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Abstract— Self-learning control techniques mimicking the
functionality of the limbic system in the mammalian brain have
shown advantages in terms of superior learning ability and low
computational cost. However, accompanying stability analyses
and mathematical proofs rely on unrealistic assumptions which
limit not only the performance, but also the implementation
of such controllers in real-world scenarios. In this work the
limbic system inspired control (LISIC) framework is revisited,
introducing three contributions that facilitate the implementa-
tion of this type of controller in real-time. First, an extension
enabling the implementation of LISIC to the domain of SISO
affine systems is proposed. Second, a strategy for resetting
the controller’s Neural Network (NN) weights is developed,
in such a way that now it is possible to deal with piece-wise
smooth references and impulsive perturbations. And third, for
the case when a nominal model of the system is available, a
technique is proposed to compute a set of optimal NN reset
weight values by solving a convex constrained optimization
problem. Numerical simulations addressing the stabilization of
an unmanned aircraft system via the robust LISIC demonstrate
the advantages obtained when adopting the extension to SISO
systems and the two NN weight reset strategies.

I. INTRODUCTION

The dynamics of unmanned aircraft systems (UASs) are
generally represented using a nonlinear mathematical model
described by a set of first order differential equations. For
UAS control design purposes, feedback linearization is a
well known technique which, under the implementation of
an appropriate feedback controller, renders the input-output
dynamics of a nonlinear plant linear. Once a linearizing
controller has been constructed, desired output trajectories
for the nonlinear plant can be tracked using a variety of linear
control techniques. However, the calculation of a linearizing
controller requires a precise knowledge of the nonlinear
dynamic model of the system, which are usually not available
or disclosed by the manufacturers of this kind of system.

Related Work

In practice, a dynamic model can be completely known
a priori as a result of offline identification techniques.
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In [1], the authors addressed theoretical and practical prob-
lems associated with autonomously controlling a commer-
cially–available and ready–to–fly UAS prototype whose dy-
namic model and controller running on onboard its autopilot
are not disclosed. The first step towards developing a con-
troller was the system identification of the UAS dynamics.
This was possible making use of the Extended Least Squares
(ELS) algorithm in combination with input-output data pairs
obtained during several real-time experimental flights.

In some cases the UAS dynamic model is only partially
known or identified, and under such circumstances the prob-
lem simplifies to the estimation of the unknown components,
which most of the time can be performed online. However,
the identified model can turn unreliable due to the presence
of external perturbations, which can make its way into the
system from different sources, for example, from sensing
devices used by the agent to obtain pose information [2],
[3]. These sensor modalities typically exhibit impulsive
disturbances in the sensory data: vision-based sensors can
exhibit large errors when a visual landmark is temporarily
obstructed or misinterpreted, and RF/acoustic sensors are
prone to reporting false measurements due to multi-path
reflections. Impulsive disturbances arise also for autonomous
agents that generally move along fairly smooth paths but
occasionally engage in sharp turns or evasive maneuvers [4].
The challenge to overcome for a UAS operating in real-
time conditions is then the lack of knowledge of the state-
dependent functions and the presence of unknown external
perturbations.

In [5], a limbic system-inspired control (LISIC) strategy
was proposed to estimate the state-dependent functions of a
dynamic model using a biologically-inspired estimation and
control algorithm based on a learning mechanism encoun-
tered in the limbic system of the human brain. Making use of
a Lyapunov analysis, it was demonstrated that the proposed
strategy is capable of guaranteeing a specific level of perfor-
mance even in the presence of unknown external perturba-
tions. Despite its many advantages, two major assumptions
required in the stability analysis and mathematical proofs of
LISIC can limit its real-world implementation. First, when
dealing with UAS lateral and longitudinal dynamics, like
those identified via the ELS algorithm in [1], tools to address
affine state systems are needed, which are not directly
accommodated by the LISIC theorem assumptions. Second,
a UAS operating in realistic conditions is often subjected to
piece-wise smooth references, and impulsive perturbations
are common on the signals coming from its positioning



sensors. These two conditions are also not compatible with
the original assumptions of the LISIC stability theorem.

Main Contributions

This work extends the original LISIC strategy in three
fundamental ways, enabling its implementation over systems
with unknown dynamics subjected to bounded external per-
turbations of L1 type. With these improvements, LISIC be-
comes functional over dynamic models commonly associated
with UAS operating under realistic, uncertain conditions.
First, a technique to extend the use of LISIC into SISO
affine systems is introduced. Second, a strategy for resetting
Neural Network (NN) weights to zero is proposed, allowing
LISIC to operate under fully unknown dynamics, impulsive
disturbances, and piece-wise smooth references. And third,
if a nominal UAS dynamic model is available, a strategy for
resetting NN weights to optimal values is proposed, which
turn out to be very similar to the NN weights obtained if the
real dynamic model would be available.

The rest of the manuscript is organized as follows. Sec-
tion II introduces the problem statement. Next, Section III
presents our main result in the form of a Theorem. Section IV
demonstrates the performance of the proposed strategy mak-
ing use of numerical simulations. Finally, conclusions and
future directions are discussed in Section V

II. PROBLEM STATEMENT

Consider the dynamics of a class of nonlinear systems of
order n, described by

x(n) = f(x) + g(x)u+ d(x, t) (1)

where x = [x, ẋ, . . . , x(n−1)]⊤ ∈ Rn is the state vector, ẋ is
the derivative of x with respect to (w.r.t.) time, x(n−1) is the
(n− 1)th order derivative of x w.r.t. time, u ∈ R the control
input, and d(x, t) ∈ R a perturbation.

Assumption 1: the state vector x and the perturbation
d(x, t) are bounded by known positive constants ∥x∥ ≤ Mx

and ∥d(x, t)∥ ≤ Md, respectively.
Assumption 2: the function g(x) > 0, and 1/g(x) and

f(x) are unknown continuous scalar functions.
Assumption 3: the desired trajectory xd and its deriva-

tives, up to its nth order derivative, are smooth and bounded.
Defining a tracking error e = x−xd, an auxiliary variable

s is proposed depending on the system’s tracking error and
its derivatives as

s = e(n−1) +∆n−1e
(n−2) + . . .+∆1e (2)

where the terms ∆k (k = 1, 2, . . . , n−1) represent constants
such that the roots of the polynomial λn−1 +∆n−1λ

n−2 +
. . . +∆1 = 0 have negative real part. The derivative of the
auxiliary variable s is calculated as

ṡ = f(x) + g(x)u+ qa(t) + d(x, t) (3)

with qa = −x
(n)
d +∆n−1e

(n−1) + . . .+∆1ė.

For the scenario where the functions f(x) and g(x) are
known and d(x, t) = 0, it is possible to achieve the dynamics
ṡ = −Ks+ur with the following exact matching control law

u∗ = −(f(x) + qa +Ks− ur)/g(x), (4)

where the term ur is an auxiliary input to be specified next.
In [5] [6], the authors proposed the incorporation of an

auxiliary state ξ(t) =
∫
s(t)dt which augments the system

and improves performance through an integral action[
ṡ

ξ̇

]
=

[
−K 0
KI 0

] [
s
ξ

]
+

[
1
0

]
ur = Aese +Beur (5)

For this case, the auxiliary input term ur can be obtained by
solving the following Ricatti equation

0 = A⊤
e Pe + PeAe − PeBeR

−1B⊤
e Pe +Qe (6)

ur = −B⊤
e TPese/r , (7)

where se = [s ξ]⊤ and R = ρ2r/(2ρ2 − r), with tuning
parameters Qe = Q⊤

e ≻ 0 , r > 0 and 2ρ2 > r .
Remark 1: the implementation of the control law in equa-

tion (4) would require precise knowledge of the unknown
functions f(x) and g(x). To overcome this challenge, it is
required to construct online estimates f̂(x) and ĥ(x) of the
functions f(x) and h(x) := 1/g(x), respectively, that appear
in the control law in equation (4).

Estimates of the functions f̂(x) and ĥ(x) can be built
using a combination of Gaussian Radial Basis Functions
(RBF) that emulates the emotional learning structure of the
mammalian limbic system originally proposed in [7]:

f̂(x) :=f̂(x, Vf ,Wf ) = V ⊤
f ΦA(s(x))−W⊤

f Φ(s(x))

ĥ(x) :=ĥ(x, Vh,Wh) = V ⊤
h ΦA(s(x))−W⊤

h Φ(s(x))
(8)

where the terms

Vf = [Vf1, . . . , Vfp, Vf th]
⊤,Wf = [Wf1,Wf2, . . . ,Wfp]

⊤,

Vh = [Vh1, . . . , Vhp, Vhth]
⊤,Wh = [Wh1,Wh2, . . . ,Whp]

⊤

are vectors of weight parameters and the terms Φj are
Gaussian RBFs that can be represented using the structure

Φj = exp
(
−(s− µj)

2/σ2
j

)
, m = max(Φ) (9)

where s is the error dynamics described by equation (2),
and µj and σj are the corresponding mean and smoothing
factors, respectively. The RBFs are Φ = [Φ1,Φ2, . . . ,Φp]

⊤

and ΦA = [Φ,m]⊤, where m represents a neural input
arriving from the Thalamus, and Vth is its corresponding
weight. As mentioned in [7] the weights Vf and Vh, which
are associated with the Amygdala, are non negative.

Let the optimal NN weight parameters be defined as

[V ∗
f ,W

∗
f ] = argmin

Vf ,Wf

[sup
x̃

|V ⊤
f ΦA(x̃)−W⊤

f Φ(x̃)− f(x̃)|],

s.t. Vf ≥ 0 (10)

[V ∗
h ,W

∗
h ] = argmin

Vh,Wh

[sup
x̃

|V ⊤
h ΦA(x̃)−W⊤

h Φ(x̃)− 1/g(x̃)|],

s.t. Vh ≥ 0 (11)



which are bounded by known positive constants ∥V ∗
f ∥ ≤

Mfv , ∥W ∗
f ∥ ≤ Mfw, ∥V ∗

h ∥ ≤ Mhv , and ∥W ∗
h∥ ≤ Mhw,

and x̃ is a dummy variable.
Inspired by the original adaptation rules proposed in [8]

and [9], novel adaptation rules were introduced in [5], which
include a projection algorithm to guarantee boundedness of
the weights Vf , Wf , Vh, and Wh:

V̇f = αfΦA max(B⊤
e Pese, 0), Ẇf = −βfΦB

⊤
e Pese (12)

V̇h = αhΦA max(B⊤
e Peseuh, 0), Ẇh = −βhΦB

⊤
e Peseuh

To guarantee the positiveness of Vf and Vh, the derivatives
V̇f and V̇h are non negative.

Theorem 1 (LISIC Theorem from [5]): Consider the non-
linear system in equation (1) together with Assumptions 1, 2
and 3, and the control law

u = −ĥ(x)(f̂(x) + qa +Ks− ur) (13)

where the estimates f̂ and ĥ are given by equation (8), with
adaptation laws inspired by the limbic system computational
model as described in equation (12), and ur as defined in
equation (7). Along the solution trajectories of this system,
the error function s remains bounded and the H∞ tracking
performance criteria satisfies∫ ⊤

0

s⊤e Qesedt ≤ Ṽf (0)
⊤Ṽf (0)/αf + W̃f (0)

⊤W̃f (0)/βf

+ Ṽh(0)
⊤Ṽh(0)/αh + W̃h(0)

⊤W̃h(0)/βh

+ s⊤e (0)Pes
⊤
e (0) + ρ2

∫ ⊤

0

ω⊤ωdt. (14)

where the term ω represents the worst case perturbation
in the sense of maximizing the derivative of the associate
Lyapunov function, and the maximum value for ω2 is less
than s⊤e Qese/ρ

2.
Proof: the proof of Theorem 1, which relies on the validity

of Assumptions 1, 2 and 3, is formalized in [6].

III. MAIN RESULTS

This section presents the three main results of this paper,
which overcome the limitation of the original LISIC strategy.

A. Extending the use of LISIC to SISO affine systems

Consider a SISO affine system of order n, with dynamics
described by

ż = f(z) + g(z)(u+ d̄), y = h(z) (15)

where h(z) is a known Rn → R function, but f(z) and
g(z) are unknown Rn → Rn continuous vector functions,
z ∈ Rn represents the state vector, u ∈ R the control input,
and d̄ ∈ R a perturbation.

Assumption 4: Assume a relative degree r (in the sense
of [10]) equal to the order of the system.

Assumption 5: A global diffeomorphism Ξ(z): Rn → Rn

exists, and Ξ(z) = x for the system at hand which, according
to [10] [11] is expressed by

Ξ(z) =
[
h(z),Lfh(z), · · · ,Ln−1

f h(z)
]⊤

(16)

Define Ξ̄(x) as the inverse of Ξ(z) such that Ξ(Ξ̄(x)) = x
and x = h(z). Using the diffeomorphism in equation (16),
the system in equation (15) can be rewritten using the Lie
derivative operator L as

ẋi = xi+1, ∀i = 1, . . . , n− 1

ẋn = x(n) = Ln
fh(Ξ̄(x)) + LgLn−1

f h
(
Ξ̄(x)

)
(u+ d̄),

or equivalently as the form in expressed in equation (1) for
which the following Lie derivative properties were consid-
ered: Lfh(x) =

∂h
∂xf(x), L

n+1
f h(x) = LfLn

fh(x) for l > 0,
and L0

fh(x) = h(x).
Proposition 1: Under Assumptions 4 and 5, Theorem 1

can be applied to the system (15) through the diffeomorphism
in equation (16).

Remark 2: the Assumptions 1, 2 and 3 in Theorem 1
establish that the reference must be smooth up to its nth-
derivative and both functions f and g should be also smooth.
The following subsections propose techniques to enable
LISIC to operate satisfactorily, even if such Assumptions are
not fulfilled.

B. Improving LISIC to operate under reference discontinu-
ities or impulsive disturbances

In order to handle piece-wise smooth reference signals
with punctual discontinuities, a technique is proposed to
reset the NN weights (Vf ,Wf ,Vh,Wh) to zero, at the time
when the discontinuity is experienced. A similar strategy
can be applied for the scenario when the system is under
an impulsive disturbance.

Assumption 6: the discontinuity and the impulsive effect
cannot appear simultaneously, and there exists a minimum
window of time before one of these events reappears.
A temporal regularization is added, i.e., a dwell-time τ , with
τ̇ = 1, in order to avoid Zeno evolution, namely, to avoid
resetting infinitely many times in a finite time interval (see
[12] for more details)

if (ẋd > Mrr or ∥ẋ∥2 > Mxr) and τ ≥ ρτ (17)

then V +
f = 0, W+

f = 0, V +
h = 0, W+

h = 0, ξ+ = 0, τ+ = 0,

with ρτ > 0 the minimum time between resets.
At the exact instant of time when Assumptions 1 or 3 are

not fulfilled, the LISIC NN weights and the integrator state
are reset to zero. Right after the reset, the time t = 0 in the
integral defined in equation (14) from Theorem 1 is replaced
with the time at which the reset was executed.

Figure 1 illustrates the interconnection of the main com-
ponents of the LISIC computational model, together with the
reset strategy proposed in this work. Figure 2 shows the con-
ceptual implementation of the reset strategy, which closely
follows and respects the biologically-inspired architecture of
the limbic system computational model proposed in [7].

C. Improving the LISIC strategy using a nominal model

Implementing a system identification procedure, like the
one proposed in [13], a known nominal model similar to the



ż = f(z) + g(z)(u+ d̄)

u = −ĥ(x)(f̂(x) + qa +Ks− ur)

f̂(x) = V ⊤

f ΦA −W⊤

f Φ

ĥ(x) = V ⊤

h ΦA −W⊤

h Φ

V̇f , Ẇf ; V̇h, Ẇh

ur = −B⊤

e Pese/r

xd

x

Adaptive Laws

LISIC

s

∆k

∫
KI

LASSO

V +

f ,W+

f ;V +

h ,W+

h

or

h(z)
z x

∂i

∂ti

ξ+

Reset

Fig. 1. Scheme of the reset strategy proposed in this work for making
LISIC robust to unknown, possibly impulsive disturbances. The input is
composed by two main components: the first one depending on a limbic
system structure that estimates functions f(x) and g(x) (or 1/h(x)) in red
color, and the second depending on a state feedback with an integration
action in blue color. The reset affects red components modifying the NN
weights value for f and h. On the other hand, the transformed state (x)
is retrieved from the derivatives of x = z. Reset values are defined with
superindex +.

one introduced in equation (1) can be made available as

z = f
N
(z) + g

N
(z)(u+ d̄), y = hN (z) (18)

For this mode, define additive model mismatches ∆f and ∆g
associated with the functions f and g, respectively. Assuming
a relative degree for ∆f(z) and ∆g(z) equal or greater than
the nominal system r and using a diffeomorphism Ξ̄N based
on the nominal model, one obtains [14]:

x(n) = fN (x) + ∆f(x) + (gN (x) + ∆g(x))u+ d(x, t)

x(n) = f(x) + g(x)u+ d(x, t) (19)

∆f = L∆fLn−1
f
N

hN (Ξ̄N (x)), ∆g = L∆gLn−1
g
N

hN (Ξ̄N (x))

Optimal reset values (V ∇
f , W∇

f , V ∇
h , W∇

h ) for the NN LISIC
weight parameters can be computed using the nominal model
and a partial constraint LASSO optimization as (see [15] for
details):

[V ∇
f ,W∇

f ] = min
V ∇
f ,W∇

f

λf

∥∥∥∥[V ∇
f

W∇
f

]∥∥∥∥
1

+∥∥∥∥[Φ⊤
A(s) − Φ⊤(s)]

[
V ∇
f

W∇
f

]
− fN (x)

∥∥∥∥2
2

(20)

s.t. V ∇
f ≥ 0

s
...

...

Φ1

Φ2

Φp

max

...

m

f̂ (x)

ĥ(x)

RBFs Sensory

LASSO LASSO

fN (x)

gN (x)
W+

f V +

f W+

h V +

h

Inputs

Wf

Vf

sw1 sw2

Fig. 2. The proposed limbic-system inspired computational model closely
follows the biological structure of the limbic system in the mammalian brain.
The analogy between the biological system and the proposed computational
system are highlighted by means of the following color code: Orbitofrontal
Cortex (OFC), Amygdala, Thalamus, Sensory cortex. The sensory input
is processed in the Thalamus by means of multiple RBFs, generating
a set of p sensory inputs. The output is an estimation of the unknown
functions described in equation (8). In this schema, wider lines and thinner
lines represent, respectively, vector and scalar variables. The two blocks
in magenta take care of implementing the LASSO optimization using data
from the nominal model. The numerical solution of these blocks is a set of
optimal reset values. Closing the switches sw1 and sw1, theses values can
be injected to replace the Amygdala and OFC weights.

[V ∇
h ,W∇

h ] = min
V ∇
h ,W∇

h

λh

∥∥∥∥[V ∇
h

W∇
h

]∥∥∥∥
1

+∥∥∥∥[Φ⊤
A(s) − Φ⊤(s)]

[
V ∇
h

W∇
h

]
− g−1

N (x)

∥∥∥∥2
2

(21)

s.t. V ∇
h ≥ 0

with positive tuning parameters λf and λh. At the exact
moment where Assumptions 1 or 3 are not fulfilled, the
LISIC NN weights are reset to the computed optimal values,
as proposed in equation (17), but now using a set of optimal
values V ∇

f , W∇
f , V ∇

h , W∇
h instead of zeros. Right after the

reset, the time t = 0 in the integral defined in equation (14)
from Theorem 1 is replaced with the value of time at which
the reset was executed.

IV. NUMERICAL SIMULATION

The dynamic model of a Parrot Mambo UAS prototype,
which was experimentally identified in [1], is adopted to
demonstrate the soundness of the SISO extension and the NN
weight resetting strategies. The control problem addresses
the stabilization of the UAS translational dynamics, when
the system is exposed to impulsive disturbances and non-
smooth references. All simulations are implemented in Julia
software [16].

A. Dynamic model of the UAS as a SISO affine system

The mathematical model of the latitudinal or longitudinal
UAS translational dynamics corresponds to a linear system of
order n = 2, which has the same form as equations (15), with
functions associated as f(z) = Az, g(z) = B, and h(z) =
C. Computing a diffeomorphism as Ξ(z) = [C⊤ A⊤C⊤]⊤,
the system can be rewritten in the form of equations (1) with



matrices f(x) = −CA([C⊤ A⊤C⊤]⊤)−1x and g(x) = CB.
The structure of matrices A, B, C, and D is then:

A =

[
0 a1
0 a2

]
, B =

[
b1
b2

]
, Bd =

[
0
1

]
, C =

[
1 0

]
, (22)

The dynamic models for six Parrot Mambo UAS platforms
were experimentally obtained. However, due to the different
levels of wear and tear and manufacturing inconsistencies,
all of the models obtained differed from each other. For this
reason, nominal values for each identified parameter were
chosen as the mean value of each set. Numerical values for
the nominal model were: a1,N = 1000.8, a2,N = −1.6013,
b1,N = −0.1172, b2,N = 0.2345, fN (x) = 1000.8x2,
gN (x) = −0.1152, ΞN (z) = [z1 1000.8z2], and Ξ̄N (x) =
[x1 0.0009986x2]. Maximum values for these parameters
were obtained as: a1,max = 1001.4, a2,max = −1.0005,
b1,max = −0.1002, b2,max = 0.2756. Similarly, minimum
values were obtained as: a1,min = 1000.5, a2,min =
−2.7036, b1,min = −0.1378, b2,min = 0.2004.

Once the range for each parameter was defined, another
combination of parameters was selected among the set, to
simulate a non existing (i.e., virtual) but feasible UAS that
could have been potentially developed by the manufacturer.
The parameters adopted for this UAS correspond to a1 =
a1,min, a2 = a2,max, b1 = −0.1152, b2 = 0.2304. Care was
taken to make sure this new model was different enough
from the six real UAS models. The virtual model was also
included in the evaluation tests.

The nominal dynamic model was used to solve the LASSO
optimization problem described by equations (20) and (21)
in order to obtain the optimal NN reset weights.

B. Parameter selection for LISIC

LISIC parameters were heuristically tuned, using p = 3,
r = 0.00015, ρ = 0.01, ∆1 = 2, αf = 150, βf = 80,
αh = 0.0001, βh = 0.005, K = 0.2, KI = 10 , Qe =
[20 0.01; 0.01 0.7], ρτ = 0.001. The RBFs parameters were
selected as µj = [−3, 0, 3] and σj are all equal to 3.

C. Definition of the piece-wise signals and impulsive noise

A piece-wise smooth reference signal was defined as xd =
π sin(2/5πt)/2 + J(t) with J(0 < t < 10) = 0.2, J(10 ≤
t < 25) = −3.4 and J(t ≥ 25) = 0.2. The piece-wise
bounded perturbation d̄ affected the system as: d̄(0sec ≤ t <
35sec) = 0, d̄(35sec ≤ t < 45sec) = 120N, d̄(t ≥ 45sec) =
0. An impulsive unknown L1 perturbation was defined to
appear at 63sec, which instantly and discontinuously moved
the UAS position to x = −3.

D. Performance evaluation of the robust LISIC

The UAS started placed at the origin of the coordinate
system and with no velocity, i.e. z(0) = [0, 0]⊤. From
here, it was tasked with tracking a sinusoidal one-axis
translational position reference. Figure 3 shows the reference
to be tracked (red signal), together with the translational
position of the UAS (blue signal) . The mismatch observed
between t = 10sec and t = 25sec was due to the presence
of an abrupt change of reference. These phenomena trigger

two NN weight resets, one at 10sec (disturbance appears) and
the other one at 25sec (disturbance disappears). Despite these
abrupt changes, the reset strategy enabled the controller to
stabilize the position of the UAS to the sinusoidal reference.

Figure 4 shows the time evolution of the position track-
ing error (blue signal) together with the UAS translational
velocity. An unknown L1 perturbation appears punctually at
t = 63sec, and immediately affects the UAS position. The
NN weight reset is then activated, re-enabling an effective
trajectory tracking. This is observed since the tracking error
remains small. As shown in the proof of Theorem 1, the
tracking performance is guaranteed under an H∞ perfor-
mance criterion. The LISIC adaptation time after an NN
weight reset is approximately 2sec, during which the tracking
error is bounded.

Fig. 3. The reference to be tracked (red), together with the position (blue)
of the drone. The perturbation appears at t = 35sec and disappears at
t = 45sec. The impulsive noise appears as t = 63sec. The symbol •
represents a time discontinuity.

Fig. 4. Evolution of the tracking error e (blue) and velocity (black). The
effect of the perturbation is noticeable on the velocity. However, in less
than 2sec the velocity recovers its sinusoidal shape. Theorem 1 guarantees
an H∞ tracking performance criteria.

Figure 5 illustrates the time evolution of the control
input generated by LISIC (blue signal) together with the
perturbation d̄, which appears at t = 35sec and disappears
at t = 45sec. From the input signal, a fast reaction may be
observed compensating for the perturbation.

Figure 6 shows the integrator state (ξ) from equation (5),
illustrated in blue. The auxiliary variable s from equation (2)
is shown in black. The quasi-constant value of the integrator



Fig. 5. The control input of the system is shown in blue, with corresponding
axis value written on the right side of the plot. The perturbation d̄ is shown
in black, with corresponding axis value written on the left side of the
plot. When the perturbation appears, the LISIC adaptation adjusts the input
magnitude to compensate. Right after each reset, it is possible to observe
its effects as high input values.

state between 35sec and 45sec enables compensation for the
effect of the perturbation d̄. Each time the integrator state is
reset to 0, it rapidly evolves to compensate the effects of the
new initial conditions, as observed, for example, when the
controller is initialized at t = 0sec. During operation, each
new reset event will define the initial time of the integral in
equation (14).

Fig. 6. Time evolution of the auxiliary signal (s), in black, and integrator
state ξ, in blue.

V. CONCLUSIONS

The limbic system inspired control (LISIC) framework
was revisited, introducing three contributions that facilitate
its implementation in real-world conditions. The first contri-
bution corresponds to an extension enabling the implemen-
tation of LISIC to the domain of SISO affine systems. The
second contribution is a strategy for resetting the controller’s
NN weights, enabling it to deal with piece-wise smooth
references and impulsive perturbations. The third contribu-
tion, which relies on the availability of a nominal model
of the system, computes a set of optimal NN weight reset
values by solving a convex constrained optimization problem
online. Numerical simulations addressing the stabilization of
the translational dynamics of a UAS via the robust LISIC
demonstrate the benefits of adopting the extension to SISO
systems and the two NN weight reset strategies.

Future work will explore Lyapunov stability theory for
hybrid systems, in order to include the reset strategy in
the H∞ index. The implementation of the robust LISIC
strategy under a Spiking NN approach will also be explored
to continue the work presented in [17].
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