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Abstract— Learning for control in repeated tasks allows for
well-designed experiments to gather the most useful data. We
consider the setting in which we use a data-driven controller
that does not have access to the true system dynamics. Rather,
the controller uses inferred dynamics based on the available
information. In order to acquire data that is beneficial for
this controller, we present an experimental design approach
that leverages the current data to improve expected control
performance. We focus on the setting in which inference on
the unknown dynamics is performed using Gaussian processes.
Gaussian processes not only provide uncertainty quantification
but also allow us to leverage structures inherit to Gaussian ran-
dom variables. Through this structure, we design experiments
via gradient descent on the expected control performance with
respect to the experiment input. In particular, we focus on a
risk-aware minimum expected time control problem. Numerical
demonstrations of our approach indicate our experimental
design outperforms relevant benchmarks.

I. INTRODUCTION

Many safety-critical tasks such as driving around a race
track or repeated robotic motions in a novel environment
can leverage learning-based methods to improve control
performance. In the setting where the dynamics of the system
are unknown, a natural question is how to use a fixed number
of trials to gather the most informative data for improving
control performance.

We motivate our problem with the example of a race car
driver learning the nuances of the vehicle dynamics on a
new track. If the driver is given test laps before having to
race, the driver should choose each test lap carefully so as to
improve their expected performance on the race lap. For our
problem, we consider a controller that minimizes an objective
(e.g. racing) given dynamics inferred from gathered data. In
order to collect the most useful data for control, we design an
experiment that aims to improve the data-driven controller’s
expected performance as much as possible.

In this work we present a novel formulation for experiment
design for data-driven control. Section II defines the system
dynamics as an unknown discrete-time process with additive
noise. We define a data-driven controller that minimizes a
control objective given the currently available data. When
thinking about experiment design, this naturally leads to
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a formulation in which we consider how to augment our
dataset in order to the improve our control performance as
much as possible. We design the experiment to minimize the
expected control performance given data available at the time
of the experiment.

In Section III, we focus our attention on using Gaussian
processes for inference on the system dynamics. In safety-
critical settings where we need uncertainty quantification of
both epistemic and aleatoric uncertainty of the dynamics,
Gaussian processes allow us to derive tractable formulations
for both the optimal control and experiment design problems.

Using this structure, we present an approach to solving
the experiment design problem that takes the gradient of the
expected control performance with respect to the experiment
input. We derive a numerical approximation to the analytic
gradient and then use stochastic gradient descent to improve
the expected performance.

We consider a prototypical risk-aware control problem in
Section IV in which we try to minimize the expected time
to a target set while avoiding an unsafe set to a desired
probability level. In particular, we focus on joint-chance
constraints in time such that the total probability of entering
the unsafe set is minimized as in [1], [2]. We solve this
using a dynamic programming approach and a Lagrangian
formulation for the joint-chance constraint.

Numerical results in Section V demonstrate the effective-
ness of the experiment design formulation for the minimum
time problem. We consider the scenario in which we add
one well-designed experiment to an existing dataset. We
compare the performance of our algorithm against suitable
benchmarks by first considering the percentage of experi-
ments that result in feasible controllers in low-data settings.
We then also consider the minimum time for controllers
that are feasible. These indicate that our experiment design
outperforms the benchmarks and highlights potential future
work.

Using Gaussian process regression for learning dynamical
models for the purposes of safe control has been explored
in numerous works including [3], [4]. These papers focus
on using Gaussian processes trained on sufficient data to
perform safety-critical control. Exactly how to choose that
data when given limited time to gather data is not explored.
Furthermore, active learning using Gaussian processes has
been demonstrated in [5], [6], [7]. Active learning is often
used in the dual control context [8]; the dual control problem
differs from this work because we separate out data gathering
from the control trial while a dual control approach would
try to simultaneously perform control and estimate unknown



quantities. Some work has been done on experiment design
for Gaussian processes, mainly with respect to information
theoretic objectives and not necessarily for dynamical sys-
tems [9], [10], [11], [12], [13], [14].

Overall then, our approach differs from previous work
in mainly two aspects: first, the experiment design criteria
differs from information theoretic approaches by using the
expected control performance in order to focus learning in
control-relevant regions, and second, our approach to solving
the resulting experiment design is novel in how it leverages
the structure of Gaussian processes.

II. EXPERIMENT DESIGN FOR DATA-DRIVEN CONTROL

We consider systems with discrete-time dynamics

xt+1 = h(xt, ut) + wt, (1)

where xt ∈ Rnx denotes the state at time t, ut ∈ Rnu denotes
the input, and wt ∼ N (0,Σw) is independent, identically
distributed process noise. We do not know the function h(·)
and will use data gathered from previous trials to inform our
belief of the values h(·) will take at particular state-input
pairs. We consider a control objective given by

G(X,U) (2)

over time horizon N such that the matrix X ∈ Rnx×N is a
concatenation of the states, xt, and similarly U ∈ Rnu×N .

While h(·) is not known, we have prior information about
it such that we can condition our expected control objective
on it. We incorporate available data by letting the set:

D = {xi, ui, yi}Mi=0 (3)

consist of M triples satisfying

yi = h(xi, ui) + wi (4)

with the understanding that the data come from a repeated
task in which case (1) provides triples that satisfy (4) for
yi = xt+1, xi = xt, ui = ut.

After gathering some data, D, we want to conduct a trial
that minimizes an expected control objective (e.g. racing a
car around a track as fast as possible). In this data-driven
setting, our control objective is to minimize a conditional
expectation based on the available information and the pro-
cess noise:

J(D) := min
U∈U

E[G(X,U) | D] (5)

where X is described by (1).
In order to gather the data that is most useful for the

control performance, we construct our experiment design
criteria to minimize the post-experiment expected cost of
the optimal control problem. To this effect we construct an
experiment that will generate a new dataset to augment the
existing dataset D such that if we were to race after the
experiment trial, our control performance would be as good
as possible:

min
Ū∈U

E
[
J
(
D+(X̄, Ū)

)
| D
]
, (6)

where Ū is the control signal for the new dataset, X̄ the
corresponding state trajectory from (1), Ȳ the corresponding
measurements, and D+(X̄, Ū) := D ∪ (X̄, Ū , Ȳ ). The
expectation here is with respect to the possible trajectory,
X̄ , with the current understanding of the dynamics given the
data is D.

III. GAUSSIAN PROCESS EXPERIMENT DESIGN

We now move from the general setting to one in which
uncertainty in h(·) is modeled as a Gaussian process.

A. Model inference

A Gaussian process (GP) is a collection of indexed random
variables that are jointly Gaussian, any subset of which is
also jointly Gaussian. We assume h(x, u) is a Gaussian
process indexed by state-input pairs z := (x, u)T with mean,
m(·), and covariance function, k(·, ·):

m(z) = E[h(z)], (7)
k(zk, zj) = E[(h(zk)−m(zk))(h(zj)−m(zj))]. (8)

When comparing two points, zk, zj , the kernel k(·, ·) shapes
the covariance of the two random variables. In particu-
lar, we use the squared exponential kernel, k(zk, zj) =

σ2
f exp

(−(zk−zj)
T (zk−zj)

2ℓ2

)
, which is infinitely differentiable

[15].
Corollary 1: [16]. Assume h(·) is a Gaussian process and

the process noise covariance is diagonal such that Σw =
diag([σ2

w,1, ..., σ
2
w,nx

]). Then the conditional distribution of
the d-th entry of xt (d ∈ {1, ..., nx}) given the dataset D,
the state xt = x, and the control input ut = u is a normal
distribution with mean and variance:

µd(z;D) := md(z) +Kd
zZ(K

d
ZZ + σ2

w,dI)
−1(Yd −md(Z))

(9a)

σ2
d(z;D) := Kd

zz −Kd
zZ(K

d
ZZ + σ2

w,dI)
−1Kd

Zz + σ2
w,d

(9b)

where Z := [z0, ..., zM ] is the matrix of training indices and
Y := [y0, ..., yM ] is a matrix of noisy measurements in D. K
are Gram matrices that are composed of kernel evaluations:
[Kd

ZZ]lj = kd(zl, zj), [K
d
Zz]j = kd(zj , z),K

d
zz = kd(z, z).

Proof: We consider multi-output GPs with indepen-
dent outputs and diagonal process noise matrix Σw =
diag([σ2

w,1, ..., σ
2
w,nx

]). For each triple (xi, ui, yi) in D, (4)
provides a noisy measurement of the GP. We incorporate this
in the prior on our observations such that

Yd ∼ N (md(Z),Kd
ZZ + σ2

w,dI). (10a)

We go on to express the joint distribution of the measure-
ments at observed points, Yd corresponding to Z, and at yd

corresponding to a new test point z:[
Yd

yd

]
∼ N

([
md(Z)
md(z)

]
,

[
Kd

ZZ + σ2
w,dI Kd

Zz

Kd
zZ Kd

zz

])
(10b)

This joint distribution, p(Yd, yd | z,Z), can be conditioned
on the dataset D using p(yd | Yd, z,Z) = p(Yd, yd |
z,Z)/p(Yd) to obtain the conditional distribution of yd



given D and z as a normal distribution with mean and
variance

µd(z;D) = md(z) +Kd
zZ(K

d
ZZ + σ2

w,dI)
−1(Yd −md(Z))

(10c)

σ2
d(z;D) = Kd

zz −Kd
zZ(K

d
ZZ + σ2

w,dI)
−1Kd

Zz + σ2
w,d.

(10d)

Since y = h(x, u) + w, by (1) we have that y = xt+1

for a given trajectory. We then have that the conditional
distribution of xt+1,given D and a particular state and input,
is a normal distribution with moments (10c,10d).

Our GPs are independent such that the predictive equations
are given by stacking the individual outputs with diagonal
matrix Σ(z;D) := diag([σ2

1(z;D), ..., σ2
nx
(z;D)]) and vector

µ(z;D) := [µ1(z;D), ..., µnx
(z;D)]T . We refer to the spe-

cific index set (x, u) instead of z for clarity going forward.

B. Experiment Design

We develop a gradient descent approach to the experiment
design optimization (6) as described in Algorithm 1. We
derive a gradient estimator that uses Monte Carlo sampling to
approximate the expectation in (6). The resulting algorithm
takes in the available data D, an initial guess for the
optimization variable Ū , and the initial condition for the
experiment x̄0; using these and a Monte Carlo sample from
the GP, we generate a possible experiment trajectory. For
each sample, we solve the optimal control problem in (5)
and then compute the gradient of the objective function with
respect to Ū . We use a batch of samples to perform stochastic
gradient descent until a stopping condition is met.

In particular, stochastic gradient descent on the variable Ū
requires computation of

∂

∂Ū
E[J(D+(X̄, Ū)) | D]. (11)

Defining f(X̄, Ū) := J(D+(X̄, Ū)) and denoting by p(X̄ |
Ū) the Ū -dependent conditional probability density function
of X̄ given D, we can rewrite (11) as

∂

∂Ū

∫
f(X̄, Ū)p(X̄ | Ū)dX̄. (12)

When both f(·) and p(·) are differentiable with respect to
Ū , this derivative is given by∫

∂f(X̄, Ū)

∂Ū
p(X̄ | Ū)dX̄ +

∫
f(X̄, Ū)

∂p(X̄ | Ū)

∂Ū
dX̄.

(13)

While the first term in this expression can be easily computed
using Monte Carlo integration, the second is generally more
difficult. The following result uses the so-called “reparame-
terization trick” [17] to obviate this difficulty, allowing us to
directly use Monte Carlo integration to compute (11).

Theorem 1: Suppose the GP regressor (9) has a kernel and
mean function both differentiable with respect to the index.
Furthermore, assume that the value of the objective function

is differentiable with respect to Ū . Then we can construct an
estimate of (11) using

L∑
l=1

∂c(vl0, v
l
1, ..., v

l
N−1, Ū)

∂Ū
. (14a)

Here v is a standard normal random variable and
c(vl0, v

l
1, ..., v

l
N−1, Ū) :=

J
(
D+([x̄0, µ(x̄0, ū0) + Σ(x̄0, ū0)

1
2 v0,

µ(x̄1, ū1) + Σ(x̄1, ū1)
1
2 v1, ...,

µ(x̄N−1, ūN−1) + Σ(x̄N−1, ūN−1)
1
2 vN−1], Ū)

)
.

(14b)

x̄t is recursively defined by x̄t = µ(x̄t−1ūt−1) +
Σ(x̄t−1, ūt−1)

1
2 vt−1 with µ(·) and Σ(·) given by (9). In

our numerical examples the gradient in (14a) of (14b) is
computed by automatic differentiation.

Proof: Starting from the joint-density describing the
forward simulation of the dynamics given D, we express the
expected value in (11) as

E
[
J
(
D+(X̄, Ū)

)
| D
]
=∫

J
(
D+(X̄, Ū)

)
p(X̄ | x̄0, Ū ,D)dX̄,

(15a)

where the density function describes the distribution of
the trajectory given the input sequence Ū , the currently
available data D, and the process noise for each time step.
Using Bayes’ rule for probability density functions, the joint
distribution of the states p(X̄ | x̄0, Ū ,D) can be recursively
expanded as

p(X̄ | x̄0, Ū ,D)
= p(x̄N , ..., x̄2 | x̄0, x̄1, Ū ,D)p(x̄1 | x̄0, Ū ,D).
= p(x̄N , ..., x̄3 | x̄0, x̄1, x̄2, Ū ,D)×

p(x̄2 | x̄0, x̄1, Ū ,D)p(x̄1 | x̄0, Ū ,D).
= ΠN

t=1p(x̄t | x̄0, ...., x̄t−1, Ū ,D).
(15b)

As a consequence of (1), our dynamics are Markovian such
that we have

p(x̄t | x̄0, ...., x̄t−1, Ū ,D) = p(x̄t | x̄t−1, ūt−1,D). (15c)

From Corollary 1, we know p(x̄t | x̄t−1, ūt−1,D) is de-
scribed by (9) for a particular state-input pair. Using the
reparameterization trick [17], Gaussian random variables can
be expressed in terms of a standard normal, v, where in our
case

x̄t+1 = µ(x̄t, ūt;D) + Σ(x̄t, ūt;D)
1
2 v, (15d)

and Σ(x̄t, ūt;D)
1
2 is a diagonal matrix of the standard

deviation of each output dimension d since from (9) the
outputs are independent. Given x̄0, we apply this change
of variables recursively starting at x̄1:

E
[
J
(
D+(X̄, Ū)

)
| D
]
= (15e)∫

...

∫
J
(
D([x̄0, µ(x̄0, ū0) + Σ(x̄0, ū0)

1
2 v0, x̄2, ..., x̄N ], Ū)

)
× p(v0)Π

N
t=2p(x̄t | x̄t−1, ūt−1,D)dv0dx̄2...dx̄N

(15f)



since dx̄t+1 = Σ(x̄t, ūt)
1
2 dvt, and for a scalar normal

random variable vt the change of variable leads to p(µ +
σvt|x̄t, ūt) = 1√

2πσ
exp
(
− 1

2v
2
)
σ = p(vt); we can extend

this to our problem since the outputs of (9) are independent
such that the joint distribution can be considered a product of
the individual density functions. We continue the recursion,
where xt is recursively computed based on (15d), and for
clarity define

c(v0, v1, ..., vN−1, Ū) :=

J
(
D+([x̄0, µ(x̄0, ū0) + Σ(x̄0, ū0)

1
2 v0,

µ(x̄1, ū1) + Σ(x̄1, ū1)
1
2 v1, ...,

µ(x̄N−1, ūN−1) + Σ(x̄N−1, ūN−1)
1
2 vN−1], Ū)

)
.

(15g)

We express our resulting integral more concisely now as∫
...

∫
c(v0, v1, ..., vN−1, Ū)ΠN−1

t=0 p(vt)dv0...dvN−1,

(15h)

which we can approximate numerically as

L∑
l=0

c(vl0, v
l
1, ..., v

l
N−1, Ū). (15i)

Under the assumption that J(·) and the GP moments (9) are
differentiable with respect to Ū , the Monte Carlo integrator
is now differentiable with respect to Ū :

L∑
l=0

∂

∂Ū
c(vl0, v

l
1, ..., v

l
N−1, Ū). (15j)

Note that while the differentiability of J(·) depends on the
particular objective function, the differentiability for the GP
moments is met when using a differentiable kernel and mean
function.

Algorithm 1 Experiment Design
Input Ū (initial),D, x̄0

Output Ū
function SAMPLEGRAD(Ū , V,D, x0)

(X̄, Ū , Ȳ )← forward rollout from (Ū , V,D, x̄0)
D+ ← D ∪ (X̄, Ū , Ȳ )
µ(z;D+),Σ(z;D+)← update GP with D+

U∗(Ū , V )← Solve control with µ(z;D+),Σ(z;D+)
∂J
∂Ū
← Compute gradient at U∗(Ū , V )

end function
while not converged do

for i=1:batch size do
V ← [v0, v1, ..., vN−1] from standard normal
∂J(V )
∂Ū

← SAMPLEGRAD(Ū , V,D, x̄0)
end for
Ū ← gradient step from batch, project onto U

end while

Fig. 1. Starting from the origin, the objective is to reach the green target
set, Xs, in minimum time. Overshooting the target set results in a crash in
Xc. The dynamics of the system are unknown and need to be learned.

IV. MINIMUM EXPECTED TIME

To demonstrate the approach laid out above, we consider
a prototypical stochastic control problem with a risk-aware
constraint. We start at the origin and want to reach a safe
finishing set, Xs, while avoiding an unsafe set, Xc, that
also leads to termination. In a one-dimensional setting we
visualize this in Figure 1. Formally this corresponds to the
following optimization:

min
U

E[T | D] (16a)

s.t. E
[ T∑

t=0

I(xt) | x0,D
]
≤ ∆, (16b)

ut ∈ U , (16c)
x0 = 0, (16d)

where xt is described by (1), ∆ is our tolerance for failure
and the constraint (16b) is a conservative bound on the
probability of failure, P (xT ∈ Xc) ≤ ∆ [1]. Here I(x)
indicates a state in the unsafe set Xc,such that

I(x) =

{
1, x ∈ Xc,

0, o/w.
(17)

We define T , which is a random variable, as the first time
for which the state enters either Xs or Xc, unless the state
never reaches either finished set, in which case T = N . We
express this as

T := min {t : xt > L} ∪ {N}. (18)

Corollary 2: [1]. Suppose there exists a solution to the
Bellman equation

Jλ∗

t (xt) =
minu 1 + E[Jλ∗

t+1(xt+1) | xt = x,D], xt /∈ Xs ∪ Xc,

0, xt ∈ Xs,

λ∗, xt ∈ Xc,

(19a)

with terminal cost-to-go given by

Jλ∗

N (xN ) =

{
λ∗, xN /∈ Xs,

0, o/w,
(19b)



for which trajectories under the policy

ut = π(xt) := argmin
u

1 + E[Jλ∗

t+1(xt+1) | xt = x,D]

(19c)

satisfy

λ∗
(
E
[ T∑

t=0

I(xt) | x0,D
]
−∆

)
= 0, (19d)

then (19c) solves the optimization (16).
Proof: For a dynamic programming (DP) problem with

stage costs g(x) and the risk bound (16b), we can form a
Lagrangian [1]:

L(x,u, λ, x0,D) =

E
[ N∑

t=0

gk(xt) | D
]
+ λ

(
E
[ N∑

t=0

It(xt) | x0,D
]
−∆

)
(20a)

such that the primal problem is given by solving the Bellman
equation

Jλ
t (xt) =

min
u

g(xt) + λIt(xt) + E[Jλ
t+1(xt+1) | xt = x,D]

(20b)

for a fixed λ and terminal cost

Jλ
N (xN ) = gN (xN ) + λIN (xN ). (20c)

From [1], we update λ based on a root-finding algorithm
on the subgradient of the dual function q(λ, x0,D) :=
minu L(x, u, λ, x0,D):

∂q(λ, x0,D)
∂λ

= E
[ N∑

t=0

It(xt) | x0,D
]
−∆. (20d)

When the subgradient is sufficiently close to zero, we have
λ∗. The optimality conditions for this approach are in [1].

Our minimum time problem (16) is in discrete-time such
that for a DP formulation our stage cost counts unit time for
states not finished. By construction, once we enter a finished
set we remain there for all future time. We model this using
dynamics with xt ∈ X = Rnx ∪ {done, bad}:

xt+1 :=


h(xt, ut) + wt, xt ∈ Rnx ,

done, xt ∈ Xs ∪ {done, bad},
bad, xt ∈ Xc,

(20e)

such that bad corresponds to reaching Xc and done corre-
sponds to having reached the safe terminal set Xs or bad
previously. We then define our stage cost g(xt) to be

g(xt) :=

{
1, xt ∈ Rnx ,

0, o/w,
(20f)

and the cost-to-go as

Jt(xt) =


minu E[Jλ∗

t+1(xt+1) | xt = x,D], xt ∈ Rnx ,

0, xt = done,

λ, xt = bad.

(20g)

This model satisfies the Lagrangian approach above such that
we directly apply it. Additionally, the model based on (20e)
to 20g) can be more compactly expressed since for x ∈ Xs,
the cost-to-go is zero; for x ∈ Xc, the cost-to-go is λ; and
for x /∈ Xs ∪ Xc, the cost-to-go is

Jλ
t (xt) = min

u
1 + E[Jλ

t+1(xt+1) | xt = x,D] (20h)

with

Jλ
N (xN ) =

{
λ, xN /∈ Xs,

0, o/w,
(20i)

giving us the compact expression in (19a,19b). The expected
cost-to-go is with respect to the conditional distribution (9)
from Corollary 1:

E[Jt+1(xt+1) | xt,D] =∫
Jt+1(xt+1)p(xt+1 | xt = x, u),D)dx.

(20j)

V. NUMERICAL RESULTS

We present numerical simulations for the minimum ex-
pected time problem. To show the benefit of optimal ex-
periment design, we compare the performance improvement
of conducting an experiment using our method versus other
intuitive methods.

A. Process model

Consider a system modeled by (1) with the initially
unknown scalar function

h(x, u) = x+
(
1 + 3Ĩ[0.75,1.4](x)

)
u (21)

where Ĩ(·) is the indicator function approximated by product
of arctangents with finite slope. This can be visualized in
the dark blue trace in Figure 2. We set the process noise to
Σw = 0.012.

For the control problem in (16), we start at x0 = 0 and
try to finish in the set Xs = [L,L + ϵ] = [1, 1.05] (Figure
1). Overshooting Xs enters the unsafe set Xc = (1.05,∞).
Our tolerance for failure in (16b) is set to ∆ = 25%. For
both the control problem and experiment design, we restrict
the control input to [−0.1, 0.1]. The max allowable time, N ,
is 15 time steps for both the control and experiment design
problems.

B. Benchmarks

We start with a dataset, D, consisting of a fixed number of
random walk trials with positive mean. We then create D+ by
augmenting D with an additional trajectory using our method
(Algorithm 1) referred to as Ū or one of the benchmarks
described below. Based on D+ we compute the new optimal
control (16) and evaluate the control performance. In our
comparisons, we consider the bounding performance value
given perfect knowledge of the process, h(·). In terms of
expected time and risk, this is the ideal performance and is
referred to as “perfect info” in plots. For the benchmarks,
we use the following alternatives to our experiment design:



Fig. 2. We visualize our GP approximation of the process mean and
variance by taking slices of the input at three different levels, umax =
0.1, 0, umin = −0.1, and sweep the state. In blue, we observe the actual
process with relatively small 1-σ bounds from the process noise. The pre-
experiment GP’s dataset has 25 random trials, while the post-experiment
GPs’ datasets contain the original 25 plus the respective experiment trial. For
umax, we observe the GP models have relatively low epistemic uncertainty
(variance), which is reasonable given the random walks have positive mean.
Our experiment input, Ū reduces the uncertainty for zero-input significantly
relative to the pre-experiment or U∗. The closed-loop, U∗(x) is left off here
for legibility. While U∗ appears to generate a model with less uncertainty
for umin, this is less relevant since the optimal control input does not need
to be negative in this setup.

• random: add another random walk trajectory to the set
D.

• U∗: compute an open-loop control based on the optimal
control (16) given D for the most-likely state sequence
sampled from our current GP. This open-loop control
also serves as the initial value for Algorithm 1.

• U∗(x): use the optimal state feedback policy from (16)
given D. While we consider open-loop input sequences
for our experiment design, including the relative per-
formance of a closed-loop policy shows the value of
feedback in this stochastic setting.

Each experiment trajectory is run for the duration of the
experiment time and does not stop upon reaching either of
the target sets. This can lead to shorter trajectories if the
state reaches the finished set in less than 15 steps for the
optimal control benchmarks. However, for the small dataset
scenarios that we explore in the coming section, the optimal
control tends to use the full-time since it cannot guarantee
constraint satisfaction.

C. Computations

For efficient programming, we used JAX [19] and GPJAX
[20] in Python such that the stochastic DP can be just-in-
time compiled and we can simultaneously use automatic
differentiation in (14a). We used 1000 stochastic gradient
descent steps instead of waiting until convergence, with a
batch size of 80 at each step on a dual core NVIDIA GeForce
RTX 3080 GPU.

Fig. 3. We illustrate the optimal policies post-experiment. Since we
have slightly different policies depending on the experiment outcome, we
illustrate the policy closest to the median for our experiment design and
the corresponding outcome for the benchmarks. We observe that the policy
given perfect information is to apply the max input, 0.1, until the state
reaches 0.6, then decrease until around 0.75, and then decrease the input to
zero after just before 0.8. In this example, our experiment design Ū tends to
approach the optimal without exceeding it. In some areas the benchmarks
are closer to the perfect information policy but they also exceed it, which
leads to riskier behavior.

D. Discussion

Figure 2 helps build intuition about the performance of our
method relative to the benchmarks. This figure depicts the
uncertainty of three different GP models: the pre-experiment
GP has access to 25 trials of data, the GP corresponding
to Ū contains the same 25 trials plus our well-designed
experiment, and the GP for U∗ contains the 25 initial trials
plus the trial from applying U∗. We leave off the closed-
loop comparison to avoid cluttering the plot. We observe
that our method reduces epistemic uncertainty mainly for
zero-input near the finishing set. Figure 3 illustrates that
given the post-experiment datasets, our experiment design
leads to a control policy that approaches the optimal policy
given perfect information. The optimal control with perfect
information decreases to zero near the target set, which
indicates the observed reduction of epistemic uncertainty at
zero in Figure 2 by our method is useful for improving
control performance. Unlike the benchmarks, our method
does not exceed the optimal policy given perfect information,
doing which leads to higher risk. This qualitative analysis
indicates that our experiment design, Ū , leads to learning in
areas that are important for control performance.

We quantify the experiment design performance using two
metrics: the fraction of controllers (16) that can satisfy the
chance-constraint (16b), and from the subset of controllers
that are feasible, the expected time to finish. In Figure 4, we
show the trends for the two metrics across dataset size. In
this setting, 40 random trials are drawn and each dataset
of size n is a superset of dataset size m for n > m
(i.e. the 10 trial dataset includes the 5 trial dataset plus 5
additional trials). In the first subplot of Figure 4 we observe



Fig. 4. We visualize the benefit of adding a designed experiment to a
dataset of random trials (e.g. 5 random trials plus one experiment) and test
the control performance with this augmented dataset. Control feasibility
indicates the fraction of controllers that satisfy the chance constraint over
1000 experiment outcomes. Of the controllers that satisfy the constraint, we
can compute the expected finish time and 95 percent confidence intervals.
Our experiment design, Ū , outperforms all other benchmarks for control
feasibility except for U∗(x) for the dataset of size 10. Finishing time
performance becomes more relevant as the feasibility metric nears 100
percent whereupon we see our time decreasing significantly relative to the
others. Due to low control feasibility, we omit the finish time for the random
case.

the fraction of controllers that satisfy our risk tolerance level,
∆ = 25%, where the data is from 1000 possible experiment
outcomes for each experiment design method. This shows
that our method in general generates a controller that satisfies
the constraint more than any of the benchmarks. While we
significantly outperform the open-loop optimal control, we
also do better than the closed-loop optimal control, which
has the advantage over all other methods of having access
to state feedback. One takeaway from including the closed-
loop optimal control is that closed-loop experiment design
methods can increase performance significantly. Lastly, while
we might expect monotonic improvement with respect to
dataset size across all methods, this is not the case because
we are dealing with a particular set of 40 random trials.

The second subplot in Figure 4 illustrates the expected
time for feasible controllers. For the smaller datasets, the
significance of this metric is much secondary to the control
feasibility because most controllers do not satisfy the chance
constraint. We omit the finish time for “random” since the
control feasibility is very low for all datasets. It is worth
noting that besides the dataset of size 10, our method is
comparable in expected time or better than the benchmarks.
For larger datasets, we observe that as the control feasibility
approaches 100 percent, our expected time decreases signif-
icantly relative to the others as desired.

VI. CONCLUSION

We present a general approach to experiment design
that improves data-driven control performance as much as
possible when the dynamics are initially unknown. We focus

on using Gaussian processes for inference and derive a
tractable formulation for our experiment design optimization.
We consider a minimum expected time problem with chance-
constraints and numerically demonstrate that our experiment
design method outperforms suitable benchmarks. While the
minimum expected time control problem was shown in
a particular setting, this demonstrates an instance of our
broader experiment design approach.

This work scratches the surface for experiment design
for stochastic optimal control problems where the goal of
the design is to improve the control performance. Finding
efficient relaxations that reduce the need to recompute an
optimal solution for each sample of the gradient can improve
the complexity of this approach significantly. For Gaussian
process regressors, efficient augmentation of the data matrix
will enable faster computations such as via rank-n updates for
Cholesky decompositions. Additionally, preliminary testing
indicates that designing an experiment policy will allow for
greater performance than the current open-loop methodol-
ogy. Finally, adding inequality constraints to the experiment
design problem is critical for real-world applications.
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