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Abstract— Finding Nash equilibria in non-cooperative games
can be, in general, an exceptionally challenging task. This
is owed to various factors, including but not limited to the
cost functions of the game being nonconvex/nonconcave, the
players of the game having limited information about one
another, or even due to issues of computational complexity. The
present tutorial draws motivation from this harsh reality and
provides methods to approximate Nash or min-max equilibria
in non-ideal settings using both optimization- and learning-
based techniques. The tutorial acknowledges, however, that
such techniques may not always converge, but instead lead
to oscillations or even chaos. In that respect, tools from
passivity and dissipativity theory are provided, which can
offer explanations about these divergent behaviors. Finally, the
tutorial highlights that, more frequently than often thought, the
search for equilibrium policies is simply vain; instead, bounded
rationality and non-equilibrium policies can be more realistic
to employ owing to some players’ learning imperfectly or being
relatively naive – “bounded rational.” The efficacy of such plays
is demonstrated in the context of autonomous driving systems,
where it is explicitly shown that they can guarantee vehicle
safety.

I. INTRODUCTION

Game theory is a mathematical and scientific field that
investigates the interactions among multiple decision makers
with self-interests [1]. Such interactions have long been
ubiquitous in civilian and military applications, hence the
research interest in game theory has been incessant, contin-
uously advancing it and making it more applicable to real-
world systems that operate in multi-agent environments [2]–
[4]. At the same time, it is generally acknowledged that game
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theory is unable to offer a panacea, i.e., a universally effective
algorithm that can enable agents (also called players) to adapt
or learn the “best” strategies to respond to other players.
This is especially true when the other players’ strategies are
unpredictable and imperfect—“bounded rational.”

Central to game theory is the concept of the Nash equi-
librium, which is often used to model perfectly rational
players, i.e., players that optimally respond to other (perfectly
rational) players. It describes a play which, when followed
by all players, nobody has an incentive to deviate from it, and
can thus be quite attractive to seek. However, computing or
searching for Nash equilibria is not always a straightforward
task; factors such as the cost function of each player being
nonconvex/nonconcave, or the inability of certain players to
compute best-response strategies, can significantly hinder the
process of finding a Nash equilibrium.

In scenarios where players are unaware of the strate-
gies of one another, particularly increasing attention has
been drawn to the question of how players might reach a
Nash equilibrium through some sort of iterative process,
i.e., through dynamics [5]–[7]. The field investigating this
question is known as learning in games, and its literature
is extensive [8]–[16]. Depending on the specifics of the
game, learning algorithms can, in fact, lead to convergence
to a Nash equilibrium. However, there are many cases
where learning in games does not exhibit such a pleasant
convergent behavior, but instead leads to oscillations or even
chaos. Motivated by these issues, this tutorial introduces a
variety of algorithms in learning in games, answering the
question of why these may converge or diverge. Specifically,
we study the behavior of better and best reply dynamics,
joint strategy fictitious play, log-linear learning, gradient
play, and reinforcement learning (RL), in the settings of
zero-sum games [17], potential games [18], weakly acyclic
games [19], and strictly/strongly monotone games [20]. In
addition, insights into why some algorithms/dynamics work
smoothly in certain game settings and others do not are
also provided from a dissipativity/passivity perspective [20].
However, the tutorial still acknowledges that Nash equilibria
are not panaceas and that the search for such equilibria is not
always justified, especially when the assumption that each
agent plays perfectly is false.

An alternative to the notion of the Nash equilibrium,
which is often found to impose less restrictive assumptions
regarding the other players’ behaviors, is bounded ratio-
nality [21]–[24]. Its underlying principle is found in the
augmentation of each player with a prespecified cognitive



ability, which dictates their behavior during play. Hence,
unlike the equilibrium, bounded rationality does not require
all agents to perform a perfect play. This tutorial analyzes
three such models of bounded rationality. In the first model,
named level-k thinking [21], [24]–[26], each agent assumes
that everyone else has a cognitive level immediately lower
than theirs, and—given such an assumption—chooses their
policy to be the best response to them. In the second model,
named cognitive hierarchy [22], [23], [25], [26], each agent
conjectures that the rest of the agents have a cognitive level
that is lower than theirs, but follows a distribution instead of
being deterministic. In the third model, a predictor-corrector
structure is employed to correct the agents’ expectations of
other agents’ behaviors [27]. The tutorial showcases that
bounded rationality models can in fact be effective in real-
world settings, such as in autonomous driving.

The rest of the tutorial paper is organized as follows.
Section II studies two-player min-max games. Section III
investigates learning algorithms in multi-player general-sum
games. Section IV explains the behaviors of these learning al-
gorithms from a dissipativity/passivity perspective. Section V
proposes two models to account for agents’ possible bounded
rationality. Section VI develops a predictor-corrector game
and applies it to autonomous driving.

II. CONVERGENT SECOND-ORDER METHODS FOR
MIN-MAX OPTIMIZATIONS

In this section, we restrict our attention to two-player
min-max games and construct algorithms with local super-
linear convergence to local minima and local min-max.
Specifically, we address the use of second-order methods to
solve optimizations of the form

min
uPU

max
dPD

fpu, dq, (1)

for a twice continuously differentiable function f : U ˆD Ñ

R and sets U Ă Rnu , D Ă Rnd . This type of optimization
arises in many applications, including robust machine learn-
ing [28], model predictive control [29], and in reformulating
stochastic programming as a min-max optimization [30].

When the sets U and D are compact and convex and the
function fpu, dq is convex with respect to u and concave
with respect to d, the min and max in (1) commute [31]
and the optimization becomes relatively simple. However,
we are especially interested here in problems for which such
assumptions do not hold, the min and max do not commute,
and for which the optimizations may have local optima that
are not global.

Lacking stringent convexity/concavity assumptions, it is
generally not possible to construct efficient optimization
algorithms that guarantee convergence to global optima of
(1) so we will be satisfied with convergence to appropriately
defined “local” optimal. However, we will still strive to con-
struct algorithms exhibiting super-linear convergence (i.e.,
faster than exponential). We start by reviewing the case of
a simple unconstrained minimization, which we then use to
motivate the algorithm for min-max optimization. The reader

is referred to [17] for the proofs of the results presented here
as well as for the constrained optimization case.

A. Minimization

Consider the unconstrained minimization minuPU fpuq,
U – Rnu . A second order iterative method for this opti-
mization can be constructed by using Newton’s root-finding
algorithm to solve the first-order optimality condition

∇ufpuq “ 0, (2)

which leads to the iteration

upk ` 1q “ upkq ´ Huuf
`

upkq
˘´1∇uf

`

upkq
˘

, (3)

where ∇ufpuq and Huufpuq denote the gradient (as a column
vector) and Hessian matrix of fpuq, respectively, computed
at the point u. A few observations are in order:

1) On the positive side, when f is a strictly convex
quadratic form, the iteration (3) converges to the
(unique) global minimum in a single iteration. Further,
if f is not quadratic but still strongly convex, the
iteration (3) converges super-linearly as k Ñ 8 to
the (unique) global minimum. We recall that a twice
differentiable function is strongly convex if the Hessian
matrix satisfies Huufpuq ě ϵI , @u for some ϵ ą 0.

2) On the negative side, for a general twice differentiable
function f , any stationary point of f (i.e., any point
for which (2) holds) is an equilibrium point of (3). In
this case, the iteration (3) may converge either to local
minima or local maxima.

This last observation reveals the major weakness of (2):
the Newton root-finding iteration (3) ignores whether we are
looking for a minimizer or a maximizer and would remain
unchanged if we replaced the optimization criterion from
fpuq to ´fpuq.

Example 1. Consider the optimization,

min
uPR

u3 ´ 3u, (4)

for which @u P R,

fpuq – u3 ´ 3u, ∇ufpuq “ 3u2 ´ 3, Huupuq “ 6u.

The corresponding Newton iteration (3) is of the form

upk ` 1q “ upkq ´
3upkq2 ´ 3

6upkq
,

for which both the local minimum umin – 1 and the local
maximum umax – ´1 are locally asymptotically stable
equilibria with super-linear convergence. Specifically,
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up0q ą 0 ñ upkq Ñ umin – 1, (local minimum),
up0q ă 0 ñ upkq Ñ umax – ´1, (local maximum),
up0q “ 0 ñ

iteration fails since Huupuq “ 6u is not invertible.

Moreover, the iteration never actually “converges” to the
global “infimum” u Ñ ´8. l

The example and discussion above motivate the question:



“Can we modify the Newton iteration (3) so that local min-
ima become (locally) asymptotically stable, whereas local
maxima become unstable?” We shall see the answer is yes!

To proceed we consider an alternative interpretation of (3),
which is based on the second order Taylor expansion of the
twice differential function f around a point u P U :

fpu ` δuq “fpuq ` ∇ufpuqJδu

`
1

2
δuJHuupuqδu ` Op}δu}3q.

For a strongly convex function f , the iteration in (3) can then
be written as upk ` 1q “ upkq ` δupkq, where the update
δupkq is the optimal increment that minimizes the quadratic
approximation at the point upkq, i.e.,

δupkq – arg min
δuPRnu

f
`

upkq
˘

` ∇uf
`

upkq
˘J

δu `
1

2
δuJHuu

`

upkq
˘

δu (5)

“ ´Huu
`

upkq
˘´1∇uf

`

upkq
˘

,

where the last equality uses the fact that f is strongly convex
and therefore Huu

`

upkq
˘

is positive definite.
Suppose now that we modify the update δupkq in (5) to:

δupkq – arg min
δuPRnu

f
`

upkq
˘

` ∇uf
`

upkq
˘J

δu

`
1

2
δuJ

´

Huu
`

upkq
˘

` ϵ
`

upkq
˘

I
¯

δu (6)

“ ´

´

Huu
`

upkq
˘

` ϵ
`

upkq
˘

I
¯´1

∇uf
`

upkq
˘

, (7)

with ϵpuq ě 0 chosen so that the minimum in (6) is finite
and unique, i.e., so that

Huupuq ` ϵpuqI ą 0. (8)

The modified Newton step in (7) gained an important feature
that holds even for non-convex criterion fpuq: the computa-
tion of (7) never fails since Huu

`

upkq
˘

` ϵ
`

upkq
˘

I is always
non-singular, and yet the equilibrium points of the modified
Newton step remain precisely the stationary points of f since
δupkq “ 0 ô ∇uf

`

upkq
˘

“ 0. More importantly,
as suggested in [32] and stated formally in the result that
follows, all locally stable equilibrium points for the modified
Newton step in (7) must be strict local minima. We recall
that a strict local minimum u‹ is a unique global minimum
in a sufficiently small neighborhood of u‹.

Theorem 1 (Theorem 1 in [17]). Let f : U Ñ R, U –

Rnu be a three times differentiable function and ϵ : U Ñ

r0,8q any differentiable function for which (8) holds. For
every equilibrium point u‹ of (7), u‹ is locally asymptotically
stable if and only if u‹ is a strict local minimum of f . l

The condition (8) on ϵpuq is quite mild and can always be
made to hold by choosing ϵpuq sufficiently large. However,
by selecting large values for ϵpuq the convergence speed
slows down. In fact, we only get super-linear convergence
for ϵpuq “ 0, because only in this case (7) jumps in a single
step to the minimum of the quadratic approximation to f .
In practice, this means that we should select ϵpuq ą 0 only

when Huupuq is not positive definite.

Example 2. For the optimization in (4), the modified Newton
step in (7) becomes upk ` 1q “ upkq ´

3upkq
2

´3

6upkq`ϵ
`

upkq

˘ and,

for (8) to hold, we need
#

ϵpuq ě 0 u ą 0,

ϵpuq ą ´6u u ď 0.
(9)

In this case,
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up0q ą umax – ´1 ñ upkq Ñ umin – 1

(local minimum),
up0q ă umax – ´1 ñ upkq Ñ ´8

(global “infimum”),
up0q “ umax – ´1 ñ upkq “ umax,@k

(unstable equilibrium).

Selecting the function ϵ with ϵpuq “ 0 around umin results
in super-linear convergence to umin, but if ϵpuminq ‰ 0,
the convergence is only exponential. For example, picking
ϵpuq “ ´6u ` η with η ą 0, (9) holds for all u, but the
modified Newton step in (7) becomes upk ` 1q “ upkq ´
3upkq

2
´3

η , which is just a gradient descent. l

B. Min-Max optimization

An intuitive (but surprisingly recent) definition of local
min-max for (1) can be stated as follows: a pair pu‹, d‹q P

U ˆ D is called a local min-max if

1) d‹ is a local maximum of the function d ÞÑ fpd, u‹q,
and

2) u‹ is a local minimum of the function

u ÞÑ gϵpuq – max
dPDXBϵpd‹q

fpd, uq,

for every sufficiently small ϵ ą 0, where Bϵpd
‹q

denotes a closed ball centered at d‹ with radius ϵ [33],
[34].

In essence, this means that u‹ achieves the outer minimum
in (1) in any sufficiently small neighborhoods of d‹, which
can be any point that achieves in the inner maximization (for
u “ u‹).

As for local minima, this characterization of local min-
max admits fairly simple first-order and second-order condi-
tions for optimality:

Theorem 2 (Propositions 18-20 in [33]). Assume that f :
U ˆ D Ñ R, U – Rnu , D – Rnd is twice differentiable.

1) Necessity: If pu, dq is a local min-max point, then

∇ufpu, dq “ 0, ∇dfpu, dq “ 0. (10)

2) Sufficiency: If pu, dq satisfies (10) and

Hddfpu, dq ă 0, (11)
Huufpu, dq

´ Hudfpu, dq
`

Hddfpu, dq
˘´1

Hdufpu, dq ą 0

then pu, dq is a local min-max point. l



In the statement of Theorem 2, ∇ufpu, dq and Huufpu, dq

denote the gradient and Hessian of the function u ÞÑ

fpu, dq; ∇dfpu, dq and Hddfpu, dq the gradient and Hessian
of the function d ÞÑ fpu, dq; and Hudfpu, dq P Rnuˆnd ,
Hdufpu, dq P Rndˆnu matrices with second derivatives of f
with respect to the entries of u and d.

The construction of a second order method could be based
on applying Newton’s root finding algorithm to the first
order optimality conditions (10) [29]. However, motivated
by what we saw in Section II-A, we will instead construct
a second order method by solving a (potentially modified)
local quadratic approximation to (1). Specifically, we will
use the iteration

„

upk ` 1q

dpk ` 1q

ȷ

“

„

upkq ` δupkq

dpkq ` δdpkq

ȷ

, (12)

with updates δupkq, δdpkq that are local min-max to the
following quadratic approximation to (1)

min
δuPU

max
δdPD

f `
“

∇uf
J∇df

J
‰

„

δu
δd

ȷ

(13)

`
1

2

“

δuJ δdJ
‰

„

Huuf ` ϵuI Hudf
Hduf Hddf ´ ϵdI

ȷ „

δu
δd

ȷ

,

where all derivatives and the functions f, ϵu, ϵd : U ˆ D Ñ

R are all computed at the current point upkq, dpkq. The
quadratic approximation in (13) is accurate up to third order
terms when ϵu and ϵd are both zero, but strictly positive terms
may be needed to make sure that (13) has a min-max point.
In fact, it is straightforward to show that a unique min-max
exists provided that

Hddf ´ ϵdI ă 0, (14)

Huuf ` ϵuI ´ Hudf
`

Hddf ´ ϵdI
˘´1

Hduf ą 0,

in which case we have
„

δupkq

δdpkq

ȷ

“

„

Huuf ` ϵuI Hudf
Hduf Hddf ´ ϵdI

ȷ´1 „∇uf
∇df

ȷ

. (15)

In the minimization in Section II-A, selecting the modifi-
cation ϵI so that the quadratic approximation in (6) had a
(finite) unique minimum sufficed to guarantee that all locally
asymptotically stable equilibrium points of the modified
Newton iteration corresponded to strict local minima. For
min-max optimizations, existence of a (finite) unique min-
max to (13) turns out not to suffice to create instability for
equilibrium points that are not local min-max.

When the function f is three time differentiable and
the functions ϵu, ϵd are differentiable, it is straightforward
to show that the local linearization of the dynamical sys-
tem (12), (15) around an equilibrium point pu, dq has dy-
namics given by

I ´

„

Huuf ` ϵuI Hudf
Hduf Hddf ´ ϵdI

ȷ´1 „
Huuf Hudf
Hduf Hddf

ȷ

. (16)

If we always selected ϵu “ ϵd “ 0, this matrix would be zero,
which would be consistent to super-linear convergence at
every equilibrium point. Instead, we will select the functions
ϵu, ϵd to satisfy the following three conditions:
C1 Min-Max sufficiency for quadratic approximation: The

inequalities in (14) always hold.
C2 Minimal modification: Whenever the original min-

max optimality conditions in (11) hold, we must have
ϵdpu, dq “ 0.

C3 Instability: Whenever the original min-max optimality
conditions in (11) do not hold, the matrix in (16)
must have at least one eigenvalue with absolute value
strictly larger than 1.

The condition C1 guarantees that the increments in (15)
are indeed min-max points to the quadratic approximation
in (13); the condition C2 enforces that we do not modify
the quadratic form with some ϵd ‰ 0 when this is not
needed and turns out to also guarantee local exponential
stability of min-max points for the original optimizations;
and the condition C3 guarantees instability of points that
do not satisfy the sufficiency condition (11) for local min-
max. While not necessary for local exponential stability of
the min-max points, in C2 it would make sense to actually
require ϵdpu, dq “ ϵupu, dq “ 0, as this would lead to super-
linear convergence. The result that follows formalizes these
observations:

Theorem 3. Let f : U ˆ D Ñ R, U – Rnu , D – Rnd be
a three times differentiable function and ϵu, ϵd : U ˆ D Ñ

r0,8q be any differentiable functions that satisfy C1–C3. For
every equilibrium point pu‹, d‹q of (12)–(13), we have that:

1) If the 2nd order min-max sufficient conditions (11) hold
then pu‹, d‹q is locally exponentially stable.

2) If the 2nd order min-max sufficient conditions (11) do
not hold, then pu‹, d‹q is unstable. l

To use Theorem 3, it remains to show how to select functions
ϵu, ϵd that satisfy C1–C3. This can be done as follows:

1) For values u, d for which the original min-max op-
timality conditions in (11) hold, we can simply set
ϵupu, dq “ ϵupu, dq “ 0. These values guarantee that
both C1 and C2 hold.

2) For values u, d for which the original min-max opti-
mality conditions in (11) do not hold, we first pick
ϵd ě 0 sufficiently large so that Hddf ´ϵdI ă 0, holds
and then ϵu ě 0 sufficient large so that Huuf ` ϵuI ´

Hudf
`

Hddf´ϵdI
˘´1

Hduf ą 0 and therefore C1 holds.
If C3 does not hold for these values of ϵd, ϵu, further
increase ϵu until it does (see Lemma 1 below, which
is implicit in [17, proof of Theorem 3]).

Lemma 1 (Theorem 3 in [17]). Suppose that (11) does not
hold and that Hddf ´ ϵdI ă 0 for some ϵd ě 0, then there
exists a constant ϵu ě 0 sufficiently large so that Huuf `

ϵuI ´ Hudf
`

Hddf ´ ϵdI
˘´1

Hduf ą 0 and the matrix in
(16) must have at least one eigenvalue with absolute value
strictly larger than 1. l

We restricted our attention to unconstrained optimization,
but the results presented have been extended in [17] to con-
strained optimizations. An important question that remains
mostly unanswered is the construction of similar algorithms
applicable to problems for which global min-max are not



local min-max, which is a possibility that cannot arise in the
minimization of smooth functions, but can arise in min-max
optimizations of smooth functions.

III. LEARNING IN FINITE GAMES

In the preceding section, we investigated min-max opti-
mization problems, and presented procedures that are able to
guarantee convergence to a corresponding min-max optimal
point. This form of min-max optimization can naturally be
interpreted as a two-player game, where the first player wants
to maximize the utility function, while the second player
wants to minimize it. Therefore, it cannot be of use in games
where more than two players are participating, and where the
stationary points form a Nash equilibrium instead of a min-
max one. Towards this direction, in this section we shift our
focus to multi-player general-sum games, and investigate the
behaviors of a variety of learning algorithms in such settings,
including best and better reply dynamics, fictitious play, log-
linear learning, and gradient play.

A. Preliminaries

We consider that there is a set of players, N “

t1, ¨ ¨ ¨ , Nu, where N can be greater than 2. Each player has
a finite set of actions, Ai “ t1, ¨ ¨ ¨ , niu. The joint action set
is A “ A1 ˆ ¨ ¨ ¨ ˆAN . A joint action a P A may be written
as a “ pa1, ¨ ¨ ¨ , aN q with each ai P Ai. Alternatively, we
may write a “ pai, a´iq, which denote the action of player
i, ai, and the actions of all other players, a´i. The utility of
player i is a function ui : A Ñ R. The collection of players,
N , actions sets, Ai, i “ 1, ¨ ¨ ¨ , N , and utility functions, ui,
i “ 1, ¨ ¨ ¨ , N , fully specify a finite (normal form) game.

A pure strategy Nash equilibrium is a joint action, a‹ “

pa‹
i , a

‹
´iq P A, such that for all i P N , uipa

‹
i , a

‹
´iq ě

uipa
1
i, a

‹
´iq, @a1

i P Ai. Note that, depending on the specific
utility functions, there may be a unique Nash equilibrium,
multiple Nash equilibria, or none. For both potential games
and weakly-acyclic games, a Nash equilibrium is guaranteed
to exist. Note that potential games are a subset of weakly-
acyclic games in that for potential games, all directed paths
terminate at a Nash equilibrium.

The following definitions lead to alternative expressions
for a Nash equilibrium and will be useful in defining certain
learning dynamics. Particularly, define the best reply set as

B‹
i pa´iq “

!

a1
i P Ai

ˇ

ˇ

ˇ
uipa

1
i, a´iq ě uipai, a´iq,@ai P Ai

)

,

i.e., the set of actions that maximize the utility for player i
in response to a´i. In terms of the best reply set, a‹ is a
Nash equilibrium if for all i P N , a‹

i P B‹
i pa‹

´iq.
Define the better reply set as

Bipai, a´iq “

!

a1
i P Ai

ˇ

ˇ

ˇ
uipa

1
i, a´iq ą uipai, a´iq

)

i.e., the set of actions that are an improvement to a baseline
action. Note that B‹p¨q and Bp¨q have different domains.
Furthermore, the strict inequality in the better reply set
definition implies that the better reply set can be empty.

The better reply set induces the directed better reply graph,
defined as follows. The nodes are the set of joint actions, i.e.,

the set A. Given two joint actions, a and a1, there exists an
edge from a to a1 if:

‚ The two actions deviate by the action of a single player,
i.e., a “ pai, a´iq and a1 “ pa1

i, a´iq for some i P N .
‚ For the deviating player i, a1

i P Bipai, a´iq, i.e., the
deviating player experienced an increase in utility.

By definition, a Nash equilibrium is a node that will not have
any outgoing edges in the better reply graph.

Some discussions will apply to special classes of games:
‚ Potential games [18]: There exists a potential function,
ϕ : A Ñ R, such that for any two joint actions a “

pai, a´iq and a1 “ pa1
i, a´iq that deviate by the action

of a single player,

ϕpai, a´iq ´ ϕpa1
i, a´iq “ uipai, a´iq ´ uipa

1
i, a´iq.

‚ Weakly-acyclic games [19]: For any joint action a P A,
there exists a directed path that terminates at a Nash
equilibrium.

‚ Zero-sum games: There are two players, i.e., N “

t1, 2u, and u1pa1, a2q “ ´u2pa1, a2q.
We also will be interested in dynamics that utilize ran-

domized actions. Towards this end, let S “ ts1, ¨ ¨ ¨ , sKu,
be a finite-set, and define ∆rSs Ă Rm to be the probability
simplex over S. We will use the following notations to
discuss randomized actions:

‚ s “ randrps indicates the element s is randomly
selected according to the probability distribution, p P

∆rSs;
‚ s “ unif rSs indicates the element s is selected accord-

ing to a uniform distribution over S;
‚ vertrsis P ∆rSs denotes the simplex vertex vector

associated with element, si P S. For example, for
S “ ts1, s2, s3u,

¨

˝

1
0
0

˛

‚,

¨

˝

0
1
0

˛

‚,

¨

˝

0
0
1

˛

‚,

are the vertex vectors associated with s1, s2, and s3,
respectively.

B. Special Cases of Convergence to Nash Equilibrium

We will consider learning dynamics that evolve over
discrete time, t “ 0, 1, 2, ¨ ¨ ¨ . Informally, at stage t, the
action of player i is selected according to aiptq “ LpIiptqq.
Here, Iiptq denotes the information available to player i
up to stage t, L : Iptq Ñ ∆rAis is a learning rule that
maps player i’s information to the probability simplex of
its actions, and aiptq is randomly selected according to this
probability distribution. In some cases of learning dynamics,
the above will apply only to players that are activated at
stage t, i.e., given the opportunity to revise their action.
Non-activated players must repeat their previous action, i.e.,
aiptq “ aipt ´ 1q, if player i is not activated.

‚ Best and Better Reply Dynamics
A very simple example of a learning rule is the best reply

dynamics. Introduce the inertia probability, ρ, with 0 ă ρ ă



1. Let ap0q P A be an arbitrary initialization. At each stage
t “ 1, 2, ¨ ¨ ¨ ,

aiptq “ aipt ´ 1q, with probability ρ, or

aiptq “ unif rB‹
i pa´ipt ´ 1qqs, with probability 1 ´ ρ.

In words, a player is activated with probability 1 ´ ρ and
selects the best reply to the previous actions of other players.

A slightly more sophisticated learning rule is better reply
dynamics. As before, introduce the inertia probability, ρ, with
0 ă ρ ă 1, and let ap0q P A be an arbitrary initialization.
At each stage t “ 1, 2, ¨ ¨ ¨ ,

aiptq “ aipt ´ 1q, with probability ρ, or

aiptq “ unif rBipaipt´1q, a´ipt´1qqs, with probability 1´ρ.

In case the better reply set is empty, then aiptq “ aipt ´ 1q.
Under better reply dynamics, an activated player selects an
action that is an improvement, as compared to its previous
action, given the previous actions of other players.

Proposition 1. (i) For potential games, best reply dynamics
converge to a Nash equilibrium; (ii) For weakly acyclic
games, better reply dynamics converge to a Nash equilib-
rium. l

The proof stems from Nash equilibrium being a stationary
point of the associated dynamics. Convergence is guaranteed
since, from any joint action that is not a Nash equilibrium,
there is a positive probability to reach a Nash equilibrium.

These dynamics presume that the actions of other players
are observable. Alternatively, one can assume that a player
can only observe its realized utility. That is, at stage t, player
i observes uiptq. In this case, it is possible to derive algo-
rithms that have nice properties for weakly acyclic games.
These algorithms introduce an experimentation probability,
ϵ. The notion of convergence is slightly weakened, however.
Rather than the joint action, aptq, converging to a Nash
equilibrium, one has that a t Ñ 8, the joint action aptq is
at a Nash equilibrium with high probability, and this prob-
ability approaches unity as the experimentation probability,
ϵ, approaches zero [9].

‚ Joint Strategy Fictitious Play
In joint strategy fictitious play [10], players keep a running

tally of the utility associated with each action. For player i
at stage t, define

Uiptq “

¨

˚

˝

uip1, a´iptqq

...
uipni, a´iptqq

˛

‹

‚

P Rni .

This vector indicates the hypothetical utility that would have
been received by player i at stage t for each of its actions.
Now define Viptq “ p1´ γptqqViptq ` γptqUiptq. For γptq “
1

t`1 , Viptq is a running average of the utility associated with
each action of player i. For constant 0 ă γptq “ γ‹ ă 1,
Viptq represents a fading memory weighted average of Uiptq.

Joint strategy fictitious play proceeds as follows. As be-
fore, introduce the inertia probability, ρ, with 0 ă ρ ă 1.

For each i, let Vip0q be an arbitrary initialization. For t “

1, 2, ¨ ¨ ¨ ,

aiptq “ aipt ´ 1q, with probability ρ, or

aiptq “ argmax
k

␣

V 1
i pt ´ 1q, ¨ ¨ ¨ , V ni

i pt ´ 1q
(

.

Proposition 2. For potential games, joint strategy fictitious
play converges to a Nash equilibrium. l

See [10] for the full presentation, including specific tech-
nical assumptions, and proof.

‚ Log-Linear Learning and Equilibrium Selection
Log-linear learning, introduced in [8], is a modification

of best reply dynamics in which players take a noisy best
reply. That is, there is a positive probability of playing any
action—not just a best reply. One can view not playing a
best reply as a form of experimentation, and the probability
of experimenting depends on the loss of utility as a result of
the experimentation. To proceed, first define the Boltzmann
distribution as follows. For v P RK and for T ą 0, define
βpv;T q P Rn as the vector whose kth component equals
βkpv;T q “ 1

Z evk{T , where Z is a v-dependent normalization
factor so that βpv;T q is a probability distribution, i.e.,
řK

k“1 βkpv;T q “ 1.
Now, log-linear learning is defined as follows. Let ap0q P

A be an arbitrary initialization. At each stage t “ 1, 2, ¨ ¨ ¨ ,
select a single player, say i‹ptq, uniformly at random. Then,
aiptq “ βpUipt ´ 1q;T q, i “ i‹ptq, otherwise, aiptq “

aipt ´ 1q. Here, Uipt ´ 1q is the hypothetical utility vector
defined under joint strategy fictitious play.

The interpretation of log-linear learning being noisy best
reply dynamics stems from the properties of the Boltzmann
distribution. For large T , the Boltzmann distribution ap-
proximates uniform probability. For small T , the Boltzmann
distribution favors a maximizer of its argument, i.e., βpv;T q

places vanishing weight, as T Ó 0, on all but the maximal
elements of v.

Proposition 3 ([8]). Consider a potential game with poten-
tial function ϕ. For any a P A, under log-linear learning,

lim
tÑ8

Pr raptq “ as “
1

Z
eϕpaq{T ,

where Z is a normalizing factor Z “
ř

aPA eϕpaq{T . l

Log-linear learning induces a finite-state Markov chain
where the states are the set of joint actions, i.e., A. Accord-
ingly, the joint actions, aptq, never converge. Nonetheless,
one can characterize long-term behavior as follows. This
proposition characterizes the stationary distribution of the
associated Markov chain. In doing so, it introduces an
element of equilibrium selection in learning. Thus far, it was
stated that certain learning rules (for potential and weakly
acyclic games) converge to a Nash equilibrium. Log-linear
learning demonstrates a preference among Nash equilibria.

For a potential game, let a‹ denote the maximizer of
the potential function, i.e., a‹ “ argmaxaPA ϕpaq. Note
that a‹ is a Nash equilibrium, since by the definition of a
potential game, no individual player can increase its utility by



deviating from a‹. Under log-linear learning the probability
that aptq “ a‹ in the long run approaches unity as T
approaches zero. Since a‹ is one Nash equilibrium out of
possibly many, this property reflects favoring a specific Nash
equilibrium.

Further details may be found in [35], which considers vari-
ations on log-linear learning such as limited observations of
other players, simultaneous play, and constrained evolution.

C. Learning over Mixed Strategies

While the learning algorithms discussed thus far involve
some form of randomization over action, the discussion has
been limited to convergence to pure strategy Nash equilibria
where players do not randomize. We now discuss learning
over mixed strategies, where the notion of equilibrium itself
involves randomization.

‚ Setup

Without changing notation, we now define utility functions
extended to the probability simplex, i.e., ui : ∆rA1s ˆ

¨ ¨ ¨ ˆ ∆rAN s Ñ R. Let pi P ∆rAis have components
pi “

`

pip1q, ¨ ¨ ¨ , pipniq
˘

, and for each i P N , define

uipp1, ¨ ¨ ¨ , pN q

“
ÿ

´

a1, ¨ ¨ ¨ , aN
¯

PA

p1pa1qp2pa2q ¨ ¨ ¨ pN paN quipa1, ¨ ¨ ¨ , aN q,

i.e, the expected utility when players randomize indepen-
dently over the mixed strategies pp1, ¨ ¨ ¨ , pN q.

We now define mixed strategy Nash equilibrium in a sim-
ilar manner to pure strategies. A mixed strategy Nash equi-
librium is a set of joint probabilities, p‹ “ pp‹

1, ¨ ¨ ¨ , p‹
N q P

∆rA1s ˆ ¨ ¨ ¨ ˆ ∆rAN s, such that for all i P N ,

uipp
‹
i , p

‹
´iq ě uipp

1
i, p

‹
´iq, @p1

i P ∆rAis.

In case each pi lies on a vertex of ∆rAis, the associated
equilibrium is a pure strategy equilibrium. Unlike the case
of pure strategy Nash equilibria, there will always exist at
least one mixed strategy Nash equilibrium (e.g., [36]), which
need not be unique.

‚ Smooth Fictitious Play

To simplify the exposition, we will restrict the discussion
to games that have a pairwise interaction structure. For
such games, there exist matrices, Mij P Rniˆnj , so that
uippi, p´iq “

ř

jPN ,j “i p
J
i Mijpj .

As before, play proceeds over stages t “ 1, 2, ¨ ¨ ¨ . At
stage t, player i selects an action according to aiptq “

randrpiptqs, where we will define piptq P ∆rAis momen-
tarily. For each player, i, introduce the associated empirical
frequency vector qiptq P ∆rAis, which evolves according to

qipt ` 1q “ p1 ´ γptqqqiptq ` γptqvertraiptqs,

with step size γptq “ 1
t`1 . In case qip0q “ 0, qiptq tracks

the histogram of actions taken by player i, i.e., the relative
frequencies that player i used each of its actions.

In smooth fictitious play [37], players choose their actions

as a noisy best response to these empirical frequencies, i.e.,

piptq “ β
´

ÿ

jPN ,j “i

Mijqjptq;T
¯

,

where βp¨q is the previously defined Boltzmann distribution.
The noisy best response can be viewed as a best response

to a perturbed utility function. For T ą 0, define

ũippi, p´i;T q “
ÿ

jPN ,j “i

pJ
i Mijpj ´ T

mi
ÿ

k“1

pipkq logppipiqq,

which is the original utility function perturbed by the entropy
of strategy pi. Setting T “ 0 results in the original utility
function. With this modification,

ũi

´

β
´

ÿ

jPN ,j “i

pJ
i Mijpj ;T

¯

, p´i;T
¯

ě ũpp1
i, p´i;T q, @p1

i P ∆rAis,

i.e., the best response to the perturbed utility takes the form
of the Boltzmann distribution.

Following the terminology in [11], a Nash distribution
is a Nash equilibrium of the perturbed game, i.e., p‹ “

pp‹
1, ¨ ¨ ¨ , p‹

N q P ∆rA1s ˆ ¨ ¨ ¨ ˆ ∆rAN s, such that for all
i P N ,

ũipp
‹
i , p

‹
´i;T q ě ũipp

1
i, p

‹
´i;T q, @p1

i P ∆rAis.

Proposition 4 (See [12], [13]). For any T ą 0, empirical
frequencies converge to a Nash distribution for zero-sum and
potential games. l

The work in [12] also discusses additional classes of
games under which smooth fictitious play converges. See
also [38].

‚ Gradient play
Recall the utility function under pairwise interactions is

uippi, p´iq “
ÿ

jPN ,j “i

pJ
i Mijpj .

Taking the gradient from the perspective of player i yields

∇pi
uippi, p´iq “

ÿ

jPN ,j “i

Mijqj .

In gradient play [39]–[44], a player’s action moves its
empirical frequency in the direction of the gradient of its
utility function. Empirical frequencies are computed as in
smooth fictitious play. Instead of a noisy best response at
stage t, aiptq “ randrpiptqs with

piptq “ Π∆

”

qiptq `
ÿ

jPN ,j “i

Mijqj

ı

,

where Π : Rmi Ñ ∆rAis is the projection to the simplex.
‚ Analysis
Learning over mixed strategies induces a discrete-time

stochastic process. A widely method of analysis is to con-
struct a deterministic continuous time dynamical system
derived from the stochastic discrete-time iterations. This
approach, known as the ODE (ordinary differential equation)
method of stochastic approximation, is detailed in [45], [46]
and applied to learning in games in [14]–[16].



In the case of smooth fictitious play, the associated differ-
ential equation is

9qi “ ´qi ` β
´

ÿ

jPN ,j “i

Mijqjptq;T
¯

, i “ 1, 2, ¨ ¨ ¨ , N.

Similarly, the associated differential equation for gradient
play is

9qi “ ´qi ` Π∆

”

qiptq `
ÿ

jPN ,j “i

Mijqj

ı

, i “ 1, 2, ¨ ¨ ¨ , N.

Informally, applying the methods described in [45], [46]
leads to the following: the stochastic iterations converge to
(i) with strictly positive probability to a local attractor of
the ODE; (ii) with probability one to a global attractor of
the ODE; and (iii) with zero probability to an exponentially
unstable equilibrium of the ODE. Once the analysis falls
on the side of continuous dynamical systems, then one can
appeal to a variety of analysis techniques [47], including
methods derived from feedback control perspectives [48]–
[51].

D. Limitations on Learning and Uncoupled Dynamics

The discussion thus far has been about positive exam-
ples of convergence. There are many known cases of non-
convergence [47, Chapter 9] of learning dynamics as well:

‚ Best and better response dynamics need not converge
in games with a pure equilibrium [52, Chapter 3].

‚ Fictitious play need not converge in games with a pure
equilibrium [53].

‚ Fictitious play need not converge in games with a
unique mixed equilibrium [54].

‚ Gradient play cannot converge to a mixed strategy
equilibrium in matrix games (based on a zero-trace
condition in the associated ODE).

It is important to recognize that learning in games is not
about the computation of Nash equilibria, which is known
to be intractable from the perspective of both computation
[55] and communication [56]. Rather, the motivation is to
understand, even as a plausibility argument, how a Nash
equilibrium may arise out of simple adaptive interactions.
Accordingly, non-convergence need not constitute a disqual-
ifying behavior and has been proposed as a possible solution
concept in itself [57].

A common restriction of dynamics studied under learning
in games is the notion of uncoupled dynamics, introduced
in [58]. Learning dynamics are considered uncoupled if the
evolution of a player’s strategy does not depend explicitly on
the utility functions of other players. There may be implicit
dependence through the actions of others. This restriction
again stems from the program of learning in games not being
one of computation, but rather motivated by modeling.

We see that all the dynamics presented herein—best/better
reply, fictitious play, log-linear learning, and gradient play—
are uncoupled dynamics. For pure Nash equilibria, reference
[59] shows that there are no uncoupled rules with one-stage
memory (as in best/better reply dynamics) that converge
to Nash equilibria in all games for which there exists a

pure Nash equilibrium. Uncoupled dynamics play a role in
reference [58], which shows that a broad class of fixed-order
learning dynamics cannot converge to Nash equilibrium for
a specific 3-player/2-action game [54] (although higher-
order learning dynamics [60], [61] are able to overcome
this perceived impossibility [42]). These results illustrate
the lack of a universal (uncoupled) dynamic that converge
to Nash equilibrium for all games. In contrast, there are
universal algorithms for stochastic notions of convergence
(e.g., meta-stability) [62] or alternative solution concepts
(e.g., correlated equilibria) [63].

IV. PASSIVITY AND LEARNING

The preceding discussion renders clear that, in general,
it can be very difficult to guarantee that learning dynamics
will converge to a Nash equilibrium. This is because each
individual learning algorithm’s behavior highly depends on
the corresponding game setting. The purpose of this section
is to thus shed some light on these dependencies, and discuss
how they can be explained if one regards them through a
passivity point of view.

Passivity is a general input-output system property, a
special case of dissipativity, a concept introduced by Willems
[64]. These concepts have had numerous applications in
control, but in game theory they have started to be used only
recently. In [65] passivity was used to analyze gradient-play
for a particular CDMA power control application, while in
the context of population games, the notion of δ-passivity
was used to analyze certain game dynamics in [66]. Here,
we use incremental and equilibrium-independent passivity,
[67], drawing on results from [61].

We focus on two representative instances in RL: payoff-
based play, [5], and Q-learning, [6]. We show how one
can exploit geometric features of different classes of games,
together with dissipativity/passivity properties of intercon-
nected systems to guarantee global convergence to a Nash
equilibrium. Besides simplifying the proof of convergence,
one can generate algorithms that work for classes of games
with less stringent assumptions, by using passivity and basic
properties of interconnected systems.

A. Game Theory and Nash Equilibrium Seeking

In this section we review the framework of learning or
seeking a Nash equilibrium in multi-player games. Consider
a set of players or agents N “ t1,. . . ,Nu involved in a
game. The game can be a continuous-action game, where
each player i P N has a continuous action set to select its
decision from Ωi Ă Rni , or a finite-action game, where it
has a finite set of actions (pure strategies) Ai, |Ai| “ ni,
[7], [68]. Each player i P N aims to take a decision xi,
so as to minimize its (expected) cost Ji or maximize its
(expected) payoff/utility Ui “´Ji. Its cost/payoff depends on
the opponents’ strategies x´i and such inherent intertwining
between the agents’ decisions introduces challenges in solv-
ing a game: when optimizing for its own reward, an agent
needs to know the others’ decisions. A Nash equilibrium
is a state where none of the agents has any incentive to



Fig. 1: A generic RL NE seeking dynamics.

change its decision, in that sense called individually optimal.
In a classical setting, an introspective calculation of a Nash
equilibrium requires complete knowledge: namely, that each
player knows the cost/payoff functions and the strategies of
all the other players, [7]. This is quite restrictive. An agent
has some knowledge, but this is limited/incomplete, so it
must be supplemented with whatever information an agent
can get by feedback.

We consider a repeated game, where players use previous
game iterations to gather information about the other agents
or the game, and correspondingly, adjust their decisions, that
is “learn.” Typical learning rules/dynamics proposed in the
game theoretic literature are best-response (fictitious-play),
projected-gradient (better-response) play, proximal play, RL
(payoff-based learning) and so on, [7], [68]. Some are
motivated by the (potentially bounded) rationality of the
players, [7], others are motivated by biologically inspired
learning mechanisms, such as imitation or RL, [68]. These
processes can be modeled either in discrete time or in
continuous time. Let Pi denote the algorithm or dynamics
by which agent i P N updates in time its decision xi

(action/strategy). All agents Pis are interconnected one with
another, directly or indirectly, depending on the feedback an
agent gets. This results in one big interconnected dynamic
system denoted as P , which is the overall Nash equilibrium
(NE) seeking (or learning dynamics) system. This system
can be equivalently written as the feedback interconnected
system P “ pPi, P´iq, where P´i denotes the learning
algorithm/dynamics used by everybody else, except player
i. A generic RL NE seeking dynamics is shown in Figure 1.
Two properties are essential:

(C1) an equilibrium point of P is (related to) a NE of the
game denoted x‹, and

(C2) such equilibrium is (globally) asymptotically stable.

It is in this context that passivity can help. Dissipativity and
passivity play a critical a role in analyzing interconnections
of dynamical systems, but classical notions are defined with
respect to the origin as equilibrium point, [64], [69]. On the
other hand, equilibrium independent dissipativity and passiv-
ity (EID/EIP) are defined for an arbitrary equilibrium point,
[67], [70]. A dynamical system Σ, given by 9x “ fpx, uq, y “

hpx, uq, with u, x, y an equilibrium condition, is Equilibrium
Independent Passive (EIP) if there exists a differentiable,
positive semi-definite storage function Vx : Rn Ñ R such
that 9Vxpxq ď py ´ yqJpu´ uq.Σ is output-strictly EIP if for
some β ą 0 9Vxpxq ď py ´ yqJpu ´ uq ´ β}y ´ y}2.

Fig. 2: Feedback configuration

Such individual properties of the component subsystems
can help in analyzing stability properties of an interconnected
system without precise knowledge of an equilibrium point,
but only knowing that it exists. Furthermore, for an intercon-
nected system made up of EID/EIP subsystems, a good can-
didate for a Lyapunov function is the sum of the individual
storage functions, [67]. A static nonlinear EIP/incrementally
passive mapping is, equivalently, monotone.

Since the Nash equilibrium x‹ is unknown a-priori,
equilibrium independent properties are particularly useful
to exploit in NE seeking. For the interconnected system
P “ pPi, P´iq, if each individual Pi has EIP properties, the
problem is easily solved. However, because of the coupling
between agent objectives, such individual EID/EIP properties
do not hold in a game in general. An alternative idea is
to see if the overall NE seeking dynamics/system P can be
recast as an interconnection of some (strictly) EIP systems.
In the next section, we show that two popular RL algorithms
can be recast as a feedback interconnection pΣ,´Ψq, cf.
Fig. 2, between some EIP/EID dynamical system Σ and a
specific game mapping Ψ. Once (C1) holds, then (C2), that
is (global) stability of the equilibria of P , or convergence to
a NE of the game, follows easily from passivity properties
of interconnected systems.

B. RL and Passivity

In this section, we consider a repeated finite-action game
and two instances of RL, namely, payoff-based RL (P-
RL) and Q-learning, respectively. In this setting, an agent
i does not necessarily know the structure/form of its own
payoff/cost function Ui/Ji but can know its own realized
payoff/cost πi as a result of some action it takes. This
represents the reinforcement signal it gets from playing the
game, [5], [6]. Update rules build off this setting are called
RL algorithms, cf. Fig. 1.

At each iteration k of play, each player i P N uses an
action j P Ai or a pure strategy eipkq, selected randomly
out of its ni possible choices, with probability xijpkq.
Equivalently, Preipkq “ ejs “ xijpkq, where ej is the jth

unit vector in Rni . Accordingly, player i receives a payoff
value πipkq :“ Uipeipkq, e´ipkqq, called its realized payoff
at step k, where e´ipkq denotes the pure strategy profile
used by the others, except player i. Player i’s mixed strategy
xipkq :“ pxijpkqqjPAi P ∆i specifies the probabilities with
which actions/pure strategies are selected, with ∆i denoting
the simplex. Because of randomization, each player i is
optimizing its expected payoff Uipxi, x´iq.

In RL, (mixed) strategies are updated based on the re-



ceived payoff πi and some internal score variables. Con-
sider that each player i P N keeps a score zi P Rni

of all its actions (updated based on its received payoff
πi) and maps this score into a mixed strategy xi P ∆i

via a static choice map σi : Rni Ñ ∆i, xi “ σipziq.
A typical choice map is the soft-max function σipziq :“

1
ř

jPAi
expp 1

ϵ zijq

“

expp 1
ϵ zi1q. . .expp 1

ϵ zini
q
‰J

, where ϵ ą 0 is
a regularization/temperature parameter, [71]. As ϵ Ñ 8,
actions are selected with uniform probability (“exploration”),
while as ϵ Ñ 0, the soft-max function selects the action asso-
ciated with the highest score (best-response/“exploitation”).

Consider that at the k-th instance of play, player i updates
its score zipkq and mixed strategy xipkq as

zipk ` 1q “ zipkq ` αipkqπipkqdiag

ˆ

1

xipkq

˙

eipkq

xipkq “ σipzipkqq. (17)

This is known as P-RL, [71], related to that proposed by
Erev and Roth, [5]. Alternatively, when the update is

zipk ` 1q “ zipkq`αipkq diag

ˆ

πipkq1´zipkq

xipkq

˙

eipkq

xipkq “ σipzipkqq, (18)

the scheme is known as the (individual) Q-learning algorithm
[6], [72]. In the above, αipkq is a diminishing step-size,
for example 1

k`1 , 1 is the all ones vector and diagp 1
xipkq

q

denotes the diagonal matrix with 1{xijpkq on its diagonal.
It is known that P-RL converges in 2x2 games, in 2-player

partnership (potential) games, but cycles in 2-player zero-
sum games with a unique mixed NE. A prototypical example
of the latter class of games is the standard 2-player Rock-
Paper-Scissor game. On the other hand, Q-learning converges
in all these classes of games, (Proposition 4.2, [6]). What is
the reason for such a different behavior? In the following,
we show that this can be explained via passivity.

Under standard assumptions, the long-term behavior of
stochastic processes (17) and (18) can be analyzed via
stochastic approximation, [73], based on the behavior of
their deterministic mean dynamics. The mean dynamics can
be obtained by taking the expectation of the stochastic
iterate increments, using E

´

πipkqdiag
´

1
xipkq

¯

eipkq

¯

“

Uipx´ipkqq, where Ep¨q denotes expectation and Uipx´iq :“
pUipej , x´iqqjPAi

. The mean dynamics of P-RL (17) is

Pi :

#

9zi “ Uipx´iq,

xi “ σipziq, zip0q P Rni .
(19)

This processing is shown in Fig. 3, where x´i and ∆´i are
the mixed strategy and simplex set for everybody else, except
i. In particular, the score zi is the dual variable to the primal
variable xi. Therefore, (19) describe the evolution of learning
in the dual space Rni , whereas the strategy trajectory in ∆i

is induced via the choice map, σi.
The mean dynamics of Q-learning (18) are

Pi :

#

9zi “ Uipx´iq ´ zi, zip0q P Rni

xi “ σipziq,
(20)

Fig. 3: Payoff-based RL.

Fig. 4: RL in the Rock-Paper-Scissor game.

which is an “exponentially discounted” score dynamics.
Consider the Rock, Paper, Scissor (RPS) game, a 2-player

zero-sum game, a benchmark game where the two payoff
matrices are

A “

»

–

0 ´1 1
1 0 ´1

´1 1 0

fi

fl , B “ AJ.

The expected payoffs of the two players are U1px1, x2q “

xJ
1 Ax2 and U2px1, x2q “ xJ

1 Bx2, respectively. The ex-
pected payoff vector Upxq“pUipx´iqqiPN “p∇xiUipxqqiPN

is Upxq “

„

0 A
BJ 0

ȷ

x “ Φx, where Φ ` ΦJ “ 0.

The RPS game is a zero-sum (null) monotone game, with a
unique (mixed) NE strategy at p1{3, 1{3, 1{3qJ. Fig. 4 shows
strategy trajectories for player 1, under payoff-based (P-
RL) dynamics (blue) and under Q-learning dynamics (red),
respectively. Q-learning converges to the unique mixed Nash
equilibrium p1{3, 1{3, 1{3qJ, while P-RL dynamics cycles.

A passivity approach in the dual space can be used to
explain this behavior. The overall P-RL learning of all agents
(19) is

P :

#

9z “ Upxq, zp0q P Rn

x “ σϵpzq,
(21)

where σϵpzq :“ pσipziqqiPN , with equilibria x‹ “ σϵpz
‹q

Fig. 5: P-RL and Q-learning



such that Upx‹q “ 0. Here z “ pziqiPN P Rn, x “

pxiqiPN P ∆ and Upxq “ pUipx´iqqiPN denote the player
stacked scores, mixed-strategies and payoff game mapping,
respectively.

The overall Q-learning of all agents (20) is

P :

#

9z “ Upxq ´ z, zp0q P Rn

x “ σϵpzq.
(22)

Any equilibrium of (22) is characterized by x‹ “ σϵpz
‹q,

Upx‹q “ z‹, or is a fixed-point x‹ “ σϵpUpx‹qq. Any
such equilibrium is called a Nash distribution, [6], that is
a Nash equilibrium of an ϵ-perturbed game. For small ϵ, x‹

approximates the Nash equilibria of the game, [72].
Then, P in (21) and (22) can be represented as a feedback

interconnected system pΣ, Uq shown in Figure 5 (left) and
(right), respectively. On the feedback path, U is the payoff
game mapping. On the forward path, Σ is the cascade
connection between a bank of integrators (left) or a bank of
low-pass filters (right), respectively, and the static map σϵ.
The soft-max mapping σϵp¨q is monotone and ϵ-cocoercive
(output-strictly EIP) and is the gradient of the lse function
[61, Prop. 2]. Based on this, it can be shown that Σ in
Figure 5 (left) is EIP, while Σ in Figure 5 (right) is output-
strictly EIP (OSEIP), respectively, both with storage function
the Bregman divergence of lse, [61, Prop. 3]. Leveraging
this output-strictly EIP, (global) asymptotic stability of the
closed-loop system for Q-learning (22) in Figure 5 (right)
can be shown for any ϵ ą 0, in any N -player monotone
game, that is when the (negative) payoff game mapping ´U
is EIP (monotone). The standard Rock-Paper-Scissor game
belongs to this class of games. On the other hand, for the P-
RL system in Figure 5 (left) Σ is only EIP and as a result only
stability can be shown when ´U is monotone (EIP). We note
that passivity techniques can be used to extend Q-learning
results to the larger class of hypomonotone games, as well as
to design higher-order Q-learning dynamics. The main idea
is to balance the shortage of passivity on the feedback path
in Figure 5 (right) by the ϵ´excess of passivity of Σ on the
feedforward path, [61, Thm. 1]. Additionally, generalizations
are possible to continuous-kernel games, in the form of
mirror-descent dynamics [74] and even to bandit learning
and their higher-order variants [75], [76]. The analysis for
other instances of such algorithms can be found in [20].

V. NON-EQUILIBRIUM LEARNING IN STOCHASTIC
GAMES

Thus far, our discussion has focused on how individual
learning algorithms may or may not converge to a stationary
point of a game, be it either a NE or a min-max optimal
point. At the same time, it has been made clear that there is
no universal algorithm guaranteeing that such convergence
will be attained; rather, convergence is highly dependent on
the corresponding game setting, and is often only local. Con-
vergence to a NE is also further jeopardized when the players
of the game are bounded rational, either due to cognitive
limitations or because of physical constraints. Hence, we are
now motivated to move away from the elusive idea of the NE

and study alternative solution concepts, particularly based on
bounded rationality theory.

A. Problem Formulation

Consider an N -player (agent) stochastic game, defined by
the tuple pS, N , A, r, p, γq, where S “ t1, . . . , |S|u is
a finite state space; N “ t1, . . . , Nu is a set of players;
A “ A1 ˆ A2 . . . ˆ AN is a joint action space, with Ai

being the individual finite action space of player i, @i P N ;
r “ tr1, . . . , rNu is a joint immediate reward function,
with ri : S ˆ Ai ˆ A´i ˆ S Ñ R1 being the individual
immediate reward function of each player i P N ; p : SˆAˆ

S Ñ r0, 1s is the conditional probability transition function,
so that pps1, a1, . . . , aN , sq is the probability of transitioning
from a state s P S to a state s1 P S given actions ai P Ai,
@i P N ; and γ P p0, 1q is a discount factor.

For brevity, we also denote as pips1, ai, a´i, sq the prob-
ability of transitioning from a state s P S to a state s1 P S
given actions ai P Ai and a´i P A´i, @i P N . In addition,
@i P N , we define as Mi, M´i the space of the mappings
S Ñ Ai, S Ñ A´i respectively, and as J the space of the
mappings S Ñ R.

Given the stochastic game, each agent i P N interacts over
time with the environment and the other agents and takes an
action ait P Ai at every time instant t P N. Owing to those
actions, a sequence tstutPN of states st P S will be visited
at each time instant t P N, depending on the conditional
transition probabilities given by p and the initial state s0.
In this context, the goal of the player i P N is to choose a
policy πi P Mi, i.e., a mapping describing which action ai P

Ai is taken at any state s P S, to maximize their expected
discounted cumulative reward, or value, given by

J i
πi,π´ipsq“Ep

«

8
ÿ

t“0

γtripst`1,π
ipstq,π

´ipstq,stq

ˇ

ˇ

ˇ

ˇ

ˇ

s0“s

ff

,

(23)
where π´i “ tπjujPN ztiu P M´i, and the expected value
operator Ep is taken over the transition probabilities p.

The optimal policy πi‹ P Mi of player i, which maxi-
mizes (23), can be obtained from:

πi‹psq P arg max
aiPAi

ÿ

s1PS
pi
`

s1, ai, π´ipsq, s
˘

¨

´

ri
`

s, ai, π´ipsq, s1
˘

` γJ i
πi‹,π´ips1q

¯

, @s P S,

where J i
πi‹,π´i P J is the optimal value, which satisfies the

Bellman equation

J i
πi‹,π´ipsq “ max

aiPAi

ÿ

s1PS
pi
`

s1, ai, π´ipsq, s
˘

¨

´

ri
`

s, ai, π´ipsq, s1
˘

` γJ i
πi‹,π´ips1q

¯

, @s P S. (24)

Given (23)-(24), it is evident that the value of agent i P N
does not depend only on their policy, but also on the other
agents’ policies π´i. These policies are generally unknown,
thus it is not straightforward for agent i to maximize (23); a

1We denote A´i “
Ś

jPN ztiu

Aj , @i P N .



model of the policies π´i of the players in N ztiu is needed
for the maximization to be performed.

A common solution to this problem of lack of knowledge
is for each agent i P N to assume that all agents in N ztiu
will also optimize their own values, and that this assumption
is made by all agents. Hence, in this case, finding a policy
that maximizes (23) is ultimately equivalent to computing a
Nash equilibrium [77].

Definition 1. The tuple tµi‹, µ´i‹u, i P N , with µi‹ P

Mi and µ´i‹ “ tµj‹ujPN ztiu P M´i, constitutes a Nash
equilibrium if @µi P Mi, @i P N , it holds that

J i
µi‹,µ´i‹ psq ě J i

µi,µ´i‹ psq, @s P S. l

Adopting the approach of the Nash equilibrium to model
other agents’ behaviors leads to two important issues. First,
due to the finite nature of the action set A, finding a Nash
equilibrium requires a mostly intractable amount of compu-
tations even if all agents share the same reward functions
ri, @i P N [78]; second, in a realistic scenario, it is not
necessary that all agents are perfectly rational2, hence they
may not operate on a Nash equilibrium [21], especially
during initial plays of the learning mechanisms. Therefore,
instead of relying on the concept of the equilibrium, we
will instead seek bounded rationality models to capture other
agent behaviors.

B. Recursive Reasoning

Inspired by [21] and [24], we will now model the different
levels of rationality for each agent i P N participating in the
stochastic game, using recursive reasoning.

‚ Level-k Thinking
Level-k thinking is a model of bounded rationality used

to represent a player’s strategy, while also relaxing the
assumption that every agent seeks a policy that is based
solely on the notion of the Nash equilibrium. In particular,
level-k thinking defines different levels of rationality, where
at each level an agent assumes that the rest of the players
follow a policy given by an immediately lower level. Then,
the agent proceeds to optimize their cumulative reward (23)
given such an assumption. Taking the aforementioned into
account, we formulate a level-k thinking model as follows.

Level-0: An agent i P N with rationality of level-0, also
defined as a level-0 agent, is a player that behaves naively
[22], [24]; such an agent neither considers a model of the
other agents’ behavior, nor tries to maximize their own
cumulative reward (23). Hence, the policy πi‹

0 P Mi of a
level-0 agent i P N can be chosen arbitrarily, so that

πi‹
0 psq “ ai, ai P Ai, @s P S. (25)

Apart from choosing it as a constant one, the level-0 policy
can also be chosen to be uniformly random [24].

Level-k P N`: Unlike a level-0 agent, an agent i P N
with a rationality of level-k, k P N`, reasons about the

2In the sense that not every agent may be able to find the Nash
equilibrium; that not every agent assumes that the rest of the agents will
optimize their own values; or that not every agent actually seeks a Nash
equilibrium.

Algorithm 1 Level-Recursive Computation
Input: Sufficiently small constant ϵ ą 0, maximum level

k‹ P N`.
Output: Level-k policies π̂i

k “ πi‹
k , @i P N , @k P

t0, . . . , k‹u.
1: procedure
2: for i “ 1, . . . , N do Ź Initialization
3: π̂i

0psq Ð πi‹
0 psq, @s P S.

4: for k “ 1, . . . , k‹ do
5: Initialize J i

kpsq randomly, @s P S.
6: end for
7: end for
8: for k “ 1, . . . , k‹ do Ź Level-k policy estimation
9: for i “ 1, . . . , N do

10: repeat
11: vpsq Ð J i

kpsq, @s P S.
12: J i

kpsq Ð T i
π̂´i
k´1

vpsq, @s P S.

13: until
∥∥J i

k ´ v
∥∥

8
ă ϵ.

14: π̂i
kpsq Ð argmax

aiPAi
pQi

π̂´i
k´1

J i
kqps, aiq, @s P S.

15: end for
16: end for
17: end procedure

behavior of the other agents. In particular, for k P N`, a
level-k agent assumes that the level of rationality of the
rest of the agents is k ´ 1. Based on this assumption, a
level-k agent acts strategically by trying to maximize their
expected discounted cumulative reward, and by choosing a
level-k policy πi‹

k P Mi that satisfies, @k P N`:

πi‹
k P arg max

πiPMi
J i
πi, π´i‹

k´1

psq, @s P S, (26)

where π´i‹
k´1 “ tπj‹

k´1ujPN ztiu P M´i. Since the action space
A and the state space S are finite, there exists at least one
policy satisfying (26). Hence, for any agent i P N , it is
necessary and sufficient for a level-k policy πi‹

k to satisfy

J i
πi‹
k , π´i‹

k´1

psq ě J i
πi, π´i‹

k´1

psq, @s P S, @πi P Mi.

‚ Level-Recursive Computation of Level-k Policies

We proceed to find the level-k policies described by (26),
@k P N`. To this end, we define the Bellman operator T i

µ´i

and the Q-factor operator Qi
µ´i , @i P N , that map functions

of the form J P J to functions of the form
´

T i
µ´iJ

¯

psq “
∆ max

aiPAi

ÿ

s1PS
pi
`

s1, ai, µ´ipsq, s
˘

¨
`

ri
`

s, ai, µ´ipsq, s1
˘

` γJps1q
˘

, @s P S, (27)

and
´

Qi
µ´iJ

¯

ps, aiq “
∆

ÿ

s1PS
pi
`

s1, ai, µ´ipsq, s
˘

¨
`

ri
`

s, ai, µ´ipsq, s1
˘

` γJps1q
˘

, @s P S, ai P Ai, (28)

for any policies µ´i P M´i. Using these operators, a
level-recursive procedure for computing the level-k policies
can be implemented through Algorithm 1. For a detailed
convergence analysis of this Algorithm, see [26].



Algorithm 2 Level-Paralleled Computation
Input: Sufficiently small constant ϵ ą 0, maximum level

k‹ P N`.
Output: Level-k policies π̂i

k “ πi‹
k , @i P N , @k P

t0, . . . , k‹u.
1: procedure
2: for i “ 1, . . . , N do Ź Initialization
3: π̂i

0psq Ð πi‹
0 psq, @s P S.

4: for k “ 1, . . . , k‹ do
5: Initialize J i

kpsq randomly, @s P S.
6: end for
7: end for
8: repeat Ź Level-k policy estimation
9: ∆ Ð 0.

10: for k “ 1, . . . , k‹ do
11: for i “ 1, . . . , N do
12: vpsq Ð J i

kpsq, @s P S.
13: J i

kpsq Ð T i
π̂´i
k´1

vpsq, @s P S.

14: π̂i
kpsqÐargmax

aiPAi
pQi

π̂´i
k´1

J i
kqps, aiq, @sPS.

15: ∆ Ð max
␣

∆,
∥∥J i

k ´ v
∥∥

8

(

.
16: end for
17: end for
18: until ∆ ă ϵ.
19: end procedure

‚ Level-Paralleled Computation of Level-k Policies
The recursion presented in Algorithm 1 has a computa-

tional hurdle; for the execution of step k P N` to begin, the
previous step k´1 needs to have terminated. Hence, one may
desire to implement a version of Algorithm 1 that updates
the value and policy estimates J i

k, π̂
i
k, simultaneously, over

all k P N`. Such a procedure is described in Algorithm 2.
While Algorithm 2 allows for the parallel estimation of

the level-k policies over all the levels k P N, its convergence
– the proof of which can be found in [26] – relies on
the following uniqueness assumption, commonly imposed in
multi-agent frameworks [78].

Assumption 1. The cost functions of any two distinct
policies are distinct, i.e., for any two policies µi, µ

1i P Mi

and a joint policy µ´i P M´i, i P N , it holds that

µi ‰ µ
1i ùñ J i

µi, µ´i ‰ J i
µ1i, µ´i . l

Remark 1. The “for-loop” in lines 10´17 of Algorithm 2 can
be executed in an asynchronous manner (as in [79]), without
affecting the convergence of the algorithm. In fact, several
iterations of this loop can be omitted at multiple instances of
the wider “repeat-while” loop in lines 8 ´ 18. Hence, if the
state space S is large, a significant speed-up can be attained
with respect to the level-recursive Algorithm 1. l

Given Assumption 1, Algorithm 2 can be effectively exe-
cuted, in an asynchronous manner, to offer a computational
improvement with respect to Algorithm 1. Nevertheless, if
the communication or the memory overhead is high, then
the benefits of executing Algorithm 2 asynchronously will
be overshadowed; in such cases, Algorithm 1 is preferable.

‚ Cognitive Hierarchy
According to the level-k thinking model presented pre-

viously, a level-k agent assumes that the rest of the agents
are level-pk ´ 1q, @k P N`. However, such an assumption
can be restrictive; if the rest of the agents are at a lower
level of rationality, but not exactly at k ´ 1, all optimal-
ity guarantees are dropped. Therefore, it is of interest to
construct a more generalized model of bounded rationality,
which will allow for the other agents’ levels to vary, and not
be deterministically equal to k´1. To this end, we construct
a bounded rationality model based on cognitive hierarchy
[21], in order to generalize level-k thinking. According to
this model, a level-k agent does not necessarily assume that
the rest of the agents are level-pk´1q, but that their cognitive
level follows a distribution over t0, 1, . . . , k ´ 1u. If g is a
probability mass function over N, then such a distribution
Pk over κ P t0, 1, . . . , k ´ 1u, k P N`, can be defined by
the probability mass function:

Pkpκq “
gpκq

řk´1
i“0 gpiq

, @κ P t0, 1, . . . , k ´ 1u. (29)

It is common to select gp¨q to represent a Poisson distribution,
since experiments have shown that the proportion of players
with a cognitive level of k´1 usually decreases as k increases
[80]. By adopting the Poisson model, one has

gpκq “
λκe´λ

κ!
, (30)

where λ ą 0 is the mean and the variance of the model.
Given (29)-(30), the cognitive hierarchy model derives the

following policies µi‹

k P Mi at each level k P N, @i P N .
Level 0: The level-0 policy in cognitive hierarchy is

defined exactly as in the case of level-k thinking. That is,

µi‹
0 psq “ ai, ai P Ai, @s P S.

Level k P N`: According to the bounded rationality
model of cognitive hierarchy, an agent i P N of level-k,
k P N`, assumes that each of the other agents has a level of
intelligence κ, given by the distribution (29)-(30). That is,
κ „ Pk. Since κ is a random variable, it is in the interest of
agent i P N to maximize the expectation of their value over
κ „ Pk, and pick their policy according to

µi‹
k P arg max

µiPMi
E
”

J i
µi, µ´i‹

κ
psq

ˇ

ˇ κ „ Pk

ı

, @s P S, (31)

where µ´i‹
κ “ tµj‹

κ ujPN ztiu. By slightly modifying the
operators (27)-(28), so that they are taken with respect to
the expected value of the now random policies of the agents
in N ztiu, one can extend Algorithms 1 and 2 to solve (31).

C. Limited Communication

So far, only time-triggered policies have been derived.
That is, every player updates their action in each time step
of the stochastic game, and an infinite amount of commu-
nication resources is assumed to be available. As this might
be a restrictive assumption, here will present an intermittent
version of the bounded rational policies presented previously.
Two different approaches will be particularly considered.



‚ Concurrent Estimation

In the first approach, one can design an intermittent
rule that will be incorporated within the models of level-
k thinking and cognitive hierarchy. Specifically, at each
level k of level-k thinking, an intermittent policy that is
the best response to an intermittent level k ´ 1 policy is
designed. Similarly for cognitive hierarchy, at each level k,
an intermittent policy that is the best response to a distri-
bution of lower-level intermittent policies is constructed. In
short, when computing their intermittent policies, bounded
rational agents of any level consider the fact that the other
agents also use intermittency. In what follows, we focus on
derivations for the level-k thinking model, as the results are
similar for the cognitive hierarchy case. Towards designing
the aforementioned policies, we define an augmented state
space of the form S̃ “ S ˆ A [81]. This set includes the
nominal states st P S, along with the actions at´1 P A
played by each player in the previous time step t ´ 1 P N,
creating a pair xt “ pst, at´1q P S̃. The tuple of the
stochastic game is also redefined into pS̃, N , A, r̃, p̃, γq, so
that the reward r̃ and the transition probabilities are defined
over S̃. We additionally define as M̃i the set of policies of
agent i P N over the space S̃.

To optimize communication resources concurrently with
the rewards ri, we construct the augmented reward r̃i for
agent i P N by adjoining a communication reward to ri:

r̃ipxt`1, a
i
t, π̃

´ipxtq, xtq “ ρiripst`1, a
i
t, π̃

´ipxtq, stq

` p1 ´ ρiq1ai
t“ai

t´1
, (32)

where xt`1, xt P S̃ are the augmented states at time t`1 and
t, ait P Ai is the action of player i at time t, π̃´i P M̃´i are
joint policies of players in N ztiu, and ρi P r0, 1s. Evidently,
the reward function (32) is a convex combination of the
original reward ri as well as the indicator function 1ai

t“ai
t´1

.
The latter term forces constant policies to be more favorable,
which subsequently reduces the communication burden of
player i. The constant ρi is a measure of the communication
capabilities of player i; if ρi “ 1, then player i has infinite
communication resources and is not penalized for updating
their action at each time step; whereas if ρi “ 0, then player
i has zero bandwidth and will be rewarded only if they do
not update their action. In a realistic scenario, ρi will take a
value between zero and unity.

Over the new state space sequence txtutPN, and consid-
ering the reward function (32) that is augmented with a
communication penalty, the cumulative reward is:

J̃ i
π̃i,π̃´ipxq“Ep̃

«

8
ÿ

t“0

γtr̃ipxt`1,π̃
ipxtq,π̃

´ipxtq,xtq

ˇ

ˇ

ˇ

ˇ

ˇ

x0“x

ff

,

where xt P S̃. Hence, following the reasoning of Section
V-B and for all k P N`, the level-k policy of agent i P N
with incorporated intermittency can be obtained as:

π̃i‹
k P arg max

π̃iPM̃i
J̃ i
π̃i, π̃´i‹

k´1

pxq, @x P S̃. (33)

Notice that, unlike (26), in (33) the value function is de-

fined over the summation of the rewards (32), which are
augmented with a communication reward. Accordingly, the
base level-0 policy of the time-triggered case (25) can be
generalized to the intermittent case, so that for every agent
i P N it will be defined as:

π̃i‹
0 pxtq “ π̃i‹

0 pst, at´1q “ ait´1, ait´1 P Ai, @st P S.
(34)

In essence, a level-0 agent’s policy is constant, as they
will always play the action used in a previous time step.
Notice that, as (33)-(34) are of the same form as (25)-(26),
Algorithms 1 and 2 can be effectively utilized to compute
the event triggered level-k policies π̃i‹

k , @i P N , k P N.
While equations (33)-(34) describe an effective way of

optimally incorporating communication constraints within
the level-k thinking model, they suffer from a drawback;
information regarding the actual best-response policies is
diluted by the intermittency as the levels of intelligence
increase, and depending on the value of ρi, i P N . This is
because intermittency “quantizes” a player’s policy, making
it piece-wise constant to save communication resources.

‚ Sequential Estimation
In the second approach, one can design the intermittency

rule a posteriori, so that it is distinct from the models of
bounded rationality. In particular, the level-k policies are
initially derived as in Section V-B, and they are subsequently
“quantized” in order to obtain their intermittent version.
As a result, although each level-k agent can follow an
intermittency scheme a posteriori, they do not assume that
the lower-level agents do so as well. This approach can solve
the problem of information dilution described previously, but
it has a different drawback; it leads to overall suboptimality,
as the decision of whether to communicate or not is taken
after the level-k policies have been designed.

Given the nominal level-k policies (25)-(26) for player
i P N , a communication aware policy π̂i

k at the level k P N`

can be designed in an a posteriori sense, so that:

π̂i
kpxkq “

#

ait´1 γi
kpxkq “ 0

πi‹
k pskq γi

kpxkq “ 1.
(35)

In (35), γi
k P Γ “

∆ S̃ Ñ t0, 1u is an event that indicates
whether communication will take place or not, and which
should be optimized. In that sense, its optimal value γi‹

k

should be such that

γi‹
k P argmax

γi
kPΓ

Ĵ i
π̂i
k, π´i‹

k´1

pxq, @x P S̃, (36)

where

Ĵ i
π̂i
k,π

´i‹
k´1

pxq“Ep̃

„ 8
ÿ

t“0

γtr̃ipxt`1,π̂
i
kpxtq,π

´i‹
k´1pstq,xtq

ˇ

ˇ

ˇ

ˇ

x0“x

ȷ

.

Hence, given (35) and (36), the optimal intermittent policy,
designed in a sequential, a posteriori manner, is given by

π̂i‹
k pxkq “

#

ait´1 γi‹
k pxkq “ 0

πi‹
k pskq γi‹

k pxkq “ 1.

Remark 2. The optimization (36) can be performed using
standard policy or value iteration techniques. l



VI. POTENTIAL GAMES IN AUTONOMOUS DRIVING

As already pointed out, solution seeking in game-theoretic
approaches is generally complex, hence leading to scalability
issues for real-time operations in autonomous systems. In
addition, the possible lack of information and the bounded
rationality of other agents raise concerns regarding the
system performance, especially for safety-critical systems
like autonomous driving. In this section, we will introduce
a predictor-corrector game structure to address these chal-
lenges and see how to make game-theoretic approaches more
practical and reliable to autonomous driving applications.

A. Problem Formulation

Consider a set of traffic agents N represented by the
following discrete time models: xipt` 1q “ fipxiptq, aiptqq,
where xiptq P Xi Ď Rni and aiptq P Ui Ď Rmi are,
respectively, the state and action of agent i at the time
step t, i P N , and fi is the system evolution model.
Denote the state of all other agents except for agent i
as x´i, i.e., x´i “ tx1, . . . , xi´1, xi`1, . . . , xNu. Simi-
larly, let a´i “ ta1, . . . , ai´1, ai`1, . . . , aNu and f´i “

tf1, . . . , fi´1, fi`1, . . . , fNu. Denote the dimension of a´i

as m´i, i.e., a´iptq P Rm´i . Denote the global state, action,
and dynamics as x “ txi, x´iu, a “ tai, a´iu, and f “

tfi, f´iu, respectively.
In a driving scenario, every traffic agent has its own driving

objective, e.g., tracking a desired speed without collisions
and with ride comfort. We use the cost function Ji : A Ñ R
to characterize agent i’s objective, where A “ A1 ˆ A2 ˆ

¨ ¨ ¨ ˆ AN with Ai representing the strategy space of agent
i. We notice that human drivers’ maneuvers are generally
motivated by a foreseen gain or loss within a finite prediction
horizon, and therefore, their decision-making process can be
modeled as a receding horizon optimal control process. That
is, at each t, agent i aims to find its optimal action sequence
(or called strategy) a‹

i ptq P Ai such that

a‹
i ptq P arg min

aiptqPAi

Jipaiptq,a´iptqq

“ arg min
aiptqPAi

t`T´1
ÿ

τ“t

Ψipxipτq, x´ipτq, aipτq, a´ipτqq,
(37)

where aiptq “ taiptq, aipt` 1q, . . . , aipt`T ´ 1qu P Ai, Ai

is determined by Ui, a´i “ ta1, . . . ,ai´1,ai`1, . . . ,aNu P

A´i is the set of all other agents’ strategies except for agent i,
Ψi is the instantaneous cost at each time instant, T P Z`` is
the horizon length. After deriving a‹

i ptq, agent i implements
the first element a‹

i ptq and repeats the same procedure at the
next time instant, t ` 1, to timely respond to any change in
the environment.

As we can see from (37), agent i’s cost Ji depends on
not only ai but also a´i, indicating that agent i’s driving
performance is jointly affected by both its own and the
surrounding agents’ behaviors, characterizing agents’ inter-
actions. At each t, if every agent i aims to optimize its
own performance Ji, then the multi-agent optimization (37)
becomes a multi-player game, and the set of all agents’

optimal strategies ta‹
1ptq,a‹

2ptq, ¨ ¨ ¨ ,a‹
N ptqu, if nonempty,

composes a pure-strategy Nash equilibrium (PSNE).
Although the receding horizon multi-player game formu-

lation (37) is consistent with human driver decision making,
it is generally difficult to solve, and the difficulties include:
a) PSNE existence: Given arbitrary Ji, a PSNE that solves
(37) may not exist; b) PSNE convergence: Even if a PSNE
exists, a solution seeking algorithm, e.g., best response (BR)
dynamics, may not necessarily converge; c) Computational
scalability: To solve (37), multiple and iterative optimiza-
tions are generally required at each t, causing significant
computational burden; and d) Lack of global situation
awareness: To find PSNE, the ego vehicle needs to know
all agents’ cost functions, which may not be realistic in a
traffic setting.

B. Predictor-Corrector Potential Game

To address the above challenges and to solve (37) in
real time, we develop a predictor-corrector potential game
(PCPG) approach, featuring a potential game (PG) based
Predictor and a best-response based Corrector.

‚ PG Predictor
In the Predictor, the ego vehicle (denoted as agent i)

assumes that the surrounding agents’ behaviors are governed
by a pre-determined typical cost function Ĵj : A Ñ R.
Such a Ĵj can be learned offline via inverse RL or imitation
learning from realistic traffic datasets by the ego vehicle and
does not necessarily equal Jj , which is agent j’s actual
cost function. Mathematically, the ego vehicle solves the
following N -player game at each t.

a`
j ptq P arg min

ajptqPAj

Ĵjpajptq,a´jptqq (38)

where j P N , and Ĵi “ Ji.

Assumption 2. Ĵj is everywhere differentiable on an open
super-set of A, @j P N , Ai ‰ H, @i P N , and A is a
connected and compact set. l

To address the challenges caused by game complexity,
we formulate the game (38) as a continuous exact potential
game, which is defined as follows.

Definition 2 (Continuous Exact Potential Game [82]). Under
Assumption 2, The game (38) is a continuous exact potential
game if and only if there exists a function F : A Ñ R
such that F is everywhere differentiable on an open super-
set of A, and BĴjpaj ,a´jq

Baj
“

BF paj ,a´jq

Baj
holds @aj P Aj ,

@a´j P A´j , and @j P N . The function F is called the
potential function. l

In this section, the term PG always refers to the continuous
exact PG, and the word “continuous exact” may be omitted
when no confusion is caused. A PG has many appealing
properties, including guaranteed PSNE existence and best-
response dynamics convergence. We refer the readers to [82]
for a detailed discussion. The following Theorem shows how
to make the game (38) a PG.



Theorem 4 (Theorem 6 in [82]). Let the cost function Ĵj in
(38) satisfy

Ĵjpajptq,a´jptqq

“ αJ self
j pajptqq ` β

ÿ

kPN ,k‰j

Jjkpajptq,akptqq, (39)

where J self
j : Aj Ñ R is a function determined solely by

agent j’s action, Jjk : Aj ˆ Ak Ñ R satisfies

Jjkpajptq,akptqq “ Jkjpakptq,ajptqq,

@j, k P N , j ‰ k, and @aj P Aj ,ak P Ak,

and α and β are two real numbers. Then the game (38) is
a PG with the following potential function,

F paptqq “α
ÿ

jPN
J self
j pajptqq

` β
ÿ

jPN

ÿ

kPN ,kăj

Jjkpajptq,akptqq.
(40)

l

Theorem 4 states that if Ĵj is designed to be a linear
combination of two components: J self

j and
ř

kPN ,k‰j Jjk,
then the resulting game is a PG. Such a cost function design
can meet the autonomous driving application needs in gen-
eral, as the first term J self

j can be used to model self-focused
objectives such as tracking a desired speed, minimizing fuel
consumption, and maintaining ride comfort, and the second
term

ř

kPN ,k‰j Jjk can be used to capture symmetric pair-
wise agent interactions such as a pairwise collision penalty.
Please see [2], [3] for examples where AV cost function
design follows, or can be slightly revised to follow, the form
(39). After formulating the game as a PG, the PSNE seeking
problem, which generally requires multiple and iterative
optimizations, can be solved by one simple optimization [82],
addressing the computational scalability challenge. Specifi-
cally, the PSNE a`ptq “ ta`

1 ptq,a`
2 ptq, ¨ ¨ ¨ ,a`

N ptqu of the
game (38) can be found by a`ptq P arg minaptqPA F paptqq,
where F is determined by (40).

‚ PG Corrector
The Predictor finds the ego vehicle optimal strategy by

assuming pre-determined others’ cost functions Ĵj . We ac-
knowledge that Ĵj may not equal Jj , which may lead
to a`

´iptq ‰ a‹
´iptq, where a‹

´iptq “ ta‹
´iptq, a

‹
´ipt `

1q, ¨ ¨ ¨ , a‹
´ipt ` T ´ 1qu is the surrounding agents’ actual

strategies at t. To account for such a discrepancy, we design
a best response-based Corrector.

Define action deviation at t as

ω´iptq “ a‹
´iptq ´ a`

´iptq. (41)

In the Corrector, the ego vehicle aims to find its best
response to a corrected prediction on the surrounding agents’
strategies, i.e.,

a‹
i ptq P arg min

aiptqPAi

Jipaiptq, â
‹
´iptqq, (42)

with â‹
´iptq “ a`

´iptq ` ω̂´iptq; ω̂´iptq “ 1T bω´ipt´ 1q,
where b represents the Kronecker product, and 1T is a vector
of ones with T elements. Note that Ji in (42) is the cost

function of the ego vehicle and hence is supposed to be
known. The corrected prediction â‹

´iptq in (42) takes into
account both the prediction from the PG, a`

´iptq, and the
observed action deviation at t´ 1, ω´ipt´ 1q. By assuming
constant deviations over rt´1, t`T ´1s, we are considering
consistent driving styles of the surrounding agents: If agent
j performs more aggressively than a typical agent at t ´ 1,
then a similar aggressiveness level should be expected over
the horizon rt, t ` T ´ 1s. We define the prediction error
epτq, τ P rt, t ` T ´ 1s, τ P Z`, as the difference between
the predicted other agents’ actions from (42) and their actual
actions, i.e., epτq “ a‹

´ipτq ´ â‹
´ipτq.

The following theorem shows that with the PCPG, the
prediction error epτq admits a bound.

Theorem 5. [Bounded prediction error [27]] Assume that
a‹

´i : Z` Ñ Rm´i and a`
´i : Z` Ñ Rm´i are Lipschitz

continuous functions with

}a‹
´ipτq ´ a‹

´ipt ´ 1q} ď K1 ¨ pτ ´ t ` 1q ¨ ∆t,

}a`
´ipτq ´ a`

´ipt ´ 1q} ď K2 ¨ pτ ´ t ` 1q ¨ ∆t,

where K1 P R` and K2 P R` are two constants, and ∆t P

R`` is the sampling time. Then }epτq} is bounded by

}epτq} ď pK1 ` K2q ¨ pτ ´ t ` 1q ¨ ∆t, (43)

@τ P rt, t ` T ´ 1s, τ P Z`. l

Theorem 5 shows that the prediction error epτq remains
bounded over a finite prediction horizon, and the bound
depends on the sampling time ∆t, horizon length T , and
the constants K1 and K2. In autonomous driving, the value
of K1 can be determined from acceleration, jerk, and angular
acceleration limits of the individual vehicles, and the value of
K2 can be determined from offline closed-loop simulations
of the multi-agent system operating according to the PG
(38) assessed at the worst case with respect to variations
in parameters. Given the bound (43), we denote

Epτq “ tê P Rm´i |}ê} ď C ¨ pt ` τ ´ 1q ¨ ∆tu, (44)

as the set of all possible prediction errors at τ P rt, t`T ´1s.

C. Performance Analysis

With the PCPG designed above, the ego vehicle safety can
be guaranteed under certain conditions, despite the unknown
cost functions of others.

Define a safe set X safe
i px´iptqq as the set of all xiptq such

that if xiptq P X safe
i px´iptqq for a given x´iptq, then the

ego vehicle is considered safe at t. An example of such a
safe set, if x represents vehicle position, is X safe

i px´iptqq “

txiptq|}xiptq ´ xjptq} ě dsafe,@j P N´iu, where dsafe ą 0 is
a predefined safe distance. Denote X̂´ipτ |tq, τ P rt`1, t`T s,
as the set of x̂´ipτ |tq generated by the set of action sequences
tâ‹

´iptq ` êptq, ¨ ¨ ¨ , â‹
´ipτ ´ 1q ` êpτ ´ 1qu, where êpkq P

Epkq, k P rt, τ ´ 1s, and Epkq is defined in (44), i.e.,

X̂´ipτ |tq “ tx̂´ipτ |tq|x̂´ipτ |tq “

f´i

`

x´iptq, tâ‹
´iptq ` êptq, ¨ ¨ ¨ , â‹

´ipτ ´ 1q ` êpτ ´ 1qu
˘

|êpkq P Epkq, k P rt, τ ´ 1su,



where
f´i

`

x´iptq, tâ‹
´iptq ` êptq, ¨ ¨ ¨ , â‹

´ipτ ´ 1q ` êpτ ´ 1qu
˘

,
with a slight abuse of notation, represents the
surrounding agents’ state at τ if the action sequence
tâ‹

´iptq ` êptq, ¨ ¨ ¨ , â‹
´ipτ ´ 1q ` êpτ ´ 1qu is implemented.

Denote Asafe
i pt, T q Ď Ai as the set of aiptq such that @τ P

rt ` 1, t ` T s,

xipτq “ fi pxiptq, taiptq, ¨ ¨ ¨ , aipτ ´ 1quq P X safe
i px̂´ipτ |tqq

holds @x̂´ipτ |tq P X̂´ipτ |tq.
Next, we summarize the PCPG safety performance.

Theorem 6 (Safety [27]). If the ego vehicle cost function Ji
is designed such that

arg min
aiptqPAi

Jipaiptq, â
‹
´iptqq Ď Asafe

i pt, T q, (45)

and
Asafe

i pt, T q ‰ H, (46)

then the PCPG guarantees the ego vehicle safety within the
horizon rt ` 1, t ` T s, i.e., a‹

i ptq from (42) leads to xipτq P

X safe
i px‹

´ipτqq,@τ P rt`1, t`T s, where x‹
´ipτq denotes the

surrounding agents’ actual state at τ . l

The above theorem states that PCPG guarantees the ego
vehicle safety under two conditions: 1) The ego vehicle is
safety-conscious, i.e., (45) holds; and 2) A safe strategy ex-
ists, i.e., (46) holds. A safety-conscious ego vehicle requires
that if Asafe

i pt, T q ‰ H, then a global minimizer of Ji should
belong to Asafe

i pt, T q. To design such a cost function, one
may consider incorporating the safety constraint as a barrier
in Ji. Consider the interior-point method [83] as an example.

Next, we consider the optimality of a‹
i ptq. With a

slight abuse of notation, we denote
`

a‹
i ptq,a‹

´iptq
˘

(resp.,
`

a‹
i ptq, â‹

´iptq
˘

) as the strategy profile that agents ´i
take a‹

´iptq (resp., â‹
´iptq) and the ego vehicle takes

a‹
i ptq P arg minaiptqPAi

Jipaiptq,a
‹
´iptqq (resp., a‹

i ptq P

arg minaiptqPAi
Jipaiptq, â

‹
´iptqq).

Theorem 7 (Optimality [27]). Consider the PCPG designed
in Section VI-B and the action deviation in (41). If ω´iptq
varies slowly with time, and ω´iptq ´ ω´ipt ´ 1q Ñ 0,
where 0 is a vector of zeros with proper dimensions, then
`

a‹
i ptq, â‹

´iptq
˘

Ñ
`

a‹
i ptq,a‹

´iptq
˘

. l

The above theorem shows that if the action deviation
function ω´iptq varies slowly with time, then the outcome
from the PCPG approximates the actual PSNE of the system
nicely, despite the unknown cost functions of others. Note
that although a slowly time-varying ω´iptq is desirable from
the optimality point of view, it is not required in the safety
guarantee. We refer the readers to [27] for more details and
for performance in specific traffic scenarios.
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