output is compared with the
reference model that represents the double integrator dynamics

e = xd − x (30)

x (n) = f
�
x
�+ g

�
x
�
(uDI + uLISIC) (31)

where uLISIC comes from the controller in (14) and uDI is
defined in (29).

The DILISIC closed-loop system can now be rewritten as

x (n) = f
�
x
�+ g

�
x
�
uLISIC + g

�
x
�
uDI − u(n−2)

DI� �� �
d(x,t)

+u(n−2)
DI . (32)

The stability proof is straightforward using Theorem 1.
For the particular case of a second-order system we have

ẍ = f
�
x
�+ g

�
x
�
uLISIC + g

�
x
�
uDI − uDI + uDI. (33)

If the functions f (x) = 0 and g(x) = 1, then the systems
in (29) and (33) are identical. If both systems have the same
initial conditions, there is no need for compensation and the
LISIC controller output should be uLISIC = 0.

With the DILISIC structure imitating double integrator
agents, we can now take a MAS whose agents exhibit
high-order dynamics and directly apply consensus techniques
designed for double integrator agents.

B. Robust Adaptive Control of MAS

Due to the incorporation of the DILISIC structure, each
agent will inherit a nonlinear component that can be con-
sidered as a nonlinear function. With the main objective
of designing an adaptive flocking control to overcome this
challenge, we revisit a classic MAS model, see (37) in the
Appendix, but now including a nonlinear additive perturba-
tion [45] �

q̇i = pi

ṗi = f(pi)+ ui ,
i = 1, 2, . . . , n̄ (34)

where qi , pi , and ui represent the position, velocity, and
control input of agent i , respectively, and n̄ is the number
of agents. Additionally, f(pi) is a nonlinear function that
represents the error produce by the DILISIC controller in the
transformation of the original agent into a double integrator.

Using a distributed flocking algorithm of the form

ui = −�qi V (q)+
�
j∈Ni

�
ai j(t)+ δi j(t)

��
p j − pi

�
where q = [q1, . . . , qn̄], and �qi V (q) is a gradient-based
term of the collective potential function V , defined in (39).
The second term in ui is the velocity consensus term defined in
(41). Additionally, ai j are the elements of the spatial adjacency
matrix, δi j �= δ j i is the asymmetric parameter perturbation, and
Ni is the neighborhood set of agent i defined in (38).

In this work, we adopt the flocking algorithm proposed
in [6]. Additional techniques regarding MAS consensus with
linear double integrator agents are revisited in the Appendix.
The following assumptions are needed, as stated in [45].

Assumption 1: There exist a constant diagonal matrix H =
diag(h1, . . . , hn) and a positive value  such that

(z − y)T (f(z, t)− f(y, t))− (z − y)T H (z − y)

≤ −(z − y)T (z − y) ∀z, y ∈ R
m .

Assumption 2: There exist positive constant Ii j such that		δi j

		 ≤ Ii j ∀t ≥ 0, i �= j ; i, j = 1, . . . , n̄. (35)

Assumption 3: The collective potential function V satisfies

N�
i=1

�qi V (q) = 0

�qi V (q) = �qi −q̄ V (q − 1n̄ ⊗ q̄), i = 1, . . . , n̄

where 1n̄ is a n̄-dimensional ones vector, ⊗ denotes the
Kroneker product of matrices and q̄ = (1/n̄)

�n̄
j=1 q j . All

linear and piecewise linear functions satisfy the condition in
Assumption 1.

Lemma 1 (From [45]): Suppose that Assumptions 1-3 hold
and the MAS velocity network is connected. The MAS in (34)
can reach flocking formation under the following distributed
adaptive control law:

L̇i j = −αi j
�

p j − pi
�T �

p j − pi
�

(36)

where αi j = α j i are positive constants, 1 ≤ i �= j ≤ n̄, and L
is the semi-positive definite Laplacian matrix in the undirected
network.

The Laplacian matrix is defined as Li, j = −ai, j for i �= j ,
and Li,i = ki . The terms ki = −�n̄

j=1, j �=i Li, j , and ai, j are
taken from [6], as stated in (41) from the Appendix.

Section VI presents numerical simulations showing the
performance of the proposed distributed MAS controller.

VI. SIMULATIONS

The performance of the proposed performance-guaranteed
flocking controller for high-order nonlinear MAS, which is
inspired by the mammalian limbic system, is validated here in
a set of numerical simulations.

Each agent in the MAS corresponds to a flexible single-link
arm under gravity and joint friction, whose dynamics are of
fourth order and are expressed by [46]

x (4) = f
�
x
�+ g

�
x
�
u + d

f
�
x
� =

�
gẋ2

l
− g

lα2

�
cos(x)+

�
2gẋ2

lα
+ gx (2)

l

�
sin(x)

− cx

ml2α2
− 2cẋ

ml2α
− cx (2)

ml2
+ x (2)

α2
− 2x (3)

α

g
�
x
� = c

ml2α2

with c = 2276.3, g = 9.81, m = 2.27, l = 0.96, and
α = −36.52.
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Fig. 6. Comparison of numerical results of a BEL-based NN with respect to
a classical RBFNN with the same tuning parameters, same initial conditions,
and the robust term ur . The BEL-based NN exhibits faster convergence with
respect to the classical RBFNN.

The challenge we address consists on the stabilization
and consensus of a group of seven of these flexible single-
link arms, when the functions f (x) and g(x) are unknown,
the MAS is affected by external perturbations, and the agents
evolve in an environment with obstacles. The parameters
adopted in our simulations are d(0 ≤ t < 70) = 0, d(70 ≤
t < 75) = 6000, d(t ≥ 75) = 0, xi (0) = [x0,i , 0, 0, 0]T,
with x0,i equally distributed between −0.64 rad and 0.64 rad,
and a sampling time of Ts = 10−4. The parameters for the
sigmoidal function are a = 20, b = 50 and  = 0.1 (see
(40) in the Appendix). The DILISIC tuning parameters are
p = 45, r = 0.0018375, ρ = 0.035, �1 = 125, �2 = 75,
�3 = 15, K = 20, Q = 0.2, and QI = 10, and the reference
is xd = −π sin(t)/10.

The RBF parameters μ j are equally distributed between
−45 and 45, and σ j = 45. The weight parameters V f , Vh ,
W f , and Wh , as well as the integrator state ξ , are initialized
with zero values.

The MAS controller is tuned with the following parameters:

cα1 = 50, cα2 = 2
�

cα1 , cβ1 = 50, cβ2 = 2
�

cβ1 , cγ1 = 0.04,

cγ2 = 2
�

cγ1 , csc
1 = 0.07, csc

2 = 2
�

csc
1 , and the adaptation rate

αi j = 30. The derivatives needed in (32) are obtained from a
first order backward difference formula.

A. Numerical Results for a Single Agent: Inverted Pendulum

In order to compare the performance of a BEL-based NN
with respect to a classical RBFNN, we present first a numerical
simulation corresponding to the stabilization of an inverted
pendulum, whose dynamic model is described in [3]. For this
comparison, a low-order system was chosen due to the fact
that the classical RBFNN exhibited inappropriate performance
when stabilizing the more complex flexible single-link arm
model. Both BEL-based NN and RBFNN are tuned with the
same parameters, including the robust term. Fig. 6 illustrates
the position and the tracking error for both controllers. Notice
the faster convergence of the BEL-based NN with respect
to the classical RBFNN.

B. Numerical Results for a MAS: Seven Flexible Single-Link
Arms

The group of seven agents is tasked to follow a center
of mass (CoM) reference in consensus mode. The agents

Fig. 7. Positions of a seven-agent MAS (1-D agents) following a sinusoidal
reference, and maintaining a security distance from a wall-type obstacle (black
line). The obstacle appears at time t = 30 s, with a position of x = 0.9 rad.
When the obstacle appears, the separation distance between agents is adjusted
and successfully maintained to the desired values. The same adjustment is
observed at t = 70 s, when an external perturbation affects the MAS.

Fig. 8. Time evolution of the CoM of the MAS formation ( ) w.r.t.
the desired reference (black signal). The obstacle appears at time t = 30 s,
affecting the CoM of the MAS. At time t = 70 s an external perturbation
modifies the formation. In both cases, the proposed control strategy enables
an effective asymptotic tracking of the reference.

evolve in an environment with obstacles and are affected by
external perturbations. The numerical results in Fig. 7 show the
evolution of the angular position of the seven agents. At time
t = 30 s, an obstacle appears at position x = 0.9 rad. Note
that, as soon as the obstacle appears, the separation distance
between agents is adjusted and successfully maintained to the
desired values. The CoM of the MAS is modified at the same
time, see Fig. 8, allowing the agents to maintain the desired
inter-agent separation, and an effective consensus. An external
perturbation appears at time t = 70 s, which simulates a
uniform force in the positive x-axis, and affects all the agents
simultaneously. In summary, from Fig. 7, it is observed that
each agent rejects the perturbation, and from Fig. 8 that the
MAS can effectively follow the CoM.

The agents’ velocities are shown in Fig. 9. Notice that these
states exhibit small corrections between t = 30 s and t = 45 s,
which are due to the presence of the obstacle. Additionally,
the variation observed at time t = 70 s is due to the presence
of the perturbation. In both cases, the proposed controller is
effective for ensuring MAS velocity consensus, according to
the design requirements.

For illustration purposes, the time evolution of the external
perturbation and the corresponding control input of agent
number 1 in the MAS is shown in Fig. 10. Fig. 11 shows
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Fig. 9. Angular velocity of the MAS. Note the effect of the obstacle between
t = 30 s and t = 45 s, and the perturbation at around t = 70 s. In both cases,
the proposed controller is effective for ensuring MAS velocity consensus,
according to the design requirements.

Fig. 10. Time evolution of the perturbation and the corresponding control
input generated by agent 1 in the MAS. The high control input values at
the beginning of the simulation are due to the initialization of the LISIC
weights. The same behavior is observed during the compensation of the
external perturbation. The perturbation illustrated here affect all of the agents
in the MAS from time t = 70 to t = 75.

Fig. 11. Estimation of the functions f (x) and h(x), as obtained from
the LISIC structure in agent number 1. The adaptation is observed at the
first seconds of the simulation. Additional adaptations are needed under the
effect of the obstacle, which is present between t = 30 s and t = 45 s,
and also under the effect of the external perturbation between t = 70 s and
t = 75 s.

the estimations of functions f (x) and h(x) computed by the
LISIC controller, for the exact agent.

VII. CONCLUSION

This article introduced a novel biologically-inspired agent-
specific controller for agents with high-order nonlinear
dynamics constituting a MAS. The agents’ dynamic models

belong to an affine-in-the-control class, where the nonlinear
state-dependent functions are unknown. Making use of a com-
putational structure that closely resembles the limbic system
encountered in the human brain [5], the controller is able to
estimate the unknown state depending functions, even in the
presence of obstacles and external perturbations.

The proposed framework, which we called DILISIC, estab-
lished a novel control framework that is capable of imitating
double integrator dynamics after closing the control loop.
Then, even if the agents exhibit high-order dynamics, it is
possible for the control designer to directly apply consensus
techniques originally formulated for double integrator agents.
Furthermore, by relying on the LISIC strategy, the individual
agents are provided with robustness to external disturbances—
an effect that is also achieved at the overall MAS level.

The DILISIC framework proposed by us is designed in such
a way that, if the control designer chooses a high-level control
strategy with complexity O(n), then the overall controller
will exhibit the same complexity, and therefore the effective
implementation of this method in embedded systems and in
real-time missions is ensured.

A Lyapunov proof is provided to demonstrate the stability
of the proposed strategy. Additionally, to demonstrate the
effectiveness and performance of the proposed approach, a set
of numerical results consisting the flocking control of a group
of seven flexible single-link arms under gravity and joint
friction, with fourth-order uncertain dynamics, and operating
in a scenario with obstacles and disturbances is provided.
Comparisons with similar methods are also provided in order
to show the superior performance obtained when DILISIC is
adopted.

Current directions of this research explore the implemen-
tation of DILISIC for consensus of UASs in 2-D and 3-D
scenarios.

APPENDIX

CONSENSUS FOR AGENTS WITH DOUBLE INTEGRATOR

DYNAMICS

Assuming n̄ agents with second order dynamics evolving in
an m dimensional space (m = 2, 3), it is possible to describe
the motion of each agent i as�

q̇i = pi

ṗi = ui ,
i = 1, 2, . . . , n̄ (37)

where {ui , qi , pi} ∈ R
m are control input, position, and

velocity of agent i , respectively. An associated dynamic graph
G(υ, ε) consisting of a set of vertices υ and edges ε is
represented by υ = {1, 2, . . . , n̄}, ε ⊆ {(i, j) : i, j ∈ υ, j �=
i}. Each agent i is represented by a vertex, and each edge
represents a communication link between a pair of agents.
The neighborhood set of agent i is

Nα
i = � j ∈ υα : �q j − qi� < r, j �= i

�
(38)

where �·� is the Euclidean norm in R
m , and the positive

constant r is the range of interaction between agents i and j .
To describe the geometric model of the flock, i.e., the α-lattice,
the following set of algebraic conditions should be solved [6]
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�q j − qi�σ = dα ∀ j ∈ Nα
i where dα = �d�σ , the positive

constant d is the distance between neighbors i and j , and �d�σ
is the σ -norm expressed by �z�σ = ((1 + �z�2)1/2 − 1)/,
with  > 0. The σ -norm is a map from R

m to R ≥ 0
for a vector z and is differentiable everywhere. From the
above constraints, a smooth collective potential function can
be obtained as

V (q) = 0.5
�

i

�
j �=i

ψα
��q j − qi�σ

�
(39)

where ψα(z) is a smooth pairwise potential function defined
as ψα(z) = � z

dα
φα(s)ds, with

φα(z) = ρh(z/rα)φ(z − dα)

φ(z) = ((a + b)σ1(z + c)+ (a − b))/2 (40)

σ1(z) = z/
�
1 + z2�1/2.

Also, φ(z) is a sigmoidal function with 0 < a ≤ b, c =
|a − b|/(4ab)1/2, to guarantee that φ(0) = 0. The term ρh(z)
is a scalar bump function that smoothly varies between [0, 1].
A possible choice for defining ρh(z) is [6]⎧⎪⎨

⎪⎩
1, z ∈ [0, h)

0.5(1 + cos(π(z − h)/(1 − h))), z ∈ [h, 1]

0, otherwise.

The flocking control algorithm ui = uαi +uβi +uγi introduced
in [6] allows avoiding obstacles, while making all agents
to form an α-lattice configuration. The control algorithm
has three parts: uαi is the interaction component between
two α-agents, uβi is the interaction component between the
α-agent and an obstacle (the β-agent), and uγi is a goal
component consisting of a distributed navigational feedback
term. In particular

uαi = cα1
�
j∈Nα

i

φα
��q j − qi�σ

�
ni, j + cα2

�
j∈Nα

i

ai j(q)
�

p j − pi
�
(41)

uβi = cβ1
�
k∈Nβ

i

φβ
��q̂i,k − qi�σ

�
n̂i,k + cβ2

�
k∈Nβ

i

bi,k(q)
�

p̂i,k − pi
�

(42)

uγi = −cγ1 (qi − qr )− cγ2 (pi − pr)

− csc
1

!!
n̄�

i=1

qi

"
/n̄ − qr

"
− csc

2

!!
n̄�

i=1

pi

"
/n̄ − pr

"
(43)

where cα1 , cβ1 , cγ1 , csc
1 , cα2 , cβ2 , cγ2 and csc

2 are positive constants.
The pair (qr , pr ) is the coordinates of a virtual leader of the
MAS flock, i.e., the γ -agent which can be represented as {q̇r =
pr , ṗr = fr (qr , pr )}. The terms

�n̄
i=1 qi/n̄ and

�n̄
i=1 pi/n̄

define the coordinates of the Center of Mass (CoM) of the
MAS. The terms ni, j and n̂i,k are vectors defined similar as
in [7] and [6]. The stability of the MAS flocking comes from
Theorem 1 in [7].

The weights csc
1 and csc

2 , corresponding to the attractive
force between the MAS CoM and the reference, are freely
set so that the CoM can converge to the reference as soon as
possible. Rahmani and Belkheiri [7] showed that the choice of

csc
1 , csc

2 does not affect the consensus stability or the obstacle
avoidance.

Finally, bi,k(q) and ai j(q) are the elements of the hetero-
geneous adjacency matrix B(q) and spatial adjacency matrix
A(q), respectively, which are described as bi,k(q) = ρh(�q̂i,k −
qi�σ /dβ) and ai j(q) = ρh(�q j − qi�σ )/rα ∈ [0, 1], i �=
j . In these equations, rα = �r�σ , aii(q) = 0 ∀i and q ,
dβ = �d ��σ , and rβ = �r ��σ . The positive constant d � is the
distance between an α-agent and obstacles. The term φβ(z)
is a repulsive action function which is defined as φβ(z) =
ρh(z/dβ)(σ1(z − dβ) − 1). Now, we can define the set of
β-neighbors of the i th α-agent in a similar way to (38) as
Nβ

i = {k ∈ νβ : �q̂i,k − qi� < r �} where the positive constant
r � is the range of interaction of an α-agent with obstacles.
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