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Decomposition of admissible functions in weighted coupled cell networks∗

Pedro Sequeira† , João P. Hespanha‡ , and A. Pedro Aguiar†

Abstract. This work makes explicit the degrees of freedom involved in modeling the dynamics of a network, or
some other first-order property of a network, such as a measurement function. In previous work, an
admissible function in a network was constructed through the evaluation of what we called oracle
components. These oracle components are defined through some minimal properties that they are
expected to obey. This is a high-level description in the sense that it is not clear how one could design
such an object. The goal is to obtain a low-level representation of these objects by unwrapping them
into their degrees of freedom. To achieve this, we introduce two decompositions. The first one is
the more intuitive one and allows us to define the important concept of coupling order. The second
decomposition is built on top of the first one and is valid for the class of coupling components that
have finite coupling order. Despite this requirement, we show that this is still a very useful tool for
designing coupling components with infinite coupling orders, through a limit approach.
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1. Introduction. Networks are ubiquitous structures, be it either in the natural world
or in engineering. In order to study dynamical systems associated with such structures, the
groupoid formalism of coupled cell networks (CCN) was introduced in [20, 14, 13]. Here, the
concept of admissibility was defined through the minimal properties that a function must
obey in order for it to be a plausible modeling of the dynamics (or some other first-order
property) of a network. Here, “first-order” means that we are modeling something that, when
evaluated at cell, depends on the state of that cell and its in-neighbors. This does not mean
that everything on a network has to (or can) be defined by such a function. For instance,
the second derivative or the two-step evolution of the mentioned dynamical systems will not
be of this form. Those functions will be “second-order” in the sense that they are dependent
on their first and second in-neighborhoods (neighbor of neighbor). They are, however, fully
defined from the original first-order functions. This concept of order should not be confused
with “coupling order”, which is the focus of this work and is something entirely different.
Although the groupoid formalism is general enough to cover admissible functions with more
complex structure, many important models are usually given by very simple dynamical func-
tions, such as being “additive in the edges/weights” or being “weakly coupled”. The Kuramoto
model [4], [12], [18], is one of the most predominant models in the study of synchrony of os-
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cillators and, although it has many variants, it is often assumed to have this simple structure.
Nevertheless, the importance of studying systems with higher order couplings has been rec-
ognized [6], as reviewed in [9, 7].
Refer for instance to [16], in which it is experimentally observed that changing additive cou-
pling dynamics to non-additive can enable persistent synchrony, with this phenomenon ap-
pearing even in random networks, with no pre-constructed graph structure that would justify
the existence of synchronism. The inability of the additive coupling system to exhibit such a
feature might mean that such a system is, in some sense, degenerate.
This has lead to many works that extend the concept of network, such as hypernetworks [1]
and simplicial complexes [17].
The generalization of networks into more complex, higher dimensional structures is justi-
fied through the objective of constructing admissible functions that have non-pairwise terms.
While it is true that these structures allow for this type of terms, this is not a requirement.
That is, standard networks are perfectly capable of having higher order, non-pairwise terms,
although they are constrained in a very particular way, as we show in this work.
There have been some extensions of the Kuramoto model to higher coupling orders [2, 5, 8].
While these functions certainty are invariant to permutations (Item 1 of Definition 2.2) and
dependent only on the cell of reference and its in-neighbors (Item 3 of Definition 2.2), it is
not clear whenever they follow the edge-merging principle (Item 2 of Definition 2.2), which
is a very strong constraint. Note that this last condition was already present in the original
groupoid formalism and it is essential in order to properly define quotient networks. The
weighted formalism used here only makes it more explicit.
The groupoid formalism has previously been applied to the case of networks with weighted
edges [3], where the weights could assume real values. However, here the admissible functions
were considered to only admit a very simple additive in the weights structure, which is far too
restrictive for our purposes. For this reason, we use the formalism for general weighted CCNs
recently introduced in [19], which is a proper generalization of the groupoid formalism. This
formalism uses the algebraic structure of the commutative monoid to deal with arbitrary edge
sets. This is the minimal structure, with the necessary symmetry properties, that is able to
encode finite edges in parallel.
Much more important than the extension to general weights, is the development of the con-
cept of oracle components. An oracle component is a mathematical object that describes how
cells of a given type respond to arbitrary finite in-neighborhoods. It completely separates the
modeling of the behavior of cells from the particular network on which the cells of interest are
inserted.
Then, to specify an admissible function on a CCN, which models its dynamics (or an output
function in general), we just need to choose a tuple of oracle components (one for each cell
type), which is called an oracle function. The admissible function is then obtained by simply
evaluating on each cell, together with its corresponding in-neighborhood, the appropriate or-
acle component.
Note that the oracle component is a much preferable mathematical object to work with than
the admissible function. That is, in order to study a function, we would rather know it com-
pletely than just knowing its value when evaluated at some points. In particular, despite the
fact that in most applications we might not have to deal with cells that have arbitrarily large
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in-neighborhoods, it proves essential for the oracle components to be properly defined in such
cases.
The oracle components are defined through a set of equality constraints to itself. Although
in this work we define them in a simpler way than in [19], it is still a high-level description in
the sense that it is not clear how one could construct such an object. In this work, we build
on top of this formalism with the intent of dissecting the mathematical objects that are the
oracle components by making explicit their degrees of freedom.
To the given set of cell types T , we associate the state sets {Xi}i∈T , which are used to construct
the domains of oracle components and the output sets {Yi}i∈T which are the corresponding
codomains. This work requires {Yi}i∈T to be vector spaces in order for the decompositions
to be well defined. Note that this is still fairly general. In particular, we might consider the
state sets {Xi}i∈T to be manifolds and the output sets to be their tangents spaces, that is,
Yi = TpXi, which are indeed vector spaces. Therefore, we can apply these results to spaces
other than R

n, such as spaces involving angles (torus) in the study of oscillators.
Furthermore, we always assume that the scalar fields associated with the vector spaces contain
at least the rational numbers. This covers, for instance, real and complex vector spaces, which
are the most commonly used ones. Some results involve convergence and require output sets
to have a topology defined on them. These topologies need very tame assumptions, such as
being Hausdorff. Note that in this work some assumptions could be weakened. For instance,
section 3 only requires additions and subtractions, which means that we could use commuta-
tive (often called abelian) groups instead of vector spaces. However, we prefer to have these
results in their vector space form in order to apply them easily in section 4.
In section 2 we provide the necessary background for understanding the rest of the work by
summarizing the commutative monoid formalism for general weighted CCNs, which we pres-
ent in a simpler form than in the original paper [19].
In section 3 we study what we call a coupling decomposition. We decompose an oracle com-
ponent f̂i by establishing a bijection between it and an infinite family of functions {fk

i }k≥0|T |
,

called coupling components. That is, they are equivalent representations of the same object.
This does not yet solve the problem of understanding the degrees of freedom involved in mod-
eling oracle components f̂i, since the resulting coupling components {fk

i }k≥0|T |
are all related

to each other. It is, however, an essential first step. In particular, this decomposition allows
us to define the important concept of coupling order.
In section 4 we show that for oracle components with (arbitrary) finite coupling order, we can
establish a bijection between {fk

i }k≥0|T |
and a family of simpler functions {bfk

i }k≥0|T |
, with

finite support, called basis components. More importantly, the functions in {bfk
i }k≥0|T |

are
all decoupled from one another. From composition of bijections, this implies that every oracle
component f̂i (with finite coupling order) corresponds to exactly one set of basis components
{bfk

i }k≥0|T |
(with finite support), which have a simple structure and are decoupled. That is,

we have successfully exposed the degrees of freedom involved in modeling oracle components
(with finite coupling order).
Although this decomposition only applies to (arbitrary) finite coupling order, we show that it
is a very useful tool for designing oracle components with infinite coupling order. In particular,
we can build a valid f̂i with infinite coupling order by taking the limit of a sequence of oracle
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components with finite order. The relationships between the oracle components and the two
decompositions is illustrated, with the relevant equations, in the diagram of Figure 1.1.

{fk
i } {bfk

i }

f̂i

(3.4),(3.5)

(4.5),(4.6)

(4.18),(4.19)

Figure 1.1: Decomposition diagram.

2. Weighted multi-edge CCNs. In this section we briefly introduce the necessary con-
cepts developed in [19] on top of which this work is built.

2.1. Commutative monoids. The commutative monoid is a set equipped with a binary
operation (usually denoted +) such that it is commutative and associative. Furthermore, it has
one identity element (usualy denoted 0). This is the simplest algebraic structure that can be
used to describe arbitrary finite parallels of edges. Note that associativity and commutativity,
together, are equivalent to the invariance to permutations property.
In this work, the “sum” operation is denoted by ‖, with the meaning of “adding in parallel”.
In this context, the zero element of a monoid should be interpreted as “no edge”. Note that
we do not require the existence of inverse elements. That is, given an edge, there does not
need to exist another one such that the two in parallel act as “no edge”. This is the reason
for the use of monoids instead of the algebraic structure of groups.

2.2. Multi-indexes. In this work we require the use of multi-index notation. A multi-
index is an ordered n-tuple of non-negative integers (indexes). That is, an element of Nn

0 .
Two particularly important multi-indexes are 0n and 1n, which represent the tuple of n zeros
and the tuple of n ones, respectively. Furthermore, we denote by 1j the tuple such that its
jth entry is 1 and all the others are zero.
We will denote the multi-indexes with the same notation we use for vectors, using bold, as in
k = [k1, . . . .kn]

⊤. Their norm is defined as |k| :=
∑n

i=1 ki.
The elements (of the same tupleness n) can be multiplied by non-negative integers and added
together freely, although subtraction and division are not always well-defined. For instance,

k = 213 + 312 =





2
5
2





(note the difference between bold and non-bold).
The multi-indexes (of the same tupleness n) form a partial order in the straightforward way,
that is, k1 ≥ k2 if and only if k1i ≥ k2i for every entry 1 ≤ i ≤ n. Note that for n > 1 the
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order is partial since neither k1 ≥ k2 nor k1 ≤ k2 are required. This happens when there
are 1 ≤ i, j ≤ n such that k1i > k2i and k1j < k2j . In this case we say that the pair (k1,k2) is
non-comparable.
We will often specify the tupleness n of a multi-index k indirectly, by using k ≥ 0n in order
to denote k ∈ N

n
0 , or k ≥ 1n to denote k ∈ N

n.

2.3. CCN formalism. According to [19], a general weighted coupled cell network is given
by the following definition.

Definition 2.1. A network G consists of a set of cells CG, where each cell has a type, given
by an index set T = {1, . . . , |T |} according to TG : CG → T and has an |CG | × |CG | in-adjacency
matrix MG. The entries of MG are elements of a family of commutative monoids {Mij}i,j∈T
such that [MG ]cd = mcd ∈ Mij , for any cells c, d ∈ CG with types i = TG(c), j = TG(d). �

For each commutative monoid Mij we denote its “zero” element as 0ij .

Remark 1. The subscripts G are omitted when the network of interest is clear from context.
�

2.4. Admissibility. A function used to model some first-order property of a network, such
as its dynamics, is admissible if it respects the minimal properties that we expect from it.
Consider the simple network of Figure 2.1a, (which could be part of a larger network) consist-
ing of cell c and its in-neighborhood. We have cell types T = {1, 2} which represent “circle”

xa xb

xc

wa wb

(a) Original.

xa = xb

xc

wa‖wb

(b) Merged.

Figure 2.1: Edge merging.

and “square” cells, respectively. In order to define functions on the cells we associate with
them the state sets X1,X2 and the output sets Y1,Y2 according to their respective type.
We consider that the input received by a cell is independent of how we draw the network, that
is, from the point of view of cell c, there would be no difference if cell b was at the left of cell
a. Then, for a function f̂1 acting on cells of type 1, we would expect that

f̂1

(

xc;

[

wa

wb

]

,

[

xa
xb

])

= f̂1

(

xc;

[

wb

wa

]

,

[

xb
xa

])

,

for xc ∈ X1, xa, xb ∈ X2 and wa, wb ∈ M12. Moreover, since cells a and b are of the same cell
type (square) (T(a) = T(b) = 2), we expect that when they are in the same state (xa = xb =
xab), the total input received by cell c at that instant, is the same as if both edges originated
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from a single “square” cell with that state, as in Figure 2.1b. That is,

f̂1

(

xc;

[

wa

wb

]

,

[

xab
xab

])

= f̂1 (xc;wa‖wb, xab) .

Although this might look inconsistent since the domains look mismatched, the following def-
inition formalizes it in a rigorous way. Finally, when f̂1 is evaluated at a cell it should only
depend on the in-neighborhood of that cell. Therefore, if wa = 012, cell c should not be
directly influenced by cell a. That is,

f̂1

(

xc;

[

012
wb

]

,

[

xa
xb

])

= f̂1 (xc;wb, xb) .

These ideas are now formalized in the following definition, which is a simpler but equivalent
version of the one in [19].

Definition 2.2. Consider the set of cell types T , and some related sets {Xj ,Yj}j∈T together

with a family of commutative monoids {Mij}j∈T , for a given fixed i ∈ T . Take a function f̂i
defined on

f̂i : Xi ×
◦
⋃

k≥0|T |

(

Mk
i × X

k
)

→ Yi,(2.1)

where
◦
⋃

denotes the disjoint union and for multi-index k we define X
k := X

k1
1 × . . . × X

k|T |

|T |

and Mk
i := Mk1

i1 × . . .×M
k|T |

i|T | .

The function f̂i is called an oracle component of type i, if it has the following properties:
1. If σ is a permutation matrix (of appropriate dimension), then

f̂i(x;w,x) = f̂i(x;σw, σx),(2.2)

where we assume, without loss of generality, that one can keep track of the cell types of each
element of σw and σx.

2. If the indexes j1, j2 and j12 denote cells of type j ∈ T , then

f̂i

(

x;

[

wj1‖wj2

w

]

,

[

xj12
x

])

= f̂i



x;





wj1

wj2

w



 ,





xj12
xj12
x







 .(2.3)

3. If w has its kth element (corresponding to cell ck) equal to 0ij , with j = T(ck), then

f̂i(x;w,x) = f̂i(x;w−k,x−k),(2.4)

where w−k, x−k denotes the result of removing the kth element of the original vectors w, x.
�

The disjoint union allows us to distinguish neighborhoods of different types, that is, the set
X1×X1 is always taken as a different set from X1×X2 even in the particular case of X1 = X2.
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Remark 2. As stated in Item 1 of Definition 2.2, it is always assumed that given any weight
wc or state xc, we always know the cell type of the corresponding cell c. Note that one can
always do enough bookkeeping in order to ensure this. For instance, one can extend f̂i(x;w,x)
into f̂i(x; t,w,x), where t would be a vector that encodes the cell types associated with w,x.
Then, we would have f̂i(x; t,w,x) = f̂i(x;σt, σw, σx) instead.
Our implicit bookkeeping means that we do not have to constrain σ to preserve cell typing.
That is, if we assume some canonical order of the cell types in the part of the domain Mk

i ×X
k

in (2.1), then we know the correct k ≥ 0|T | and can reorder the rows of w and x in f̂i(x;w,x)
appropriately.
Note that by considering invariance under general permutations, and not having to worry
about preserving cell types or respecting some canonical ordering of cell types, we are always
able to shift the cells of major interest to the top of the vectors, as in (2.3), regardless of the
types of other cells. This is used throughout the paper and it allows us to make our statements
and proofs more manageable. �

In Definition 2.2 we slightly changed the original notation by interpreting w ∈ Mk
i as a

column vector instead of a row. This is merely cosmetic but it makes this work more clear.
The oracle set is the set of all |T |-tuples of oracle components, such that each element of the
tuple represents one of the types in T . It is denoted as

F̂T =
∏

i∈T

F̂i,

where F̂i is the set of all oracle components of type i. We are always implicitly assuming
sets {Xi,Yi}i∈T and commutative monoids {Mij}i,j∈T . Note that modeling some aspect of a

network that follows our assumptions is effectively choosing one of the elements of F̂T , which
we call oracle functions. In this work we will make use of the following topological result.

Lemma 2.1. Consider F̂i and F̂T such that the related sets {Yj}j∈T are Hausdorff spaces.

Then, F̂i and F̂T are sequentially closed in the topology of pointwise convergence (product
topology). �

Proof. Consider a sequence of functions (N f̂i)N∈N, with
N f̂i ∈ F̂i for all N ∈ N, such that

it converges pointwise to some function f̂i. That is,

lim
N→∞

N f̂i(x;w,x) = f̂i(x;w,x),

for all x ∈ Xi, x ∈ X
k, w ∈ Mk

i , for any given k ≥ 0|T |. Given a permutation matrix σ of
appropriate dimension, then

lim
N→∞

N f̂i(x;σw, σx) = f̂i(x;σw, σx).

Note that from assumption, (2.2) is satisfied for every N f̂i. Therefore, these two sequences are
the same. Since Yi is Hausdorff, we know that the limit of a convergent sequence is unique,
which implies f̂i(x;w,x) = f̂i(x;σw, σx). That is, f̂i also satisfies (2.2). The same reasoning
applies with respect to (2.3) and (2.4).
Therefore, f̂i ∈ F̂i, which means that F̂i is sequentially closed. Since the product of sequen-
tially closed sets is sequentially closed, F̂T is also sequentially closed.
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3. Decomposition into coupling components. We are now ready to develop our first
decomposition scheme. In this section, we present a decomposition scheme for oracle compo-
nents in which the output sets {Yi}i∈T are vector spaces. We start by illustrating the main
ideas with an example.

Example 3.1. Consider cell types T = {1, 2} which denote the cell types “circle” and
“square” respectively. Figure 3.1 presents a cell of type 1 with different types of inputs sets,
denoted by the multi-indexes [00], [01] and [02] respectively. We assume a particular oracle

x

(a) No in-neighbors.

xa

x

wa

(b) One in-neighbor.

xa xb

x

wa wb

(c) Two in-neighbors.

Figure 3.1: Simple input sets.

component f̂1 ∈ F̂1 has been chosen. Consider the input set in Figure 3.1a. This cell does not
depend on anything else in the network, it evolves only according to its own internal dynamics.

We define the function f
[00]
1 : X1 → Y1 as

f
[00]
1 (x) := f̂1(x).

We use this to rewrite the function evaluation of the input set in Figure 3.1b as

f̂1(x;wa, xa) = f
[00]
1 (x) + f

[01]
1 (x;wa, xa),

where f
[01]
1 : X1 ×M12 × X2 → Y1 is defined as

f
[01]
1 (x;wa, xa) := f̂1(x;wa, xa)− f

[00]
1 (x).

That is, we decompose the evaluation of the oracle component f̂1 into the internal dynamics

of the cell
(

f
[00]
1

)

and the influence from its single in-neighbor of cell type 2
(

f
[01]
1

)

. Note

that if the weight value is 012, this case reduces to the one in Figure 3.1a, which implies that

f
[01]
1 (x; 012, xa) = 0Y1

.
Consider now the input set in Figure 3.1c. We can write its evaluation of the oracle component
as

f̂1

(

x;

[

wa

wb

]

,

[

xa
xb

])

= f
[00]
1 (x) + f

[01]
1 (x;wa, xa) + f

[01]
1 (x;wb, xb) + f

[02]
1

(

x;

[

wa

wb

]

,

[

xa
xb

])

,

where f
[02]
1 : X1 ×M2

12 × X
2
2 → Y1 is defined as

f
[02]
1

(

x;

[

wa

wb

]

,

[

xa
xb

])

:= f̂1

(

x;

[

wa

wb

]

,

[

xa
xb

])

− f
[00]
1 (x)− f

[01]
1 (x;wa, xa)− f

[01]
1 (x;wb, xb).
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The term f
[02]
1 describes a 2-order coupling effect of cells of type “square” onto cells of type

“circle”. By definition, it corresponds to what cannot be explained by the internal dynam-

ics
(

f
[00]
1

)

(0-order coupling) and the 1-order coupling contributions from each “square” in-

neighbor
(

f
[01]
1

)

. Note that if any of its weight parameters wa, wb is 012, this reduces to the

previous case and similarly we conclude that f
[02]
1

(

x;

[

wa

wb

]

,

[

xa
xb

])

= 0Y1
. Moreover, note

that

f
[02]
1

(

x;

[

wa

wb

]

,

[

xa
xb

])

= f
[02]
1

(

x;

[

wb

wa

]

,

[

xb
xa

])

.

Consider now the case where xa = xb = xab. This is equivalent to having an edge weight of
wa‖wb in Figure 3.1b. This implies

f
[01]
1 (x;wa‖wb, xab) = f

[01]
1 (x;wa, xab) + f

[01]
1 (x;wb, xab) + f

[02]
1

(

x;

[

wa

wb

]

,

[

xab
xab

])

,(3.1)

which means that f
[01]
1 and f

[02]
1 are related to one another and cannot be chosen independently.

�

The following definition is the generalization of this approach to arbitrary finite cell types and
in-neighborhoods.

Definition 3.1. Consider the set of cell types T and the related sets {Xi,Yi}i∈T where
{Yi}i∈T are vector spaces. Given an oracle component f̂i ∈ F̂i, i ∈ T , we define the fam-
ily of coupling components {fk

i }k≥0|T |
, with

fk
i : Xi ×Mk

i × X
k → Yi,(3.2)

defined recursively by

(3.3) f
K(s)
i (x;ws,xs) := f̂i (x;ws,xs)−

∑

s⊂s

f
K(s)
i (x;ws,xs) ,

where k = K(s) gives the corresponding multi-index of the types of cells s and x ∈ Xi, xs ∈ X
k,

ws ∈ Mk
i . �

The following result expands the recursive formula in (3.3) and writes {fk
i }k≥0|T |

explicitly in

terms of f̂i.

Lemma 3.1. The coupling components {fk
i }k≥0|T |

of an oracle component f̂i ∈ F̂i, i ∈ T ,
are given by

f
K(s)
i (x;ws,xs) =

∑

s⊆s

(−1)|s|−|s|f̂i (x;ws,xs) .(3.4)

�
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Proof. The proof is by strong induction. Assume the statement to be true for all s ⊂ s.
Then, by assumption we can plug the explicit formula (3.4) into the recursive definition (3.3)
in order to obtain

f
K(s)
i (x;ws,xs) = f̂i (x;ws,xs)−

∑

s⊂s

f
K(s)
i (x;ws,xs)

= f̂i (x;ws,xs)−
∑

s⊂s

∑

r⊆s

(−1)|s|−|r|f̂i (x;wr,xr) .

We reorder this such that the outer sum is indexed over r, which yields

f̂i (x;ws,xs)−
∑

r⊂s







∑

s⊂s
s⊇r

(−1)|s|−|r|






f̂i (x;wr,xr) .

Note that
∑

s⊂s
s⊇r

(−1)|s|−|r| =
∑

(s\r)⊂(s\r)

(−1)|s\r| =
∑

(s\r)⊆(s\r)

(−1)|s\r| − (−1)|s\r|.

In the power set of a non-empty finite set, half of the subsets have an even size and the other
half has odd size. Therefore, if r ⊂ s, we are in this situation and the sum cancels, and we get

f
K(s)
i (x;ws,xs) = f̂i (x;ws,xs)−

∑

r⊂s

[

−(−1)|s\r|
]

f̂i (x;wr,xr)

= f̂i (x;ws,xs) +
∑

r⊂s

(−1)|s|−|r|f̂i (x;wr,xr)

=
∑

r⊆s

(−1)|s|−|r|f̂i (x;wr,xr) ,

which proves the result for s. Note that the strong induction immediately satisfies the case
s = ∅ since its hypothesis is vacuously true.

Similarly, we can also write f̂i explicitly in terms of {fk
i }k≥0|T |

.

Lemma 3.2. An oracle component f̂i ∈ F̂i, i ∈ T is given by its coupling components
{fk

i }k≥0|T |
, according to

(3.5) f̂i (x;ws,xs) =
∑

s⊆s

f
K(s)
i (x;ws,xs) .

�

Proof. This is immediate from (3.3) by simple rearrangement.

Note that (3.5) can also be written as

(3.6) f̂i (x;ws,xs) =
∑

k≤k
K(s)=k

∑

s⊆s

K(s)=k

fk
i (x;ws,xs) .
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Remark 3. The number of multi-indexes smaller or equal to k is
∏

i∈T (ki+1) and for each

particular k the number of terms in the sum is
∏

i∈T

(ki
ki

)

. �

Remark 4. These functions operate on an arbitrary (but finite) set of cells s. Even though
there is no upper bound for the amount of terms in the sums, for any particular chosen s

the sum is always finite. Therefore, everything is well-defined and there are no convergence
issues. �

This is exactly the anchored decomposition [15] applied to an arbitrary finite set of variables.
The decomposition is done with respect to the weights of ws, anchoring them at 0ij , for the
appropriate j ∈ T . From the properties of the anchored decomposition we know immediately
that if any of the entries of w is 0ij , then fk

i (x;w,x) = 0Yi
. From Item 3 of Definition 2.2,

we note that when we anchor some entry of ws to 0ij we are also removing the functional
dependence on the corresponding entry of xs.
Moreover, note that for subsets of cells s1, s2 ⊂ s such that K(s1) = K(s2) = k, we indexed
their associated function by k instead of by s1 and s2 as is traditional in the anchored decom-
position. This is proper since the functions {fk

i }k≥0|T |
inherit from f̂i the property of being

invariant to permutations.
In summary, the decomposition according to Definition 3.1 gives us a family of functions
{fk

i }k≥0|T |
, which is an equivalent representation of a given oracle component function f̂i.

The following result presents the necessary and sufficient conditions for {fk
i }k≥0|T |

to be such

that it corresponds to a valid f̂i. That is, for the corresponding f̂i to follow Definition 2.2.

Theorem 3.3. The family of functions {fk
i }k≥0|T |

, represents some valid oracle component

f̂i ∈ F̂i, and is related to it according to Definition 3.1, if and only if for every k ≥ 0|T |, f
k
i

has the following properties:
1. If σ is any permutation matrix (of appropriate dimension), then

fk
i (x;w,x) = fk

i (x;σw, σx) .(3.7)

2. If kj > 0, then fk
i and f

k+1j
i are related by

fk
i

(

x;

[

wj1‖wj2

ws

]

,

[

xj12
xs

])

= fk
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ fk
i

(

x;

[

wj2

ws

]

,

[

xj12
xs

])

(3.8)

+ f
k+1j
i



x;





wj1

wj2

ws



 ,





xj12
xj12
xs







 ,

where s is a set of cells such that K(s) = k − 1j, and the indexes j1, j2 and j12 denote cells
of type j.

3. If any of the entries of w is 0ij for some j ∈ T , then

fk
i (x;w,x) = 0Yi

.(3.9)

�
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Proof. We begin by proving the =⇒ direction. That is, for a given f̂i, the family of
functions {fk

i }k≥0|T |
will have the properties in Items 1 to 3.

Item 1 is immediate from (3.4), which writes f
K(s)
i explicitly as a function of f̂i, together with

(2.2). Note that the sum (3.4) being indexed over all subsets s ⊆ s is crucial to keep the whole
sum invariant under permutations. This means that unlike what is traditional in the general
anchored decomposition, we do not require to index the coupling components according to
cells subsets (e.g., f s1

i , f s2
i ) since they are functionally the same whenever K(s1) = K(s2).

Instead we can freely index them according to their respective type multi-index. That is, our
definition is self-consistent.
The proof of Item 2 is by strong induction. Assume the statement to be true for all s ⊂ s.
We apply (3.5) to (2.3). Then, the left hand side becomes

∑

s⊆s

(

f
K(s)
i (x;ws,xs) + f

K(s)+1j
i

(

x;

[

wj1‖wj2

ws

]

,

[

xj12
xs

]))

,

and the right hand expands into

∑

s⊆s

[

f
K(s)
i (x;ws,xs) + f

K(s)+1j
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ f
K(s)+1j
i

(

x;

[

wj2

ws

]

,

[

xj12
xs

])

+ f
K(s)+2j
i



x;





wj1

wj2

ws



 ,





xj12
xj12
xs











 .

The first terms of the sum in both sides cancel each other. Using the assumption that Item 2
holds for every index s ⊂ s, the last term of the left hand side cancels with the last three
terms of the right hand side. Thus, what remains is those terms indexed with s = s, that is,

f
K(s)+1j
i

(

x;

[

wj1‖wj2

ws

]

,

[

xj12
xs

])

= f
K(s)+1j
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ f
K(s)+1j
i

(

x;

[

wj2

ws

]

,

[

xj12
xs

])

+ f
K(s)+2j
i



x;





wj1

wj2

ws



 ,





xj12
xj12
xs







 .

This means that Item 2 applies for every s.
Item 3 comes directly from the known properties of the anchored decomposition. We prove it
explicitly for completeness sake. Split the sum in (3.4) into two sums according to whenever
the indexed subset contains a given cell c or not. That is,

f
K(s)
i (x;ws,xs) =

∑

s⊆s\{c}

(−1)|s|−|s|f̂i (x;ws,xs) +
∑

s⊆s\{c}

(−1)|s|−|s∪{c}|f̂i

(

x;

[

wc

ws

]

,

[

xc
xs

])

.

If wc = 0ij for some j ∈ T , then, we can apply (2.4) on the right sum, which results in

f
K(s)
i (x;ws,xs) =

∑

s⊆s\{c}

(−1)|s|−|s|f̂i (x;ws,xs)−
∑

s⊆s\{c}

(−1)|s|−|s|f̂i (x;ws,xs) = 0Yi
.
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We now prove the ⇐= direction. That is, any given family of functions {fk
i }k≥0|T |

with the

properties in Items 1 to 3, defines a valid oracle component f̂i. To prove that, we show that
Definition 3.1 will always be respected for any input.

The proof of (2.2) is immediate from (3.5), which writes f̂i explicitly as a function of f
K(s)
i ,

together with Item 1. Note that the sum (3.5) being indexed over all subsets s ⊆ s is crucial
to keep the whole sum invariant under permutations.
We now prove that (2.3) is satisfied. Using (3.5) on its left hand side gives us

∑

s⊆s

(

f
K(s)
i (x;ws,xs) + f

K(s)+1j
i

(

x;

[

wj1‖wj2

ws

]

,

[

xj12
xs

]))

.

We now apply Item 2 to the second term of the sum and we obtain

∑

s⊆s

[

f
K(s)
i (x;ws,xs) + f

K(s)+1j
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ f
K(s)+1j
i

(

x;

[

wj2

ws

]

,

[

xj12
xs

])

+ f
K(s)+2j
i



x;





wj1

wj2

ws



 ,





xj12
xj12
xs











 ,

Using (3.5) again gives us the right hand side of (2.3).
We now prove (2.4). Assume w has its cth element equal to 0ij for some j ∈ T . Then,

f̂i(x;w,x) =
∑

s⊆s

f
K(s)
i (x;ws,xs) =

∑

s⊆s\{c}

f
K(s)
i (x;ws,xs) = f̂i(x;w−c,x−c),

where the first equality comes from (3.5), the second from applying Item 3 and the last one
from using (3.5) again.

At this point, we have started with the definition of oracle components f̂i in Definition 2.2.
Then, we established a bijective correspondence between f̂i and a family of coupling com-
ponents {fk

i }k≥0|T |
in Definition 3.1. Finally, Theorem 3.3 completed the cycle by making

it so that we can also start by first constructing a valid {fk
i }k≥0|T |

and then obtaining the

corresponding f̂i afterwards.
We are now interested in knowing how to manipulate this mathematical object through this
new representation. Subsequently, we will provide some examples that illustrate this decom-
position and its properties.

Lemma 3.4. Consider the oracle components f̂i and the ones in the sequence (N f̂i)N∈N

such that their corresponding coupling components are, respectively, {fk
i }k≥0|T |

and
(

{Nfk
i }k≥0|T |

)

N∈N
. If the output set Yi is a Hausdorff topological vector space, then,

lim
N→∞

N f̂i = f̂i ⇐⇒ lim
N→∞

{Nfk
i }k≥0|T |

= {fk
i }k≥0|T |

in the topology of pointwise convergence. �
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Proof. We begin by proving the =⇒ direction. That is, assume lim
N→∞

N f̂i = f̂i.

For any N ∈ N, we know from (3.4), that for any set of cells s

lim
N→∞

Nf
K(s)
i (x;ws,xs) = lim

N→∞

∑

s⊆s

(−1)|s|−|s|N f̂i (x;ws,xs)

=
∑

s⊆s

(−1)|s|−|s| lim
N→∞

N f̂i (x;ws,xs)

=
∑

s⊆s

(−1)|s|−|s|f̂i (x;ws,xs)

= f
K(s)
i (x;ws,xs) .

We now prove the ⇐= direction. That is, assume lim
N→∞

{Nfk
i }k≥0|T |

= {fk
i }k≥0|T |

.

For any N ∈ N, we know from (3.5), that for any set of cells s

lim
N→∞

N f̂i (x;ws,xs) = lim
N→∞

∑

s⊆s

Nf
K(s)
i (x;ws,xs)

=
∑

s⊆s

lim
N→∞

Nf
K(s)
i (x;ws,xs)

=
∑

s⊆s

f
K(s)
i (x;ws,xs)

= f̂i (x;ws,xs) .

Note that in a topological vector space the addition operation +(·, ·) is (jointly) continuous.
This is what allowed us to convert limits of (finite) sums into (finite) sums of the limits.
The Hausdorff property is required to ensure that the limits are always as stated due to
uniqueness.

Lemma 3.5. For two oracle components f̂i, ĝi ∈ F̂i with coupling components {fk
i }k≥0|T |

and {gki }k≥0|T |
respectively, the coupling components of ĥi = αf̂i + ĝi are given by {αfk

i +

gki }k≥0|T |
, for any scalar α. �

Proof. This comes directly from writing the coupling components explicitly in terms of
the oracle components as in (3.4). That is,

h
K(s)
i (x;ws,xs) =

∑

s⊆s

(−1)|s|−|s|
(

αf̂i + ĝi

)

(x;ws,xs)

= α





∑

s⊆s

(−1)|s|−|s|f̂i (x;ws,xs)



+
∑

s⊆s

(−1)|s|−|s|ĝi (x;ws,xs)

= αf
K(s)
i (x;ws,xs) + g

K(s)
i (x;ws,xs)

=
(

αf
K(s)
i + g

K(s)
i

)

(x;ws,xs) .
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We have shown that operating linearly on F̂i is completely straightforward, with the coupling
components {fk

i }k≥0|T |
being affected component-wise according to the respective linear com-

bination.

Corollary 3.6. The coupling components of order 0, that is, f0
i , which describes the inner

dynamics of a cell, are completely free and independent of the remaining coupling components
{fk

i }k>0. �

Corollary 3.7. Consider f
k+1j
i = 0Yi

for some k ≥ 0|T |, with kj ≥ 1, j ∈ T .

Then, fk
i is additive in the weights with respect to type j. That is,

fk
i

(

x;

[

wj1‖wj2

ws

]

,

[

xj12
xs

])

= fk
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ fk
i

(

x;

[

wj2

ws

]

,

[

xj12
xs

])

.(3.10)

�

The coupling decomposition allows us to define very important concepts that will prove es-
sential in section 4.

Definition 3.2. We say that an oracle component f̂i ∈ F̂i with coupling components
{fk

i }k≥0|T |
has (finite) coupling order γj ∈ N0 with respect to the cell type j ∈ T , if there is

some k ≥ 0|T |, with kj = γj such that fk
i 6= 0Yi

and there is no such k ≥ 0|T | with kj > γj .

We say that f̂i ∈ F̂i has infinite coupling order (γj = ∞) with respect to the cell type j ∈ T ,

if for every kj ∈ N0 there is some k ≥ 0|T | such that fk
i 6= 0Yi

, with kj ≥ kj .
In particular, if γj = 1 or γj = 0, we say that it is additive or uncoupled, respectively, with
regard to j ∈ T . �

Corollary 3.8. Consider an oracle component f̂i ∈ F̂i with finite coupling order γj ≥ 1 for
some j ∈ T . Then, for any k ≥ 0|T | such that kj = γj, f

k
i is additive in the weights with

respect to type j. �

Proof. If is it of order kj = γj, then, f
k+1j
i = 0Yi

. The rest follows from Corollary 3.7.

Lemma 3.9. Consider an oracle component f̂i ∈ F̂i such that for a particular j ∈ T the
associated commutative monoid Mij has an annihilator aij . Then the coupling order of f̂i
with respect to cell type j ∈ T , is either infinite or 0 (uncoupled). �

Proof. The proof is by contradiction. Assume f̂i has finite order γj ≥ 1. Then, for every

k ≥ 0|T |, with kj = γj , we have that f
k+1j
i = 0Yi

. From Corollary 3.8, fk
i is additive, which

implies

fk
i

(

x;

[

wj1‖aij
ws

]

,

[

xj12
xs

])

= fk
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ fk
i

(

x;

[

aij
ws

]

,

[

xj12
xs

])

.(3.11)

Since wj1‖aij = aij, this means that fk
i = 0Yi

, which contradicts the assumption that f̂i is of
order γj.

We illustrate the decomposition into coupling components scheme with the following examples.
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Example 3.2. Consider a single-type network such that

f̂i (x;ws,xs) = f0
i (x) +

(

∑

c∈s

wcxc

)2

.

We can derive the commutative monoid that defines the edge merging. It has to obey

f0
i (x) + ((w1‖w2) x12)

2 = f0
i (x) + (w1x12 + w2x12)

2

(w1‖w2)
2 x212 = (w1 + w2)

2 x212,

from which we conclude that w1‖w2 is either w1 + w2 or − (w1 + w2). Note that for either
case 0‖0 = 0. Assume the second option to be true. From the properties of the commutative
monoid

w‖(0‖0) = (w‖0)‖0

w‖0 = −w‖0

−w = w.

That is, the second option will only allow the trivial situation in which all edges are 0. There-
fore, we choose w1‖w2 = w1 +w2. Considering only one in-neighbor, we conclude that

f1
i (x;w1, x1) = (w1x1)

2 .

Similarly,

f2
i

(

x;

[

w1

w2

]

,

[

x1
x2

])

= 2(w1x1)(w2x2).

We can verify that Item 2 of Theorem 3.3 is satisfied, that is

f1
i (x;w1‖w2, x12) = f1

i (x;w1, x12) + f1
i (x;w2, x12) + f2

i

(

x;

[

w1

w2

]

,

[

x12
x12

])

((w1 + w2)x12)
2 = (w1x12)

2 + (w2x12)
2 + 2w1w2x

2
12,

which is indeed true. It can be seen that higher orders will all be 0. That is,

f̂i (x;ws,xs) = f0
i (x) +

∑

c∈s

(wcxc)
2 +

∑

c,d∈s
c 6=d

2(wcxc)(wdxd)

= f0
i (x) +

∑

c∈s

f1
i (x;wc, xc) +

∑

c,d∈s
c 6=d

f2
i

(

x;

[

wc

wd

]

,

[

xc
xd

])

.

�

We now extend the previous example to a general integer power. This requires the following
generalization of the binomial coefficient.
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Definition 3.3. Consider n ≥ 0 and m ∈ Z
k such that k > 1 and |m| = n. The multino-

mial coefficient
(

n
m

)

is defined as

(

n

m

)

:=

{

n!∏k
i=1

mi!
if m ≥ 0k,

0 otherwise.
(3.12)

�

Remark 5. The reason for considering the cases m ∈ Z
k that are outside N

k
0 and defining

them as 0 is because it greatly simplifies the use of the recurrence relation

(

n

m

)

=

k
∑

i=1

(

n− 1

m− 1i

)

, n > 0.(3.13)

This avoids having to treat many corner cases as special. For instance, in the binomial case,
defined as

(

n
m

)

=
(

n
m,n−m

)

, this corresponds to
(

n
m

)

=
(

n−1
m−1

)

+
(

n−1
m

)

, for n > 0. The cases

m = 0 and m = n give us
(

n
0

)

=
(

n−1
−1

)

+
(

n−1
0

)

=
(

n−1
0

)

and
(

n
n

)

=
(

n−1
n−1

)

+
(

n−1
n

)

=
(

n−1
n−1

)

,
respectively. �

Example 3.3. Consider a single-type network such that

f̂i (x;ws,xs) = f0
i (x) +

(

∑

c∈s

wcxc

)n

,

with n ∈ N. Then, the coupling components fk for k > 0 are given according to

f
|s|
i (x;ws,xs) =

∑

m≥1|s|

|m|=n

(

n

m

)

∏

c∈s

(wcxc)
mc = n!

∑

m≥1|s|

|m|=n

∏

c∈s

(wcxc)
mc

mc!
.

The proof is by strong induction. Assume this to be true for k ∈ {1, . . . , a − 1}, with a > 0.
Choose any set of cells s such that |s| = a. From the recursive definition we have

fa
i (x;ws,xs) = f̂i (x;ws,xs)−

∑

s⊂s

f
|s|
i (x;ws,xs)

= f0
i (x) +

∑

m≥0|s|

|m|=n

(

n

m

)

∏

c∈s

(wcxc)
mc −











f0
i (x) +

∑

s⊂s
s6=∅

∑

m≥1|s|

|m|=n

(

n

m

)

∏

c∈s

(wcxc)
mc











=
∑

m≥1|s|

|m|=n

(

n

m

)

∏

c∈s

(wcxc)
mc

= n!
∑

m≥1|s|

|m|=n

∏

c∈s

(wcxc)
mc

mc!
.
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That is, the case k = a is also satisfied, which concludes the proof. Note that the case k = 1
comes for free due to using strong induction (its hypothesis is vacuously true), although it is
trivial to verify. �

Remark 6. Note that for k > n there are no multi-indexes that satisfy simultaneously
m ≥ 1k and |m| = n. Therefore, fk

i = 0 for such k. The coupling order is then γ = n. �

Remark 7. As a sanity check we verify that Item 2 of Theorem 3.3 is satisfied.
First we can derive the commutative monoid that defines the edge merging. It has to obey

f0
i (x) + ((w1‖w2)x12)

n = f0
i (x) + (w1x12 + w2x12)

n

(w1‖w2)
n xn12 = (w1 + w2)

n xn12.

If n is odd, then w1‖w2 = w1+w2. If n is even, we are in the same situation as in Example 3.2
and w1‖w2 = w1 + w2 for us to be in a non-trivial setting. Now, to verify

f
|s|+2
i



x;





w1

w2

ws



 ,





x12
x12
xs







 = f
|s|+1
i

(

x;

[

w1‖w2

ws

]

,

[

x12
xs

])

− f
|s|+1
i

(

x;

[

w1

ws

]

,

[

x12
xs

])

− f
|s|+1
i

(

x;

[

w2

ws

]

,

[

x12
xs

])

,

we note that
(

n

m1,m2,m

)

=

(

m1 +m2

m1,m2

)(

n

m1 +m2,m

)

.

Using this, the left hand side can be written as

∑

m1,m2≥1

(

m1 +m2

m1,m2

)

wm1

1 wm2

2 xm1+m2

12

∑

m≥1|s|

m1+m2+|m|=n

(

n

m1 +m2,m

)

∏

c∈s

(wcxc)
mc

and the right hand side as

∑

m12≥1

((w1 + w2)
m12 − wm12

1 − wm12

2 ) xm12

12

∑

m≥1|s|

m12+|m|=n

(

n

m12,m

)

∏

c∈s

(wcxc)
mc .

Using the binomial theorem on (w1 + w2)
m12 we see that for a fixed m12 we have that

(w1 + w2)
m12 − wm12

1 − wm12

2 =
∑

m1,m2≥1
m1+m2=m12

(

m12

m1,m2

)

wm1

1 wm2

2 .

Therefore, both sides are the same. �

We now extend Example 3.3 to the polynomial case.
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Example 3.4. From Example 3.3 and Lemma 3.5 we have that for single-type networks
such that

f̂i (x;ws,xs) = f0
i (x) +

N
∑

n=1

an

(

∑

c∈s

wcxc

)n

,

the coupling components fk
i for k > 0 are given according to

f
|s|
i (x;ws,xs) =

N
∑

n=1

ann!
∑

m≥1|s|

|m|=n

∏

c∈s

(wcxc)
mc

mc!
.

�

Example 3.5. Consider the exponential case

f̂i (x;ws,xs) = f0
i (x) + exp

(

∑

c∈s

wcxc

)

− 1.

The coupling components fk for k > 0 are given according to

f
|s|
i (x;ws,xs) =

∏

c∈s

(exp (wcxc)− 1) .

This is proven by creating the sequence of oracle components (N f̂i)N∈N such that

N f̂i (x;ws,xs) = f0
i (x) +

N
∑

n=1

1

n!

(

∑

c∈s

wcxc

)n

.

That is, the oracle components obtained by replacing exp(·)− 1 by its N th order Taylor series
truncation. From Example 3.4 we know that for the sequence

(

{Nfk
i }k≥0

)

N∈N
, the components

Nfk, for k > 0 are given according to

Nf
|s|
i (x;ws,xs) =

∑

m≥1|s|

|m|≤N

∏

c∈s

(wcxc)
mc

mc!
.

Since we know that lim
N→∞

N f̂i = f̂i (pointwise), from Lemma 3.4 we conclude that lim
N→∞

Nf
|s|
i =

f
|s|
i . That is,

f
|s|
i (x;ws,xs) =

∑

m≥1|s|

∏

c∈s

(wcxc)
mc

mc!
.
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Here, the infinite sum
∑

m≥1|s|
is taken as

∑

m≥1|s|

:= lim
N→∞

∑

m≥1|s|

|m|≤N

.

We can prove, however, that this particular infinite sum is absolutely convergent on the index
set m ≥ 1|s|. That is,

∑

m≥1|s|

∣

∣

∣

∣

∣

∏

c∈s

(wcxc)
mc

mc!

∣

∣

∣

∣

∣

=
∑

m≥1|s|

∏

c∈s

|wcxc|
mc

mc!
=
∏

c∈s

∑

mc≥1

|wcxc|
mc

mc!
=
∏

c∈s

(exp (|wcxc|)− 1) < ∞.

This means that the order does not matter and we can freely rearrange the sum into

f
|s|
i (x;ws,xs) =

∑

m≥1|s|

∏

c∈s

(wcxc)
mc

mc!
=
∏

c∈s

∑

mc≥1

(wcxc)
mc

mc!
=
∏

c∈s

(exp (wcxc)− 1) .

�

We now extend the previous results for multi-type networks.

Example 3.6. Consider a multi-type network such that

f̂i (x;ws,xs) = f0
i (x) +

∏

j∈T





∑

c∈sj

wcxc





nj

.

with n > 0|T |, and where sj ⊆ s represents the subset of cells that are of type j ∈ T . We
use the definition 00 = 1, which is standard and avoids many corner cases (e.g., consider the
binomial theorem applied to (x + 0)n). Then, the coupling components {fk}k>0|T |

are given
according to

f
K(s)
i (x;ws,xs) =

∏

j∈T

nj!
∑

m≥1|sj |

|m|=nj

∏

c∈sj

(wcxc)
mc

mc!
.

Note that expanding the outer product gives us

∑

m≥1|s|

|m1|=n1
...

|m|T ||=n|T |





∏

j∈T

nj !





∏

c∈s

(wcxc)
mc

mc!
, with m :=







m1
...

m|T |






.

This is now proven by strong induction. Assume this to be true for |k| ∈ {1, . . . , a− 1}, with
a > 0. For any k > 0|T | with |k| = a, choose any set of cells s := {s1 ∪ . . . ∪ s|T |}, such that
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for every j ∈ T , sj is a set of cells of type j and |sj | = kj .

From the recursive definition, f
K(s)
i (x;ws,xs) = f̂i (x;ws,xs)−

∑

s⊂s f
K(s)
i (x;ws,xs) becomes

∏

j∈T

∑

m≥0|sj |

|m|=nj

(

nj

mj

)

∏

c∈sj

(wcxc)
mc −



















∑

s⊂s
s6=∅

∑

m≥1|s|

|m1|=n1
...

|m|T ||=n|T |





∏

j∈T

nj!





∏

c∈s

(wcxc)
mc

mc!



















=
∑

m≥0|s|

|m1|=n1
...

|m|T ||=n|T |





∏

j∈T

nj!





∏

c∈s

(wcxc)
mc

mc!
−
∑

s⊂s
s6=∅

∑

m≥1|s|

|m1|=n1
...

|m|T ||=n|T |





∏

j∈T

nj!





∏

c∈s

(wcxc)
mc

mc!

=
∑

m≥1|s|

|m1|=n1
...

|m|T ||=n|T |





∏

j∈T

nj!





∏

c∈s

(wcxc)
mc

mc!

=
∏

j∈T

nj!
∑

m≥1|sj |

|m|=nj

∏

c∈sj

(wcxc)
mc

mc!
.

That is, the case |k| = a is also satisfied, which concludes the proof. �

Example 3.7. From Example 3.6 and Lemma 3.5, we have that for multi-type networks
such that

f̂i (x;ws,xs) = f0
i (x) +

∑

n>0|T |

an
∏

j∈T





∑

c∈sj

wcxc





nj

,

with {an}n>0|T |
with finite support, the coupling components {fk}k>0|T |

are given according
to

f
K(s)
i (x;ws,xs) =

∑

n>0|T |

an
∏

j∈T

nj!
∑

m≥1|sj |

|m|=nj

∏

c∈sj

(wcxc)
mc

mc!
.

�

The following example illustrates how an oracle component for multi-type networks can have
the form of Example 3.7 while being constructed in a more natural manner.

Example 3.8. Consider multi-type networks such that

f̂i (x;ws,xs) = f0
i (x) + F





∑

j∈T

Fj





∑

c∈sj

wcxc







 .
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with F (X) =
∑N

n=1 anX
n and Fj(X) =

∑Nj

n=1 a
j
nXn, for all j ∈ T . Then, we have that

F





∑

j∈T

Fj





∑

c∈sj

wcxc







 =

N
∑

n=1

an





∑

j∈T

Fj





∑

c∈sj

wcxc









n

=

N
∑

n=1

an
∑

m≥0|T |

|m|=n

(

n

m

)

∏

j∈T

Fj





∑

c∈sj

wcxc





mj

=

N
∑

n=1

ann!
∑

m≥0|T |

|m|=n

∏

j∈T

1

mj !
Fj





∑

c∈sj

wcxc





mj

=

N
∑

n=1

ann!
∑

m≥0|T |

|m|=n

∏

j∈T

1

mj !







Nj
∑

l=1

ajl





∑

c∈sj

wcxc





l






mj

.

Note that the product of polynomials can be obtained by the convolution of their coefficients.
Therefore, raising a polynomial to the power n is equivalent to convolving its coefficients with
themselves n times. In particular, (

∑N
n=1 anX

n)m can be written as
∑Nm

n=m bnX
n, with

bn =
∑

l≥1m

l≤N 1m

|l|=n

m
∏

i=1

ali .

Therefore, for any fixed n > 0|T |, the coefficient an associated with
∏

j∈T

(

∑

c∈sj
wcxc

)nj

as

in Example 3.7 is given by

an =
N
∑

n=1

ann!
∑

m≥0|T |

|m|=n

∏

j∈T

















1

mj !

∑

l≥1mj

l≤Nj 1mj

|l|=nj

mj
∏

i=1

aj
li

















.

Note that the outer function F is the one responsible for the existence of non-zero coupling
components with mixed typing. Consider, for instance, N = 1. Then, an with n > 0|T | can
only be non-zero whenever n = a 1j for some j ∈ T . The reason is that the only way for
the innermost sum to be non-zero whenever mj = 0, is for nj to be zero as well. In that
situation, we have a sum over one valid index (the 0-tuple) of an empty product, which results
in 1. Similarly, if we consider N = 2, then, an with n > 0|T | can only be non-zero whenever
n = a 1j + b 1k for some j, k ∈ T , and so on. �

We now introduce the second composition scheme.
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4. Decomposition into basis components. In section 3 we introduced a scheme that de-
composes any given oracle component f̂i ∈ F̂i into a family of coupling components {fk

i }k≥0|T |

that have the properties described in Theorem 3.3. With that, one can easily verify in a very
systematic way if some function f̂i that is used to model the behavior of cells in a network
satisfies the properties given by Definition 2.2.
Although this decomposition works well for verification, it is lacking from the perspective of
design. The reason for this is the Item 2 of Theorem 3.3. It forces all coupling components
{fk

i }k≥0|T |
to be interdependent. Therefore, it is not clear at all what are exactly the degrees

of freedom that are available for us, nor how one would even start when choosing such func-
tions.
In this section, we use the previous decomposition as an essential stepping stone in order to
create another with more desirable properties.
For that, we require the use of the multiplicity notation and also Stirling numbers of the first
and second kinds, which we now describe.

4.1. Multiplicity notation. We now introduce the multiplicity notation, which simplifies
the following work.
By mws, with m ≥ 0|s|, we mean that each entry wc of the vector ws is expanded into mc

entries of the same value. For instance, consider

ws =

[

wa

wb

]

, m =

[

1
2

]

. Then, mws =





wa

wb

wb



 .

Note that the number of elements in the resulting vector mws is |ms| = |m|, which in this
case is 3. Moreover, multiplicities can be composed. That is, we can apply some m to the
previous mws, in order to obtain mmws, which requires m ≥ 0|m|. For instance, we could
have

m =





2
1
2



 , mmws =













wa

wa

wb

wb

wb













,

where the horizontal bars are just for illustration purposes in order to make the expansion of
mws into mmws clearer. Note that |mms| = |m| = 5. Moreover, applying the successive
multiplicities (m after m) is equivalent to applying a single multiplicity M, in our case, we
have,

M =

[

2
3

]

, Mws =













wa

wa

wb

wb

wb













.
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Note that |M| = |m| = 5. We say that M = mm, where mm is the composition of the
two multiplicities m and m. This should not be confused with extending m according to m,
which has a completely different meaning. In our example, we have

mm =





2

1
2





[

1
2

]

=

[

2
3

]

= M.

The |m| entries of m can be divided according to the values of m, which in this case is a
first block with one element and a second block with two elements. Note that each block
will affect a different element of the original vector we are applying mm to (e.g., ws), that
is, each element of the ith block of m expands the ith element of ws that amount of times.
In conclusion, to find the equivalent multiplicity M we just need to sum each block of the
multiplicity m, in which, the blocks are defined according to m.

4.2. Stirling numbers. The Stirling numbers of the first and second kinds are integers
that appear in combinatorics, in particular when studying partitions and permutations [11].
In this section we will define them with respect to their recurrence relations. The related
results that will be used in the sections are presented and proved in Appendix A.

Definition 4.1. The unsigned Stirling numbers of the first kind, S1(n, k), with n, k ≥ 0, are
given by the recurrence relation

S1(n, k) = (n− 1)S1(n− 1, k) + S1(n− 1, k − 1), n, k > 0,

together with the boundary conditions

S1(0, 0) = 1,

S1(0, k) = 0, k > 0,

S1(n, 0) = 0, n > 0.

�

Definition 4.2. The Stirling numbers of the second kind, S2(n, k), with n, k ≥ 0, are given
by the recurrence relation

S2(n, k) = kS2(n− 1, k) + S2(n− 1, k − 1), n, k > 0,

together with the boundary conditions

S2(0, 0) = 1,

S2(0, k) = 0, k > 0,

S2(n, 0) = 0, n > 0.

�



DECOMPOSITION OF ADMISSIBLE FUNCTIONS IN WEIGHTED COUPLED CELL NETWORKS 25

4.3. Finite coupling order. We denote by F̂<∞
i the subset of elements in F̂i whose set

of coupling components {fk
i }k≥0|T |

has only finitely many non-zero terms. From Lemma 3.5,

this forms a subspace. We now show that we can represent the elements of F̂<∞
i by a set

of functions {bfk
i }k≥0|T |

, called basis components, which have simpler properties than the

coupling components {fk
i }k≥0|T |

. In particular, they are decoupled from one another. These
functions have the following structure.

Definition 4.3. A basis component bfk
i , with k ≥ 0|T |, is a function defined on

bfk
i : Xi ×Mk

i × X
k → Yi,(4.1)

such that:
1. If σ is any permutation matrix (of appropriate dimension), then

bfk
i (x;w,x) = bfk

i (x;σw, σx) .(4.2)

2. If kj > 0, then bfk
i is additive in the weights with respect to type j. That is,

bfk
i

(

x;

[

wj1‖wj2

ws

]

,

[

xj12
xs

])

= bfk
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ bfk
i

(

x;

[

wj2

ws

]

,

[

xj12
xs

])

.(4.3)

�

Corollary 4.1. Given a basis component bfk
i , if any of the entries of w is 0ij for some

j ∈ T , then

bfk
i (x;w,x) = 0Yi

.(4.4)

�

Proof. From Item 2 of Definition 4.3, we know that

bfk
i

(

x;

[

wj1‖0ij
ws

]

,

[

xj12
xs

])

= bfk
i

(

x;

[

wj1

ws

]

,

[

xj12
xs

])

+ bfk
i

(

x;

[

0ij
ws

]

,

[

xj12
xs

])

.

Since wj1‖0ij = wj1 , this implies that

bfk
i

(

x;

[

0ij
ws

]

,

[

xj12
xs

])

= 0Yi
.

The fact that this applies to every j ∈ T , together with Item 1 of Definition 4.3, proves the
result for a zero in any entry of w.

The following result assigns the appropriate basis components {bfk
i }k≥0|T |

to the elements of

F̂<∞
i by relating them, bijectively, to the coupling components {fk

i }k≥0|T |
. We now use the

following shorthand notation

f
K(ms)
i (x;m,ws,xs) := f

K(ms)
i (x;mws,mxs) .
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Theorem 4.2. Assuming the related set Yi to be a vector space, there is a bijection between
the set of coupling components {fk

i }k≥0|T |
of elements in F̂<∞

i , and the set of basis components

{bfk
i }k≥0|T |

with finitely many non-zero terms. In particular, this bijection is given by the
following equivalent expressions,

f
K(s)
i (x;ws,xs) =

∑

m≥1|s|

1
∏

c∈smc!
bf

K(ms)
i (x;m,ws,xs) ,(4.5)

bf
K(s)
i (x;ws,xs) =

∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K(ms)
i (x;m,ws,xs) ,(4.6)

and in general for multiplicities m ≥ 0|s|,

f
K(ms)
i (x;m,ws,xs) =

∑

M≥0|s|

(

∏

c∈s

mc!

Mc!
S2(Mc,mc)

)

bf
K(Ms)
i (x;M,ws,xs) ,(4.7)

bf
K(ms)
i (x;m,ws,xs) =

∑

M≥0|s|

(−1)|M|−|m|

(

∏

c∈s

mc!

Mc!
S1(Mc,mc)

)

f
K(Ms)
i (x;M,ws,xs) .

(4.8)

�

In order to prove this, we require Lemmas 4.3 to 4.9, which are proven in Appendix A.

Lemma 4.3. For m,M ≥ 0k, with k ≥ 0, we have that

∑

m≥1|m|

mm=M

1
∏|m|

i=1 mi

=

k
∏

i=1

mi!

Mi!
S1(Mi,mi).(4.9)

�

Lemma 4.4. For m,M ≥ 0k, with k ≥ 0, we have that

∑

m≥1|m|

mm=M

1
∏|m|

i=1mi!
=

k
∏

i=1

mi!

Mi!
S2(Mi,mi).(4.10)

�

Lemma 4.5. For M ≥ 0k, with k ≥ 0, we have that

∑

m≥1k

k
∏

i=1

(−1)miS1(Mi,mi) =

{

(−1)k if M = 1k,

0 otherwise.
(4.11)

�
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Lemma 4.6. For M ≥ 0k, with k ≥ 0, we have that

∑

m≥1k

k
∏

i=1

(−1)mi(mi − 1)!S2(Mi,mi) =

{

(−1)k if M = 1k,

0 otherwise.
(4.12)

�

Lemma 4.7. Consider a function bfk
i with the properties in Definition 4.3, for some k ≥

0|T |. For every m12 ≥ 0,m ≥ 0|s|, such that k = K(ms) +m12 1j , we have that

bfk
i

(

x;

[

m12

m

]

,

[

wj1‖wj2

ws

]

,

[

xj12
xs

])

=
∑

m1,m2≥0
m1+m2=m12

(

m12

m1,m2

)

bfk
i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 .

(4.13)

�

Lemma 4.8. Consider a family of functions {fk
i }k≥0|T |

with the properties in Theorem 3.3,

for some k ≥ 0|T |. For every m12 ≥ 0,m ≥ 0|s|, such that k = K(ms), we have that

f
k+m12 1j
i

(

x;

[

m12

m

]

,

[

wj1‖wj2

ws

]

,

[

xj12
xs

])

(4.14)

=
∑

m1,m2≥0
m1,m2≤m12

m1+m2≥m12

B(m1,m2,m12)f
k+(m1+m2) 1j
i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 ,

where B(m1,m2,m12) is defined as

B(m1,m2,m12) :=

(

m12

m12 −m1,m12 −m2,m1 +m2 −m12

)

.

�

Lemma 4.9. For every m1,m2 ∈ N0, we have that

∑

n≥1,m1,m2

n≤m1+m2

(−1)n

n

(

n

n−m1, n−m2,m1 +m2 − n

)

=











(−1)m1

m1
if m1 ≥ 1,m2 = 0,

(−1)m2

m2
if m1 = 0,m2 ≥ 1,

0 otherwise.

(4.15)

. �

Proof of Theorem 4.2. Firstly, we prove that if both {fk
i }k≥0|T |

and {bfk
i }k≥0|T |

have
finitely many non-zero terms, then, (4.5)–(4.8) are all equivalent. Note that the assumption
implies that all the sums indexed at m ≥ 1|s| and M ≥ 0|s| have finite support. That is, they
are actually finite sums in disguise and there are no convergence issues.
We now prove the equivalence of (4.5)–(4.8) by proving the cycle of implications (4.5) =⇒
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(4.7) =⇒ (4.6) =⇒ (4.8) =⇒ (4.5).
Assume (4.5). Direct substitution gives us

f
K(ms)
i (x;m,ws,xs) =

∑

m≥1|m|

1
∏|m|

i=1 mi!

bf
K(mms)
i (x;mm,ws,xs) .

Since we are dealing with finite sums, we can freely reorder the terms such that we merge
together the pairs (m,m) such that mm = M. That is,

f
K(ms)
i (x;m,ws,xs) =

∑

M≥0|s|

∑

m≥1|m|

mm=M

1
∏|m|

i=1 mi!

bf
K(Ms)
i (x;M,ws,xs) ,

which from Lemma 4.4 simplifies into (4.7). Therefore, (4.5) =⇒ (4.7).
We now assume (4.7). Using this on the right hand side of (4.6) we get

∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K(ms)
i (x;m,ws,xs)

=
∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

∑

M≥0|s|

(

∏

c∈s

mc!

Mc!
S2(Mc,mc)

)

bf
K(Ms)
i (x;M,ws,xs) .

Exchanging the order of the two sums and simplifying we get

∑

M≥0|s|

(−1)|s|
∏

c∈sMc!





∑

m≥1|s|

∏

c∈s

(−1)mc(mc − 1)!S2(Mc,mc)





bf
K(Ms)
i (x;M,ws,xs) ,

which from Lemma 4.6 simplifies into bf
K(s)
i (x;ws,xs), the left hand side of (4.6). Therefore,

(4.7) =⇒ (4.6).
We now assume (4.6). Direct substitution gives us

bf
K(ms)
i (x;m,ws,xs) =

∑

m≥1|m|

(−1)|m|−|m|

∏|m|
i=1 mi

f
K(mms)
i (x;mm,ws,xs) .

Merging together the pairs (m,m) such that mm = M, we obtain

bf
K(ms)
i (x;m,ws,xs) =

∑

M≥0|s|

(−1)|M|−|m|
∑

m≥1|m|

mm=M

1
∏|m|

i=1mi

f
K(Ms)
i (x;M,ws,xs) .

Note that |m| = |M|. From Lemma 4.3, this simplifies into (4.8). Therefore, (4.6) =⇒ (4.8).
Finally, we assume (4.8). Using this on the right hand side of (4.5) we get

∑

m≥1|s|

1
∏

c∈smc!
bf

K(ms)
i (x;m,ws,xs)

=
∑

m≥1|s|

1
∏

c∈smc!

∑

M≥0|s|

(−1)|M|−|m|

(

∏

c∈s

mc!

Mc!
S1(Mc,mc)

)

f
K(Ms)
i (x;M,ws,xs) .
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Exchanging the order of the two sums and simplifying we get

∑

M≥0|s|

(−1)|M|

∏

c∈sMc!





∑

m≥1|s|

∏

c∈s

(−1)mcS1(Mc,mc)



 f
K(Ms)
i (x;M,ws,xs) ,

which from Lemma 4.5 simplifies into (4.5). This completes the proof that (4.5)–(4.8) are
equivalent under the assumption that both {fk

i }k≥0|T |
and {bfk

i }k≥0|T |
have finitely many

non-zero terms. We now weaken this assumption by showing that one of them having finitely
many non-zero terms implies the other also having that property.
Assume {fk

i }k≥0|T |
has finitely many terms. Then, there is some K ≥ 0|T | such that all non-

zero terms are inside the subset {fk
i }k≤K. Note that the sums (4.6) are always finite, which

means that the corresponding {bfk
i }k≥0|T |

is well-defined. Furthermore, every bfk
i such that

k does not obey k ≤ K, is given by a sum of zero terms. Therefore, {bfk
i }k≥0|T |

also has all

of its non-zero terms inside the subset {bfk
i }k≤K, which means that it also has finitely many

non-zero terms. Then, the previous assumptions are satisfied and consequently (4.5)–(4.8) are
equivalent.
The exact same argument applies when starting with some {bfk

i }k≥0|T |
that has finitely many

non-zero terms and constructing the corresponding {fk
i }k≥0|T |

through (4.5).

We now prove that {fk
i }k≥0|T |

has the properties in Theorem 3.3 if and only if the corre-

sponding {bfk
i }k≥0|T |

has the properties in Definition 4.3.

Assume some {bfk
i }k≥0|T |

has the properties in Definition 4.3. Then, from (4.5), we have that
for any permutation matrix σ,

f
K(s)
i (x;ws,xs) =

∑

m≥1|s|

1
∏

c∈smc!
bf

K(ms)
i (x;m,ws,xs)

=
∑

m≥1|s|

1
∏

c∈smc!
bf

K([σm]σs)
i (x;σm, σws, σxs)

=
∑

m≥1|s|

1
∏

c∈smc!
bf

K(mσs)
i (x;m, σws, σxs)

= f
K(s)
i (x;σws, σxs) ,

where m = σm establishes a bijection between the sets of indexes m ≥ 1|s| and m ≥ 1|s|.

Therefore, {fk
i }k≥0|T |

satisfies Item 1 of Theorem 3.3.
Again from (4.5), we have that

f
K(s)
i

(

x;

[

wj1‖wj2

ws

]

,xs

)

=
∑

m≥1|s|

1
∏

c∈smc!
bf

K(ms)
i

(

x;m,

[

wj1‖wj2

ws

]

,xs

)

,
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with m =

[

m12

m

]

and xs =

[

xj12
xs

]

. Applying Lemma 4.7, the right hand side expands into

∑

m12≥1
m≥1|s|

1

m12!
∏

c∈smc!

∑

m1,m2≥0
m1+m2=m12

m12!

m1!m2!
bfk

i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 .

We cancel the m12! terms and merge the two sums, which simplifies the expression into

∑

m1,m2≥0
m1+m2≥1
m≥1|s|

1

m1!m2!
∏

c∈smc!
bfk

i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 .

We now split this sum into three parts. The first with m1 ≥ 1,m2 = 0, the second with
m1 = 0,m2 ≥ 1 and the third with m1,m2 ≥ 1. Applying (4.5) again, gives us the three
terms of the right hand side of Item 2 of Theorem 3.3.
Finally, consider that some entry of w is 0ij for some j ∈ T . Then, from Corollary 4.1, every
term of the sum (4.5) is zero, which means that {fk

i }k≥0|T |
satisfies Item 3 of Theorem 3.3.

We now prove the converse direction. Assume some {fk
i }k≥0|T |

has the properties in Theo-
rem 3.3. Then, from (4.6), we have that for any permutation matrix σ,

bf
K(s)
i (x;ws,xs) =

∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K(ms)
i (x;m,ws,xs)

=
∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K([σm]σs)
i (x;σm, σws, σxs)

=
∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K(mσs)
i (x;m, σws, σxs)

= bf
K(s)
i (x;σws, σxs) ,

where m = σm establishes a bijection between the sets of indexes m ≥ 1|s| and m ≥ 1|s|.

Therefore, {bfk
i }k≥0|T |

satisfies Item 1 of Definition 4.3.
Finally, we have that

bf
K(s)
i

(

x;

[

wj1‖wj2

ws

]

,xs

)

=
∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K(ms)
i

(

x;m,

[

wj1‖wj2

ws

]

,xs

)

,

with m =

[

m12

m

]

and xs =

[

xj12
xs

]

. Applying Lemma 4.8, the right hand side expands into

∑

m12≥1
m≥1|s|

(−1)|m|−|s|

∏

c∈smc

(−1)m12

m12

∑

m1,m2≥0
m1,m2≤m12

m1+m2≥m12

B(m1,m2,m12)f
K(ms)
i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 ,
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with B(m1,m2,m12) as defined in Lemma 4.8. This can be rearranged into

∑

m1,m2≥0

m≥1|s|

(−1)|m|−|s|

∏

c∈smc







∑

m12≥1,m1 ,m2

m12≤m1+m2

(−1)m12

m12
B(m1,m2,m12)






f
K(ms)
i

(

x;

[

m1

m2

m

]

,

[

wj1

wj2

ws

]

,

[

xj12

xj12

xs

])

.

From Lemma 4.9, this simplifies into

∑

m1≥1
m≥1|s|

(−1)|m|+m1−|s|

m1
∏

c∈smc

f
K(m1s)
i

(

x;

[

m1

m

]

,

[

wj1

ws

]

,xs

)

+
∑

m2≥1
m≥1|s|

(−1)|m|+m2−|s|

m2
∏

c∈smc

f
K(m2s)
i

(

x;

[

m2

m

]

,

[

wj2

ws

]

,xs

)

= bf
K(s)
i

(

x;

[

wj1

ws

]

,xs

)

+ bf
K(s)
i

(

x;

[

wj2

ws

]

,xs

)

,

with m1 =

[

m1

m

]

and m2 =

[

m2

m

]

, which gives us the right hand side of Item 2 of Defini-

tion 4.3.

An evident but important consequence of Theorem 4.2 is the following.

Corollary 4.10. Consider a finite order f̂i ∈ F̂<∞
i , with coupling components {fk

i }k≥0|T |

and with basis components {bfk
i }k≥0|T |

. Then,

f0
i = bf0

i .(4.16)

�

This can be generalized with the help of the following definition.

Definition 4.4. Consider a family of functions {fk
i }k≥0|T |

defined on fk
i : Xi×Mk

i ×X
k →

Yi. We say that a given index k ≥ 0|T | is a locally maximal order if fk
i 6= 0Yi

and fk
i = 0Yi

for all k > k such that k and k have zeros in the same entries. �

Lemma 4.11. Consider a finite order f̂i ∈ F̂<∞
i , with coupling components {fk

i }k≥0|T |
and

with basis components {bfk
i }k≥0|T |

.

A given index k ≥ 0|T | is a locally maximal order with respect to {fk
i }k≥0|T |

if and only if it

is a locally maximal order with respect to {bfk
i }k≥0|T |

. Furthermore, if k ≥ 0|T | is a locally
maximal order, then,

fk
i = bfk

i .(4.17)

�
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Proof. Assume k ≥ 0|T | is a locally maximal order with respect to {fk
i }k≥0|T |

. This

implies, from (4.6), that bfk
i = 0Yi

whenever k < k and k,k have zeros in the same entries.
Moreover, when k = k, (4.6) simplifies into (4.17).
The exact same reasoning applies in order to prove the converse direction using (4.5).

The following result allows us to build any f̂i ∈ F̂<∞
i directly from the specification of a

simple and decoupled family of basis components {bfk
i }k≥0|T |

.

Theorem 4.12. Every finite order oracle component f̂i ∈ F̂<∞
i , can be directly expressed in

terms of its basis components {bfk
i }k≥0|T |

according to

f̂i (x;ws,xs) =
∑

m≥0|s|

1
∏

c∈smc!
bf

K(ms)
i (x;m,ws,xs) .(4.18)

�

Proof. We plug in (4.5) on (3.5), which gives us

f̂i (x;ws,xs) =
∑

s⊆s

∑

m≥1|s|

1
∏

c∈smc!
bf

K(ms)
i (x;m,ws,xs) .

The result comes directly from merging the two sums.

Similarly to Lemma 3.5, we see that the representation on this second decomposition is also
component-wise linear.

Lemma 4.13. For two finite order oracle components f̂i, ĝi ∈ F̂<∞
i with basis components

{bfk
i }k≥0|T |

and {bgki }k≥0|T |
respectively, the basis components of ĥi = αf̂i + ĝi are given by

{αbfk
i + bgki }k≥0|T |

for any scalar α. �

Proof. This comes directly from writing the basis components explicitly in terms of the
coupling components as in (4.6), together with Lemma 3.5.

bh
K(s)
i (x;ws,xs)

=
∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

(

αf
K(ms)
i + g

K(ms)
i

)

(x;m,ws,xs)

= α





∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

f
K(ms)
i (x;m,ws,xs)



+
∑

m≥1|s|

(−1)|m|−|s|

∏

c∈smc

g
K(ms)
i (x;m,ws,xs)

= αbf
K(s)
i (x;ws,xs) +

bg
K(s)
i (x;ws,xs)

=
(

αbf
K(s)
i + bg

K(s)
i

)

(x;ws,xs) .

The following examples illustrate the proposed decomposition.
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Example 4.1. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis

components {bfk
i }k≥0 such that, for some fixed n > 0

bf
|s|
i (x;ws,xs) =











n!
∏

c∈s(wcxc) |s| = n,

f0
i (x) |s| = 0,

0 otherwise.

It is clear that {bfk
i }k≥0 satisfy Items 1 and 2 of Definition 4.3. Using Theorem 4.12 we can

find the corresponding oracle component directly. That is,

f̂i (x;ws,xs) =
∑

m≥0|s|

1
∏

c∈smc!
bf

|m|
i (x;m,ws,xs)

= f0
i (x) + n!

∑

m≥0|s|

|m|=n

∏

c∈s

(wcxc)
mc

mc!

= f0
i (x) +

(

∑

c∈s

wcxc

)n

,

which is exactly the same oracle component as in Example 3.3.
As a sanity check we can easily verify from (4.5) that the coupling components {fk

i }k≥0 match
the previously calculated ones. In particular, for |s| > 0,

f
|s|
i (x;ws,xs) =

∑

m≥1|s|

1
∏

c∈smc!
bf

|m|
i (x;m,ws,xs) = n!

∑

m≥1|s|

|m|=n

∏

c∈s

(wcxc)
mc

mc!
.

Finally, note that Lemma 4.11 is verified for |s| = n. That is, fn
i = bfn

i . �

We now extend Example 4.1 to the polynomial case.

Example 4.2. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis

components {bfk
i }k≥0 such that, for some fixed N > 0

bf
|s|
i (x;ws,xs) =











a|s||s|!
∏

c∈s(wcxc) 0 < |s| ≤ N,

f0
i (x) |s| = 0,

0 otherwise.

It is clear that {bfk
i }k≥0 satisfy Items 1 and 2 of Definition 4.3.

From Example 4.1 and Lemma 4.13, we conclude that the corresponding oracle component is
given by

f̂i (x;ws,xs) = f0
i (x) +

N
∑

n=1

an

(

∑

c∈s

wcxc

)n

,

which is exactly the same oracle component as in Example 3.4. Note that we could also obtain
this directly through Theorem 4.12. �
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We now extend the previous result for multi-type networks.

Example 4.3. Consider a multi-type finite order oracle component f̂i ∈ F̂<∞
i with basis

components {bfk
i }k≥0|T |

such that, for {an}n>0|T |
with finite support,

bfk
i (x;ws,xs) =

{

ak
∏

j∈T kj !
∏

c∈sj
(wcxc) k > 0|T |,

f0
i (x) k = 0|T |.

It is clear that {bfk
i }k≥0|T |

satisfy Items 1 and 2 of Definition 4.3. The corresponding oracle
component is given by

f̂i (x;ws,xs) =
∑

m≥0|s|

1
∏

c∈smc!
bf

K(ms)
i (x;m,ws,xs)

= f0
i (x) +

∑

n>0|T |

∑

m≥0|s|

|m1|=n1
...

|m|T ||=n|T |

an





∏

j∈T

nj!





∏

c∈s

(wcxc)
mc

mc!

= f0
i (x) +

∑

n>0|T |

an
∏

j∈T

∑

mj≥0|sj |

|mj |=nj

nj!
∏

c∈sj

(wcxc)
mc

mc!

= f0
i (x) +

∑

n>0|T |

an
∏

j∈T





∑

c∈sj

wcxc





nj

,

which is exactly the same oracle component as in Example 3.7. �

We now consider a slightly more complicated type of basis components.

Example 4.4. Consider a single-type finite order oracle component f̂i ∈ F̂<∞
i with basis

components {bfk
i }k≥0 such that, for some fixed n, k with n ≥ k > 0

bf
|s|
i (x;ws,xs) =











(n− k)!k!(
∏

c∈s wc)ek(xs) |s| = n,

f0
i (x) |s| = 0,

0 otherwise.

where ek denotes what is called elementary symmetric polynomials. With the multi-index
notation this can be written as

ek(xs) =
∑

q≥0|s|

q≤1|s|

|q|=k

∏

c∈s

xqcc .

It is clear that {bfk
i }k≥0 satisfy Items 1 and 2 of Definition 4.3. We show that the oracle

components {fk
i }k≥0 can be found to be

f̂i (x;ws,xs) = f0
i (x) +

(

∑

c∈s

wc

)n−k(
∑

c∈s

wcxc

)k

.
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To prove this, firstly note that

ek(mxs) =
∑

q≥0|s|

q≤m
|q|=k

∏

c∈s

xqcc

(

mc

qc

)

.

Using Theorem 4.12,

f̂i (x;ws,xs) =
∑

m≥0|s|

1
∏

c∈smc!
bf

|m|
i (x;m,ws,xs)

= f0
i (x) +

∑

m≥0|s|

|m|=n

1
∏

c∈smc!
bf

|m|
i (x;m,ws,xs)

= f0
i (x) + (n− k)!k!

∑

m≥0|s|

|m|=n

1
∏

c∈smc!

(

∏

c∈s

wmc
c

)

ek(mxs)

= f0
i (x) + (n− k)!k!

∑

m≥0|s|

|m|=n

(

∏

c∈s

wmc
c

mc!

)

∑

q≥0|s|

q≤m
|q|=k

∏

c∈s

xqcc

(

mc

qc

)

= f0
i (x) + (n− k)!k!

∑

m≥0|s|

|m|=n

∑

q≥0|s|

q≤m
|q|=k

∏

c∈s

wmc−qc
c (wcxc)

qc

(mc − qc)!qc!
.

Define pc := mc − qc. Then, we can write this in terms of p as

f̂i (x;ws,xs) = f0
i (x) + (n− k)!k!

∑

p≥0|s|

q≥0|s|

|p|=n−k

|q|=k

∏

c∈s

wpc
c (wcxc)

qc

pc!qc!

= f0
i (x) +











(n − k)!
∑

p≥0|s|

|p|=n−k

∏

c∈s

wpc
c

pc!





















k!
∑

q≥0|s|

|q|=k

∏

c∈s

(wcxc)
qc

qc!











= f0
i (x) +

(

∑

c∈s

wc

)n−k(
∑

c∈s

wcxc

)k

,

which completes our proof. �

For completeness sake, we present in Theorem 4.14 the inverse result of Theorem 4.12. That
is, we express the basis components in terms of the oracle components. In this result, we use
a generalization of Stirling numbers called r-Stirling numbers, which are defined in [10].
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Definition 4.5. The unsigned r-Stirling numbers of the first kind, Sr
1(n, k), with r, n, k ≥ 0,

are given by the recurrence relation

Sr
1(n, k) = (n− 1)Sr

1(n− 1, k) + Sr
1(n− 1, k − 1), n > r, k > 0,

together with the boundary conditions

Sr
1(r, k) = δr,k,

Sr
1(n, k) = 0 n < r,

Sr
1(n, 0) = 0 n > r.

�

Remark 8. Note that S0
1 (n, k) = S1(n, k). Moreover, S1

1 (n, k) = S1(n, k) when n > 0. �

We denote by F̂≤K
i the subset of all f̂i ∈ F̂i such that all of their non-zero coupling components

are inside the subset {fk
i }k≤K. From Lemma 3.5, this forms a subspace.

Theorem 4.14. For every finite order f̂i ∈ F̂<∞
i , we can express the set of basis components

{bfk
i }k≥0|T |

, which have the properties as in Definition 4.3, in terms of its oracle components

f̂i. In particular, for any K ≥ 0|T | such that f̂i ∈ F̂≤K
i , we have that

bf
K(s)
i (x;ws,xs) = (−1)|s|

∑

s⊆s

∑

M≥1|s|

K(Ms)≤K

(−1)|M|

∏

c∈sMc





∏

j∈T

C(Kj, |Mj |, |sj \ sj |)



 f̂i (x;M,ws,xs)

(4.19)

where C(K,M, r), with K ≥ M ≥ 0 and r ≥ 0, is defined as

C(K,M, r) :=
r!

(K −M)!
SM+1
1 (K + 1, r +M + 1).(4.20)

�

In order to prove this, we require Lemma 4.15, which is proved in Appendix B.

Lemma 4.15. For M ≥ 1k, with n ≥ |M| and k, r ≥ 0, we have that

∑

m≥M
p≥1r

|m|+|p|≤n

k
∏

i=1

(

mi − 1

Mi − 1

) r
∏

j=1

1

pj
=

r!

(n− |M|)!
S
|M|+1
1 (n+ 1, r + |M|+ 1).(4.21)

�

Proof of Theorem 4.14. We first note that (3.4) can be generalized into

f
K(ms)
i (x;m,ws,xs) =

∑

m≥0|s|

m≤m

[

∏

c∈s

(

mc

mc

)

]

(−1)|m|−|m|f̂i (x;m,ws,xs) .
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Plugging in this result into (4.6), we obtain

bf
K(s)
i (x;ws,xs) =

∑

m≥1|s|

K(ms)≤K

(−1)|m|−|s|

∏

c∈smc

∑

m≥0|s|

m≤m

[

∏

c∈s

(

mc

mc

)

]

(−1)|m|−|m|f̂i (x;m,ws,xs)

= (−1)|s|
∑

m≥1|s|

K(ms)≤K

∑

m≥0|s|

m≤m

[

∏

c∈s

(

mc

mc

)

mc

]

(−1)|m|f̂i (x;m,ws,xs) .

Rearranging the two sums we get

bf
K(s)
i (x;ws,xs) = (−1)|s|

∑

m≥0|s|

K(ms)≤K

(−1)|m|















∑

m≥m
m≥1|s|

K(ms)≤K

∏

c∈s

(

mc

mc

)

mc















f̂i (x;m,ws,xs) .

We now break the first sum into
∑

m≥0|s|

K(ms)≤K

=
∑

s⊆s

∑

M≥1|s|

K(Ms)≤K

,

that is, we correspond a given m ≥ 0|s| to the subset s ⊆ s, of its non-zero entries. Therefore,
we have that ms = M and ms\s = 0|s\s|. Note that according to this split, the condition
m ≥ m becomes ms ≥ M and ms\s ≥ 0|s\s|. On the other hand, the condition m ≥ 1|s|
becomes ms ≥ 1|s| and ms\s ≥ 1|s\s|. Out of the resulting four conditions, the non-redundant
ones are clearly ms ≥ M and ms\s ≥ 1|s\s|. This results in

bf
K(s)
i (x;ws,xs)

= (−1)|s|
∑

s⊆s

∑

M≥1|s|

K(Ms)≤K

(−1)|M|















∑

ms≥M
ms\s≥1|s\s|

K(ms)≤K

∏

c∈s

(

mc

Mc

)

mc

∏

d∈s\s

1

md















f̂i (x;M,ws,xs)

= (−1)|s|
∑

s⊆s

∑

M≥1|s|

K(Ms)≤K

(−1)|M|

∏

c∈sMc















∑

ms≥M
ms\s≥1|s\s|

K(ms)≤K

∏

c∈s

(

mc − 1

Mc − 1

)

∏

d∈s\s

1

md















f̂i (x;M,ws,xs) .

Note that
(mc
Mc
)

mc
=

(mc−1

Mc−1)
Mc

, whenever Mc ≥ 1.
We now show that the expression in brackets gives us

∏

j∈T C(Kj, |Mj |, |sj \ sj |), as given by
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(4.20). We rearrange it by breaking all the multi-indices according to the typing of their cells.
That is,

∏

j∈T

∑

msj
≥Mj

msj\sj
≥1|sj\sj |

|msj
|+|msj\sj

|≤Kj

∏

c∈sj

(

mc − 1

Mc − 1

)

∏

d∈sj\sj

1

md

.

from Lemma 4.15, the result is proven.

Remark 9. Note that if f̂i ∈ F̂≤K1

i ∩ F̂≤K2

i , with K1 6= K2, the associated coefficients
C(Kj , |Mj |, |sj \ sj|) will be different when we apply (4.19) to K1 and K2.

The fact that there are multiple valid formulas that express {bfk
i }k≥0|T |

as a function of f̂i
might seem unexpected. One way to convince ourselves that this is reasonable, is to consider
a simple case like f̂i ∈ F̂≤0

i . In this case, we have that bf0
i (x) = f̂i (x;ws,xs) and it is easy

to get creative and find multiple formulas that are all valid under the (very strict) assumption
that f̂i ∈ F̂≤0

i . �

Remark 10. Note that the coefficients C(Kj , |Mj |, |sj \ sj|) diverge as K → ∞. In partic-
ular, C(Kj, 1, 0) = S2

1 (Kj + 1, 2)/(Kj − 1)! = Kj !/(Kj − 1)! = Kj for Kj ≥ 1. Therefore, the

limit case of Theorem 4.14 does not give us a universal formula that works for all f̂i ∈ F̂<∞
i .

�

4.4. Infinite coupling order. All the results of subsection 4.3 fall under the assumption
that the oracle functions are in F̂<∞

i . That is, they have finite order. There are, however,
plentiful useful functions that lie outside this subspace, such as the exponential function in
Example 3.5. Our goal is to create a useful extension of this theory that applies to at least
some important functions, such as the exponential and the trigonometric functions. The first
idea that comes to mind is to simply allow the family of basis components {bfk

i }k≥0|T |
to

have infinite support. There is an important issue with such an approach. When dealing with
infinite sums we are actually talking about limits on a sequence of partial sums. For this to be
well-defined we need to be clear about the meaning of infinite sums of the type

∑

m≥1|s|
am.

There are plenty of possible definitions, with some of the more obvious ones being

lim
N→∞

N
∑

n=0

∑

m≥1|s|

|m|=n

am, or lim
N→∞

N
∑

n=0

∑

m≥1|s|

max(m)=n

am.

However, there is no clear reason for why one definition would be preferable to the other. If
we chose one of them and developed our theory based on that, we would only be restricting
ourselves to that choice. A different (and better) approach is to simply choose to give up on
a {bfk

i }k≥0|T |
representation for oracle components outside F̂<∞

i and use the following result
instead.

Lemma 4.16. Consider the related set Yi to be a Hausdorff vector space. Then, for every
sequence (N f̂i)N∈N, with N f̂i ∈ F̂<∞

i for all N ∈ N such that f̂i := lim
N→∞

N f̂i converges

pointwise, we have that f̂i ∈ F̂i. �
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Proof. This is direct from the fact that F̂i is sequentially closed in the topology of pointwise
convergence (Lemma 2.1) and F̂<∞

i ⊂ F̂i. We assume Yi is a vector space so that F̂<∞
i can

be defined.

This provides us with a framework that allows us to build a set of oracle components with
infinite order, in particular the ones in scl(F̂<∞

i ), the sequential closure of F̂<∞
i . We illustrate

this with the following example.

Example 4.5. Consider the sequence of oracle components with finite coupling order
(N f̂i)N∈N such that the basis components of N f̂i ∈ F̂<∞

i are given according to

bNf
|s|
i (x;ws,xs) =











a|s||s|!
∏

c∈s(wcxc) 0 < |s| ≤ N,

f0
i (x) |s| = 0,

0 otherwise.

From Example 4.2, we know that this corresponds to the oracle component

N f̂i (x;ws,xs) = f0
i (x) +

N
∑

n=1

an

(

∑

c∈s

wcxc

)n

.

Then, if the infinite series given by F (x) =
∑∞

n=1 anx
n converges for all x, we know from

Lemma 4.16 that f̂i := lim
N→∞

N f̂i is given by

f̂i (x;ws,xs) = f0
i (x) + F

(

∑

c∈s

wcxc

)

and it is a valid oracle component. �

Remark 11. Note that this example covers functions such as F (x) = exp(x) − 1, F (x) =
sin(x) and F (x) = cos(x)− 1. �

Lemma 4.17. The set scl(F̂<∞
i ) is a vector space. �

Proof. Consider f̂i, ĝi ∈ scl(F̂<∞
i ). From assumption, there are sequences (N f̂i)N∈N,

(N ĝi)N∈N with N f̂i,
N ĝi ∈ F̂<∞

i such that lim
N→∞

N f̂i = f̂i and lim
N→∞

N ĝi = ĝi. Then, the

elements of the sequence (αN f̂i +
N ĝi)N∈N are also in F̂<∞

i and the sequence converges into

αf̂i + ĝi. Therefore αf̂i + ĝi ∈ scl(F̂<∞
i ) and scl(F̂<∞

i ) is a vector space.

Remark 12. Note that F̂<∞
i ⊆ scl(F̂<∞

i ) ⊆ F̂i. �

5. Conclusion. This paper makes CCN theory more useful for practical application thanks
to the two decompositions here derived. These decompositions allow us to verify and model
dynamical systems (or some other first-order property of a network, such as a measurement
function) in a systematic way. Multiple examples illustrating their use are provided.
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SUPPLEMENTARY MATERIALS: Decomposition of admissible functions in
weighted coupled cell networks∗

Pedro Sequeira† , João P. Hespanha‡ , and A. Pedro Aguiar†

This supplement presents intermediate results that are required for some proofs in the
main text. In particular, in Appendix A we derive Lemmas 4.3 to 4.9, which are used to prove
Theorem 4.2. Appendix B derives Lemma 4.15 which is used to prove Theorem 4.14.

Appendix A. Intermediate results used in Theorem 4.2.

Lemma A.1. For every n ∈ Z, k ∈ N, we have that

∑

m≥1k

|m|=n

n
∏k

i=1 mi

=
∑

m≥1k

|m|=n−1

n− 1
∏k

i=1mi

+
∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi

.(A.1)

�

Proof. Using the fact that |m| = n, we can rewrite the left hand side into

∑

m≥1k

|m|=n

n
∏k

i=1mi

=
∑

m≥1k

|m|=n

k
∑

j=1

mj
∏k

i=1mi

=

k
∑

j=1

∑

m≥1k

|m|=n

1
∏k

i=1
i 6=j

mi

.

Note that mj ≥ 1, therefore, the quotients are always well-defined. We perform a change of
variables by removing the entry j of the multi-index m. The other conditions in the sum have
to be adjusted accordingly, in particular, |m| = n becomes |m| ≤ n− 1, that is,

k
∑

j=1

∑

m≥1k

|m|=n

1
∏k

i=1
i 6=j

mi

=

k
∑

j=1

∑

m≥1k−1

|m|≤n−1

1
∏k−1

i=1 mi

=
∑

m≥1k−1

|m|≤n−1

k
∏k−1

i=1 mi

.

In summary, we have proven that

∑

m≥1k

|m|=n

n
∏k

i=1 mi

=
∑

m≥1k−1

|m|≤n−1

k
∏k−1

i=1 mi

.
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This expression is valid for every n ∈ Z, therefore, changing variable n into n− 1, one obtains

∑

m≥1k

|m|=n−1

n− 1
∏k

i=1 mi

=
∑

m≥1k−1

|m|≤n−2

k
∏k−1

i=1 mi

.

These two equations can be merged in the following way

∑

m≥1k

|m|=n

n
∏k

i=1 mi

=
∑

m≥1k−1

|m|≤n−1

k
∏k−1

i=1 mi

=
∑

m≥1k−1

|m|≤n−2

k
∏k−1

i=1 mi

+
∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi

=
∑

m≥1k

|m|=n−1

n− 1
∏k

i=1mi

+
∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi

,

which concludes the proof.

Lemma A.2. For every n ∈ Z, k ∈ N, we have that

∑

m≥1k

|m|=n

n
∏k

i=1 mi!
=

∑

m≥1k

|m|=n−1

k
∏k

i=1mi!
+

∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi!
.(A.2)

�

Proof. Using the fact that |m| = n, we can rewrite the left hand side into

∑

m≥1k

|m|=n

n
∏k

i=1 mi!
=

∑

m≥1k

|m|=n

k
∑

j=1

mj
∏k

i=1 mi!
=

k
∑

j=1

∑

m≥1k

|m|=n

1

(mj − 1)!
∏k

i=1
i 6=j

mi!
.

Note that mj ≥ 1, therefore, the quotients are always well-defined. We now split the multi-
index m according to whenever mj ≥ 2 or mj = 1, that is,

k
∑

j=1















∑

m≥1k
mj≥2
|m|=n

1

(mj − 1)!
∏k

i=1
i 6=j

mi!
+

∑

m≥1k
mj=1
|m|=n

1
∏k

i=1
i 6=j

mi!















.

On the first inner sum, we perform a change of variables so that mj − 1 becomes mj . This
means that the condition mj ≥ 2 becomes mj ≥ 1. Therefore, we can compress the conditions
m ≥ 1k and mj ≥ 2 in the old coordinates into just m ≥ 1k in the new ones.
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On the second inner sum we perform a change of variables by removing the entry j of the
multi-index m. For both sums, the conditions |m| = n become |m| = n− 1. That is,

∑

m≥1k

|m|=n

n
∏k

i=1 mi!
=

k
∑

j=1









∑

m≥1k

|m|=n−1

1
∏k

i=1mi!
+

∑

m≥1k−1

|m|=n−1

1
∏k−1

i=1 mi!









=
∑

m≥1k

|m|=n−1

k
∏k

i=1mi!
+

∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi!
,

which concludes the proof.

We are now ready to introduce our new formulas for the Stirling numbers of the first and
second kinds.

Theorem A.3. The unsigned Stirling numbers of the first kind, S1(n, k), with n, k ≥ 0 are
given by

S1(n, k) =
n!

k!

∑

m≥1k

|m|=n

1
∏k

i=1 mi

.(A.3)

�

Proof. We have to prove that the right hand side of (A.3) has the properties of Defini-
tion 4.1.
Consider n, k = 0, the initial condition is satisfied since the only valid argument of the sum is
the 0-tuple. For both n > 0, k = 0 and n = 0, k > 0 there are no valid arguments in the sum,
which results in zero and those initial conditions are also satisfied.
For the remaining values, n, k > 0, we have to show that they follow the recurrence relation,
that is,

n!

k!

∑

m≥1k

|m|=n

1
∏k

i=1 mi

= (n− 1)
(n − 1)!

k!

∑

m≥1k

|m|=n−1

1
∏k

i=1mi

+
(n − 1)!

(k − 1)!

∑

m≥1k−1

|m|=n−1

1
∏k−1

i=1 mi

.

Multiplying both sides by k!
(n−1)! we obtain

∑

m≥1k

|m|=n

n
∏k

i=1 mi

=
∑

m≥1k

|m|=n−1

n− 1
∏k

i=1mi

+
∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi

,

which is true from Lemma A.1.

Theorem A.4. The Stirling numbers of the second kind, S2(n, k), with n, k ≥ 0 are given
by

S2(n, k) =
n!

k!

∑

m≥1k

|m|=n

1
∏k

i=1 mi!
.(A.4)
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�

Proof. We have to prove that the right hand side of (A.4) has the properties of Defini-
tion 4.2.
Consider n, k = 0, the initial condition is satisfied since the only valid argument of the sum is
the 0-tuple. For both n > 0, k = 0 and n = 0, k > 0 there are no valid arguments in the sum,
which results in zero and those initial conditions are also satisfied.
For the remaining values, n, k > 0, we have to show that they follow the recurrence relation,
that is,

n!

k!

∑

m≥1k

|m|=n

1
∏k

i=1 mi!
= k

(n − 1)!

k!

∑

m≥1k

|m|=n−1

1
∏k

i=1mi!
+

(n− 1)!

(k − 1)!

∑

m≥1k−1

|m|=n−1

1
∏k−1

i=1 mi!
.

Multiplying both sides by k!
(n−1)! we obtain

∑

m≥1k

|m|=n

n
∏k

i=1 mi!
=

∑

m≥1k

|m|=n−1

k
∏k

i=1mi!
+

∑

m≥1k−1

|m|=n−1

k
∏k−1

i=1 mi!
,

which is true from Lemma A.2.

Proof of Lemma 4.3. We can break the multi-index m with |m| elements into the set of
multi-indexes (mi), with 1 ≤ i ≤ k, such that each mi has mi elements and is associated with
Mi. In particular, this means that mm = M becomes |mi| = Mi, for every i with 1 ≤ i ≤ k.
Using this, the left hand side of (4.9) can be written as the product

k
∏

i=1











∑

mi≥1mi

|mi|=Mi

1
∏mi

j=1m
i
j











.

The result comes directly from applying Theorem A.3.

Proof of Lemma 4.4. Using the exact same approach as in the proof of Lemma 4.3, the
left hand side of (4.10) can be written as the product

k
∏

i=1











∑

mi≥1mi

|mi|=Mi

1
∏mi

j=1m
i
j !











.

The result comes directly from applying Theorem A.4.

Lemma A.5. For n ≥ 0, we have that

∑

k≥1

(−1)kS1(n, k) =

{

−1 if n = 1,

0 otherwise.
(A.5)

�
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Proof. The first cases can easily be verified from inspection. Note that the sum is finite
since S1(n, k) = 0 when k > n. For n = 0 this is a zero sum and for n = 1 we have
(−1)S1(1, 1) = −1.
The remaining terms are proven by induction. Assume the sum to be zero for n > 1. We
expand S1(n+ 1, k) according to its recurrence relation

∑

k≥1

(−1)kS1(n+ 1, k) =
∑

k≥1

(−1)k [nS1(n, k) + S1(n, k − 1)]

= n
∑

k≥1

(−1)kS1(n, k) +
∑

k≥1

(−1)kS1(n, k − 1)

= 0.

The base case of the induction process, n = 2, is simply S1(2, 2) − S1(2, 1) = 1− 1 = 0.

Lemma A.6. For n ≥ 0, we have that

∑

k≥1

(−1)k(k − 1)!S2(n, k) =

{

−1 if n = 1,

0 otherwise.
(A.6)

�

Proof. Firstly, note that for n = 0, the sum is trivially 0. Consider now n > 0. Then,
from Definition 4.2

∑

k≥1

(−1)k(k − 1)!S2(n, k) =
∑

k≥1

(−1)kk!S2(n− 1, k) +
∑

k≥1

(−1)k(k − 1)!S2(n− 1, k − 1).

We perform the change of variables k = k−1 on the second sum of the right hand side, which
gives

∑

k≥1

(−1)k(k − 1)!S2(n, k) =
∑

k≥1

(−1)kk!S2(n− 1, k) +
∑

k≥0

(−1)k+1k!S2(n− 1, k)

= −S2(n− 1, 0),

which is −1 for n = 1 and 0 for n > 1.

Proof of Lemma 4.5. We can write the left hand side of (4.11) as the product

k
∏

i=1

∑

mi≥1

(−1)miS1(Mi,mi).

Note that although the outer sum of (4.11) looks infinite, it only has a finite number of non-
zero elements. Therefore, there are no convergence issues when we do this rearrangement.
Consider k > 0. If M 6= 1k, then there will be at least one i with 1 ≤ i ≤ k such that Mi 6= 1.
From Lemma A.5, that term will be zero, which means that the whole product is zero. For
M = 1k the result is immediate. In the case k = 0 we have on the left hand side a sum over
one valid index (the 0-tuple) of an empty product, which results in 1 = (−1)0.
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Proof of Lemma 4.6. We can write the left hand side of (4.12) as the product

k
∏

i=1

∑

mi≥1

(−1)mi(mi − 1)!S2(Mi,mi).

Using the exact same approach as in the proof of Lemma 4.5, the result is straightforward
from Lemma A.6.

Proof of Lemma 4.7. The proof is by induction. Assume this to be satisfied for m12 =
a− 1 ≥ 0. Then, for the case m12 = a, the left hand side of (4.13) can be written as

bfk
i



x;





a− 1
1
m



 ,





wj1‖wj2

wj1‖wj2

ws



 ,





xj12
xj12
xs







 .

From assumption, this can be expanded into

∑

m1,m2≥0
m1+m2=a−1

(

a− 1

m1,m2

)

bfk
i









x;









m1

m2

1
m









,









wj1

wj2

wj1‖wj2

ws









,









xj12
xj12
xj12
xs

















.

Using Item 2 of Definition 4.3 in order to expand over the weight wj1‖wj2 , we get

∑

m1,m2≥0
m1+m2=a−1

(

a− 1

m1,m2

)





bfk
i



x;





m1 + 1
m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs









+ bfk
i



x;





m1

m2 + 1
m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs











 .

We split this sum into two according to the two terms. Furthermore, we change variables such
that m1 + 1 becomes m1 on the first sum and m2 + 1 becomes m2 on the second sum. This
gives us













∑

m1≥1
m2≥0

m1+m2=a

(

a− 1

m1 − 1,m2

)

+
∑

m1≥0
m2≥1

m1+m2=a

(

a− 1

m1,m2 − 1

)













bfk
i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 .

These two sums can be unified into one by appending cases that correspond to zero terms
until their index sets match. In particular, in the first sum we can freely append the cases
m1 = 0 and in the second sum we can append the cases m2 = 0. Then, we end up with a
single sum over the index set m1,m2 ≥ 0, with m1 +m2 = a.
Then, from the fact that

(

n
m1,m2

)

=
(

n−1
m1−1,m2

)

+
(

n−1
m1,m2−1

)

, our expression simplifies into the
right hand side of (4.13) and the result applies to m12 = a.
In base case m12 = 0, the only valid term in the sum is the one indexed with m1,m2 = 0. It
is clear that for this case the equality is satisfied, which concludes the proof.
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Proof of Lemma 4.8. The proof is by induction. Assume this to be satisfied for m12 =
a− 1 ≥ 0. Then, for the case m12 = a, the left hand side of (4.14) can be written as

f
k+a 1j
i



x;





a− 1
1
m



 ,





wj1‖wj2

wj1‖wj2

ws



 ,





xj12
xj12
xs







 .

From assumption, this can be expanded into

∑

m1,m2≥0
m1,m2≤a−1
m1+m2≥a−1

B(m1,m2, a− 1)f
k+(m1+m2+1) 1j
i









x;









m1

m2

1
m









,









wj1

wj2

wj1‖wj2

ws









,









xj12
xj12
xj12
xs

















.

Using Item 2 of Theorem 3.3 in order to expand over the weight wj1‖wj2 , we get

∑

m1,m2≥0
m1,m2≤a−1
m1+m2≥a−1

B(m1,m2, a− 1)



f
k+(m1+m2+1) 1j
i



x;





m1 + 1
m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs









+ f
k+(m1+m2+1) 1j
i



x;





m1

m2 + 1
m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs









+ f
k+(m1+m2+2) 1j
i



x;





m1 + 1
m2 + 1

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs











 .

We split this sum into three according to the three terms. Furthermore, we change variables
such that m1 + 1 becomes m1 on the first sum, m2 + 1 becomes m2 on the second sum and
we apply both changes on the third sum. This gives us























∑

m1≥1
m2≥0
m1≤a

m2≤a−1
m1+m2≥a

B(m1 − 1,m2, a− 1) +
∑

m1≥0
m2≥1

m1≤a−1
m2≤a

m1+m2≥a

B(m1,m2 − 1, a− 1)

+
∑

m1,m2≥1
m1,m2≤a

m1+m2≥a+1

B(m1 − 1,m2 − 1, a− 1)













f
k+(m1+m2) 1j
i



x;





m1

m2

m



 ,





wj1

wj2

ws



 ,





xj12
xj12
xs







 .
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These three sums can be unified into one by appending cases that correspond to zero terms
until their index sets match. In particular, in the first sum we can freely append the cases
m1 = 0 and the cases m2 = a. Similarly, in the second sum, we can append the cases m1 = a
and the cases m2 = 0. Finally, in the last sum, we can append the cases m1 = 0, the cases
m2 = 0 and the cases m1 +m2 = a. Then, we end up with a single sum over the index set
m1,m2 ≥ 0, with m1,m2 ≤ a, and m1 +m2 ≥ a. Note that

B(m1 − 1,m2, a− 1) +B(m1,m2 − 1, a− 1) +B(m1 − 1,m2 − 1, a− 1),

which is equal to

(

a− 1

a−m1, a−m2 − 1,m1 +m2 − a

)

+

(

a− 1

a−m1 − 1, a−m2,m1 +m2 − a

)

+

(

a− 1

a−m1, a−m2,m1 +m2 − a− 1

)

,

gives us

(

a

a−m1, a−m2,m1 +m2 − a

)

= B(m1,m2, a),

from the fact that
(

n
m1,m2,m3

)

=
(

n−1
m1−1,m2,m3

)

+
(

n−1
m1,m2−1,m3

)

+
(

n−1
m1,m2,m3−1

)

. Therefore, our
expression simplifies into the right hand side of (4.14) and the result applies to m12 = a.
In base case m12 = 0, the only valid term in the sum is the one indexed with m1,m2 = 0. It
is clear that for this case the equality is satisfied, which concludes the proof.

Lemma A.7. For every m1,m2 ∈ N, we have that

m1
∑

n=0

(−1)n
(

m1

n

)(

n+m2 − 1

m1 − 1

)

= 0.(A.7)

�

Proof. The proof is by induction on m1. Assume (A.7) is valid for a particular m1 ≥ 1.
Using

(

n−1
k−1

)

=
(

n
k

)

−
(

n−1
k

)

, we expand (A.7) into

m1
∑

n=0

(−1)n
(

m1

n

)[(

n+m2

m1

)

−

(

n+m2 − 1

m1

)]

= 0

m1
∑

n=0

(−1)n
(

m1

n

)(

n+m2

m1

)

−

m1
∑

n=0

(−1)n
(

m1

n

)(

n+m2 − 1

m1

)

= 0.

On the first sum we change variables so that n+ 1 becomes n, which gives us

m1+1
∑

n=1

(−1)n−1

(

m1

n− 1

)(

n+m2 − 1

m1

)

−

m1
∑

n=0

(−1)n
(

m1

n

)(

n+m2 − 1

m1

)

= 0.
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We can append the case n = 0 on the first sum and the case n = m1+1 on the second, which
correspond to zero terms. Then, we can merge the two sums back into

−

m1+1
∑

n=0

(−1)n
[(

m1

n− 1

)

+

(

m1

n

)](

n+m2 − 1

m1

)

= 0

−

m1+1
∑

n=0

(−1)n
(

m1 + 1

n

)(

n+m2 − 1

m1

)

= 0.

That is, (A.7) is also valid for m1 + 1. In the base case m1 = 1, the sum gives us 1− 1 = 0,
which concludes de proof.

Proof of Lemma 4.9. For the case m1 = 0,m2 = 0 the sum is empty, therefore the result
is 0. Consider now the case m1 ≥ 1,m2 = 0. Then, the sum consists of only the term
indexed with n = m1, which is equal to (−1)m1

m1
. Note that we only need to study the cases

with m1 ≤ m2, since the other ones can be trivially deduced thanks to the symmetry of this
expression with regard to m1 and m2. Therefore, to study the remaining cases m1,m2 ≥ 1, we
will now consider the case 1 ≤ m1 ≤ m2, without loss of generality. We multiply the expression
by m1!

m1(m1−1)! , where we have that m1! = m1(m1 − 1)! since we know from assumption that
m1 > 0. This gives us

1

m1

m1+m2
∑

n≥m2

(−1)n
m1!

n(m1 − 1)!

(

n

n−m1, n−m2,m1 +m2 − n

)

.

We change variables such that n becomes n+m2

1

m1

m1
∑

n≥0

(−1)n+m2
m1!

(n+m2)(m1 − 1)!

(

n+m2

n+m2 −m1, n,m1 − n

)

.

This can be further simplified as follows

(−1)m2

m1

m1
∑

n≥0

(−1)n
m1!

(n+m2)(m1 − 1)!

(n +m2)(n+m2 − 1)!

(n+m2 −m1)!n!(m1 − n)!

=
(−1)m2

m1

m1
∑

n≥0

(−1)n
m1!

n!(m1 − n)!

(n+m2 − 1)!

(m1 − 1)!(n +m2 −m1)!

=
(−1)m2

m1

m1
∑

n≥0

(−1)n
(

m1

n

)(

n+m2 − 1

m1 − 1

)

,

which is 0 from Lemma A.7.

Appendix B. Intermediate results used in Theorem 4.14.

Lemma B.1 (Theorem 3 of [SM1]). The r-Stirling numbers of the first kind are related
according to the cross-recurrence formula

Sr
1(n, k) = rSr+1

1 (n, k + 1) + Sr+1
1 (n, k),(B.1)

for all n > r ≥ 0 and k ≥ 0. �
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Remark 1. Note that if one takes the original form of Theorem 3 of [SM1] and manipulates
it until the present form is reached, the domain obtained would be n > r > 0. This can be
easily extended for the case r = 0 as well, since we have that S0

1 (n, k) = S1
1 (n, k) for n > 0.

This case was missed in the original formula because it corresponded to a singularity.

Lemma B.2. For n > r > 0 and k > 0, we have that

Sr
1(n, k) = (n− r)Sr

1(n− 1, k) + Sr−1
1 (n− 1, k − 1).(B.2)

�

Proof. We take the recurrence relation in Definition 4.5 and we add and subtract the term
(r − 1)Sr

1 (n− 1, k) to it. That is,

Sr
1(n, k) = (n− 1)Sr

1 (n− 1, k)− (r − 1)Sr
1 (n− 1, k) + (r − 1)Sr

1 (n− 1, k) + Sr
1(n− 1, k − 1).

The first two terms of the right hand side simplify into (n− r)Sr
1(n− 1, k) while the last two,

according to Lemma B.1, simplify into Sr−1
1 (n − 1, k − 1) whenever n > r > 0 and k > 0,

which concludes the proof.

Lemma B.3. For r,N, k ≥ 0, we have that,

N
∑

n=0

Sr
1(n+ r, k + r)

n!
=

Sr+1
1 (N + r + 1, k + r + 1)

N !
.(B.3)

�

Proof. The proof is by induction. Assume (B.3) to be satisfied for some N = a− 1 ≥ 0.
Then,

a
∑

n=0

Sr
1(n+ r, k + r)

n!
=

a−1
∑

n=0

Sr
1(n+ r, k + r)

n!
+

Sr
1(a+ r, k + r)

a!

=
Sr+1
1 (a+ r, k + r + 1)

(a− 1)!
+

Sr
1(a+ r, k + r)

a!

=
1

a!

[

aSr+1
1 (a+ r, k + r + 1) + Sr

1(a+ r, k + r)
]

.

Consider the change of variables n := a + r + 1, r = r + 1 and k = k + r + 1. Then, this
becomes

1

a!

[

(n− r)Sr
1(n− 1, k) + Sr−1

1 (n − 1, k − 1)
]

.

Note that the prerequisites for applying Lemma B.2 are satisfied. That is, n > r, r > 0 and
k > 0 correspond to a + r + 1 > r + 1, r + 1 > 0 and k + r + 1 > 0 respectively. Therefore,
this simplifies into

Sr
1(n, k)

a!
=

Sr+1
1 (a+ r + 1, k + r + 1)

a!
,

which concludes the induction step. For the base case N = 0, we have that Sr
1(r, k + r) =

Sr+1
1 (r + 1, k + r + 1), which is always satisfied since δr,k+r = δr+1,k+r+1.
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Lemma B.4. For n ≥ r ≥ 0 and k ≥ 0, we have that

n−r
∑

p=k

(

n− p

r

)

S1(p, k)

p!
=

Sr+1
1 (n+ 1, k + r + 1)

(n− r)!
.(B.4)

�

Proof. Consider n = r. Then, the expression becomes

0
∑

p=k

(

n− p

n

)

S1(p, k)

p!
=

Sn+1
1 (n+ 1, k + n+ 1)

0!
.

If k = 0, the left hand side is
(

n
n

)S1(0,0)
0! = 1. If k > 0, the sum is empty so it is 0. The

generalized Stirling number on the right simplifies into δn+1,k+n+1, which is one if k = 0 and
zero if k > 0. Therefore, equality is achieved for all k ≥ 0.
Consider now r = 0. Then, we have

n
∑

p=k

(

n− p

0

)

S1(p, k)

p!
=

S1
1 (n+ 1, k + 1)

n!
.

If n ≥ k, this reduces to Lemma B.3 (note that the missing indexes of the sum correspond to
zero terms). If n < k then the left hand side is an empty sum and the Stirling number on the
right is zero. The remaining cases that we have to prove are n > r > 0, k ≥ 0, which we prove
by induction. Assume (B.4) is satisfied for all (n, r, k) such that n = a − 1 with n ≥ r ≥ 0
and k ≥ 0. We now prove that it is satisfied for the cases (a, r, k) with a > r > 0 and k ≥ 0.
Note that we have a− p ≥ 1 for all p in the sum due to the fact that r > 0 from assumption.
Therefore, we can split (B.4) into

a−r
∑

p=k

[(

a− p− 1

r − 1

)

+

(

a− p− 1

r

)]

S1(p, k)

p!

=

(a−1)−(r−1)
∑

p=k

(

(a− 1)− p

r − 1

)

S1(p, k)

p!
+

(a−1)−r
∑

p=k

(

(a− 1)− p

r

)

S1(p, k)

p!
.

Note that the cases (a− 1, r − 1, k) and (a− 1, r, k) satisfy the assumption. That is, a− 1 ≥
r − 1 ≥ 0 and a − 1 ≥ r ≥ 0 are true if a > r > 0. We can apply (B.4) to those cases and
obtain

1

(a− r)!

[

Sr
1(a, k + r) + (a− r)Sr+1

1 (a, k + r + 1)
]

.

From Lemma B.2, this simplifies into the right hand side of what we want to prove as long as
a+1 > r+1, r+1 > 0 and k+r+1 > 0, which are all satisfied under the current assumptions.
The base case n = 0 has r = 0, since n ≥ r ≥ 0. This was already covered by the previous
cases n = r and r = 0.
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Lemma B.5. For n ≥ r ≥ 0 and k ≥ 0, we have that

∑

m≥1k

|m|≤n−r

1
∏k

i=1mi

(

n− |m|

r

)

=
k!

(n− r)!
Sr+1
1 (n + 1, k + r + 1).(B.5)

. �

Proof. Split the sum in the left hand side into the two sums

n−r
∑

p=k

∑

m≥1k

|m|=p

1
∏k

i=1mi

(

n− |m|

r

)

=

n−r
∑

p=k

∑

m≥1k

|m|=p

1
∏k

i=1mi

(

n− p

r

)

=

n−r
∑

p=k

(

n− p

r

)

∑

m≥1k

|m|=p

1
∏k

i=1 mi

.

From Theorem A.3, this is

k!

n−r
∑

p=k

(

n− p

r

)

S1(p, k)

p!
.

the result is now straightforward from Lemma B.4.

Lemma B.6. For n ≥ k ≥ 0, we have that,

∑

m≥1k

|m|≤n

1 =

(

n

k

)

.(B.6)

�

Proof. The proof is by induction. Assume that the result applies for a given n ≥ 0 and
all k such that 0 ≤ k ≤ n. We can split the following sum

∑

m≥1k

|m|≤n+1

1 =
∑

m≥1k

|m|≤n

1 +
∑

m≥1k

|m|=n+1

1.

If k ≥ 1, we can rearrange the last sum so that we obtain
∑

m≥1k

|m|≤n+1

1 =
∑

m≥1k

|m|≤n

1 +
∑

m≥1k−1

|m|≤n

1.

From assumption, whenever k ≤ n, this simplifies into
(

n
k

)

+
(

n
k−1

)

=
(

n+1
k

)

. To complete the
induction step we now prove the remaining cases k = 0 and k = n+ 1. For the first one, the
only valid index is the 0-tuple so the sum is always 1 =

(

n+1
0

)

. For the second one the only

valid index is the (n+1)-tuple of all ones so the sum is always 1 =
(

n+1
n+1

)

. Therefore, the result
applies to n+ 1 and all k such that 0 ≤ k ≤ n+ 1.
In the base case n, k = 0, the only valid index is again the 0-tuple and the sum gives us
1 =

(0
0

)

.
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Lemma B.7. For M ≥ 1k, with n ≥ |M| and k ≥ 0, we have that

∑

m≥M
|m|≤n

k
∏

i=1

(

mi − 1

Mi − 1

)

=

(

n

|M|

)

.(B.7)

�

Proof. Using Lemma B.6, the left hand side can be expanded into

∑

m≥M
|m|≤n

k
∏

i=1

∑

mi≥1Mi−1

|mi|≤mi−1

1.

The inner sum can be rearranged such that we get

∑

m≥M
|m|≤n

k
∏

i=1

∑

mi≥1Mi

|mi|=mi

1.

Distributing the product over the inner sum gives us

∑

m≥M
|m|≤n

∑

m1≥1M1
...

mk≥1Mk

|m1|=m1
...

|mk |=mk

1.

Note that we can completely remove the dependence on m in this expression. In particular,
note that for every i such that 1 ≤ i ≤ k, we have that mi ≥ 1Mi

. Then, |mi| ≥ Mi. Since
we also have that |mi| = mi, this implies that mi ≥ Mi for all i. Therefore, the expression
m ≥ M is redundant. Moreover, we can replace |m| ≤ n by |m1|+ . . . + |mk| ≤ n. Defining
m as the concatenation of m1, . . . ,mk, the expression simplifies into

∑

m≥1|M|

|m|≤n

1.

Since n ≥ |M| from assumption and |M| ≥ k ≥ 0, the result is now immediate from applying
Lemma B.6 again.

Proof of Lemma 4.15. We first split the sum of the left hand side and reorganize it as

∑

p≥1r

|p|≤n−|M|

1
∏r

j=1 pj









∑

m≥M
|m|≤n−|p|

k
∏

i=1

(

mi − 1

Mi − 1

)









.
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Using Lemma B.7, this simplifies into

∑

p≥1r

|p|≤n−|M|

1
∏r

j=1 pj

(

n− |p|

|M|

)

.

The result now follows from Lemma B.5.
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