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Abstract

Stochastic modeling of chemical reactions and gene regulatory networks

by

Abhyudai Singh

Living cells are characterized by small populations of key components (for example,

proteins and mRNAs), which make bio-chemical reactions inherently noisy. This the-

sis outlines new computational techniques for quantifying noise in such bio-chemical

reactions. These techniques include a novel moment closure procedure that provides

the time evolution of all lower order statistical moments (for example, means and

standard deviations) for the number of molecules of different species involved in the

reaction. Striking features of this moment closure procedure is that it is independent

of the reaction parameters (reaction rates and stoichiometry) and its accuracy can be

improved by incurring more computational cost.

This thesis also proposes a new small noise approximation that provides analytical

formulas relating the steady-state statistical moments to the parameters of the chem-

ical reaction. Unlike the well-known linear noise approximation, these formulas not

only predict the stochastic fluctuations about the mean but also the deviation of the

mean from the solution of the corresponding chemical rate equation (i.e., determinis-

tic model).

Using the above computational techniques this thesis investigates the noise suppres-

sion properties of various gene network motifs. One such common network motif is
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an auto-regulatory negative feedback loop, where the protein expressed from a gene

inhibits its own expression. In this network, stochastic fluctuations in protein levels are

attributed to two factors: intrinsic noise (i.e., the randomness associated with protein

expression and degradation ) and extrinsic noise (i.e., the noise caused by fluctuations

in cellular components such as enzyme levels and gene-copy numbers). This thesis

shows that although negative feedback loops attenuate both components of noise, they

are much more efficient in reducing the extrinsic component of noise than the intrinsic

component. It further shows that in these auto-regulatory networks, the protein noise

levels are minimized at an optimal level of feedback strength. Analytical expressions

for this highest level of noise suppression and the amount of feedback that achieves

this minimal noise are provided. These theoretical results are shown to be consistent

and explain recent experimental observations.

Finally, this thesis examines other common network motifs such as gene cascades,

which can act as noise attenuators or noise magnifiers depending upon the amount of

intrinsic and extrinsic noise present.
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Chapter 1

Moment closure for stochastic

chemical kinetics

The time evolution of a spatially homogeneous mixture of chemically reacting

molecules is often modeled using a stochastic formulation, which takes into account

the inherent randomness of thermal molecular motion. This formulation is superior

to the traditional deterministic formulation of chemical kinetics and is motivated by

complex reactions inside living cells, where small populations of key reactants can set

the stage for significant stochastic effects [28, 4, 17, 58, 54].

In the stochastic formulation, the time evolution of the system is described by a

single equation for a probability function, where time and species populations appear

as independent variables, called the Chemical Master equation (CME) [29]. As ana-

lytical solutions to this equation are impossible (except for highly idealized cases, see

[29] for examples), Monte Carlo simulation techniques [14, 15] and the finite state

projection algorithm [30] are generally used to approximate the solution of the CME.
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Since one is often interested in only the first and second order moments for the number

of molecules of the different species involved, much effort can be saved by applying

approximate methods to compute these low-order moments, without actually having

to solve for the probability density function. Various such approximate methods have

been developed, for example, the linear noise approximation [59, 21] and mass fluctu-

ation kinetics, which assumes that the third order centered moments are equal to zero

[16].

In this chapter, an alternative method for estimating low-order statistical moments

is introduced for a general class of elementary chemical reactions involving n chem-

ical species and K reactions. To derive differential equations for the time evolution

of moments of the populations, the set of chemical reactions is first modeled as a

Stochastic Hybrid System (SHS) with state x = [x1, . . . ,xn]T , where x j denotes the

population of specie X j involved in the chemical reaction. In order to fit the frame-

work of our problem, this SHS has trivial continuous dynamics ẋ = 0, with reset maps

and transitional intensities defined by the stoichiometry and the propensity function

of the reactions, respectively. In essence, if no reaction takes place, the population of

species remain constant and whenever a reaction takes place, the corresponding reset

map is “activated” and the population is reset according to the stoichiometry of the

reaction. Details for the stochastic modeling of chemical reactions are presented in

Section 1.1. The time evolution of the moments is then obtained using results from the

SHS literature [10, 18].

In Section 1.1 we construct a vector µ containing all moments of x up to order R,

which we refer to as an Rth order truncation. It is shown that µ’s time derivative, given

2



by

µ̇ = â+Aµ +Bµ̄ (1.1)

for some vector â and matrices A and B, is not closed, in the sense that it depends on µ̄

which is a vector containing moments of x of order R + 1. This assertion is based on

the assumption that there is at least one bi-molecular reaction (i.e., has two reactants)

in the set of chemical reactions considered. For analysis purposes, we close the above

system by approximating each element of µ̄ as a nonlinear function ϕ(µ) of moments

up to order R. This procedure is commonly referred to as moment closure. We call

ϕ(µ) the moment closure function for the corresponding element of µ̄ . We denote the

state of the closed system by ν , which should be viewed as an approximation for the

vector µ . The dynamics for ν are given by

ν̇ = â+Aν +Bϕ̄(ν), (1.2)

where ϕ̄ is a column vector of moment closure functions ϕ . The above closed dynam-

ics is referred to as the truncated moment dynamics.

A general procedure to construct these moment closure functions is outlined. This

procedure is based on first assuming a certain separable form for each element ϕ of ϕ̄

and then matching time derivatives of µ and ν in (1.1) and (1.2) respectively, at some

initial time t0, for a deterministic initial condition x(t0) = x0 with probability one. This

procedure uniquely determines the moment closure functions ϕ and explicit formulas

to construct them are provided in Section 1.2. We refer to this moment closure proce-

dure as the Separable Derivative-Matching (SDM) moment closure.

One of the key results of this section is that for SDM moment closure we have

diµ(t)
dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

+ εi(x0), ∀i≥ 1 (1.3)

3



for deterministic initial conditions, i.e., x(t0) = x0 with probability one. In (1.3), each

element of vector diµ(t)
dt i

∣∣
t=t0

is a polynomial in x0, whose degree is larger than the de-

gree of the corresponding polynomial element of the error vector εi(x0) by R whenever

that element of the error vector is non-zero. Thus, with increasing R, the truncated mo-

ment dynamics ν(t) should provide more accurate approximations to the lower order

moments µ(t).

A striking feature of the SDM moment closure functions is that they are indepen-

dent of the reaction parameters (reaction rates and stoichiometry) and moreover the

dependence of higher-order moment on lower order ones is consistent with x being

jointly lognormally distributed in spite of the fact that the procedure used to construct

ϕ does not make any assumption on the distribution of the population.

To illustrate the applicability of our results, we construct truncated moment dynam-

ics for a set of chemical reactions motivated by a gene cascade network. It is shown

that truncated moment dynamics based on a second order truncation provides good

estimates of the first and second order moments as compared with the actual moments

obtained using Monte Carlo simulations (Gillespie’s SSA [14]). As claimed, perfor-

mance improves with a third order truncation, which provides more accurate estimates

of the actual moment dynamics.

The moment closure procedure proposed in this chapter is also compared to an

alternative procedure where moment closure is performed by setting the third order

centered moments equal to zero [16]. This later procedure is referred to as the normal

moment closure. It is shown that for large populations, the normal moment closure

provides better estimates of the statistical moments than the SDM moment closure.

However, when the population size is small the SDM moment closure outperforms the

normal moment closure.
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1.1 Moment dynamics of chemically reacting systems

Consider a system of n species X j, j ∈ {1, . . . ,n} inside a fixed volume V involved

in K reactions of the form

Ri : ui1X1 + . . .+uinXn
ci−→ vi1X1 + . . .+ vinXn +∗ (1.4)

for all i ∈ {1, . . . ,K}, where ui j ∈ N≥0 is the stoichiometry associated with the jth

reactant in the ith reaction and vi j ∈ N≥0 is the stoichiometry associated with the jth

product in the ith reaction, and ∗ represents products other than the species X j. As all

chemical reactions occur in a series of elementary reactions, which are generally uni-

or bi-molecular, we assume

ui1 + . . .+uin ≤ 2, ∀i ∈ {1, . . . ,K}, (1.5)

[65], and hence, we only allow reactions which have the form given in the first col-

umn of Table 1.1. The parameter ci characterizes the ith reaction Ri and defines the

probability that this reaction will take place in the next “infinitesimal” time interval

(t, t +dt]. This probability is given by cihidt where hi is the number of distinct molec-

ular reactant combinations for the reaction Ri present in the volume V at time t and

cidt is the probability that a particular reactant combination of Ri will actually react

on (t, t + dt]. The product cihi is called the propensity function of reaction Ri. The

number hi depends both on the reactants stoichiometry ui j in Ri and on the number of

reactant molecules in V . Table 1.1 shows the form of hi for standard elementary reac-

tions [14]. In this table and in the sequel, we denote by x j, the number of molecules

of the species X j in the volume V and x := [x1, . . . ,xn]T ∈ Rn. The reaction parameter

ci is related to the reaction rate ki in the deterministic formulation of chemical kinetics

by the formulas shown in the right-most column of Table 1.1.

5



Table 1.1. hi(x) and ci for different elementary reactions.

Reaction Ri hi(x) ci
X j −→ ∗ x j ki

X j +X` −→ ∗ x jx`
ki
V

(` 6= j)

2X j −→ ∗ 1
2x j(x j−1) 2ki

V

To model the time evolution of the number of molecules x1, x2, . . . , xn, a special

class of Stochastic Hybrid Systems (SHS) was introduced in [19]. More specifically, to

fit the framework of our problem, these systems are characterized by trivial dynamics

ẋ = 0, x = [x1, . . . ,xn]T , (1.6)

a family of K reset maps

x = φi(x−), φi : Rn→Rn, (1.7)

and a corresponding family of K transition intensities

λi(x), λi : Rn→ [0,∞) (1.8)

for all i ∈ {1, . . . ,K}. Each of the reset maps φi(x), and corresponding transition in-

tensities λi(x) are uniquely defined by the ith reaction and given by

x 7→ φi(x) =



x1−ui1 + vi1

x2−ui2 + vi2

...

xn−uin + vin


, λi(x) = cihi(x) (1.9)

for all i ∈ {1, . . . ,K}. In essence, if no reaction takes place, the state remains constant

and whenever the ith reaction takes place, the reset map φi(x) is “activated” and the
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state x is reset according to (1.9), furthermore, the probability of the activation taking

place in an “infinitesimal” time interval (t, t +dt] is λi(x)dt.

Given a vector m = (m1,m2, . . . ,mn) ∈ Nn
≥0 of n non-negative integers, we define

the (uncentered) moment of x associated with m to be

µ(m)(t) := E
[
x(m)(t)

]
, ∀t ≥ 0 (1.10)

where E stands for the expected value and

x(m) := xm1
1 xm2

2 · · ·xmn
n . (1.11)

The sum ∑
n
j=1 m j is called the order of the moment. For example, consider a system

of reactions with two species (n = 2) and x = [x1,x2]T . Then, the first order moments

are given by

µ(1,0) = E[x1], µ(0,1) = E[x2], (1.12)

the second order moments are given by

µ(2,0) = E[x2
1], µ(0,2) = E[x2

2], µ(1,1) = E[x1x2], (1.13)

and so on. In the sequel, when we simply say a “moment of x,” we refer to an un-

centered moment of x. The time evolution of the moments is given by the following

Theorem (see Appendix A for details).

Theorem 1.1 Let the vector

µ = [µ(m1), · · · ,µ(mk)]
T ∈ Rk, mp ∈ Nn

≥0, ∀p ∈ {1, , . . . ,k} (1.14)

contain all the moments of x of order up to R. Let there exists at least one reaction in

(1.4) which has two reactants, then the time derivative of µ is given by

µ̇ = â+Aµ +Bµ̄, (1.15)
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for an appropriate vector â, matrices A and B, and µ̄ ∈ Rr is a vector of moments of

order R+1.

In the sequel, we refer to R as the order truncation. One can see from the above

Theorem that the dynamics of vector µ is not closed, in the sense that it depends on

higher order moments in µ̄ . We approximate (1.15) by a nonlinear system of the form

ν̇ = â+Aν +Bϕ̄(ν), ν = [ν(m1), . . . ,ν(mk)]
T (1.16)

where the map ϕ̄ : Rk → Rr should be chosen so as to keep ν(t) close to µ(t). This

procedure is commonly referred to as moment closure. We call (1.16) the truncated

moment dynamics and each element ϕ(m̄)(µ) of ϕ̄(µ) the moment closure function for

the corresponding element µ(m̄) in µ̄ .

When a sufficiently large number of derivatives of µ(t) and ν(t) match point-wise,

then, the difference between solutions to (1.15) and (1.16) remains close on a given

compact time interval, this follows from a Taylor series approximation argument. To

be more precise, for each δ > 0 and T ∈R, there exists an integer N, sufficiently large,

for which the following result holds: Assuming that for some initial time t0,

µ(t0) = ν(t0) ⇒ diµ(t)
dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

, ∀i ∈ {1,2, . . . ,N} (1.17)

where diµ(t)
dt i

∣∣
t=t0

and diν(t)
dt i

∣∣
t=t0

represent the ith time derivative of µ(t) and ν(t) along

the trajectories of system (1.15) and (1.16), respectively at an initial time t0. Then,

‖µ(t)−ν(t)‖ ≤ δ , ∀t ∈ [t0,T ], (1.18)

along solutions of (1.15) and (1.16). Note that for the above argument to hold there

is an implicit assumption that both µ(t) and ν(t) are analytical functions, i.e., can be

written as a convergent power series about t = t0.
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1.2 SDM moment closure procedure

In this section we construct truncated moment dynamics so that the condition

(1.17) holds approximately. After replacing (1.15) and (1.16) in (1.17) we obtain a

PDE on ϕ̄ . We seek solutions ϕ̄ to this PDE for which each entry ϕ(m̄) has the follow-

ing separable form

ϕ(m̄)(ν) =
k

∏
p=1

(
ν(mp)

)γp
, (1.19)

where γp are appropriately chosen constants.

1.2.1 Derivative matching for a generator

In general, it will not be possible to find constants γp such that (1.17) holds for any

arbitrary initial conditions. To be more precise, denoting by µ∞(t) an infinite vector

containing all moments of x and by Ω∞ the (convex) set of all possible values that

µ∞ can take, it will not be possible to make (1.17) hold ∀µ∞(t0) ∈ Ω∞. Instead, we

will simply require (1.17) to hold for vectors µ∞(t0) belonging to a set of vectors that

generate Ω∞ by convex combinations. It is not hard to see that the set of deterministic

distributions forms a natural generator for Ω∞. For example, with two species (n = 2)

with populations x1 and x2, denoting by Px1x2(t) the probability of having x1(t) = x1,

9



x2(t) = x2, the infinite vector µ∞ can be expressed as

µ∞(t) =



E[x1(t)]

E[x2(t)]

E[x2
1(t)]

E[x2
2(t)]

E[x1(t)x2(t)]
...


=

∞

∑
x1=0

∞

∑
x2=0



x1

x2

x2
1

x2
2

x1x2

...


Px1x2(t). (1.20)

Hence, the set of infinite vectors

D =
{
[x1,x2,x2

1,x
2
2,x1x2, . . .]T : x1,x2 ≥ 0

}
(1.21)

which corresponds to deterministic distributions, i.e., x1(t) = x1, x2(t) = x2 with prob-

ability one, generated Ω∞ by convex combinations. In the sequel, we seek for constants

γp for which (1.17) holds for every vector µ∞(t0) belonging to D, i.e., for the class of

deterministic initial conditions.

However, often it is still not possible to find γp for which (1.17) holds exactly in D.

We will therefore relax this condition and simply demand the following

µ(t0) = ν(t0) ⇒ diµ(t)
dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

+E[εi(x(t0))], (1.22)

∀i ∈ {1,2, . . . ,N}, where each element of εi(x(t0)) is a polynomial in x(t0). One can

think of (1.22) as an approximation to (1.17) which will be valid as long as the mo-

ments in diµ(t)
dt i

∣∣
t=t0

dominate over E[εi(x(t0))].

Before stating our main result, for given vectors m̂ = (m̂1, . . . , m̂n) ∈Nn
≥0 and m̌ =
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(m̌1, . . . , m̌n) ∈ Nn
≥0, we define the scalar1

C(m̂)
(m̌) := Cm̂1

m̌1
Cm̂2

m̌2
. . .Cm̂n

m̌n
. (1.23)

Theorem 1.2 Assume that for each element µ(m̄) of µ̄ , the corresponding moment

closure function ϕ(m̄) in ϕ̄ is chosen according to (1.19) with γ = (γ1, . . . ,γk) taken as

the unique solution of the following system of linear equations

C(m̄)
(ms)

=
k

∑
p=1

γpC(mp)
(ms)

, ∀s = {1, . . . ,k}. (1.24)

Then, with initial conditions x(t0) = x0 ∈ Rn with probability one, we have that

µ(t0) = ν(t0) ⇒ dµ(t)
dt

∣∣
t=t0

=
dν(t)

dt

∣∣
t=t0

(1.25a)

⇒ d2µ(t)
dt2

∣∣
t=t0

=
d2ν(t)

dt2

∣∣
t=t0

+ ε2(x0) (1.25b)

where the last n̄ elements of ε2(x0) are polynomials in x0 of degree 2 and all other

elements are zero. Here, n̄ = k−n∗+1, where n∗ denotes the row in the vector µ from

where the Rth order moments of x start appearing.

As the last n̄ elements of µ(t) contain moments of order R, we have that the last

n̄ elements of the vector d2µ(t)
dt2

∣∣
t=t0

are polynomials in x0 of degree R + 2. Thus, we

have for sufficiently large ||x0|| that

ε
p
2 (x0)

d2µ(mp)(t)
dt2 |t=t0

=

 0 i f p < n∗

O(||x0||−R) i f p≥ n∗
(1.26)

1C`
h is defined as follows: ∀`,h ∈ N≥0

C`
h =

{ `!
(`−h)!h! , `≥ h
0, ` < h

where `! denotes the factorial of `. The factorial of zero is defined as one. Hence by this definition
C0

0 = 1.
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where ε
p
2 (x0) and µ(mp)(t) denote the pth element of the vector ε2(x0) and µ(t), re-

spectively, and O denotes the order of magnitude. This result shows that the error ε2

in the derivative-matching can be reduced by increasing the order of truncation R.

From the proof of Theorem 1.2 one can see that the functions hi(x) only determine

the error ε2(x0) and not the constants γp. Thus, Theorem 1.2 can also be used to

compute moment closure functions when the reactions are non-elementary and hi(x)

is a polynomial of arbitrary degree. The only difference would be that the higher order

moments to be approximated can be of order R+1 or higher.

It can be verified that with γp chosen as in Theorem 1.2, moment closure func-

tions so obtained also match derivatives of order higher than 2 in (1.25b) with small

errors. Using symbolic manipulation in Mathematica, for n∈ {1,2,3} and i∈ {3,4,5}

one can verify that the degree of the polynomial elements of diµ(t)
dt i

∣∣
t=t0

are larger

then the degree of the corresponding polynomial elements in the error vector εi(x0) =
diµ(t)

dt i

∣∣
t=t0

− diν(t)
dt i

∣∣
t=t0

by R whenever that element in the error vector is non-zero. We

conjecture that this is true ∀n ∈ N and ∀i ∈ N but we only verified it for n up to 3 and

i up to 5. Hence, with increasing R, the truncated moment dynamics ν(t) should pro-

vide a more accurate approximations to the lower order moments µ(t). In the sequel

we refer to moment closure functions obtained from (1.19) and (1.24) as Separable

Derivative-Matching (SDM) moment closure functions
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1.2.2 Proof of Theorem 1.2

Let the vector mp ∈Om denote that µ(mp) is a moment of order m. We assume that

the moments in vector µ are arranged in increasing order, i.e.,

mp ∈O1, ∀p ∈ {1, . . . ,n} (1.27a)

mp ∈O2, ∀p ∈ {n+1, . . . ,n+n(n+1)/2} (1.27b)

and so on. Moreover, the vector mp ∈O1 has 1 in the pth position and all other entries

are zero. From (1.15) and (1.16) we have that

dµ(t)
dt

∣∣
t=t0

− dν(t)
dt

∣∣
t=t0

=A(µ(t0)−ν(t0))+B(µ̄(t0)− ϕ̄(ν(t0)) (1.28a)

d2µ(t)
dt2

∣∣
t=t0

− d2ν(t)
dt2

∣∣
t=t0

=A
(

dµ(t)
dt

∣∣
t=t0

− dν(t)
dt

∣∣
t=t0

)
+

B
(

dµ̄(t)
dt

∣∣
t=t0

− dϕ̄(ν(t))
dt

∣∣
t=t0

)
. (1.28b)

Using µ(t0) = ν(t0) and the fact that all elements in the first n∗− 1 rows of matrix B

are zero (see Appendix A), it is sufficient to prove the following : For each element

µ(m̄) of µ̄ and its corresponding moment closure function ϕ(m̄)(µ) we have

µ(m̄)(t0) = ϕ(m̄)(µ(t0)) (1.29a)

dµ(m̄)(t)
dt

∣∣
t=t0

=
dϕ(m̄)(µ(t))

dt

∣∣
t=t0

+ ε̄(x0) (1.29b)

where the scalar ε̄(x0) is polynomial in x0 of degree 2.

We first prove (1.29a). For the initial conditions x(t0) = x0 with probability one

and using (1.19) we have

µ(m̄)(t0) = x(m̄)
0 , (1.30a)

ϕ(m̄)(µ(t0)) =
k

∏
p=1

(
x(mp)

0

)γp
= x(∑

k
p=1 γpmp)

0 . (1.30b)
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Using (1.23) and the fact that the vectors mp ∈ O1, p ∈ {1, . . . ,n} have 1 in the pth

position and all other entries zero, we have that

m̄ =
(

C(m̄)
(m1)

, . . . ,C(m̄)
(mn)

)
, mp =

(
C(mp)

(m1)
, . . . ,C(mp)

(mn)

)
, ∀p ∈ {1, . . . ,k}. (1.31)

From the above equalities and using (1.24) for s∈{1, . . . ,n}we have that m̄ = ∑
k
p=1 γpmp.

Hence from (1.30a)-(1.30b), equality (1.29a) holds.

Our next goal is to prove (1.29b). We have from Appendix A that the time deriva-

tive of a moment µ(m) of order m is given by (A.3) where from (A.5a)

(Lψ)(x) =
K

∑
i=1

cihi(x)

{[
n

∏
j=1

m j

∑
q=0

Cm j
q xm j−q

j aq
i j

]
−x(m)

}
:=

K

∑
i=1

cihi(x)gi(x). (1.32)

Note that the polynomial gi(x) is a polynomial of order m− 1. The monomials that

contribute to terms of degree m−1 in gi(x) are
n

∑
j=1

Cm j
1

x(m)

x j
ai j =

n

∑
p=1

C(m)
(mp)

x(m−mp)a(mp)
i = ∑

∀mp∈O1

C(m)
(mp)

x(m−mp)a(mp)
i (1.33)

where ai = [ai1, . . . ,ain]T . Similarly the monomials that contributes to terms of degree

m−2 are
n

∑
j=1

Cm j
2

x(m)

x2
j

a2
i j +

n

∑
j=1

n

∑
u=1(u6= j)

Cm j
1 Cmu

1
x(m)

x jxu
ai jaiu = ∑

∀mp∈O2

C(m)
(mp)

x(m−mp)a(mp)
i .

(1.34)

Thus the term
R

∑
l=1

∑
∀mp∈Ol

C(m)
(mp)

x(m−mp)a(mp)
i =

k

∑
s=1

C(m)
(ms)

x(m−ms)a(ms)
i (1.35)

represents all terms that contribute to monomials of degree m− 1 to m−R in gi(x).

Therefore we can write

dµ(m)(t)
dt

= E[(Lψ)(x)], (Lψ)(x) =
K

∑
i=1

cihi(x)gi(x) (1.36a)

gi(x) =
k

∑
s=1

C(m)
(ms)

x(m−ms)a(ms)
i +Pm−1−R(x) (1.36b)
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where Pm−1−R(x) is zero if m−1−R < 0, constant if m−1−R = 0 and a polynomial

in x of degree m− 1−R otherwise. As µ(m̄) is a moment of order R + 1 ( hence

m = R+1) we have from (1.36)

dµ(m̄)(t)
dt

∣∣
t=t0

=
K

∑
i=1

cihi(x0)

{
k

∑
s=1

C(m̄)
(ms)

x(m̄−ms)
0 a(ms)

i +Gi

}
(1.37)

where Gi is a constant. Also from (1.19) and using (1.29a), (1.36)

dϕ(m̄)(µ(t))
dt

∣∣
t=t0

= ϕ(m̄)(µ(t0))
k

∑
p=1

γp
dµ(mp)(t0)

dt

∣∣
t=t0

/µ(mp)(t0) (1.38a)

=
k

∑
p=1

γpx(m̄−mp)
0

dµ(mp)(t)

dt

∣∣
t=t0

(1.38b)

=
K

∑
i=1

cihi(x0)

{
k

∑
s=1

k

∑
p=1

γpC(mp)
(ms)

x(m̄−ms)
0 a(ms)

i

}
. (1.38c)

Using (1.24), (1.37) and (1.38c) one can see that

ε̄(x0) =
K

∑
i=1

cihi(x0)Gi, (1.39)

and is a polynomial of degree 2.

1.2.3 SDM moment closure functions

In this section, we use (1.24) to construct moment closure functions for different

higher order moments µ(m̄) corresponding to different number of species n and various

orders of truncation R.

Single-species reactions (n = 1)

For a Rth order truncation we have

µ = [µ1, . . . ,µk]
T :=

[
E[x1], . . . ,E[xk

1]
]T

, µ̄ = µk+1 := E[xk+1
1 ] (1.40)
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in (1.15). Note that for single-species reactions the size of the vector µ is equal to the

order of truncation, i.e., k = R . Using (1.23), (1.24) reduces to

Ck+1
s =

k

∑
p=1

γpCp
s , ∀s = {1, . . . ,k}. (1.41)

It is shown in Chapter 3, Theorem 3.1 that the unique solution to the above system of

linear equations is

γp = (−1)k−pCk+1
p , ∀p = {1, . . . ,k}. (1.42)

Table 1.2 shows the corresponding moment closure functions ϕk+1(µ) for µ̄ = µk+1 =

E[xk+1
1 ] obtained for truncations of order k equal to 2, 3 and 4.

Table 1.2. Moment closure function ϕk+1(µ) for µ̄ = µk+1 = E[xk+1
1 ] with k ∈

{2,3,4}.

k = 2 k = 3 k = 4

ϕk+1(µ)
(

E[x2
1]

E[x1
1]

)3 E[x1
1]

4

E[x2
1]2

(
E[x3

1]
E[x2

1]

)4 (
E[x2

1]
E[x3

1]

)10(E[x4
1]

E[x1
1]

)5

Two-species reactions (n = 2)

We first consider a second order truncation (R = 2), for which we have

µ =
[
µ(1,0),µ(0,1),µ(2,0),µ(0,2),µ(1,1)

]T :=
[
E[x1],E[x2],E[x2

1],E[x2
2],E[x1x2]

]T
.

(1.43)

Recall that for R = 2, the vector µ̄ in (1.15) contains third order moments of x. Con-

sider an element µ(2,1) := E[x2
1x2] of µ̄ and let the corresponding moment closure
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function be given by

ϕ(2,1)(µ) =
(
µ(1,0)

)γ1
(
µ(0,1)

)γ2
(
µ(2,0)

)γ3
(
µ(0,2)

)γ4
(
µ(1,1)

)γ4 . (1.44)

Its not hard to verify that the equations in (1.24) reduce to

2 = γ1 +2γ3 + γ5, 1 = γ2 +2γ4 + γ5, 1 = γ3, 0 = γ4, 2 = γ5 (1.45)

leading to the following moment closure function for µ(2,1) = E[x2
1x2]:

ϕ(2,1)(µ) =

(
µ(2,0)

µ(0,1)

)(
µ(1,1)

µ(1,0)

)2

=
(

E[x2
1]

E[x2]

)(
E[x1x2]
E[x1]

)2

. (1.46)

Repeating the above analysis for different third-order moments, we obtain the moment

closure functions in Table 1.3. Note that the moment closure function for µ(1,2) =

Table 1.3. Moment closure function ϕ(m̄)(µ) for different third order moments µ(m̄)

with R = 2 and n = 2.

µm̄ ϕ(m̄)(µ)

E[x3
1]

(
E[x2

1]
E[x1]

)3

E[x3
2]

(
E[x2

2]
E[x2]

)3

E[x2
1x2]

(
E[x2

1]
E[x2]

)(
E[x1x2]
E[x1]

)2

E[x1x2
2]

(
E[x2

2]
E[x1]

)(
E[x1x2]
E[x2]

)2

E[x1x2
2] can be directly obtained from that of µ(2,1) by just switching the indices 1 and

2 in the expression for the moment closure function.
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We now consider a third order truncation R = 3 for which

µ =
[
µ(1,0),µ(0,1),µ(2,0),µ(0,2),µ(1,1),µ(3,0),µ(0,3),µ(2,1),µ(1,2)

]T
:=
[
E[x1],E[x2],E[x2

1],E[x2
2],E[x1x2],E[x3

1],E[x3
2],E[x2

1x2],E[x1x2
2]
]T

. (1.47)

Table 1.4 lists the different moment closure functions obtained for different fourth

order moments of x using the technique explained above. We only list a subset of the

Table 1.4. Moment closure function ϕ(m̄)(µ) for different fourth order moments µ(m̄)

with R = 3 and n = 2.

µm̄ ϕ(m̄)(µ)

E[x3
1x2]

(
E[x2

1x2]
E[x1x2]

)3(E[x1]
E[x2

1]

)3
E[x3

1]E[x2]

E[x2
1x2

2]
(E[x2

1x2]E[x1x2
2]E[x1]E[x2])2

(E[x1x2])
4E[x2

1]E[x2
2]

moment closure functions. The remaining ones can be obtained from the ones shown

by exchanging indices as discussed above.

Three-species reactions (n = 3)

For a second order truncation (R = 2), the only third order moment whose moment

closure function is not provided in Table 1.3 is µ(1,1,1) := E[x1x2x3]. Using Theorem

1.2 we obtain the following moment closure function in terms of the first and second

order moments

ϕ(1,1,1)(µ) =
E[x1x2]E[x2x3]E[x1x3]

E[x1]E[x2]E[x3]
. (1.48)
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Similarly, for a third order truncation (R = 3) we obtain the following moment closure

function for µ(2,1,1) := E[x2
1x2x3]:

ϕ(2,1,1)(µ) =
(E[x1x2x3]E[x1])

2 E[x2
1x2]E[x2

1x3]E[x2]E[x3]

(E[x1x3]E[x1x2])
2E[x2

1]E[x2x3]
. (1.49)

One can see that all above moment closure functions are independent of the sto-

ichiometry of the reactions, the reaction rates and the number of reactions. Another

interesting observation is that the dependence of higher-order moment on lower order

ones as given by all the above moment closure functions is consistent with x being

jointly lognormally distributed.

The procedure described here to generate approximated moment dynamics can be

fully automated. The software StochDynTools, available at

http : //www.ece.ucsb.edu/∼ hespanha/software/stochdyntool.html

computes truncated moment dynamics for any order of truncation starting from a sim-

ple ASCII description of the chemical reactions involved.

1.3 Example

In this section we consider the following set of chemical reactions

∗ c1−−→ N1X1, 2X1
c2−−→ ∗, 2X1

c3−−→ 2X1 +N2X2, X2
c4−−→ ∗. (1.50)

This example is motivated by a gene cascade network where a gene expresses a protein

X1 and each expression event produces N1 molecules of the protein. The protein X1

then undergoes dimerization and activates another gene to express protein X2 with

each expression event producing N2 molecules of the protein. The parameters given

by c1 = 100V , c2 = 0.8/V , c3 = 0.02/V , c4 = 15 are defined in terms of the volume V ,
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Figure 1.1. Plots of the absolute value of the error between the actual and approx-

imated moment dynamics for a) the mean of x1 and b) the standard deviation of x1

corresponding to a second order truncation (solid line) and a third order truncation

(dashed line) when the population size is small (V = 1 units). DM and N, refer to

the errors corresponding to the SDM moment closure and the normal moment clo-

sure, respectively. Other parameters taken as N1 = 40, N2 = 15 and initial conditions

x1(0) = x2(0) = 40.

which is directly related to the population size of the chemical species. We consider

two different moment closure methods: the SDM moment closure method developed

in this chapter, and mass fluctuation kinetics where moment closure is performed by

setting the third order centered moments equal to zero [16]. This later method is
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Figure 1.2. Plots of the absolute value of the error between the actual and approx-

imated moment dynamics for a) the mean of x2 and b) the standard deviation of x2

corresponding to a second order truncation (solid line) and a third order truncation

(dashed line) when the population size is small (V = 1 units). DM and N, refer to

the errors corresponding to the SDM moment closure and the normal moment clo-

sure, respectively. Other parameters taken as N1 = 40, N2 = 15 and initial conditions

x1(0) = x2(0) = 40.

referred to as the normal moment closure. In particular, we see how these two different

moment closure methods perform when the population size is small and large.

We first consider the situation where the population size is small and take V = 1
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Figure 1.3. The steady-states histogram for x1, the number of molecules of protein X1.

The solid and dashed line corresponds to a lognormal and normal distribution approx-

imation of the histogram, respectively, with mean and standard deviations obtained

from the corresponding truncated moment dynamics

units which corresponds to a steady-state average number of ≈ 50 molecules, for both

species. Figures 1.1 and 1.2 plot the moment estimates for species x1 and x2, respec-

tively, corresponding to a second (solid lines) and a third (dashed lines) order trun-

cation. As can be seen the SDM moment closure yields smaller errors between the

approximated and actual moment dynamics compared to the normal moment closure.

The explanation for this can be deduced from Figure 1.3, which plots the steady-state

distribution of x1. This positively skewed distribution closely approximates a lognor-

mal distribution, and hence, the SDM moment closure functions which are consistent

with x being jointly lognormally distributed provide better moment estimates. Also no-

tice from Figure 1.3 that the corresponding normal distribution approximation (dashed
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Figure 1.4. Plots of the absolute value of the error between the actual and approx-

imated moment dynamics for a) the mean of x1 and b) the standard deviation of x1

corresponding to a second order truncation (solid line) and a third order truncation

(dashed line) when the population size is large (V = 5 units). DM and N, refer to

the errors corresponding to the SDM moment closure and the normal moment clo-

sure, respectively. Other parameters taken as N1 = 40, N2 = 15 and initial conditions

x1(0) = x2(0) = 40.

line) has some portion in the negative region, which is not biologically meaningfull

since molecule populations cannot drop below zero. Unlike the lognormal distribution

which is only defined for positive values, this is frequently a problem with the normal

approximation when the average number of molecules is small.
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Figures 1.1 and 1.2 also confirm that increasing the order of truncation reduces the

errors and considerably improves the moment estimates from the truncated moment

dynamics. For example, with R = 2, the error in the estimation of the steady-state

standard deviation of x1 is approximately 5.2% and 11% for the SDM and the normal

moment closure method, respectively. However, with a third order truncation theses

errors reduce to 0.8% and 3.3%, respectively.

Finally, we consider the situation where the population size is large and increase the

volume five-fold to V = 5 units. Comparing Figure 1.4 with Figure 1.1 we see that in

this case the normal moment closure method provides better moment estimates than the

SDM moment closure method. This happens because when the population size is large

the distribution is no longer positively skewed but symmetric about the mean. Indeed,

moment closure functions consistent with a gaussian distribution perform better than

those consistent with a lognormal distribution.

We refer interested readers to other examples that have been investigated using

the SDM moment closure procedure. These include gene regulatory networks [51],

stochastic models in population biology [50], Schögl reaction and other examples [19].

1.4 Conclusion

A procedure for estimating the time evolution of some lower order moments for

the number of molecules of different species involved in a chemical reaction was pre-

sented. This was done by first explicitly writing the dynamics of these moments and

then closing differential equations using moment closure. Moment closure was per-

formed by first assuming a separable form for the moment closure function for each
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element of µ̄ , and then, matching it is time derivatives with µ̄ , at some initial time t0

for a basis of initial conditions. The main result of this chapter is Theorem 1.2 which

provides explicit formulae to compute the moment closure functions for higher order

moments in the vector µ̄ as a nonlinear function of the lower order moments in µ ,

for any order of truncation R. These moment closure functions are independent of

the reaction parameters and the dependence of higher-order moment on lower order

ones is consistent with the population being jointly lognormally distributed. These

formulae can also be used to compute moment closure when the reactions in (1.4) are

non-elementary (i.e., can have more than two reactants per reaction) although in such

a case the degree of the polynomials in the error term ε2(x0) would be larger than as

stated in Theorem 1.2.

We constructed truncated moment dynamics for an example motivated by a gene

cascade network. It provided fairly good estimates for the time evolution of the first

and second order moments, with faster simulation times when compared to those

needed to perform the same computations by averaging a large number of Monte Carlo

simulations. Comparison between the SDM and normal moment closure showed key

differences in their performance. In particular, when the number of molecules is large

and the probability distribution of x is symmetric, the normal moment closure pro-

vides better moments estimates than the SDM moment closure. However, as shown in

Figure 1.3, for smaller population sizes the distribution is not symmetric but skewed

toward zero. In this regime, SDM moment closure functions, which are consistent with

a lognormal distribution, outperform the normal moment closure and yield smaller er-

rors between the actual and approximated moment dynamics. Another drawback of

the normal moment closure method is that in some cases, the corresponding truncated

moment dynamics becomes dynamically unstable and blows up for sufficiently small
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population sizes [32]. Finally, we should emphasize that the accuracy of these moment

closure methods can be considerably improved by increasing the order of truncation R.

However, this comes at the cost of doing more computational analysis as the dimension

of the truncated moment dynamics also increases with R.

In summary, we developed a new moment closure procedure which is suited for

reactions with small population sizes and non-gaussian probability distributions. These

are ideal for bio-chemical processes within cells where mRNAs and protein occur in

low levels. Moreover, many recent gene profiling studies have also revealed that the

probability distribution of these species is not symmetric but positively skewed, and in

many cases well approximated by a lognormal distribution [7]. This moment closure

method will be a valuable tool in the hand of researches studying stochastic variability

arising in the context of such bio-chemical reactions.

1.4.1 Future work

Possible directions of future work are as follows. It should be noted that the size

of the vector µ (denoted by k) increases rapidly with the number of species n. Given n

species we have Cn
1 first order moments, Cn

1 +Cn
2 second order moments, Cn

1 +2Cn
2 +

Cn
3 third order moments, and so on. Hence, if we consider a second (M = 2) or third

(M = 3) order truncation, then k = n(3+n)/2 or k = n(11+6n+n2)/6, respectively.

A direction of future work is to investigate how one can perform model reduction using

the fact the number the molecules of some species is very large, thus one can neglect

the stochastic variations in that species. Also some reactions have fast dynamics and

reach equilibrium quickly. In that case one could approximate the number of molecules

of one specie in terms of the other and reduces the problem to n− 1 species. This
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technique is also referred to as the quasi steady-state approximation [43].

The error bound given by (1.26) tends to be very conservative and another direction

of future work is to come up with new methods that will more accurately quantify the

difference between the approximated and actual moment dynamics for a given moment

closure method.
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Chapter 2

Small noise approximation

In this chapter we introduce a new small noise approximation that provides ana-

lytical formulas relating the steady-state statistical moments to the parameters of the

chemical reaction. These formulas not only predict the stochastic fluctuations about the

mean but also the deviation of the mean from the solution to the chemical rate equation.

Such approximate formulae are useful as they help develop a qualitative understand-

ing of how noise level change in response to alterations of biologically meaningful

parameters.

We demonstrate the application of this small noise approximation on two examples

for which the steady-state average number of molecules is different from the steady-

state solution of the chemical rate equation. In both the cases, the well known and

widely used linear noise approximation (also called the Van Kampen’s approximation

and the Fluctuation dissipation theorem [59, 21]) fails in the sense that it predicts

that the steady-state means are equal to the steady-state solution of the chemical rate

equation. On the other hand, the small noise approximation accurately predicts the
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steady-state means and higher order moments.

2.1 Theoretical formulation

We construct a vector µ that contains all first and second order moments of x =

[x1, . . . ,xn]T (i.e., perform a second order truncation). Assuming that there are some

chemical reactions with two or more reactants, the time derivative of µ is given by

µ̇ = â+Aµ +Bµ̄ (2.1)

where µ̄ is a vector containing moments of order three and higher. As described in

the previous chapter, we close the above moment dynamics by approximating µ̄ as a

nonlinear function ϕ̄ of µ . The steady-state moments µ∗ are then given as the solution

to the following equation

â+Aµ
∗+Bϕ̄(µ

∗) = 0. (2.2)

Since solving (2.2) for µ∗ in closed form is generally not possible, we use perturbation

methods to compute the approximate steady-states. This is done by linearizing the

left-hand-side of (2.2) about the steady-state solution to the chemical rate equation.

Let φ∗Xi
denote the steady-state average number of molecules of species Xi predicted

from the chemical rate equation. We define

E∗[xi] := φ
∗
Xi

(1+ εXi) (2.3a)

E∗[x2
i ] := E∗[xi]2

(
1+CV 2

Xi

)
(2.3b)

E∗[xix j] := E∗[xi]E∗[x j]
(

1+κ(Xi,X j)

)
, i 6= j (2.3c)

where E∗ denotes the steady-state value of the respective moment and εXi , CVXi , κ(Xi,X j)

constants to be determined so as to make the above equation exact. Note that if the
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steady state average number of molecules of xi was precisely equal to φ∗Xi
, then εXi

would be zero; if the population of xi had zero variance, then the coefficient of variation

CVXi would be zero; and if the populations xi, x j were not correlated then κ(Xi,X j) would

be zero. Assuming εXi , CV 2
Xi

and κ(Xi,X j) to be sufficiently small, we expand (2.3) using

a Taylor series and ignore quadratic and higher order terms in εXi , CV 2
Xi

and κ(Xi,X j).

Since (2.3a) is already linear in εXi , we do no re-write this equation. For the remaining

ones, we obtain

E∗[x2
i ] = E∗[xi]2

(
1+CV 2

Xi

)
≈ φ

∗
Xi

2 (1+2εXi +CV 2
Xi

)
(2.4a)

E∗[xix j] = E∗[xi]E∗[x j]
(

1+κ(Xi,X j)

)
≈ φ

∗
Xi

φ
∗
X j

(
1+ εXi + εX j +κ(Xi,X j)

)
. (2.4b)

Using the moment closure functions derived in the previous section we now express

moments of order three and higher as linear combinations of εXi , CV 2
Xi

and κ(Xi,X j). We

recall from Table 1.3 that the moment closure functions for the third order moments

E[x3
i ] and E[x2

i x j] are given by

E[x3
i ]≈

(
E[x2

i ]
E[xi]

)3

(2.5a)

E[x2
i x j]≈

E[x2
i ]

E[x j]

(
E[xix j]
E[xi]

)2

. (2.5b)

Using (2.3) and (2.4) we have that

E[x3
i ]≈

(
E[x2

i ]
E[xi]

)3

≈ φ
∗
Xi

3 (1+3εXi +3CV 2
Xi

)
(2.6a)

E[x2
i x j]≈

E[x2
i ]

E[x j]

(
E[xix j]
E[xi]

)2

≈ φ
∗
Xi

2
φ
∗
X j

(
1+2εXi + εX j +CV 2

Xi
+2κ(Xi,X j)

)
. (2.6b)
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In general, using Theorem 1.2 one can show that any higher order moment can be

written as a linear combinations of εXi , CV 2
Xi

, κ(Xi,X j) as follows:

µ(m) := E[xm1
1 . . .xmn

n ]≈ ϕ(m)(µ)≈

φ
∗
X1

m1 . . .φ∗Xn
mn

(
1+

n

∑
j=1

m jεX j +
n

∑
j=1

m j(m j−1)
2

CV 2
X j

+
n

∑
j=1

n

∑
k=1( j 6=k)

m jmkκ(Xi,X j)

)
(2.7)

where m = (m1, . . . ,mn). Substituting (2.7) in (2.2) we obtain a linear system of equa-

tions which can be analytically solved to obtain the steady-state moments. In the re-

maining of this chapter we illustrate the use of this small noise approximation on two

different examples and compare it with the widely used linear noise approximation.

2.2 Gene expression and protein degradation

We consider the following set of chemical reactions

∗ c1−−→ NxX, DX
c2−−→ ∗. (2.8)

These reactions are motivated by a gene expression process in which the protein X is

expressed from the gene at a constant rate c1. Each gene expression event leads to the

formation of Nx molecules of X . D molecules of the protein then combine to form a

multimer which degrades at a constant rate c2. As before, we model the number of

molecules x of the protein by a SHS with trivial dynamics and two reset maps

x 7→ φ1(x) = x+Nx, x 7→ φ2(x) = x−D (2.9)

with corresponding transition intensities given by

λ1(x) = c1, λ2(x) = c2xD. (2.10)
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The solution φX of the corresponding chemical rate equation is given by

dφX

dt
= c1Nx− c2Dφ

D
X (2.11)

which predicts the following steady-state average number of protein molecules

φ
∗
X =

(
c1Nx

Dc2

)1/D

. (2.12)

2.2.1 Small noise approximation

The exact time derivative of the first and second order moment of x is given by

dE[x]
dt

= c1Nx− c2DE[xD] (2.13a)

dE[x2]
dt

= c1N2
x +2c1NxE[x]+ c2D2E[xD]−2c2DE[xD+1] (2.13b)

and therefore the steady-state moments are the solution to

0 = c1Nx− c2DE∗[xD] (2.14a)

0 = c1N2
x +2c1NxE∗[x]+ c2D2E∗[xD]−2c2DE∗[xD+1] (2.14b)

where E∗ denotes the steady-state value of the respective moment. We have from

(2.14a) and Jensen’s inequality that

c1Nx

c2D
= E∗[xD] > E∗[x]D (2.15)

which implies from (2.12)

E∗[x] <
(

c1Nx

Dc2

)1/D

= φ
∗
X . (2.16)

With this we conclude that the chemical rate equation over-estimates the steady-state

value for the average number of protein molecules.
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Defining

E∗[x] := φ
∗
X (1+ εX) (2.17a)

E∗[x2] := E∗[x]2
(
1+CV 2

X
)

(2.17b)

and assuming ε2
X � 1, CV 4

X � 1, εXCV 2
X � 1, we have from (2.7) that

E∗[xD]≈ φ
∗
X

D
(

1+DεX +
D(D−1)

2
CV 2

X

)
(2.18a)

E∗[xD+1]≈ φ
∗
X

D+1
(

1+(D+1)εX +
D(D+1)

2
CV 2

X

)
. (2.18b)

Substituting the above moment approximations in (2.14), we obtain a linear system

of equations in εX and CV 2
X . Analytically solving these equations yield the following

steady-state moments

E∗[x] = φ
∗
X (1+ εX) , εX ≈−

(D−1)(D+NX)
4Dφ∗X

(2.19a)

E∗[x2] = E∗[x]2
(
1+CV 2

X
)
, CV 2

X ≈
D+NX

2Dφ∗X
. (2.19b)

Note that our small noise approximation successfully predicts that the average number

of molecules E∗[x] is smaller than the steady-solution φ∗X of the chemical rate equation.

2.2.2 Comparison with linear noise approximation

For comparison purposes, we perform the linear noise approximation by first lin-

earizing the propensity functions about the solution of the chemical rate equation [59].

The transitional intensities (2.10) are now modified as

λ1(x) = c1, λ2(x) = c2
(
φ

D
X +Dφ

D−1
X (x−φX)

)
(2.20)
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where φX is the solution to (2.11). Writing the moment dynamics for these linear

transitional intensities results in the following closed system of differential equations

dE[x]
dt

= c1Nx− c2Dφ
D
X +Dφ

D−1
X (E[x]−φX) (2.21a)

dE[x2]
dt

= c1N2
x +2c1NxE[x]+ c2φ

D
X (D2−2DE[x])

+ c2D2
φ

D−1
X

(
DE[x]+2φX E[x]−DφX −2E[x2]

)
. (2.21b)

Note from (2.21a) that the dynamics of the mean is now independent of E[x2]. A

steady-state analysis of (2.21) gives the following steady-state moments

E∗[x]≈ φ
∗
X (2.22a)

E∗[x2] = E∗[x]2
(
1+CV 2

X
)
, CV 2

X ≈
D+NX

2Dφ∗X
. (2.22b)

Comparing (2.19) with (2.22) we see that both the approximations provide the same

formula for the steady-state coefficient of variation. However, unlike the small noise

approximation, (2.22a) erroneously predicts that the average number of molecules

E∗[x] is equal to the steady-solution φ∗X of the chemical rate equation.

Monte Carlo simulations confirm that the small noise approximation provides more

accurate estimates of E∗[x] than the linear noise approximation (see Table 2.1). Fig-

ure 2.1 shows that a lognormal distribution with moment estimates from the small

noise approximation provides a very good match to the actual steady-state distribution

of the protein population.

2.3 Gene expression and activation

We now consider the following set of chemical reactions

∗ c1−−→ X1, X1
c2−−→ ∗, DX1

c3−−→ DX1 +X2, X2
c4−−→ ∗ (2.23)
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Table 2.1. Steady-state mean (E∗[x]) and coefficient of variation (CVX ) from the

small noise approximation (SNA) presented in this chapter, linear noise approxima-

tion (LNA) and Monte Carlo simulations (MC). The following parameters were used:

Nx = 35, D = 5 and φ∗X = 50.

SNA LNA MC

E∗[x] 42 50 ≈ 42.7

CVX 0.283 0.283 ≈ 0.288

which corresponds to a gene expressing a protein X1. D ≥ 2 molecules of the protein

then combine to form a multimer that activates another gene to make protein X2. The

above reactions can be modelled by the following reset maps

x 7→ φ1(x) =

 x1 +1

x2

 , x 7→ φ2(x) =

 x1−1

x2

 , (2.24a)

x 7→ φ3(x) =

 x1

x2 +1

 , x 7→ φ4(x) =

 x1

x2−1

 , (2.24b)

with the following transition intensities

λ1(x) = c1, λ2(x) = c2x1, λ3(x) = c3xD
1 , λ4(x) = c4x2. (2.25)

The corresponding chemical rate equations are given by

dφX1

dt
= c1− c2φX1 (2.26a)

dφX2

dt
= c3φ

D
X1
− c4φX2 (2.26b)

where φX1 and φX2 are the predicted number of molecules of protein X1 and X2, re-

spectively, from the deterministic model. Steady-state analysis of the above equations
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Figure 2.1. Steady-state histogram of x obtained from 10,000 Monte Carlo simula-

tions. Solid line is a lognormal approximation using the steady-state moments from

the small noise approximation (equation (2.19)). Dashed line is a normal approxi-

mation using the steady-state moments from the linear noise approximation (equation

(2.22))

yields

φ
∗
X1

=
c1

c2
, φ

∗
X2

=
c3φ∗X1

D

c4
. (2.27)

The time evolution of the means E[x1] and E[x2] are given by

dE[x1]
dt

= c1− c2E[x1] (2.28a)

dE[x2]
dt

= c3E[xD
1 ]− c4E[x2] (2.28b)
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which show that

E∗[x1] = φ
∗
X1

(2.29)

and from Jensen’s inequality

E∗[x2] =
c3

c4
E∗[xD

1 ] >
c3

c4
E∗[x1]D = φ

∗
X2

. (2.30)

We conclude from above that the steady-state average number of molecules of species

X2 is lager than its corresponding deterministic approximation φ∗X2
. We next use small

noise approximation to predict the difference between E∗[x2] and φ∗X2
.

2.3.1 Small noise approximation

The time derivative of all the second order moments of x = [x1,x2]T are given by

dE[x2
1]

dt
= c1 +2c1E[x1]+ c2E[x1]−2c2E[x2

1] (2.31a)

dE[x1x2]
dt

= c3E[xD+1
1 ]+ c1E[x2]− c2E[x1x2]− c4E[x1x2] (2.31b)

dE[x2
2]

dt
= c3E[xD

1 ]+ c4E[x2]+2c4E[xD
1 x2]−2c4E[x2

2]. (2.31c)

We solve the steady-state moments by setting the left-hand-side of equations (2.28)

and (2.31) to zero and from (2.7) substituting

E∗[xD
1 ]≈ φ

∗
X1

D
(

1+DεX1 +
D(D−1)

2
CV 2

X1

)
(2.32a)

E∗[xD+1
1 ]≈ φ

∗
X1

D+1
(

1+(D+1)εX1 +
D(D+1)

2
CV 2

X1

)
(2.32b)

E∗[xD
1 x2]≈ φ

∗
X1

D
φ
∗
X2

(
1+DεX1 + εX2 +

D(D−1)
2

CV 2
X1

+Dκ(X1,X2)

)
. (2.32c)
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Solving the resulting linear system of equations gives the following steady-state mo-

ments

E∗[x1] = φ
∗
X1

, CV 2
X1

=
1

φ∗X1

(2.33a)

E∗[x2] = φ
∗
X2

(1+ εX2) , εX2 ≈
D(D−1)

2φ∗X1

, (2.33b)

CV 2
X2
≈ 1

φ∗X2

+
D2

φ∗X1
+φ∗X2

+
D(D−1)
2φ∗X2

φ∗X1

(2.33c)

E∗[x1x2] = E∗[x1]E∗[x2]
(
1+κ(X1,X2)

)
, κ(X1,X2) ≈

D
φ∗X1

+φ∗X2

. (2.33d)

Note from (2.33b) that the steady-state average number of molecules of the protein X2

is larger than φ∗X2
by φ∗X2

D(D− 1)/2φ∗X1
. This phenomenon, where noise causes the

average signal to be larger than its corresponding deterministic signal is often referred

to as stochastic focusing [39].

2.3.2 Comparison with linear noise approximation

We perform linear noise approximation by linearizing the propensity functions

(2.25) about the solution to the chemical rate equations given by (2.26). The linearized

propensity functions are given by

λ1(x) = c1, λ2(x) = c2x1, λ3(x) = c3

(
φ

D
X1

+Dφ
D−1
X1

(x1−φX1)
)

, λ4(x) = c4x2.

(2.34)
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Moment dynamics with these linearized propensity functions yields the following

steady-state moments

E∗[x1] = φ
∗
X1

, CV 2
X1

=
1

φ∗X1

(2.35a)

E∗[x2] = φ
∗
X2

, CV 2
X2
≈ 1

φ∗X2

+
D2

φ∗X1
+φ∗X2

(2.35b)

E∗[x1x2] = E∗[x1]E∗[x2]
(
1+κ(X1,X2)

)
, κ(X1,X2) ≈

D
φ∗X1

+φ∗X2

. (2.35c)

As expected, the linear noise approximation erroneously predicts the difference be-

tween E∗[x2] and its deterministic approximation φ∗X2
to be zero. However, opposite to

what happened in the previous example, now the linear noise approximation yields a

different formula for CVX2 than our small noise approximation:

CV 2
X2
≈ 1

φ∗X2

+
D2

φ∗X1
+φ∗X2

+
D(D−1)
2φ∗X2

φ∗X1

(Small noise approximation) (2.36a)

CV 2
X2
≈ 1

φ∗X2

+
D2

φ∗X1
+φ∗X2

(Linear noise approximation), (2.36b)

however, the difference between the two predicted coefficient of variations is very

small for φ∗X1
,φ∗X2

>> 1.

2.4 Conclusion

This chapter introduced a new small noise approximation which provides analyti-

cal formulas for the steady-state moments in terms of the reaction parameters. These

formulas are more accurate than those obtained with the well known linear noise ap-

proximation as they take into account the effect of the noise in the dynamics of the

mean. We demonstrated the small noise approximation on two examples, where it

successfully predicted not only the fluctuations about the mean but also the deviation

of the mean from the solution of the chemical rate equation.
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Chapter 3

Moment closure for the stochastic

logistic model

In chapter 1 we developed a new moment closure procedure that provides the time

evolution of all the lower-order statistical moments of the species population. We now

use this procedure to estimate the statistical moments for a special class of birth-death

process known as the stochastic logistic model. This model has been widely used

in ecology for stochastic modeling of single-species population in environments with

constrained resources [26, 34]. Details of the stochastic logistic model are presented

in Section 3.1.

It is well know that for the stochastic logistic model x = 0 is an absorbing state and

eventual convergence to the origin is certain. For most biologically relevant problems

one is typically interested in the distribution of the process conditioned on the event

that absorption has not yet occurred. Let Px(t) = Pr{x(t) = x | x(t) > 0} denote the

probability density function of the conditioned processes and µm(t) = ∑
∞
x=1 xmPx(t) its
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mth order uncentered moment. We show in Section 3.2 that the time derivative of the

vector µ = [µ1, . . . ,µk]T ∈ Rk, where k is the order of the truncation, is given by

µ̇ =
(
A+λext(t)I

)
µ +Bµk+1 (3.1)

where A and B are appropriately defined matrices, I is the identity matrix, and λext(t)

an extinction rate. Assuming that the mean time to extinction is very large, the pertur-

bation term λext(t)I is very small when compared to the matrix A and can be ignored

[32]. In spite of this, the dynamics of the above system is not closed, in the sense that

the time evolution of the vector µ depends on the k + 1th order moment µk+1. We re-

call that the above moment dynamics is closed by performing moment closure which

involves approximating µk+1 as a nonlinear function ϕk+1(µ) of the moments up to

order k. The resulting closed moment dynamics is then given by

ν̇ = Aν +Bϕk+1(ν). (3.2)

In Section 3.3, we perform a Separable Derivative-Matching (SDM) moment clo-

sure. As illustrated before, this involves choosing a moment closure functions which

has a separable form:

ϕ
s
k+1(ν) = ν

γ1
1 ν

γ2
2 . . .ν

γk
k (3.3)

for appropriately chosen constants γp ∈R. These constants are then obtained by match-

ing time derivatives of µk+1 and ϕs
k+1(ν) in (3.1) and (3.2) respectively, at some initial

time t0 and initial condition x(t0) = x0 with probability one. In this chapter we denote

the SDM moment closure functions with the superscript s, in order to distinguish them

with other moment closure functions to be introduced later.

Alternative moment closure methods that have appeared in literature typically con-

struct the moment closure functions ϕ by directly assuming the probability distribution
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to be normal [64, 33], lognormal [22], Poisson or binomial [32]. We refer to them as

normal, lognormal, Poisson and binomial moment closures respectively and review

them in Section 3.4. In Section 3.5, they are compared with the SDM moment closure

based on how well the moment closure function ϕk+1(µ) approximates µk+1. Towards

that end, we introduce the error

ek+1(t) := µk+1(t)−ϕk+1(µ(t)) =
∞

∑
i=0

(t− t0)i

i!
ε

i
k+1(x0) (3.4)

where we expanded the error as a Taylor series with ε i
k+1(x0) defined to be

ε
i
k+1(x0) :=

diµk+1(t)
dt i

∣∣
t=t0

− diϕk+1(µ(t))
dt i

∣∣
t=t0

. (3.5)

We call ε i
k+1(x0) the ith order derivative matching error. Ideally one would like this

error to be zero but this is generally not possible. When x(t0) = x0 with probability

one, the derivative matching error is typically a polynomial in x0. For example, for the

SDM moment closure function the 0th order derivative matching error is zero while for

i ≥ 1 the ith order error is a polynomial in x0 of degree i + 1. Typically, the lesser the

order of this polynomial, the lesser is the error ek+1(t), and hence the better is ϕk+1(µ)

in approximating µk+1.

We show that for k = 2, all the above moment closure functions perform deriva-

tive matching except the Poisson moment closure function proposed by [32]. This is

because, it has a 0th order derivative matching error ε0
3 (x0) which grows linearly with

x0 while for SDM, lognormal, binomial and normal moment closure functions the 0th

order error is always zero. Hence, the Poisson moment closure function proposed by

[32] exhibits a larger initial error than the others. We propose an alternative Poisson

moment closure function, for which ε0
3 (x0) = 0, and show that it performs better than

the one proposed by [32].

Although the above moment closures provide good estimates for a second order
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of truncation (k = 2), it is typically beneficial to consider higher order of truncations

because they lead to better moment approximations and reduce the errors by a few

orders of magnitude. To the authors knowledge, moment closure for k ≥ 3 has always

been done in literature by assuming a normal distribution for the population [33, 25].

We show that for k = 3 the normal moment closure function also performs deriva-

tive matching with similar derivative matching error as for the SDM moment closure

function, and hence, gives fairly good estimates of µ4. However, for k = 3 we further

propose a new moment closure function that yields lesser derivative matching errors

when compared to separable derivative matching and normal moment closure func-

tions, thus providing better estimates for µ4, at least locally in time.

In Section 3.6 we find the steady-state solutions of the truncated moment dynamics

(3.2)–(3.3). We show that the separable structure of the SDM moment closure leads

to analytical expressions for the approximate steady-state moments ν∗, which are al-

ways unique, real and positive for every order of truncation k ≥ 2. In contrast, finding

expressions for the steady-state moments using normal moment closure is typically

done numerically for k > 2, as this involves solving an kth degree polynomial and then

identifying the biologically relevant steady-state among the k roots of the polynomial

[25].

3.1 Stochastic logistic model

3.1.1 Model formulation

The stochastic logistic model is the stochastic birth-death analogous model of

the well-known deterministic Verhulst-Pearl equations [40, 41] and has been exten-
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sively used for modeling stochasticity in population biology [26, 25, 27, 23]. For this

continuous-time birth-death Markov process, the conditional probabilities of a unit in-

crease and decrease, respectively, in an “infinitesimal” time interval (t, t +dt] are given

by

Pr{x(t +dt) = x+1 | x(t) = x}=


η(x)dt, ∀ x≤U

0, otherwise
(3.6a)

Pr{x(t +dt) = x−1 | x(t) = x}= χ(x)dt, (3.6b)

where x(t) represents the population size at time t,

η(x) := a1x−b1x2 > 0, χ(x) := a2x+b2x2 > 0, ∀x ∈ (0,U) (3.7)

and

U := a1/b1, a1 > 0, a2 > 0, b1 > 0, b2 ≥ 0. (3.8)

We assume that the initial condition satisfies x(t0) ∈ {1,2, . . . ,U}, and hence, x(t) ∈

{0,1, . . . ,U}, ∀t ∈ [0,∞) with probability one. We call U the population limit.

3.1.2 Stationary and quasi-stationary distributions

Since the birth and death rates are zero for x = 0 (η(0) = χ(0) = 0) we have

that the state x = 0 is absorbing and eventual convergence to the origin is certain.

However, it is common to use the stochastic logistic model mainly in the case where

the mean time to extinction is very large. As the stationary distribution is degenerate

with probability one at the origin, one is typically interested in the distribution of the

process conditioned on the event that absorption has not occurred. In the sequel we
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denote by P̂x(t) and Px(t) the probability density function of the unconditioned and

conditioned processes, respectively. Thus for x ∈ {1, . . . ,U} we have

Px(t) = Pr{x(t) = x | x(t) > 0}=
P̂x(t)

1− P̂0(t)
(3.9)

where P̂x(t) = Pr{x(t) = x}. The limit of Px(t) as t → ∞ is known as the quasi-

stationary distribution.

3.1.3 Transient distributions

Using the Kolmogorov equations for P̂x(t) one can show that Px(t) satisfies the

following differential equations

Ṗ1 = χ(2)P2− [η(1)+ χ(1)]P1 +P1λext(t) (3.10a)

Ṗx = χ(x+1)Px+1− [η(x)+ χ(x)]Px +η(x−1)Px−1 +Pxλext(t),

∀x ∈ {2,3, . . . ,U −1} (3.10b)

...

ṖU =−χ(U)PU +η(U −1)PU−1 +PU λext(t) (3.10c)

where λext(t) := χ(1)P1(t) [5, 31]. The variable λext(t) is an extinction rate in the sense

that the conditional probability of extension in an “infinitesimal” interval (t, t + dt] is

given by

Pr{x(t +dt) = 0 | x(t) > 0}= λext(t)dt. (3.11)

When the population limit U is small, the above system of equations can be solved

numerically. However, for large U , a more reasonable goal (and one that is of primary

interest in applications) is to determine the evolution of some lower-order moments of

Px(t).
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3.2 Time evolution of moments

To model the time evolution of x(t), we consider a Stochastic Hybrid Systems

(SHS) with trivial dynamics, two reset maps:

x 7→ φ1(x) := x+1, x 7→ φ2(x) := x−1 (3.12)

one corresponding to a birth and the other to a death, with associated transition inten-

sities given by

λ1(x) := η(x), λ2(x) := χ(x). (3.13)

Given m ∈ {1,2, . . .}, we define the mth order (uncentered) moment for both the un-

conditioned and conditioned process as

µ̂m(t) =
∞

∑
x=1

xmP̂x(t) := E[x(t)m], µm(t) =
∞

∑
x=1

xmPx(t), ∀t ≥ 0, (3.14)

respectively. Using Dynkin’s formula for the above SHS, one can conclude that the

time evolution of µ̂m is given by

˙̂µm =
2

∑
h=1

m+1

∑
r=1

Cm
m+h−r f (m+h− r,h)µ̂r, (3.15)

where we define Cm
j and f ( j,h) as follows1 ∀ j, m, h ∈ N.

Cm
j :=


m!

(m− j)! j! m≥ j ≥ 0

0 m < j
(3.16a)

f ( j,h) :=


0 j = 0

a1 +(−1) ja2 j > 0, h = 1

−b1 +(−1) jb2 j > 0, h = 2.

(3.16b)

1m! denotes the factorial of m.
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One can see from the right-hand-side of (3.15), that the time derivative of µ̂m is a linear

combination of the moments µ̂r, up to order r = m + 1. Hence the time evolution of

the vector µ̂ = [µ̂1, µ̂2, . . . , µ̂k]T ∈ Rk is given by

˙̂µ = Aµ̂ +Bµ̂k+1, (3.17)

for some k× k and k×1 matrices A and B which have the following structure

A =



∗ ∗ 0 0 . . . 0

∗ ∗ ∗ 0 . . . 0
...

...
... . . . . . . ...

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗


, B =



0

0
...

0

∗


, (3.18)

where each ∗ denotes a possibly non-zero entry. From (3.9), (3.14) we have

µm(t) =
µ̂m(t)

1− P̂0(t)
, (3.19)

which using (3.17) and ˙̂P0(t) = χ(1)P̂1(t) leads to

µ̇ =
(
A+λext(t)I

)
µ +Bµk+1, (3.20)

where µ = [µ1,µ2, . . . ,µk]T ∈ Rk and λext(t) := χ(1)P1(t) is the extinction rate. The

dynamics of this system is not closed because the time-derivative of the vector µ de-

pends both on the k + 1th order moment µk+1 and on the extinction rate λext, which

are not part of the state µ . However, when the mean time to extinction is very large,

the perturbation term λext(t)I is very small when compared to the matrix A and can be

ignored [32]. Our goal now is to close the dynamics of (3.20) by approximating µk+1

as a nonlinear function of µ given by ϕk+1(µ). This gives the closed approximate

moment dynamics

ν̇ = Aν +Bϕk+1(ν), ν = [ν1,ν2, . . . ,νk]T . (3.21)
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We call (3.21) the truncated moment dynamics and ϕk+1(µ) the moment closure func-

tion for µk+1.

3.3 Separable derivative-matching moment closure

As done in chapter 1, we seek moment closure functions with the following sepa-

rable form

ϕ
s
k+1(µ) =

k

∏
p=1

µp
γp (3.22)

that match time derivatives between solutions ν and µ , i.e.,

µ(t0) = ν(t0) and
diµ(t)

dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

, ∀i ∈ {1, . . .}. (3.23)

In the sequel we refer to such ϕs
k+1(µ) as a Separable Derivative-Matching (SDM)

moment closure function for µk+1. As it is not possible to find γp for which (3.23)

holds exactly, we relax this condition and simply demand the following

µ(t0) = ν(t0) and
diµ(t)

dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

+E[εi(x(t0))], (3.24)

∀i ∈ {1,2, . . .}, where each element of the vector εi(x(t0)) is a polynomial in x(t0).

The following theorem summarizes the main result.

Theorem 3.1 Let γp, p ∈ {1, . . . ,k} be chosen as

γp = (−1)k−pCk+1
p . (3.25)

Then, for every deterministic initial condition ν(t0) = µ(t0) = [x0,x2
0, . . . ,x

k
0]

T , x0 ≥ 3

that corresponds to x(t0) = x0 with probability one, we have that

dµ(t)
dt

∣∣
t=t0

=
dν(t)

dt

∣∣
t=t0

(3.26a)

d2µ(t)
dt2

∣∣
t=t0

=
d2ν(t)

dt2

∣∣
t=t0

+ ε2(x0), (3.26b)
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where diµ

dt i and diν
dt i denote the ith time derivative of µ and ν along the trajectories of

the systems (3.20) and (3.21), respectively, and the kth element of the vector ε2(x0) is

a polynomial in x0 of degree 2 with all other elements being zero.

Proof: We note from (3.10) that the ith time derivative of λext(t) := χ(1)P1(t) is a

function of P1(t), P2(t), . . . Pi+1(t). Thus for x(t0) = x0 with probability one, we have

that

di(λext(t)µ(t)
)

dt i

∣∣
t=t0

= 0, ∀x0 ≥ i+2. (3.27)

Hence choosing x0 ≥ 3 ensures that λext(t)µ(t) and its time derivative does not appear

in the left-hand-side of (3.26).

We have from Theorem 1.2 that γp is the solution to the following linear system

Ck+1
s =

k

∑
p=1

γpCp
s , ∀s = {1, . . . ,k}. (3.28)

We now show that solution to (3.28) is unique and given by

γp = (−1)k−pCk+1
p . (3.29)

Towards that end, we observe that for all z ∈ R, one can write using binomial expan-

sion,

[1− (1+ z)]k+1 =
k+1

∑
p=0

Ck+1
p (−1)p(1+ z)p = 1+

k+1

∑
p=1

Ck+1
p (−1)p

p

∑
w=0

Cp
wzw. (3.30)

Equating coefficients for zs, s ∈ {1, . . . ,k} on both sides of (3.30) we have

0 =
k+1

∑
p=1

Ck+1
p (−1)pCp

s ⇒ (−1)kCk+1
s =

k

∑
p=1

Ck+1
p (−1)pCp

s . (3.31)

Comparing (3.31) with (3.28) one can see that a solution to (3.28) will be (3.25). Also

the system of k linear equations (3.28) can be put into the form

C = Πγ (3.32)
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where γ = [γ1, . . . ,γk]T , C = [Ck+1
1 , . . . ,Ck+1

k ]T and

Π =



C1
1 C2

1 . . . Ck
1

0 C2
2 . . . Ck

2
...

... . . . ...

0 0 . . . Ck
k


. (3.33)

As the upper triangular matrix Π is non-singular, the above solution is unique.

Table 1.2 shows the functions ϕs
k+1 corresponding to γp chosen according to (3.25)

for k = 2, 3 and 4. The dependence of µk+1 on lower order moments µ1, . . . ,µk as

given by the SDM moment closure function, is consistent with x(t) being lognormally

distributed (see Example 3 in Section 3.4).

3.4 Distribution based moment closure

We now review other moment closure techniques for a subsequent comparison with

separable derivative-matching moment closure. Most moment closure techniques that

appeared in the literature start by assuming a specific class of distributions D for the

population, and use this assumption to express higher order moments as a function

of the lower order ones. We say that such a moment closure function is consistent

with D, which can be formally defined as follows: Let D be a class of distributions

parameterized by w parameters (q1, . . . ,qw) ∈Q, with the mth order moment µm given

in terms of the q1, . . . ,qw as follows

µm = fm(q1, . . . ,qw), ∀m ∈ {1,2, . . .}. (3.34)
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The moment closure function ϕD
k+1(µ) for µk+1 is said to be consistent with the distri-

bution D if, for every (q1, . . . ,qw) ∈Q, one has that

µk+1 = fk+1(q1, . . . ,qw) = ϕ
D
k+1(µ) (3.35)

where

µ :=


µ1

...

µk

=


f1(q1, . . . ,qw)

...

fk(q1, . . . ,qw)

 . (3.36)

For well known classes of distributions — such as lognormal, normal, poisson, or

binomial — we simply say that ϕD
k+1 is the lognormal, normal, poisson, or binomial

moment closure function.

3.4.1 Techniques for obtaining ϕD
k+1

Generically, when the dimension w of the parameter space Q is the same as the

order of truncation k, the functional equation (3.35)–(3.36) in the “unknown” ϕD
k+1(·)

has a unique solution. In fact, to determine ϕD
k+1(µ) one can start by solving (3.36) for

q1, . . . ,qw in terms of µ1, . . . ,µk, and then substituting these back in (3.35) to obtain

a unique moment closure function ϕD
k+1(·). As we choose D to be normal [64], log-

normal [22], poisson, or binomial [32], this procedure results in the different moment

closure functions shown in Table 3.1.

Difficulties arise when the dimension w of the parameter space Q is strictly smaller

than k, because in this case the functional equation (3.35)–(3.36) does not have a

unique solution and one can find infinitely many moment closure functions consis-

tent with the same family of distributions. However, there is a strong incentive to
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Table 3.1. Unique Moment Closure Functions for the kth order truncation (k = w) and

different distributions D.

D w Unique moment closure function

Normal 2 ϕ
g
3 (µ) = 3µ2µ1−2µ3

1

Lognormal 2 ϕ l
3(µ) =

µ3
2

µ3
1

Poisson 1 ϕ
p
2 (µ) = µ2

1 + µ1

Binomial 2 ϕb
3 (µ) = 2

(µ2−µ2
1 )2

µ1
− (µ2−µ2

1 )+3µ1µ2−2µ3
1

consider this case because, as we shall see shortly, large values for k generally lead to

significantly more accurate moment closures. In the sequel, we illustrate some options

for moment closures with k > w,

Example 1: Consider the class of poisson distributions characterized by their ex-

pected value θ (w = 1). Their moments are given by

µ1 = f1(θ) := θ (3.37a)

µ2 = f2(θ) := θ(1+θ) (3.37b)

µ3 = f3(θ) := θ(1+3θ +θ
2), . . . (3.37c)

[32] proposed the following poisson moment closure function for k = 2:

ϕ
p1
3 (µ) = µ1 +3µ1µ2−2µ

3
1 , (3.38)

for which it is straightforward to verify that (3.35)–(3.36) holds because

µ3 = θ(1+3θ +θ
2) = ϕ

p1
3 (µ), µ =

[
θ , θ(1+θ)

]T
. (3.39)

52



However, an alternative choice for the poisson moment closure function that also sat-

isfies (3.35)–(3.36) is given by

ϕ
p2
3 (µ) = µ2−µ

2
1 +3µ1µ2−2µ

3
1 , (3.40)

which, as we will see in the next section, performs better that (3.38). The explanation

for this lies in the fact that (3.40) has better derivative matching properties than (3.38),

in the sense of (3.24). In the sequel we refer to (3.38) and (3.40) as the Nasell-poisson

and new-poisson moment closure function, respectively.

Example 2: Consider now the class of normal distributions parameterized by their

mean ω and variance σ2 (w = 2). Their moments are given by

µ1 = f1(θ ,σ) := ω (3.41a)

µ2 = f2(θ ,σ) := ω
2 +σ

2 (3.41b)

µ3 = f3(θ ,σ) := ω(ω2 +3σ
2) (3.41c)

µ4 = f4(θ ,σ) := ω
4 +6ω

2
σ

2 +3σ
4, . . . (3.41d)

For k = 3, any function of the following form is a normal moment closure function for

µ4

ϕ
g
4 (µ) := 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 +h(µ1,µ2−µ

2
1 ,µ3−3µ2µ1 +2µ

3
1 ) (3.42)

where h(x,y,z) is any function with the property that h(x,y,0) = 0. To verify that this

is so, we note that (3.35)–(3.36) holds because for

µ =
[
ω, ω

2 +σ
2, ω(ω2 +3σ

2)
]T

, (3.43)

we obtain h(µ1,µ2−µ2
1 ,µ3−3µ2µ1 +2µ3

1 ) = h(ω,σ2,0) = 0 and therefore

ϕ
g
4 (µ) = ω

4 +6ω
2
σ

2 +3σ
4 = µ4. (3.44)
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Example 3: Finally consider the class of lognormal distributions characterized by

the parameters α > 0, β > 0 (w = 2), whose moments are given by

µk = fk(α,β ) := α
k
β

k2
, ∀k ∈ {1,2, · · ·}. (3.45)

For every k ≥ 2, the separable derivative-matching moment closure functions defined

by (3.22), with coefficient given by (3.25) in Theorem 3.1 are lognormal moment clo-

sure functions for µk+1. We can verify this by noting that (3.35)–(3.36) holds because,

from (3.45), (3.25) and (3.28) we conclude that

ϕ
s
k+1(µ) = α

(∑k
p=1 γp p)

β
(∑k

p=1 γp p2) (3.46a)

= α
(∑k

p=1 γpCp
1)

β
(∑k

p=1 γp{2Cp
2+Cp

1}), (3.46b)

= α
k+1

β
2Ck+1

2 +Ck+1
1 = α

k+1
β

(k+1)2
= µk+1, (3.46c)

where we used the fact that 2Ck+1
2 +Ck+1

1 = (k +1)2.

3.4.2 Cumulant closure functions

Some literature on moment closure works with moment dynamics expressed in

terms of a state vector κ = [κ1, . . . ,κk] where κk(t) is the kth order cumulant2, instead

of the previously introduced vector µ of uncentered moments in (3.20). Then, instead

of doing moment closure one performs cumulant closure by approximating κk+1 by

a nonlinear function φk+1(κ) of κ1, . . . ,κk, which we refer to as the cumulant closure

function. The disadvantage of working with κ instead of µ is that the dynamics of κ

2The kth order cumulant, κk is given as follows in terms of the uncentered moments

κ1 = µ1, κ2 = µ2−µ
2
1

κ3 = µ3−3µ1µ2 +2µ
3
1 , κ4 = µ4−4µ1µ3−3µ

2
2 +12µ2µ

2
1 −6µ

4
1 , . . .
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is always nonlinear. However, for ease of comparison with other papers, we provide

in Table 3.2 the cumulant closure functions corresponding to the different moment

closure functions discussed so far for k = 2. We use superscripts s, l, g, p1, p2 and

b to denote separable derivative-matching, lognormal, normal, Nasell-poisson, new-

poisson and binomial moment closure functions, respectively.

3.5 Comparison of transient performance of moment

closures

In this section, we compare the transient performance of different moment closure

techniques using the error

ek+1(t) := µk+1(t)−ϕk+1(µ(t)) =
∞

∑
i=0

(t− t0)i

i!
ε

i
k+1(x0), (3.48)

where

ε
i
k+1(x0) :=

diµk+1(t)
dt i

∣∣
t=t0

− diϕk+1(µ(t))
dt i

∣∣
t=t0

. (3.49)

We call ε i
k+1(x0) the derivative matching error. Ideally, one would like to have ε i

k+1(x0)=

0, but as already pointed out in Section 3.3 this is generally not possible. With deter-

ministic initial conditions as in Theorem 3.1, the derivative matching error is typically

a polynomial in x0. The lesser the order of this polynomial, the better is ϕk+1(µ) in

approximating µk+1.

3.5.1 Moment closures for k = 2

We recall from Table 3.2 that ϕ l
3(µ) = ϕs

3(µ), and therefore we do not need to

discuss lognormal moment closure separately. By substituting ϕs
3(µ), ϕ

g
3 (µ), ϕ

p1
3 (µ),
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Table 3.2. Moment Closure Functions (MCF) for second order truncation (k = 2)

and corresponding Cumulant Closure Functions (CCF) for µ3 and κ3, respectively,

corresponding to the different Moment Closure Techniques (MCT) discussed in this

paper. SDM refers to separable derivative-matching.

MCT MCF CCF

SDM ϕs
3(µ) =

µ3
2

µ3
1

φ s
3(κ) = 3

κ2
2

κ1
+

κ3
2

κ3
1

Normal ϕ
g
3 (µ) = 3µ2µ1−2µ3

1 φ
g
3 (κ) = 0

Lognormal ϕ l
3(µ) =

µ3
2

µ3
1

φ l
3(µ) = 3

κ2
2

κ1
+

κ3
2

κ3
1

Nasell-Poisson ϕ
p1
3 (µ) = µ1 +3µ1µ2−2µ3

1 φ
p1
3 (κ) = κ1

New-Poisson ϕ
p2
3 (µ) = µ2−µ2

1 +3µ1µ2−2µ3
1 φ

p2
3 (κ) = κ2

Binomial ϕb
3 (µ) = 2

(µ2−µ2
1 )2

µ1
− (µ2−µ2

1 ) φ b
3 (µ) = 2

κ2
2

κ1
−κ2

+3µ1µ2−2µ3
1

ϕ
p2
3 (µ) and ϕb

3 (µ) from Table 3.2 in (3.48)–(3.49), one obtains the corresponding

derivative matching errors, which will be denoted using the appropriate superscripts.

Using Table 3.2 and symbolic manipulation in Mathematica, we can show that

s
ε

0
3 (x0) = g

ε
0
3 (x0) = p2

ε
0
3 (x0) = b

ε
0
3 (x0) = 0 (3.50a)

p1
ε

0
3 (x0) =−x0. (3.50b)

∗
ε

i
3(x0) ∈ Px0(i+1), ∗= {s,g, p1, p2,b}, ∀i ∈ {1,2, . . .} (3.50c)

where Px0( j) denotes the set of polynomials in x0 of degree j. Since p1ε0
3 (x0) = −x0,

the Nåsell-Poisson moment closure function will have a large initial error, especially
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for large initial conditions, when compared to all other moment closure functions.

For all i ∈ {1,2, . . .}, all of these moment closure functions match derivatives, with

the derivative matching error being of the same order in x0. The simulation results dis-

cussed below show that with the exception of Nåsell-Poisson moment closure function,

which consistently provides the worst estimates, all other moment closure functions

perform fairly well.

Example: We consider the stochastic logistic model with

a1 = .30, a2 = .02, b1 = .015, b2 = .001, (3.51)

which is used by [27] to model the population dynamics of the African Honey Bee.

Using (3.21) with the matrices A and B computed in (3.15), we have the following

truncated moment dynamicsν̇1

ν̇2

=

0.28 −0.016

.32 .546


ν1

ν2

−
 0

0.032

ϕ3(ν). (3.52)

The time evolution of the moments corresponding to different moment closure tech-

niques is obtained by substituting the appropriate moment closure function from Ta-

ble 3.2 in place of ϕ3(ν). In order to evaluate the performance of these moment closure

functions for all time, we compute the exact evolution of the moments µ(t). This is

only possible because the population limit U = 25 is small and one can obtain the ex-

act solution by numerically solving the equation (3.10). Figure 3.1 and 3.2 contains

plots of the mean and variance errors, respectively, for the different moment closure

functions with x0 = 5 and x0 = 20. For x0 = 20 the binomial moment closure func-

tion provides the best estimate both initially and at steady-state, whereas for x0 = 5

the new-Poisson moment closure function does best initially, but the binomial moment

closure function continues to provide the most accurate steady-state estimate. As one
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would expect from (3.50), the Nåsell-Poisson moment closure function performs the

worst.
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Figure 3.1. Evolutions of the mean error µ1 − ν1 and of the variance error (µ2 −

µ2
1 )− (ν2−ν2

1 ) for the different moment closure functions in Table 3.2 for k = 2, with

parameters as in (3.51) and x0 = 5.

3.5.2 Moment closures for k = 3

In this section, we propose a new moment closure function given by

ϕ
z
4(µ) = 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 + µ2−µ

2
1 (3.53)
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Figure 3.2. Evolutions of the mean error µ1 − ν1 and of the variance error (µ2 −

µ2
1 )− (ν2−ν2

1 ) for the different moment closure functions in Table 3.2 for k = 2, with

parameters as in (3.51) and x0 = 20.

and refer to it as the Zero first-order error moment closure function. For comparison

purpose we recall from Table 1.2 and Section 3.4 that the SDM and normal moment

closure functions for k = 3 are given by

ϕ
s
4(µ) =

µ4
1 µ4

3

µ6
2

(3.54a)

ϕ
g
4 (µ) = 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 , (3.54b)
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respectively. The above moment closure functions yield the following derivative match-

ing errors:

∗
ε

0
4 (x0) = 0, ∗= {g,s,z} (3.55a)

z
ε

1
4 (x0) = 0, †

ε
1
4 (x0) ∈ Px0(2),† = {g,s} (3.55b)

∗
ε

i
4(x0) ∈ Px0(i+1), ∗= {g,s,z}, ∀i ∈ {1,2, . . .}. (3.55c)

From (3.55) one can see the following:

• The normal moment closure function also performs derivative-matching yield-

ing the same order of derivative matching error as the SDM moment closure

function, and hence, provides reasonably good estimates for µ4.

• Unlike the other moment closure functions, the zero first-order error moment

closure function yields zero 0th and 1st order derivative matching error, and

hence, provides the best estimates for µ4, at least near t = 0.

In order to confirm our predictions above that were based on the expressions (3.55),

we consider the stochastic logistic model with parameters as in (3.51), k = 3 and x0 =

20. Using (3.15), we have the following truncated moment dynamics
ν̇1

ν̇2

ν̇3

=


0.28 −0.016 0

.32 .546 −0.032

.28 .944 .798




ν1

ν2

ν3

−


0

0

0.048

ϕ3(ν). (3.56)

Substituting the moment closer functions (3.53)–(3.54b) in place of ϕ3(ν), we obtain

the corresponding approximate time evolution of moments. Figure 3.3 contains plots

of the mean and variance errors. As expected both the normal and SDM moment

closure functions provide good estimates. One can also see that the zero first-order
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Figure 3.3. Evolutions of the mean error µ1−ν1, variance error (µ2−µ2
1 )− (ν2−ν2

1 )

for the different moment closure functions (3.53)–(3.54b) for k = 3, with parameters

as in (3.51) and x0 = 20.

error moment closure function (3.53), which guarantees the best approximation near

t = 0 actually provides in this case the most accurate estimate for µ4 for all time.

Comparing the plots in Figures 3.2 and 3.3, we observe that the mean and vari-

ance errors for x0 = 20 obtained with a third order truncation (k = 3) are an order of

magnitude smaller than the ones obtained with a second order truncation (k = 2).

61



3.6 Steady-state solutions of the truncated moment dy-

namics

We now show that the SDM moment closure leads to a unique positive equilibrium

for the truncated dynamics (3.21) and provide analytical expressions for this equilib-

rium.

Consider the truncated moment dynamics of degree k≥ 2 with the moment closure

functions given in Table 1.2. From (3.21), the steady-state solution ν∗ can be computed

by solving

0 = Aν
∗+Bϕ

s
k+1(ν

∗) (3.57)

where the coefficient of the matrices A,B can be deduced from (3.15). Solving these

equations, we obtain

ν2
∗ = c1ν1

∗ (3.58a)

...

νk
∗ = cn−1ν1

∗ (3.58b)

ϕ
s
k+1(ν

∗) = ckν1
∗ (3.58c)

for appropriate positive real numbers c1, . . . ,ck. In terms of the parameters a1, b1, a2

and b2, the first three constants c1,c2,c3 are given by the following expressions

c1 = K, c2 = K2 +σ
2, c3 = K3 +3Kσ

2 + σ̄σ
2 (3.59a)

K =
a1−a2

b1 +b2
, σ

2 =
a1b2 +b1a2

(b1 +b2)2 , σ̄ =
b2−b1

b2 +b1
. (3.59b)

From (3.58) and Table 1.2 we obtain the following steady-state values for ϕs
k+1(ν

∗),
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k ∈ {2,3,4, . . .}:

ϕ
s
3(ν

∗) = c3
1, ϕ

s
4(ν

∗) =
c4

2

c6
1

ν1
∗2, ϕ

s
5(ν

∗) =
c10

1 c5
3

c10
2

. (3.60)

Substituting (3.60) in (3.58) yields the following unique non-trivial solutions for the

steady-state mean ν1
∗

ν1
∗ =



c3
1

c2
= K

1+ σ2

K2

k = 2

c6
1c3

c4
2

=
K
(

1+ 3σ2

K2 + σ̄σ2

K3

)(
1+ σ2

K2

)4 k = 3

c10
1 c5

3
c10

2 c4
k = 4.

(3.61)

The corresponding high-order uncentered moments ν2
∗, . . ., νk

∗ can be calculated from

(3.58). We conclude that the SDM moment closure function always yields a unique

non-trivial positive, real, steady-state for every truncation order k ≥ 2. Moreover, the

separable structure of the SDM moment closure leads to analytical expressions for the

steady-state moments. In contrast, finding the steady-state moments for the normal

moment closure requires solving an kth degree polynomial in ν1
∗ and then identify-

ing the biologically relevant steady-state among the k roots of the polynomial. For

k > 2 this can generally only be done numerically and one does not obtain analytic

expressions for the steady-state moments [25].

3.7 Conclusion

A procedure for constructing moment closures for the stochastic logistic model

was presented. This was done by first assuming a separable form for the moment

closure function ϕk+1(ν), and then, matching its time derivatives with µk+1, at some

initial time t0 for a basis of initial conditions x(t0) = x0. We showed that there exists a
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unique separable derivative-matching moment closure function for which the ith order

derivative matching error is a polynomial in x0 of degree i + 1 for all i ∈ {1,2, . . .}

and zero for i = 0. Explicit formulas to construct these moment closure functions for

arbitrary order of truncation k were provided with higher values of k leading to better

approximation of the actual moment dynamics.

The separable structure of this moment closure greatly simplified the process of

finding the steady-state of the truncated moment dynamics which were always unique,

real and positive. Comparisons with alternative moment closure techniques available

in literature illustrated how derivative matching can be used as a effective tool for

gauging the performance of moment closure functions. We showed that for k = 2, with

the exception of the Nåsell-Poisson, all other moment closure functions in Table 3.2

perform derivative matching and provide fairly good estimates for µ3. For k = 3, a new

zero first-order error moment closure function was also proposed, guaranteeing better

approximations, at least locally in time, as compared to the other moment closure

techniques discussed in this chapter.

3.7.1 Future work

The truncated moment dynamics presented in this chapter only capture the quasi-

stationary distribution and do not provide information about the time taken to reach

extinction. Finding alternative moment closure techniques that provide information

about extinction is a subject for future research.
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Chapter 4

Optimal feedback strength for noise

suppression in auto-regulatory gene

networks

Gene expression and regulation is inherently a noisy process. The origins of this

stochasticity lie in the probabilistic nature of transcription and translation and low

copy numbers of RNAs and proteins within cells, which can lead to large statistical

fluctuations in molecule numbers. Recent work [61, 4, 8, 12, 44] has provided consid-

erable experimental evidence for these stochastic fluctuations and may explain for the

large amounts of cell to cell variation observed in genetically identical cells exposed

to the same environmental conditions [53, 28]. Various gene network motifs within

cells decrease/increase these stochastic fluctuations. A common such motif is an auto-

regulatory gene network where the protein expressed from the gene inhibits/activates

its own transcription [3, 60]. Both theoretical and experimental studies have shown
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that negative feedback in these auto-regulatory gene networks reduces stochastic fluc-

tuations in the protein population [46, 35, 57, 6, 59, 48] whereas positive feedback has

the opposite effect [17, 9].

Auto-regulatory gene networks are characterized by their transcriptional response

g(x), which determines the transcription rate of the gene as a non-linear function g of

the protein molecular count x within the cell. Monotonic decreasing and increasing

functions g(x) denote negative and positive feedback, respectively. The noise in the

protein population is quantified by its coefficient of variation defined as the ratio of

the standard deviation to the average number of protein molecules. Previous work has

shown that this protein noise level is determined by a combination of two components

[56, 37]. The first is the intrinsic noise, which represents the stochastic fluctuations in

the protein population arising due to random protein formation and degradation events.

The second component is the extrinsic noise, which corresponds to fluctuations in the

protein numbers arising due to an exogenous noise source driving the auto-regulatory

gene network, for example, fluctuations in gene copy numbers, enzyme levels, and/or

environmental stimuli. Table 4.1 provides a summary of the notations used for the

different forms of noise in the protein population.

Our goal is to understand how these different components of protein noise can be

modulated by manipulating the response time of the auto-regulatory gene network,

which is defined as follows: assuming x∗ to be the steady-state average protein count,

the response time Tr is the time taken for any initial perturbation about x∗ to decay by

50% of its initial value. Negative and positive feedback in the auto-regulatory gene

network, decreases and increases the response time, respectively, from its value when

there is no feedback (i.e., when the transcriptional response g(x) is a constant and

independent of x).
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Table 4.1. A summary of the notation used in this chapter. All estimates of noise are

based on a linear approximation of the transcriptional response.

CVtot Total noise in protein numbers

CVext Extrinsic noise in protein numbers

CVint Intrinsic noise in protein numbers

CVz Noise in the exogenous signal driving the gene network.

CVtot−nr Total noise in protein numbers when there is no feedback

CVext−nr Extrinsic noise in protein numbers when there is no feedback

CVint−nr Intrinsic noise in protein numbers when there is no feedback

CVtot−min Minimum possible total noise in protein numbers
with optimal negative feedback

CVext−min Minimum possible extrinsic noise in protein numbers
with optimal negative feedback

CVint−min Minimum possible intrinsic noise in protein numbers
with optimal negative feedback
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We consider a simple model of gene expression where each expression event pro-

duces a random number of protein molecules according to a given probability distribu-

tion. Details on the stochastic formulation of this model are provided in Section 4.1. In

Section 4.2, we determine the intrinsic noise in the protein population. Using a linear

approximation for the transcriptional response

g(x)≈ g(x∗)+g′(x∗)(x−x∗), (4.1)

where x∗ is the steady-state average protein count, we show that the intrinsic noise

level is proportional to the ratio Tr/x∗. Hence for a fixed x∗, decreasing the protein’s

response time Tr attenuates the intrinsic noise whereas increasing the response time

magnifies it. We also investigate the effects of non-linearities in the transcriptional

response and show that a concave (convex) transcriptional response causes the noise

in the protein to be smaller (larger) than what would be predicted by the linear tran-

scriptional response in (4.1).

We next quantify the extrinsic noise in the protein population. In Section 4.3, we

derive analytical formulas that decompose the total noise in the protein into its extrin-

sic and intrinsic components. These formulas are simple generalizations of previous

work, notably that of [37], where the number of protein molecules produced per ex-

pression event was not random but deterministic and equal to one. We show that for

a given decrease in Tr through negative feedback, the extrinsic noise decreases by a

much larger amount than does the intrinsic noise. Thus negative feedback is much

more effective in reducing the extrinsic component of protein noise than its intrinsic

component.

In Section 4.4, we use the above results to quantify noise in auto-regulatory gene

networks that involve a common negative feedback with transcriptional response given
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by

g(x) = g0

(
b+

1−b
1+(ax)M

)
, 0≤ b < 1 (4.2)

where M ≥ 1 denotes the Hill coefficient and g0 corresponds to the transcription rate

when there is no feedback (i.e., a = 0) [3, 58]. The positive constant b is less than one

and is chosen such that the product g0b represents the minimum level of transcription

rate obtained in the limit of a large population x → ∞. The constant a characterizes

the feedback strength and is determined by the binding affinity of the protein to the

promoter of the gene.

We perform a systematic analysis of how the protein noise level changes as the

feedback strength a is increased from an initial value of zero. We first consider the

situation where extrinsic noise is absent or negligible and intrinsic noise dominates

the total noise in the protein population. In such a scenario, we show that if the Hill

coefficient is close to one, then the protein noise level actually increases as we increase

the feedback strength. However, for Hill coefficients larger than one, the protein noise

level first decreases as we increase the feedback strength from zero and achieves a

minimum value at some optimal level of feedback strength. Increasing the feedback

strength above this optimal value causes an increase in the noise level. In summary, for

Hill coefficients M larger than one, we obtain a U-shaped noise profile as the feedback

strength is increased. We quantify both the optimal level of feedback strength and the

limit of noise suppression, which is defined as the ratio of the minimum possible noise

in the protein population to the protein noise level when there is no feedback (i.e.,

a = 0). When the intrinsic noise dominates the total noise in the protein population,

this limit is given by the simple expression√
4M

4M +(1−b)(M−1)2 ≤ 1 (4.3)
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which essentially only depends on the Hill coefficient, as typically b is much smaller

than one.

We next consider the situation where the extrinsic noise is not negligible and both

extrinsic and intrinsic noise are present. We show that in this case, irrespective of the

value of the Hill coefficient, the protein noise level always follows a U-shaped profile

as the feedback strength is increased. This means that the noise level is minimized

at some optimal value of feedback strength and decreasing or increasing feedback

strength away from this optima will always causes an increase in the noise level. We

again provide analytical formulae for the limit of noise suppression and show that in

this case (when extrinsic noise is not small compared to the intrinsic noise), this ratio is

much lower than what is given by (4.3), which corresponds to the situation where there

is no extrinsic noise. In fact, we show that determining how much the limit of noise

suppression deviates from (4.3) can be used to estimate how much extrinsic noise is

present in the gene network.

In Section 4.5 we validate our theoretical results by using experimental data from a

synthetic auto-regulatory gene network described in [11]. As predicted, we indeed see

a U-shaped profile for the protein noise level as the feedback strength is experimen-

tally manipulated. We also explain observations in [11] showing that for small levels

of extrinsic noise, no U-shaped profile is observed, and instead, the protein noise level

monotonically increase as the feedback strength is increased. Finally, we illustrate how

the experimentally determined limit of noise suppression can be used to estimate the

noise in the exogenous signal. Matching these estimates with independent measure-

ments of noise associated with the plasmid population, we confirmed that variability in

plasmid numbers was the major source of extrinsic noise in the synthetic gene network

in [11].
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4.1 Un-regulated gene expression

We consider a simple model of gene expression where a gene expresses a protein

X in bursts that occur at a rate Kx. Each expression event leads to the formation of Nx

molecules of the protein X . Recent work suggests that the burst of proteins from each

mRNA transcript follows a geometric distribution [24]. Thus instead of assuming Nx to

be a constant, we assume it to be a random variable with mean Nx and variance V 2
x . We

also assume that the protein decays at a constant rate dx. Our model omits the mRNA

dynamics. This is a valid approximation as long as the protein’s life time is much

longer than the mRNA’s life time, which is generally the case in gene-protein networks

[38] (see Appendices (B.5) and (B.6) for stochastic models of gene expression that

consider mRNA dynamics). Ignoring the mRNA dynamics leads to relatively simple

expressions for the protein noise level, which help develop a qualitative understanding

of how noise level changes in response to alterations of the gene network parameters.

In a stochastic formulation, gene expression and protein degradation are treated

as probabilistic events with probabilities of occurring in an infinitesimal time interval

(t, t +dt] given by

Pr{x(t +dt) = x+Nx | x(t) = x}= Kxdt (4.4a)

Pr{x(t +dt) = x−1 | x(t) = x}= dxxdt, (4.4b)

respectively, where x(t) denotes the number of molecules of protein X at time t.

A convenient way to model the time evolution of the number of molecules x is

through a Stochastic Hybrid System (SHS) characterized by trivial continuous dynam-

ics

ẋ = 0, (4.5)
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and two reset maps

x 7→ φ1(x) = x+Nx, x 7→ φ2(x) = x−1 (4.6)

with corresponding transition intensities given by

λ1(x) = Kx, λ2(x) = dxx (4.7)

[19]. In order to gauge the noise level in the protein population, we determine the time

evolution of the first and second order moments of x, i.e., the expected values E[x]

and E[x2]. The moment dynamics can be obtained using the Dynkin’s formula for the

above SHS, according to which, for every differentiable function ψ(x) we have that

dE[ψ(x)]
dt

= E

[
2

∑
i=1

(ψ(φi(x))−ψ(x))λi(x)

]
(4.8)

[10, 18]. Taking ψ(x) = x and ψ(x) = x2 in (4.8) we obtain the following moment

dynamics

dE[x]
dt

= NxKx−dxE[x], (4.9a)

dE[x2]
dt

= Kx(N2
x +V 2

x )+dxE[x]+2KxNxE[x]−2dxE[x2]. (4.9b)

As t →∞, the first and second order moments converge to constant steady-state values

given by

x∗ := lim
t→∞

E[x(t)] =
NxKx

dx
(4.10a)

E∗[x2] := lim
t→∞

E[x2(t)] =
KxdxNx +2K2

x N2
x +Kxdx(N2

x +V 2
x )

2d2
x

. (4.10b)

We quantify the noise in x(t) by its coefficient of variation defined as the ratio of the

standard deviation in protein numbers to the average number of protein molecules.

Using the above steady-state values we obtain

CV 2
int−nr =

E∗[x2]−x∗2

x∗2 =
dx(N2

x +V 2
x +Nx)

2KxN2
x

=
(N2

x +V 2
x +Nx)

2x∗Nx
. (4.11)
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This formula quantifies the noise in the protein X solely due to random gene expression

and protein degradation, and is referred to as the intrinsic noise in the protein popula-

tion when there is no regulation. Note that the noise in the protein increases with the

variance V 2
x in the number of protein molecules produced in each transcription event.

A well known special case of (4.11) is obtained for Nx = 1 and Vx = 0, for which

x(t) has a Poisson distribution and CV 2
int−nr = 1/x∗. In the next section we examine

what happens to this intrinsic noise when the gene expression rate is not a constant but

a function of the number of protein molecules.

4.2 Auto-regulatory gene expression

Often the expressed protein binds to the promoter region of its own gene. In doing

so it either recruits the enzyme RNA Polymerase to the promoter (which leads to an

increase in gene expression) or blocks RNA Polymerase from binding to the promoter

(which causes a decrease in gene expression). Such gene expression is referred to as

an auto-regulatory gene network. We model this network by assuming that the rate of

gene expression is no longer a constant and is instead a function g(x) of the number

of protein molecules x (as shown in Figure 4.1). We refer to the function g(x) as the

transcriptional response of the network. This transcriptional response can be formally

derived assuming that the rate of binding and dissociation between the protein and its

promoter is much faster than the dynamics of protein production and degradation [3] or

it can be determined directly from experiments. Monotonic decreasing and increasing

functions g(x) denote negative and positive feedback, respectively.

When an auto-regulation mechanism is present, the probabilities of gene expres-
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Figure 4.1. An auto-regulatory gene network.

sion and protein degradation events occurring in an infinitesimal time interval (t, t +dt]

are given by

Pr{x(t +dt) = x+Nx | x(t) = x}= g(x)dt (4.12a)

Pr{x(t +dt) = x−1 | x(t) = x}= dxxdt. (4.12b)

To write the moment dynamics of x we first approximate g(x) by a polynomial in x,

which is done by expanding g(x) as a Taylor series expansion

g(x) = g(x∗)+g′(x∗)(x−x∗)+
1
2

g′′(x∗)(x−x∗)2 + . . . , (4.13)

about the steady-state average number of protein molecules x∗.

4.2.1 Linear transcriptional response

For now, we ignore quadratic and higher order terms in (4.13), which results in a

linear transcriptional response

g(x)≈ g(x∗)+g′(x∗)(x−x∗). (4.14)
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This approximation is valid as long as the stochastic fluctuations in the protein do not

leave the region in which g(x) is approximately linear. As in Section 4.1, we model the

time evolution of x through a Stochastic Hybrid System (SHS) but now the transition

intensities are given by λ1(x) = g(x∗) + g′(x∗)(x− x∗) and λ2(x) = dxx. Using the

Dynkin’s formula for this modified SHS we obtain the following dynamics for the

mean E[x]:

dE[x]
dt

= Nxg(x∗)−dxx∗+(Nxg′(x∗)−dx)(E[x]−x∗) (4.15)

and therefore the steady-state value x∗ for the mean population E[x] must satisfy

Nxg(x∗) = dxx∗. (4.16)

To be biologically meaningful, the average E[x] must remain bounded which means

that the linear system given by (4.15) must have a negative eigenvalue

λ := Nxg′(x∗)−dx < 0. (4.17)

This eigenvalue λ can be expressed in terms of the response time Tr of the protein, a

quantity that can be measured experimentally. The response time Tr is defined as the

time taken for E[x(t)]−x∗ to decay by 50% of its initial condition, i.e., E[x(Tr)]−x∗ =

(E[x(0)]−x∗)/2 and is given by

Tr =− ln(2)
λ

> 0, λ := Nxg′(x∗)−dx < 0. (4.18)

Negative feedback, which correspond to g′(x∗) < 0, decreases the response time from

the value Tnr = ln(2)/dx that corresponds to the absence of feedback (i.e., g′(x∗) = 0

). Positive feedback has an opposite effect.

We now compute the coefficient of variation of x(t) by writing the moment dy-

namics for the second order moment E[x2]. Using (4.8), with ψ(x) = x2 we obtain the
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following time derivative for E[x2]:

dE[x2]
dt

=[g(x∗)−x∗g′(x∗)](N2
x +V 2

x )+dxE[x]+2[g(x∗)−x∗g′(x∗)]NxE[x]

−2dxE[x2]+g′(x∗)(N2
x +V 2

x )E[x]+2g′(x∗)NxE[x2]. (4.19)

Performing a steady-state analysis of the above equations and using (4.16) we obtain

the following steady-state coefficient of variation

CVint =

√
dx(N2

x +V 2
x +Nx)

2IN2
x

, I = g(x∗)−x∗g′(x∗) (4.20)

where I can be interpreted as the y-intercept of the tangent to the transcriptional re-

sponse g(x) at x = x∗ (see Figure 4.2). Using (4.16), (4.18), and (4.20) we can also

relate the intrinsic noise to the response time Tr of the protein as

CVint =

√
Tr

Tnr

N2
x +V 2

x +Nx

2x∗Nx
(4.21)

where Tnr = ln(2)/dx is the protein’s response time when there is no regulation in gene

expression (i.e., g′(x∗) = 0 and the transcription rate is a constant as in Section 4.1).

The formula in (4.21) shows that the intrinsic noise level in auto-regulatory gene

networks is determined by three factors: the average number of protein molecules

x∗, the response time of the protein Tr and the gene expression burst characteristics,

i.e., Nx and V 2
x . From (4.20) we also conclude that for a fixed x∗, making the slope

g′(x∗) more negative causes a decrease in the response time and leads to attenuation of

intrinsic noise in the protein population. However, as we will see later, experimental

manipulations that change the response time typically also alter x∗, in which case,

attenuation or magnification of intrinsic noise will depend on wether the ratio Tr/x∗ in

(4.21) decreases or increases, respectively.

When the number of proteins produced per mRNA follows a geometric distribution
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Figure 4.2. A graphical interpretation of the quantity I = g(x∗)− x∗g′(x∗) in (4.20)

for any arbitrary transcriptional response g(x): I is the intercept of the tangent to the

transcriptional response g(x) at x = x∗ with the y-axis.

[24], the variance V 2
x is equal to N2

x −Nx. In this case (4.21) simplifies to

CVint =
√

Tr

Tnr

Nx

x∗
(4.22)

which shows that for all other parameters fixed, the intrinsic noise increases as we

increase the average number Nx of proteins produced per gene expression event, which

is consistent with other theoretical and experimental observations [36, 58].

An important feature of (4.22) is that it relates the noise in the protein to parameters

that can be experimentally determined. In particular, response times can be measured

by tracking the time evolution of the number of molecules within the cell and Nx =

Lx/ax where Lx is the translation rate of the mRNA and ax is the mRNA degradation

rate. For example, in [45] an auto-regulatory gene network was designed where the

protein repressed its own transcription. The protein was fluorescently tagged which
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allowed one to compute the time evolution of the average number of protein molecules

in the cell. Figure 4.3 plots this time evolution with and without negative feedback

Figure 4.3. Time evolution of the average number of protein molecules. 1) corresponds

to the case when there is negative feedback (i.e., protein repressed its own transcrip-

tion) and 2) corresponds to the case when there is gene expression with no negative

feedback. The solid and dashed lines represent experimentally measured and fitted

approximations to the time evolution of the average number of protein molecules, re-

spectively. This figure was taken from [3].

in the gene. The promoter strength was appropriately adjusted such that the steady-

state population x∗ of the protein was the same in both cases. The figure shows that

with negative feedback it takes about Tr = 0.21 time unit for the protein count to reach

half of its steady-state average protein count x∗. The response time when there is

no feedback is Tnr = 1 time unit, which is five times larger than Tr. We can then

conclude from (4.22) that for this network, the presence of negative feedback reduces

the intrinsic noise levels in the protein population by a factor of
√

1/0.21≈ 2.2.
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4.2.2 Lambda repressor gene network

We now use the results of the previous sections to investigate an important gene

motif that arises in a gene associated with lambda phage, a virus that infects bacteria.

The lambda phage has a gene that encodes for a protein called the lambda repressor,

which activates its own transcription, resulting in positive feedback. Large levels of

this protein causes the virus to lysogenize (i.e., integrate its own chromosome into the

bacteria DNA). The transcriptional response of an auto-regulatory gene network with

positive feedback is typically given by

g1(x) = g0

(
b+

1−b
1+(ax)M

)
, 1 < b (4.23)

where α , β are positive constants and M ≥ 1 represents the Hill coefficient [2]. This

function is a sigmoidal-shaped monotonically increasing function, such as the tran-

scriptional response g1(x) in Figure 4.4. However, for the lambda repressor gene

the transcriptional response has been modified and the protein activates the gene only

when the number of protein molecules is small. At larger protein populations the pro-

tein inhibits its own transcription [42]. As a consequence, the transcriptional response

of this particular gene network is an increasing function when x is small and a decreas-

ing function when x becomes large, as the modified transcriptional response g2(x) in

Figure 4.4.

As can be seen in Figure 4.4, the modified transcriptional response g2(x) has a

larger intercept I2 than the original transcriptional response g1(x). Consequently, in

view of (4.20) the modified transcriptional response leads to smaller levels of intrinsic

noise in the protein than the original transcriptional response. Low stochastic fluctua-

tions in the lambda repressor population ensure that its number do not become small

just by random chance, which will cause the virus to come out of lysogeny and lyse
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the cell.

Figure 4.4. g1(x) is the standard transcriptional response of a gene network with pos-

itive feedback while g2(x) is the observed transcriptional response in case of the gene

in lambda phage encoding the protein lambda repressor. I1 and I2 is the y-intercept of

the tangent to the corresponding transcriptional response g(x) at (x∗,g(x∗)).

4.2.3 Effect of nonlinearities

We now examine the effects of non-linear quadratic terms in g(x). Towards this

end we approximate g(x) as the following second order polynomial

g(x) = g(x∗)+g′(x∗)(x−x∗)+
1
2

g′′(x∗)(x−x∗)2 (4.24)

where x∗ is given by (4.16), still ignoring cubic and higher order terms in x− x∗.

Referring the reader to Appendix B.1 for more details, the intrinsic noise in the protein
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population can now be approximated by

CV 2
int−quad =

CV 2
int

1+ Nxx∗g′′(x∗)CV 2
int

2λ

, λ := Nxg′(x∗)−dx < 0 (4.25)

where CVint is the intrinsic noise when g(x) was assumed linear and is given by (4.20).

To obtain (4.25) we assumed that CV 2
int−quad is much smaller than one and the distribu-

tion of the protein population is symmetrically distributed about its mean. The above

result shows two important points. First, a transcriptional response that is concave at x∗

(g′′(x∗) < 0) results in smaller intrinsic noise than what is predicted by CVint , whereas

a convex response (g′′(x∗) > 0) has the opposite effect. Second, as long as CVint and

the non-linearity in the transcriptional response are small in the sense that∣∣∣∣Nxx∗g′′(x∗)CV 2
int

2λ

∣∣∣∣� 1, (4.26)

linearzing the transcriptional response will yield a good approximation for the intrinsic

noise in the protein population.

4.3 Extrinsic and intrinsic contributions to noise

We now consider extrinsic noise in the protein population arising due to an ex-

ogenous noise source driving the auto-regulatory gene network. Towards that end,

we consider a transcriptional response g(x,z) that also depends on a noisy exogenous

signal z.

The transcriptional response g(x,z) may take different forms. For example, if the

gene is encoded on a low-copy plasmid, then fluctuations in the number of copies of

the plasmid are known to be a major source of extrinsic noise [11]. In this case, the
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transcriptional response takes the form

zg(x) (4.27)

where z represents the number of copies of the plasmid. Alternatively z could represent

the number of molecules of the RNA polymerase, in which case, the transcriptional

response for an auto-regulatory gene network with negative feedback would be

g(x,z) =
k0z

1+ k1z+ k2x
(4.28)

where k0, k1 and k2 are positive constants [6].

We model the stochastic fluctuations in z by a birth-death process. In particular,

the probabilities of formation and degradation of z in the infinitesimal time interval

(t, t +dt] are given by

Pr{z(t +dt) = z+Nz | z(t) = z}= Kzdt (4.29a)

Pr{z(t +dt) = z−1 | z(t) = z}= dzzdt (4.29b)

where Kz and dz represent the production and degradation rate of z, respectively, and

Nz is a random variable with mean Nz and variance V 2
z . In the sequel we refer to

Tz = ln(2)/dz as the response time of the exogenous signal. Following steps similar to

those outlined in Section 4.1, we can conclude from (4.10) and (4.11) that the steady-

state average level and the coefficient of variation of z are given by

z∗ =
NzKz

dz
(4.30)

and

CVz =

√
(N2

z +V 2
z +Nz)

2z∗Nz
, (4.31)
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respectively. The quantity CVz represents the amount of noise that enters the auto-

regulatory gene network through the exogenous signal z. Assuming that the stochastic

fluctuations in x and z around their respective means x∗ and z∗ are sufficiently small,

we approximate the transcriptional response as

g(x,z)≈ g(x∗,z∗)+
dg(x,z∗)

dx
|x=x∗(x−x∗)+

dg(x∗,z)
dz

|z=z∗(z− z∗), (4.32)

by ignoring quadratic and higher order terms in x− x∗ and z− z∗. For simplicity of

notation, in the sequel g(x) refers to g(x,z∗), the transcriptional response when there

is no noise in the exogenous signal. Details are presented in Appendix B.2, where we

show that for this linearized transcriptional response, x∗ is the solution to (4.16) and

the total protein noise CVtot is given by

CV 2
tot = CV 2

int +CV 2
ext (4.33)

where CVint is the previously computed intrinsic noise and

CVext =
Tr

Tnr

√
Tz

Tz +Tr
SCVz, S :=

z∗

g(x∗,z∗)
dg(x∗,z)

dz
|z=z∗, Tz :=

ln(2)
dz

(4.34)

represents the extrinsic noise in the protein population. Note that signals z with small

response times Tz result in smaller values of CVext because rapid fluctuations in the

exogenous signal are “averaged out” by the dynamics of the gene network. Typically,

only those exogenous signals that have response times much larger than the protein’s

response time, contribute significantly to the extrinsic component of protein noise.

The extrinsic noise CVext is a monotonically increasing function of the protein re-

sponse time Tr, which in turn is determined by the slope of the transcriptional response

g(x) at x = x∗ [see (4.18)]. This is in contrast to the intrinsic noise CVint which is de-

termined by the y-intercept of the tangent to the transcriptional response g(x) at x = x∗

[see (4.20)]. Another important difference is that unlike CVint , CVext does not depend
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on gene expression parameters such as the average number Nx and variance V 2
x of

proteins produced per gene expression event.

We now contrast how rapidly intrinsic and extrinsic noises attenuate as the response

time Tr is decreased. We first express CVext as a function of the extrinsic noise level

CVext−nr that would be observed in the absence of feedback:

CVext =
Tr

Tnr

√
Tnr +Tz

Tr +Tz
CVext−nr, (4.35)

where

CVext−nr =

√
Tz

Tz +Tnr
SCVz. (4.36)

From (4.35), we conclude that the five fold decrease in the response time (i.e., Tr ≈

Tnr/5) that we had observed in Figure 4.3 corresponds to a reduction of CVext by a

factor of 3.9 compared to CVext−nr when Tz ≈ Tnr or a reduction by a factor of 5 when

Tz � Tnr. Recall from the previous section that a five fold decrease in the response

time leads to a reduction of intrinsic noise level in the protein by a factor of only 2.2

(assuming that x∗ is kept fixed). This illustrates an important point: negative feedback

is much more effective in reducing the extrinsic component of protein noise than its

intrinsic component.

4.4 Auto-regulatory gene networks with negative feed-

back

In this section we quantify protein noise levels and limits of noise suppression for

auto-regulatory gene networks involving a common form of transcriptional response
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given by

g(x) = g0

(
b+

1−b
1+(ax)M

)
, 0≤ b < 1 (4.37)

where M ≥ 1 denotes the Hill coefficient and g0 is the transcription rate when there

is no feedback (a = 0) [3, 58]. The constant b is chosen such that the product g0b

represents the minimum level of transcription rate (also called the basal level of tran-

scription rate) that is achieved when the number of protein molecules is very large

(x → ∞). Typically, the constant b is either zero or much smaller than one. The con-

stant a is the feedback strength that essentially depends on the binding affinity of the

protein to the promoter, with lower binding affinities corresponding to smaller values

of a.

For the above transcriptional response we conclude from (4.16) that the equilib-

rium x∗ is the unique solution to

Nxg(x∗) = Nxg0

(
b+

1−b
1+(ax∗)M

)
= dxx∗ (4.38)

and monotonically decreases as we increase a. The response time Tr in (4.18) is given

by

Tr =
Tnr(1+(ax∗)M)(1+b(ax∗)M)

1+[1+M−b(M−1)](ax∗)M +b(ax∗)2M , Tnr =
ln(2)

dx
(4.39)

which starts by decreasing as we increase the feedback strength a from an initial value

of a = 0. It achieves a minimum value of

Trmin = Tnr
1+

√
b

1+M−
√

b(M−1)
(4.40)

for

a = aT min =
b−

M+1
2M dx

g0Nx
(4.41)
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and then increases as we increase a beyond aT min. Note that when b = 0, we have

aT min = ∞ and therefore Tr always decreases as we increase the feedback strength a

with the asymptote

lim
a→∞

Tr =
Tnr

M +1
. (4.42)

In the sections below we investigate how the different components of the noise and the

total noise in the protein numbers change as the feedback strength a varies.

4.4.1 Suppression of intrinsic noise in the protein

We first investigate the intrinsic component of noise given by (4.21) for this specific

transcriptional response. Substituting (4.37) in (4.21), and using (4.38) and (4.39), we

conclude that the intrinsic noise CVint in the protein is given by

CVint =

√
Tr

Tnr

1+(ax∗)M

1+b(ax∗)M CVint−nr (4.43a)

=

√
[1+(ax∗)M]2

1+[1+M−b(M−1)](ax∗)M +b(ax∗)2M CVint−nr (4.43b)

where

CVint−nr =

√
dx(N2

x +V 2
x +Nx)

2g0N2
x

(4.44)

is the intrinsic noise in the protein when there is no feedback (i.e., a = 0). Our goal is

to understand how CV 2
int varies with the Hill coefficient M and the feedback strength

a. Straightforward calculus shows that the above intrinsic noise is smallest when the

feedback strength is equal to

aint−min =
dx

Nxg0

2M
M +1+b(M−1)

(
M−1
M +1

) 1
M

(4.45)
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and the corresponding minimum intrinsic noise CVint−min is given by

CVint−min =

√
4M

4M +(1−b)(M−1)2CVint−nr ≤CVint−nr. (4.46)

When M = 1, then aint−min = 0 and CVint−min = CVint−nr, i.e., the intrinsic noise level

is minimum when there in no feedback. In this particular case, increasing a causes

CVint to monotonically increase (see Figure 4.5). This happens because as we increase

a from zero, both Tr and x∗ decrease in (4.21). However, as x∗ decreases at a faster

rate than Tr, their ratio Tr/x∗ increases, and hence, the intrinsic noise increases as we

increase the feedback strength a. When M > 1, this behavior changes and the intrinsic

noise first decreases when we increase a starting from zero and achieves a minimum at

some optimal value a = aint−min > 0. Increasing a beyond aint−min causes an increase

in the intrinsic noise level (see Figure 4.5).

Figure 4.5. Intrinsic noise CVint in the protein as a function of the feedback strength

a and Hill coefficient M. CVint is normalized by CVint−nr, the intrinsic noise in the

protein when there is no feedback. Other parameters taken as g0 = 1, b = 0, Nx = 1,

Vx = 0 and dx = 0.01.
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From (4.46), we conclude that the quantity

CVint−min

CVint−nr
=

√
4M

4M +(1−b)(M−1)2 (4.47)

represents the highest suppression of intrinsic noise in the protein from CVint−nr that

can be achieved with the transcriptional response given by (4.37). Notice that this

limit decreases as we decrease the basal level of transcription (i.e., decrease b) and

achieves a minimum at b = 0. For the (common) case b � 1, this limit of intrinsic

noise suppression is simply given by

CVint−min

CVint−nr
=
√

4M
M +1

(4.48)

and is completely determined by the Hill coefficient M, with larger values of M causing

more reduction in the protein intrinsic noise. This is consistent with results in the liter-

ature, which show that a large Hill coefficient is more effective in reducing stochastic

fluctuations in the protein [58, 35, 51]. For example, when b = 0, and M = 2 there

can be at most a 1−
√

4M/(M +1) = 5.7% reduction in intrinsic noise from CVint−nr,

whereas for M = 4 we can have a 20% reduction.

In summary, depending on the Hill coefficient, the protein intrinsic noise levels

can either monotonically increase or exhibit a U-shaped curve as the feedback strength

is increased. Moreover, large Hill coefficients are much more effective in reducing

noise. The limit of noise suppressions computed above are good approximations when

the mRNA half life is much smaller than the protein’s half life. In Appendix B.7 we

consider deviations from this case and show that when the mRNA half life is not small

compared to the protein’s half life, the limit of noise suppression is slightly smaller

than what is predicted by (4.47) and (4.48).
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4.4.2 Suppression of extrinsic noise in the protein

We now investigate the extrinsic component of protein noise CVext . As CVext is a

monotonically increasing function of the response time Tr [see equation (4.34)], it will

be minimum when the response time is the smallest. Recall from (4.40), (5.9) that the

response time Tr achieves its minimum value Trmin when the feedback strength is equal

to a = aT min. Hence we conclude that the level of extrinsic noise is minimum when

the feedback strength is equal to

aext−min =
b−

M+1
2M dx

g0Nx
, (4.49)

and from (4.35), this minimum level CVext−min is given by

CVext−min

CVext−nr
=

√
Tnr +Tz

Trmin +Tz

Trmin

Tnr
, Trmin =

1+
√

b
1+M−

√
b(M−1)

Tnr. (4.50)

The above expression provides the limit of extrinsic noise suppression and reduces to

CVext−min

CVext−nr
=


√

Tnr+Tz
[Tnr+Tz(M+1)](M+1) when b� 1

1
M+1 when b� 1 and Tz � Tnr.

(4.51)

As we increase M these limits decrease at a much faster rate than the limit of intrinsic

noise suppression for the same value of b [compare with right-hand-side of (4.48)].

For example, when Tz ≈ Tnr and b � 1, for M = 2 we have a maximum reduction

in extrinsic noise of 1−
√

2/[(M +1)(M +2)] ≈ 42% whereas for M = 4 we have a

reduction of 74%. These reductions are much larger than the maximum reductions of

5.7% and 20% in the protein intrinsic noise level for the same values of M and b (see

Section 4.4.1). This reinforces the earlier point that negative feedback is much more

efficient in reducing the extrinsic component of the noise than its intrinsic component.
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4.4.3 Suppression of total noise in the protein

Finally, we investigate how the total noise in the protein population varies with the

feedback strength. As derived in Section 4.3, the total protein noise level is given by

CV 2
tot =CV 2

int +CV 2
ext , (4.52)

which using (4.34), (4.39) and (4.43) can be written as

CV 2
tot = CV 2

int−nr
Tr

Tnr

1+(ax∗)M

1+b(ax∗)M +S2CV 2
z

(
Tr

Tnr

)2 Tz

Tz +Tr
(4.53a)

Tr =
Tnr(1+(ax∗)M)(1+b(ax∗)M)

1+[1+M−b(M−1)](ax∗)M +b(ax∗)2M . (4.53b)

Now, for all M ≥ 1 and CVz > 0 we have that

dCV 2
tot

da
|a=0 =−(1−b)

[
(CV 2

int−nr)(M−1)+CV 2
z MTz

(2Tz +Tnr)
(Tz +Tnr)2

]
< 0, (4.54)

which means that in the presence of extrinsic noise, the total protein noise level will

always decrease as we increase the feedback strength from a = 0, irrespective of the

value of the Hill coefficient, but eventually will start to increase for sufficiently large

values of a past an optimal feedback strength amin. In summary, in the presence of

extrinsic noise, the total noise in the protein is always minimized at some optimal

feedback strength and decreasing or increasing feedback strength away from this op-

tima will always causes an increase in the noise level. This point is shown in Figure 4.6

which plots CVtot/CVtot−nr as a function of a when the Hill coefficient is one, where

CV 2
tot−nr = CV 2

int−nr +S2CV 2
z

Tz

Tz +Tnr
, (4.55)

represents the protein noise level when there is no feedback. We can see that in the

absence of extrinsic noise (CVz = 0), CVtot/CVtot−nr monotonically increases as the

feedback strength is increased. However, in the presence of extrinsic noise, it follows

a U-shaped profile and is minimized at some a = amin > 0.
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As shown in Figure 4.7, when the Hill coefficient is larger than one (M > 1), then

even in the absence of any extrinsic noise (CVz = 0), the protein noise level will show

a U-shaped profile as the feedback strength is altered (see Section 4.4.1). In particular,

for CVz = 0, we conclude from (4.47) that the minimum value of CVtot/CVtot−nr, i.e.,

the limit of noise suppression is given by

CVtot−min

CVtot−nr
=

√
4M

4M +(1−b)(M−1)2 (4.56)

and is attained when the feedback strength is equal to

amin =
dx

Nxg0

2M
M +1+b(M−1)

(
M−1
M +1

) 1
M

. (4.57)

As shown in Figure 4.6 (for M = 1) and Figure 4.7 (for M = 2), when we now increase

CVz away from zero, this limit of noise suppression decreases and is much lower than

what is predicted by (4.56). On the other hand the optimal feedback strength amin at

which the protein noise is minimum, increases and is much higher than (4.57). As we

further increase the noise CVz in the exogenous signal, both CVtot−min/CVtot−nr and

amin approach (4.50) and (4.49), respectively, which correspond to the scenario where

extrinsic noise dominates the total noise in protein numbers.

In Appendix B.3, we provide formulas that predict both the minimum level of

noise CVtot−min and the optimal feedback strength when both intrinsic and extrinsic

noise are present but neither one dominates the total noise in the protein population.

As we will see shortly, an important application of these formulas is that they can be

used to estimate the noise in the exogenous signal from the experimentally obtained

value of CVtot−min, without directly measuring the exogenous signal.
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Figure 4.6. Total noise CVtot as a function of the feedback strength a when the Hill

coefficient is one (M = 1) for different values of noise CVz in the exogenous signal.

CVtot is normalized by CVtot−nr, the total noise in the protein when there is no feedback.

Other parameters are taken as g0 = 1, Nx = 4, V 2
x = N2

x −Nx, b = 0, S = 1, dx = 0.04.

The response time Tz is assumed to be much larger than Tnr.

4.5 Experimental verification

We now validate our theoretical results with recent experimental measurements

of protein noise levels that were obtained as the feedback strength was changed via

experimental manipulation.

In [11], a synthetic auto-regulatory gene network shown in Figure 4.8 is con-

structed, where the protein inhibits its own transcription. The feedback strength is

altered by adding a compound aTc that binds to the protein and the resulting complex

has a significantly smaller binding affinity to the promoter. As the feedback strength

is directly related to the binding affinity of the protein to its promote, increasing the

concentration of aTc corresponds to decreasing the feedback strength a. The gene is

encoded on a low-copy plasmid with high variability in plasmid population contribut-
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Figure 4.7. Total noise CVtot as a function of the feedback strength a when the Hill

coefficient is two (M = 2) for different values of noise CVz in the exogenous signal.

CVtot is normalized by CVtot−nr, the total noise in the protein when there is no feedback.

Other parameters are taken as g0 = 1, Nx = 4, V 2
x = N2

x −Nx, b = 0, S = 1, dx = 0.04.

The response time Tz is assumed to be much larger than Tnr.

ing to large levels of extrinsic noise in the protein population. Based on our theoret-

ical analysis, the protein noise level should show a U-shaped profile as the feedback

strength is changed. In particular, at low values of a (i.e., high levels of aTc), increas-

ing a (i.e., deceasing aTc) should lead to a decrease in protein noise levels. However,

at high values of a (i.e., low levels of aTc), increasing a (i.e., deceasing aTc) should

increase the protein noise levels. Such a U-shaped profile is indeed experimentally ob-

served and the protein noise level is minimized at an optimal level of feedback strength

(see bottom left plot of Figure 4 in [11]).

In [11], the results from detailed stochastic simulations of the auto-regulatory gene

network are also reported. The authors observe in simulation that both in the absence of

any extrinsic noise or when the extrinsic noise from only the enzyme RNA polymerase
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Figure 4.8. A synthetic auto-regulatory gene network where the feedback strength is

manipulated by adding aTc. This figure is taken from [11].

is included, instead of seeing a U-shaped profile, the protein noise level monotonically

increased as the feedback strength is increased (i.e., aTc concentration is decreased).

Our theoretical results fully explain this phenomenon: Since in this synthetic gene

network the Hill coefficient is one (M = 1), our analysis in Section 4.4.1 shows that

the intrinsic noise level will always increase when the feedback strength is increased.

As the extrinsic noise associated with fluctuations in RNA polymerase numbers is

very small (we calculate CVRNA polymearse ≈ 0.02 using (4.31) and the reaction rates

provided in Table I of [11]), in both the above cases the protein noise is dominated by

the intrinsic noise, which always increases with the feedback strength, and hence, no

U-shaped profile should be observed.

As mentioned earlier, our results also allow us to predict the level of noise in the

exogenous signal that drives the synthetic auto-regulated gene network. Hypothesizing

that the source of extrinsic noise is the plasmid population, and using the experimen-

tally obtained minimal protein noise level of approximately 0.4, we estimate using the
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formulas derived here that

CVplasmid ≈ 0.64 (4.58)

(see Appendix B.4). Independent measurements of plasmid noise (using (4.31) and the

reaction rates provided in Table I of [11]) show that CVplasmid is equal to 0.51 which

is just slightly smaller than our estimate in (4.58). This indicates that variability in

plasmid numbers is indeed the major source of extrinsic noise in the protein population.

The fact that the estimate in (4.58) is larger than the actual plasmid noise suggests

that variability in other cellular components also make (minor) contributions to the

extrinsic noise.

In summary, the experimental results of [11] provide an experimental verification

of our theoretical predictions. They also show that measuring changes in the protein

noise level as a function of the feedback strength can be used to determine the level

of noise in the exogenous signal. Alternatively, our results can be used to confirm

hypothesized sources for extrinsic noise.

4.6 Discussion

Auto-regulatory gene networks where the protein inhibits/activates its own tran-

scription are common motifs occurring within living cell. These networks are charac-

terized by their transcriptional response g(x) which provides information on how the

transcription rate of the gene varies as a function of the number of protein molecules x

present in the cell.

95



4.6.1 Noise dependence on the shape of the transcriptional response

We developed a full understanding of how the protein noise levels are related to

the functional form of the transcriptional response. Using a linear approximation for

g(x), we showed that the extrinsic noise levels are determined by the slope g′(x∗) of the

transcriptional response at x∗, with more negative values of the slope (i.e., more stable

equilibriums x∗) leading to smaller levels of extrinsic noise. On the other hand, the

intrinsic noise levels are determined by I = g(x∗)− x∗g′(x∗) which is the y-intercept

of the tangent to the transcriptional response at x = x∗ (as shown in Figure 4.2), and

larger values of I lead to smaller levels of intrinsic noise. Consequently, given two

hypothetical transcriptional responses g1(x) = 1 and g2(x) = 1− x/2, the response

g2(x) will give lower levels of extrinsic noise. However, since both transcriptional

responses have the same intercept I equal to one (see Figure 4.9), they both yield the

same level of intrinsic noise in the protein population.

We also considered deviations from a linear transcriptional response and showed

that concave responses have better noise suppression properties than convex responses.

4.6.2 Intrinsic v.s. extrinsic noise

Analytical formulas that relate the noise levels to the response time of the protein

show key differences between extrinsic and intrinsic noise: as one decreases the pro-

tein response time Tr through feedback, the levels of extrinsic noise decreases much

more than those of intrinsic noise. This leads to an important conclusion that nega-

tive feedback is much more effective in reducing the extrinsic component of protein

noise than its intrinsic component, which is consistent with other theoretical and ex-

perimental studies [37, 20, 47, 55]. Another difference is that unlike intrinsic noise,
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Figure 4.9. Two different transcriptional responses g1(x) and g2(x) that lead to the

same intrinsic noise in the protein. x∗1 and x∗2 represents the steady-state average num-

ber of protein molecules when the transcriptional response is given by g1(x) and g2(x),

respectively.

the extrinsic noise is independent of the average burst size Nx and the variance V 2
x in

the number of protein molecules produced in each transcription event. Recent work

[13] has suggested that many genes operate with very low values of Nx, which could

be an adaptation to reduce the intrinsic noise but that, according to our results, appears

to have no effect on the extrinsic noise levels.

4.6.3 U-shaped protein noise profile

We investigated how protein noise levels change as we vary the feedback strength

for a biologically meaningful class of auto-regulatory gene networks with negative

feedback characterized by the transcriptional response

g(x) = g0

(
b+

1−b
1+(ax)M

)
, 0≤ b < 1. (4.59)

97



Our main result shows that the total noise level in the protein population is minimized

at an optimal level of feedback strength. Recall from Section 4.4 that increasing the

feedback strength causes a decrease in the average number of protein molecules, which

results in an increase in the intrinsic noise level. On the other hand increasing the feed-

back strength causes the protein response time to decrease which attenuates both the

intrinsic and extrinsic noise. The net result of these two opposing effects is a U-shaped

profile, where increasing feedback strength first causes the noise level to decrease and

then increase. This U-shaped profile was shown to be in good agreement with experi-

mental data for a synthetic auto-regulatory gene network. We also identified a scenario

where noise is minimum when there is no feedback and any amount of negative feed-

back will always increase the noise: the case where intrinsic noise dominates the total

noise in the protein population and the Hill coefficient is close to one. This explained

an observation in [11] that when the source of the extrinsic noise was removed, the

U-shaped profile vanished, and instead, the noise level monotonically increased with

the feedback strength. However, for synthetic gene networks characterized by a Hill

coefficient much larger than one, our theoretical results predicts that even in the ab-

sence of extrinsic noise a U-shaped profile should be observed. This remains to be

experimentally verified.

4.6.4 Limit of noise suppression

We characterized the smallest level of noise that is inherent to this type of auto-

regulation. This was done through the limit of noise suppression which is defined to

be the ratio of the minimum possible noise with feedback to the protein noise level

when there is no feedback (i.e., a = 0) and corresponds to the depth of the U-shape

profile in Figure 4.6 and Figure 4.7. For auto-regulatory networks with a small basal

98



level of transcription (i.e., b≈ 0) this limit is given by
√

4M
M +1

(4.60)

when the intrinsic noise dominates the total noise in the protein [see (4.48)]. How-

ever, as the amount of extrinsic noise increases this limit decreases and asymptotically

approaches √
Tnr +Tz

[Tnr +Tz(M +1)](M +1)
, (4.61)

which corresponds to the situation where extrinsic noise completely dominates the

total noise in the protein [see (4.50)].

We also showed that the optimal level of feedback strength, for which the protein

noise level is minimum, monotonically increases with increasing levels of extrinsic

noise in the protein population. Thus if negative feedback loops indeed function to

minimize protein noise, then networks with larger contributions from extrinsic noise

compared to intrinsic noise, should operate at higher levels of feedback strength, i.e.,

higher binding affinities between the protein and its promoter.

The above results can be used to quantify the level of extrinsic noise in the protein

population. This is useful for synthetic and natural auto-regulatory gene networks

where the feedback strength can be manipulated. As illustrated in Section 4.5, noise in

the exogenous signal driving the extrinsic noise can be estimated from the minimum

possible protein noise. Matching these estimates with independent measurements of

noise in the exogenous signal can be used to confirm hypothesis that a particular noise

source is the major contributor of extrinsic noise to the protein population.
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4.6.5 Positive feedback loops

Our analysis can also be used for auto-regulatory gene networks with positive feed-

back. These networks are characterized by a transcriptional response g(x) as in (4.59),

but with a constant b larger than one. A similar analysis reveals that instead of being

minimized, the protein noise levels are maximized at the optimal level of feedback

strength. Thus protein noise levels follow an inverted U-shape profile as the feedback

strength is increased. Moreover, for positive feedback loops characterized by a Hill co-

efficient of one (such as the Tat protein in the HIV gene network [63, 62]), and when

intrinsic noise dominates the total noise, the noise level monotonically decrease with

increasing feedback strength. Such differences in noise profiles can again be exploited

to determine the level of extrinsic noise in these gene networks.

In summary, we have developed results relating the noise levels to the feedback

strength in auto-regulatory gene networks. We have shown that for negative feed-

back loops, protein noise levels are always minimized at an optimal level of feed-

back strength. The noise resulting from these optimal levels of feedback characterizes

the smallest level of noise that can be achieved in these networks through the use

of negative feedback. Our results have implications for the design of synthetic auto-

regulatory gene networks with minimal protein noise. They also raise the question

of whether these widely occurring auto-regulatory gene networks (for example, over

40% of known Escherichia coli transcription factors negatively regulate their own tran-

scription [45]) have naturally evolved to operate at the optimal feedback strength. If

these networks have indeed evolved to operate at the optimal point then any mutation

or experimental manipulation that changes the feedback strength should always cause

the protein noise levels to increase.
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4.7 Future work

We derived analytical formulas for the protein noise level using the linear noise

approximation which involves linearizing the transcriptional response g(x,z) about

the means x∗ and z∗. As pointed out this is a valid approximation as long as the protein

noise level is sufficiently small. One direction of future work is to extend this analysis

to situations where the protein noise level is not small, and understand how the protein

noise level is related to both the functional form of g(x,z) and how the exogenous

signal z enters the the function g.

We developed a qualitative understanding of how protein noise levels change with

the feedback strength when the transcriptional response g(x,z) is given by the Hill

function. This typically correspond to a situation where the protein molecules com-

bines with other copies of the protein to form a functional multimer which then binds

to the promoter switching the gene off. The Hill function would be a valid approxima-

tion only when the dynamics of protein multimerization and binding/unbinding of the

multimer to the promoter is sufficiently fast. A direction of future work is to relax this

assumption and explicitly model both the above processes in the auto-regulatory gene

network. For example, protein multimerization can be modeled as a linear cascade

where proteins combine to form dimers, which then combines with proteins to form

trimers, and so on. Our goal would be to understand how protein noise level changes

as the feedback strength is varied when the dynamics of the protein multimerization

and binding/unbinding of the multimer to the promoter is not fast compared to the

dynamics of protein production and degradation.

Another direction of future work is to follow up the predictions made in Sec-

tion 4.2.2 about the lambda repressor gene network. In Section 4.2.2 we proposed
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that the negative feedback reduces stochastic fluctuations in protein numbers and al-

lows the virus to have a more robust lysogeny. This is contrary to the current view that

negative feedback allows the virus to have less number of lambda repressors, which

help it respond faster when a signal to lyse the cell is activated [42]. Using more

detailed stochastic models of the lambda repressor gene network (see [4]), our goal

would be to analyze the role of the negative feedback.
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Chapter 5

Evolution of auto-regulatory gene

networks

In this chapter we investigate under what conditions an auto-regulatory negative

feedback mechanism can evolve from a primitive gene network with no auto-regulation.

In the course of evolution, negative feedbacks would be introduced in the primitive

network through random mutations in the protein and the promoter region of its gene.

However, these mutations would only persist if the resulting feedback increases the

fitness of the corresponding cell line.

We consider a simple form for the fitness function that is given by the probability of

maintaining protein numbers above a critical level. This fitness function is appropriate

for various essential proteins whose populations have to be maintained above a thresh-

old for normal cellular functioning. Stochastic fluctuations in the protein population

that drive their numbers below this threshold are assumed to compromise the cell’s via-

bility. This type of threshold like responses have been reported for various prokaryotic
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transcription factors [52]. The above fitness functions is also appropriate for genes that

can have a stable ON and OFF state corresponding to different environmental inputs

(for example, the lambda repressor gene in the lambda phage gene network [42] and

the Gal80 gene in the galactose signaling network [1]). For such genes, minimizing

random stochastic transitions from the ON to the OFF state correspond to maximizing

the probability of having protein numbers above a critical threshold.

The fitness function considered here results in a nontrivial tradeoff for the evolution

of a negative feedback. Any mutation that introduces negative feedback decreases the

average number of protein molecules, which tends to decrease the probability of having

protein numbers larger than the threshold and hence decreases fitness. However, the

negative feedback will also reduce fluctuations in protein numbers about the mean,

which tends to increase this same probability. If the net change in fitness is positive,

then the cell line with the negative feedback persists. Moreover, subsequent additional

mutations to other elements of the auto-regulatory network can even bring the average

number of protein molecules back to their original level. However, if the net change

in fitness is negative, then the cell line dies and evolution of negative feedback is not

possible.

In this chapter we perform a systematic analysis of the above fitness function and

provide conditions under which a negative feedback is evolvable. In particular, this

thesis shows that a negative feedback is more evolvable if the source of noise in the

protein population is extrinsic and not intrinsic noise. For example, a negative feed-

back with a Hill coefficient of one can never evolve if fluctuations in protein numbers

are intrinsic, but this feedback can evolve if there is sufficiently large extrinsic noise

in the protein population. We also make other predictions that a negative feedback is

more evolvable when the Hill coefficient of the feedback is large, the response time of
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the exogenous signal is large, and the critical threshold level is small.

5.1 Fitness function

We consider the situation where the protein is only active when its population

is above a critical threshold T. Fluctuations in the population that causes the protein

numbers to drift below this threshold inactivate the protein and it can no longer perform

its biological function. Towards that end, our goal is to maximize the probability that

the number of protein molecules x is higher than the critical threshold T. Assuming

that the fluctuation in protein numbers about its mean is sufficiently small, and that the

steady-state distribution of x is approximately gaussian distribution, we have that

Probability{T < x}=
1

σ∗
√

2π

∫
∞

x=T
exp
(
−(x−x∗)2

2σ∗2

)
dx (5.1)

where x∗ represents the steady-state average number of protein molecules and σ∗ rep-

resents the steady-state standard deviation about x∗. Since this probability should be

high, the threshold T should be smaller than the average number of proteins x∗. Using

the coordinate transformation

y =
x−x∗√

2σ∗
, (5.2)

we re-write the probability (5.1) as

Probability{T < x}=
1

σ∗
√

2π

∫
∞

x=T
exp
(
−(x−x∗)2

2σ∗2

)
dx (5.3a)

=
1
2

(
1+ erf

(
x∗−T√

2σ∗

))
(5.3b)

where erf refers to the error function and is given by

erf
(

x∗−T√
2σ∗

)
=
∫ x∗−T√

2σ∗

y=0
exp
(
−y2)dy. (5.4)
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As the error function defined above is a monotonically increasing function, we have

from (5.3b) that the Probability{T < x} is a monotonically increasing function of (x∗−

T)/σ∗. Towards that end, we define the fitness of the cell as

Fitness =
x∗−T

σ∗ (5.5)

and increasing (decreasing) this fitness corresponds to increasing (decreasing) the

probability that the protein population is above the critical threshold. In order to study

the effect of feedback in the cell fitness, it will be convenient to work with a normalized

fitness F defined by

F =
Fitness with feedback

Fitness without feedback
(5.6)

which using (5.5) can be written as

F =
(

σnr
∗

σ∗

)(
x∗−T
x∗nr−T

)
. (5.7)

where x∗nr and σnr
∗ correspond to the steady-state average number of molecules and

standard deviation when there in no negative feedback. In the next section we analyze

under what conditions the normalized fitness F will increase to a value larger than 1

when an auto-regulation mechanism is introduced in gene expression.

5.2 Evolvability of the negative feedback

We consider the auto-regulatory gene network model introduced in the previous

chapter where the transcriptional response is given by

g(x) = g0

(
b+

1−b
1+(ax)M

)
, 0≤ b < 1, (5.8)
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where M ≥ 1 denotes the Hill coefficient, a characterizes the feedback strength, and g0

corresponds to the transcription rate when there is no feedback (i.e., a = 0). We recall

that for the above transcriptional response, the average number of protein molecules

x∗ is given by

Nxg0

(
b+

1−b
1+(ax∗)M

)
= dxx∗ (5.9)

[see (4.38)] and it monotonically decreases with increasing feedback strength. The

steady-state coefficient of variation is given by

CV 2
tot = CV 2

int−nr
Tr

Tnr

1+(ax∗)M

1+b(ax∗)M +S2CV 2
z

(
Tr

Tnr

)2 Tz

Tz +Tr
(5.10)

where,

Tr

Tnr
=

(1+(ax∗)M)(1+b(ax∗)M)
1+[1+M−b(M−1)](ax∗)M +b(ax∗)2M , (5.11a)

CVint−nr =

√
dx(N2

x +V 2
x +Nx)

2g0N2
x

(5.11b)

is the intrinsic noise in the protein when there is no feedback, Tz is the response time of

the exogenous signal, and CVz denotes the noise in the exogenous signal [see (4.53)].

We begin by expressing the normalized fitness F as a function of the coefficient of

variation of x. To this effect, we re-write (5.7) as

F =
(

CVtot−nr

CVtot

)(
1− γ

x∗nr
x∗

1− γ

)
(5.12)

where CVtot−nr denotes the coefficient of variation of the protein population when there

is no feedback and is given by

CV 2
tot−nr = CV 2

int−nr +S2CV 2
z

Tz

Tz +Tnr
, (5.13)

and the constant γ is a normalized threshold defined by

γ =
T

x∗nr
< 1. (5.14)
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Any mutation that now increases the feedback strength from zero decreases the average

protein number x∗ from x∗nr which causes F to decrease [see (5.12)]. On the other hand,

this same mutation will introduce a negative feedback and decrease CVtot , which causes

F to increase. If the net change in the fitness of the cell is positive then the negative

feedback is said to be evolvable. Our goal is to analyze under what conditions and for

what range of parameters is a negative feedback mechanism evolvable.

By computing the derivative of F with respect to the parameter a, and after straight-

forward but tedious computations one concludes that F will increase as a increases

from zero if and only if

CV 2
int−nr [M(1− γ)− (1+ γ)]+

S2CV 2
z

(1+Tnr/Tz)2 [(2+Tnr/Tz)M(1− γ)−2(1+Tnr/Tz)γ)]

(5.15)

is positive.

We now consider the limiting situations where intrinsic or extrinsic noise dominate

the total noise in the protein population. When the extrinsic noise is negligible (CVz ≈

0) and therefore the intrinsic noise dominates, the normalized fitness F increases if and

only if

M > Mint =
1+ γ

1− γ
> 1, 0 < γ < 1, (5.16)

where Mint is a critical value of the Hill coefficient, above which the negative feedback

is evolvable (when intrinsic noise dominates). This shows that when fluctuations in

protein numbers are mostly intrinsic, i.e., the stochastic fluctuations are mostly due to

random protein expression and degradation events, a negative feedback with a Hill co-

efficient of one (M = 1) is not evolvable, irrespective of the value γ of the normalized

threshold. In such a scenario the feedback can only evolve if the Hill coefficient is suf-

ficiently large. As Mint is a monotonically increasing function of γ , we also conclude
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that negative feedback is more likely to evolve if the normalized threshold γ is small.

For example, when γ = 1/2, the feedback is evolvable only for M > Mint = 3, while

for γ = 1/3 it is evolvable for M > Mint = 2.

Figure 5.1. The normalized fitness F as a function of the feedback strength a when

M = 1. When extrinsic noise is absent the fitness decreases with increasing a, but

in the presence of significant extrinsic noise, it increases. Other parameters taken as

γ = 1/3, κ = 0, g0 = 1, Nx = 1, Vx = 0 and dx = 0.01.

We next consider the other limiting case where extrinsic noise dominate the total

noise in the protein population. In such a case we have from (5.15) that the negative

feedback is evolvable if and only if

M > Mext =
2(1+κ)γ

(2+κ)(1− γ)
=


γ

1−γ
when κ = Tnr

Tz
� 1

2γ

1−γ
when κ = Tnr

Tz
� 1

, 0 < γ < 1, (5.17)

where Mext is the critical value of the Hill coefficient above which the negative feed-

back is evolvable (when extrinsic noise dominates). The quantity κ denotes the ratio
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between the protein response time when there is no feedback and the response time of

the exogenous signal driving the extrinsic noise.

Comparing (5.17) with (5.16) we see that Mint > Mext , which implies that for Hill

coefficients M in the range Mext < M < Mint , negative feedback can only evolve if there

is significant extrinsic noise in the protein population. In particular, when intrinsic

noise dominates the total noise in the protein population, a negative feedback with

M = 1 cannot evolve irrespective of γ . However, when extrinsic noise dominates and γ

is small enough such that Mext < 1, then a negative feedback with M = 1 is evolvable.

This point is illustrated in Figure 5.2 which plots the normalized fitness F as a function

of the feedback strength a when M = 1.

Finally, we also point out that Mext is a monotonically decreasing function of κ

[see (5.17)]. This suggests that negative feedback is more likely to evolve when κ is

small, i.e., the response time of the exogenous signal is large compared to that of the

protein.

The results presented in this section are summarized in Figures 5.2 and 5.3. These

figures show the evolvability of the negative feedback as a function of the Hill coeffi-

cient M and normalized threshold γ for κ � 1 and κ � 1, respectively. In particular,

the entire parameter space can be divided into three regions. The first region repre-

sents the case where a negative feedback is always evolvable irrespective of whether

protein noise is intrinsic or extrinsic. This region corresponds to the parameter space

where the Hill coefficient is large and the normalized threshold is small. The second

region represents the parameter space where the negative feedback can only evolve if

there is sufficiently large extrinsic noise in the protein population. As discussed above,

feedback with M = 1 corresponds to this region. Finally, the third region represents

the parameter space where feedback is never evolvable and typically corresponds to
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Figure 5.2. A plot of the evolvability of the negative feedback as a function of the Hill

coefficient M and normalized threshold γ when κ � 1.

the situation where γ is large, i.e., the threshold T is very near the average number of

protein molecules. Comparing Figure 5.2 with Figure 5.3 we also see that the region

that corresponds to evolvability only in the presence of extrinsic noise shrinks as κ is

increased, i.e., the response time of the exogenous signal is decreased.

5.3 Discussion

Auto-regulatory gene networks in which a protein expressed by a gene inhibits its

own transcription are common gene motifs within cells [3]. This chapter considered

the evolution of such auto-regulatory gene networks from a primitive network with

no auto-regulation. Using a fitness function motivated by a threshold like response
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Figure 5.3. A plot of the evolvability of the negative feedback as a function of the Hill

coefficient M and normalized threshold γ when κ � 1.

of the protein population, we provided explicit analytical conditions under which an

auto-regulatory mechanism can evolve. Our conclusion is that negative feedback can

evolve if and only if the quantity in equation (5.15) is positive.

A systematic analysis of (5.15) showed that a negative feedback is more likely

to evolve when the source of fluctuations in the protein population is more due to

extrinsic noise (i.e., from a noisy exogenous signal) than from intrinsic noise (i.e., from

random protein expression and degradation events). This is exemplified by the fact that

negative feedback with Hill coefficients in the range Mext < M < Mint cannot evolve

when protein noise is intrinsic but can evolve if there is sufficiently large extrinsic

noise in protein numbers. The range of Hill coefficients which can only evolve in the

presence of extrinsic noise, shrink as we decrease the response time of the exogenous

signal (i.e., increase κ). Combining the two previous observations we conclude that a
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negative feedback is more likely to evolve when noise in protein numbers comes from

a noisy exogenous signal with a large response time.

Figures 5.2 and 5.3 also show that evolvability of the negative feedback critically

depends upon the threshold T. Level of this critical threshold closer to the average

population decrease the evolvability of the negative feedback. In particular, when the

protein noise is dominated by extrinsic noise then we have from (5.17) that a feedback

with M = 1 can only evolve if the normalized threshold is less than 1/2 (when κ � 1)

and less than 1/3 (when κ � 1).

Finally, our analysis also predicts that the evolvability of the negative feedback

is independent of the constant b in the transcriptional response (5.8). This is simply

because although a transcriptional response with a lower value of b causes a larger

decrease in x∗ when a feedback is introduced, it is compensated by the fact that a

lower b also causes a larger decrease in fluctuations about x∗.

5.3.1 Future work

We analyzed the evolvability of the negative feedback using a simple form for the

fitness function that is given by the probability of maintaining protein numbers above

a critical level. A direction of future research is to modify this fitness function by

assuming that there also exists a upper threshold T̄, and increasing protein numbers

above T̄ also compromises the cell’s viability. Using this modified fitness function

given by Probability{T < x < T̄} our goal would be to analyze how the evolvability of

the feedback depends on T̄.

Recent work has introduced complex fitness functions for proteins that are involved

in metabolizing sugars [2]. Another direction of future work is to extend the above
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evolvability analysis to these fitness functions.
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Chapter 6

Scaling of stochasticity in gene

cascades

Gene cascades, where a protein expressed from one gene activates another gene to

make a different protein, are common motifs occurring within cells. In these cascades

an initial signal, which involves a protein with small number of molecules, can be am-

plified over a number of stages. The amplified signal can then be used to trigger some

physiological response in the cell. We investigate how noise levels in the proteins of

the gene cascade are effected by the number of stages and the per-stage magnification

of the cascade.

We consider a cascade of Q genes GeneX1, GeneX2, . . . , GeneXQ where gene

GeneXi expresses the protein Xi, which in turn activates gene GeneXi+1 to make the

protein Xi+1 for each i ∈ [1, . . . ,Q− 1], as shown in Figure 6.1. In Section 6.1, we

model the activation by assuming that the transcription rate of GeneXi+1 is given by

ri+1xi for some constant ri+1 where xi denotes the number of molecules of protein Xi.
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We show in Section 6.2 that the steady-state noise in the protein Xi, which we denote

by CVXi , decreases as the number of stages i increases and therefore the cascade acts

like a noise attenuator, where downstream proteins have reduced noise.

We also compare the final protein noise in two different cascades of genes with dif-

ferent number of stages but with the same average steady-state number of molecules of

the final protein. We show that the gene cascade that achieves the same total magnifi-

cation with a large number of stages but smaller per-stage magnification exhibits lesser

stochastic fluctuations in the final protein than the cascade with a smaller number of

stages but a larger per-stage magnification.

In Section 6.3 we investigate the same cascade of Q genes, but now consider the

situation where the transcription rate of GeneXi+1 is given by ri+1xi where now ri+1

is a stochastic process. Fluctuations in ri+1 are referred to as the extrinsic noise that

enters the gene cascade. We show in Section 6.3 that the presence of this extrinsic noise

can change the qualitative behaviour of the cascade. In particular, for large extrinsic

noise, CVXi increases with the stage index i, and hence, the cascade behaves as a noise

magnifier instead of a noise attenuator. We also show that, given two cascades with a

different number of stages but the same average steady-state number of molecules of

the final protein, there exists a critical level of extrinsic noise above which the cascade

with the smaller number of stages and higher per-stage magnification exhibits lesser

noise in the final protein than the cascade with a larger number of stages and lower

per-stage magnification.
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Figure 6.1. A gene activation cascade where gene GeneX1 expresses protein X1. This

protein then activates gene GeneX2 to make X2 which then goes on to activate gene

GeneX3.

6.1 Noise in a cascade of genes

We consider a cascade of Q genes GeneX1, GeneX2, . . . , GeneXQ where gene

GeneXi expresses protein Xi that activates gene GeneXi+1, for each i ∈ [1, . . . ,Q− 1]

(as shown in Figure 6.1). We model the activation of GeneXi+1 by assuming that the

transcription rate of GeneXi+1 is given by ri+1xi for some constant ri+1 where xi de-

notes the number of molecules of protein Xi. The constant ri typically depends on the

gene copy number and on the number of molecules of transcription factors and en-

zymes involved in the expression of the corresponding gene. For now we take all the
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ri to be constants but later we shall consider fluctuations in ri.

As in Section 4.1, we consider a simple model of gene expression where expression

of gene GeneXi for all i ∈ [1, . . . ,Q] leads to the formation of Ni molecules of the

protein Xi where Ni is a random variable with mean Ni and variance V 2
i . We also

assume that the protein Xi decays at a constant rate di. Using the results presented in

Section 4.3 we can relate the average number of molecules and noise in protein Xi+1

with that of protein Xi: For this cascade with a transcriptional response of the form

ri+1xi, this analysis leads to

x∗i+1 =
ri+1Ni+1

di+1
x∗i =: Gi+1x∗i , ∀ i ∈ [1, . . . ,Q−1] (6.1)

where x∗i denotes the steady-state average number of molecules of protein Xi. The

constant Gi+1 := ri+1Ni+1/di+1 > 1 can be viewed as the multiplicative gain by which

the population of protein Xi is magnified at the i + 1th stage of the cascade and is

assumed to be larger than one.

The noise in protein Xi+1 arises from two sources: fluctuations caused by random

gene expression/protein degradation and fluctuations due to noise in the activating sig-

nal xi. Using (4.33) with the appropriate transcriptional response ri+1xi, we conclude

that

S =
dri+1xi

dxi

xi

ri+1xi
= 1 (6.2)

which allow us to express the noise in protein Xi+1 as a function of the noise in protein

Xi according to

CV 2
Xi+1

= CV 2
intXi+1

+
di+1

di +di+1
CV 2

Xi
, ∀ i ∈ [1, . . . ,Q−1] (6.3)

where CVXi is the steady-state noise in the protein Xi and

CV 2
intXi

=
Ni

2 +Vi
2 +Ni

2Nix∗i
, ∀ i ∈ [1, . . . ,Q] (6.4)
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represents the intrinsic noise in the protein Xi. For simplicity, we focus our attention on

the biologically relevant case [24] where the number of proteins produced per mRNA

follows a geometric distribution, in which case the variance V 2
i is equal to N2

i −Ni and

CV 2
intXi

=
Ni

x∗i
, ∀ i ∈ [1, . . . ,Q]. (6.5)

6.2 Scaling of noise in gene cascades

In this section we investigate how the noise in protein numbers varies with the per-

stage magnification and the number of stages of the cascade. Substituting (6.5) in (6.3)

we conclude that

CV 2
Xi+1

=
Ni+1

x∗i+1
+

di+1

di +di+1
CV 2

Xi
. (6.6)

Assuming that for all i, Ni is bounded from above and di+1/(di + di+1) is strictly less

than one, we have

lim
i→∞

CV 2
Xi

= 0. (6.7)

Thus in this case the cascade acts like a noise attenuator, meaning that as we go down

the cascade, the noise in the downstream proteins becomes smaller, as shown in Fig-

ure 6.2.

For a homogeneous cascade of genes where

Ni = N, di = d, ri = r, Gi = G =
rN
d

> 1, (6.8)

and the transcription rate of the first gene is given by λ r for some constant λ , we

conclude from (6.1) that

x∗i = λGi (6.9)
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and from (6.6) that

CV 2
Xi+1

=
N

λGi+1 +
1
2

CV 2
Xi

=
N

Gλ

1
2i

i

∑
j=0

(
2
G

) j

=
N
(
(G/2)i+1−1

)
(G/2−1)Gi+1λ

. (6.10)

Analysis of this expression shows that if the per stage magnification (G) is greater than

two, then CV 2
Xi

decreases monotonically with i, as in Figure 6.2(a), while for G < 2,

CV 2
Xi

first increases and then decreases, as in Figure 6.2(b).

Figure 6.2. CV 2
Xi

at the ith stage of the gene cascade when all genes have per stage

magnification of a) G = 5 and b) G = 1.5. Other parameters taken as r = d = λ = 1.

We now compare the final protein noise in two different gene cascades with a
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different number of stages but the same final average number of molecules. We assume

that both the cascades have the same basic parameters, except for N. As G = rN/d, this

implies that both cascades have different per stage magnifications G. For both cascades

to have the same average number of molecules of the final protein, the cascade with

a smaller number of stages will need to have a larger per-stage magnification. More

specifically, if the cascades have V and W stages with per-stage magnification GV and

GW , respectively, then

(GV )V = (GW )W . (6.11)

From (6.10) we conclude that the ratio of the noises in the final protein are given by

CV 2
XV

CV 2
XW

=
GV

GW

(GW /2−1)
(GV /2−1)

((GV /2)V −1)
((GW /2)W −1)

(6.12)

where CVXV and CVXW denote the noise in the final protein of the gene cascades with V

and W stages, respectively. If the per-stage magnification in both cascades is less than

two then for large V and W we have

CV 2
XV

CV 2
XW

≈ GV

GW

(1−GW /2)
(1−GV /2)

. (6.13)

If V > W , which implies that GV < GW , then one can show that the above ratio is

always smaller than one, i.e., the gene cascade with the larger number of stages exhibits

lesser noise in the final protein. Alternatively, when the magnification is much larger

than two, we conclude from (6.12) that

CV 2
XV

CV 2
XW

≈ GV

GW

GW /2
GV /2

(GV /2)N

(GW /2)K =
(

1
2

)V−W

. (6.14)

This again shows that a gene cascade which achieves magnification with a larger num-

ber of stages but smaller per-stage magnification will exhibit lower stochastic fluctu-

ations in the final protein than a cascade with a smaller number of stages but a larger

per-stage magnification.
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6.3 Scaling of extrinsic and intrinsic noise in gene cas-

cades

In the previous section we assumed that the transcription rate of the gene GeneXi+1

is equal to ri+1xi where ri+1 was assumed to be a fixed constant. We now consider the

situation where ri+1 is not fixed but fluctuates about its mean value. More specifically,

we assume the transcription rate of gene GeneXi+1 is ri+1xi where ri+1 is a stochastic

process with steady-state mean and coefficient of variation given by ri+1 and CVexti+1 ,

respectively. We refer to fluctuations in ri as the amount of extrinsic noise that enters

the ith stage of the cascade and denote it by CVexti . For simplicity, we assume that ri

and r j are independent of each other for i 6= j. Analysis in Appendix C shows that

(6.1) still holds but now

CV 2
Xi+1

=
Ni+1

x∗i+1
+
(
ξi +δiCV 2

exti

)
CV 2

Xi
+ζiCV 2

exti (6.15)

where

ξi =
di+1

di +di+1
< 1, ζi =

di+1

gi+1 +di+1
< 1, δi =

di+1

gi+1 +di+1 +di
< 1 (6.16)

and gi represents the degradation rate of the signal ri+1. As expected, when CVexti = 0

(6.15) reduces to (6.6).

One can now conclude from (6.15) that unlike in Section 6.2 where CV 2
Xi

goes to

zero for sufficiently large i, CV 2
Xi

now approaches some non-zero value determined by

the amount of extrinsic noise in the cascade. Furthermore, when ξi + δiCV 2
exti > 1,

for every i, then the gene cascade is a noise magnifier where the downstream proteins

have increased noise. Hence, by altering the amount of extrinsic noise in the cascade

one could change a cascade from being a noise attenuator (as in Section 6.2 where

CVexti = 0) to a noise amplifier.
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For a homogeneous cascade where

di = d, ri = r, CV 2
exti = CV 2

ext , gi = g, Ni = N, Gi = G =
rN
d

> 1, (6.17)

with the transcription rate of the first gene given by λ r for some constant λ , we have

from (6.15) that

CV 2
Xi+1

=
N

λGi+1 +
d

d +g
CV 2

ext +
(

1
2

+
d

2d +g
CV 2

ext

)
CV 2

Xi
. (6.18)

We conclude from (6.18) that

lim
i→∞

CV 2
Xi

=

 S for CV 2
ext < 1+ g

2d

∞ for CV 2
ext ≥ 1+ g

2d

(6.19)

where

S =
dCV 2

ext
d +g

2(2d +g)
2d(1−CV 2

ext)+g
. (6.20)

We can explicitly solve the difference equation (6.18) to obtain the noise in protein Xi

to be

CV 2
Xi

=
dG
(
(Gα)i−1

)
r(Gα−1)λGi +ζCV 2

ext
α i−1
α−1

(6.21)

where

α =
1
2

+
d

2d +g
CV 2

ext , ζ =
d

d +g
. (6.22)

For sufficiently large G the above expression reduces to

CV 2
Xi
≈ dα i−1

rλ
+ζCV 2

ext
α i−1
α−1

. (6.23)

As in the previous section we now consider two cascades of lengths V , W with V > W

and per-stage magnifications GV and GW chosen such that both cascades result in the
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same average number of molecules for the final protein (i.e., (6.11) holds). We showed

in Section 6.2 that if CVext = 0 then CV 2
XV

< CV 2
XW

. However, from (6.23) we conclude

that when α = 1, i.e., CV 2
ext = 1+g/2d we have

CV 2
Xi
≈ d

rλ
+ iζ

(
1+

g
2d

)
. (6.24)

Thus when CV 2
ext = 1+g/2d, CV 2

XV
> CV 2

XW
as V > W . Since CV 2

Xi
varies continuously

with CV 2
ext , there must exists a critical value CVcrit <

√
1+g/2d for the extrinsic noise

CVext such that when CVext > CVcrit , then CVXV > CVXW . This shows that when the

extrinsic noise is larger than a critical value, then the gene cascade which achieves the

same magnification with a smaller number of stages and higher per-stage magnification

exhibits lower stochastic fluctuations in the final protein than the cascade with a larger

number of stages and a smaller per-stage magnification.

6.4 Conclusion

This chapter presented results relating the stochastic noise for proteins in a gene

cascade with the number of stages and the per-stage magnification. We provided ex-

plicit formulas to compute the noise in the proteins both in the absence and presence

of extrinsic noise. We showed that when there is no extrinsic noise the noise in the ith

protein decreases with i and the cascade acts like a noise attenuator. Furthermore, for

two different cascades with the same average final protein level, the cascade with the

larger number of stages exhibits lower stochastic noise in the final protein. However,

in the presence of a sufficiently large level of extrinsic noise there is a role reversal for

the cascade. More specifically, the cascade now acts as a noise amplifier where down-

stream proteins have increased noise. Thus depending on whether noise in the final
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product is deleterious or advantageous to the cell, it can be appropriately modulated

via cascades.

6.4.1 Future work

We assumed in Section 6.3 that ri and r j for i 6= j are independent of each other.

This would be a valid approximation if plasmids encoding different genes fluctuate

independently of each other. However, if the source of extrinsic noise are fluctuations

in enzyme levels then ri and r j for i 6= j would be positively correlated as generally

the same enzymes are involved in the transcription of the gene. A direction of fu-

ture work is to investigate scenarios where correlations exists between ri and study its

consequences on the scaling of stochasticity in cascades.
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Appendix A

Moment closure for chemical reactions

To evaluate the time evolution of moments we use the fact (see [10, 18] for details)

that for the SHS (1.6)-(1.8), the time evolution of any differentiable function ψ : Rn →

R is given by

dE[ψ(x)]
dt

= E[(Lψ)(x)], (A.1)

where ∀x ∈ Rn

(Lψ)(x) :=
K

∑
i=1

(ψ(φi(x))−ψ(x))λi(x). (A.2)

Let µ(m) be a mth order moment of x. Using (1.9) and replacing ψ(x) with x(m) in

(A.1) and (A.2), we have that

dµ(m)

dt
= E[(Lψ)(x)] (A.3)
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where

(Lψ)(x) =
K

∑
i=1

cihi(x)
{

φi(x)(m)−x(m)
}

(A.4a)

=
K

∑
i=1

cihi(x)

{[
n

∏
j=1

(x j−ui j + vi j)m j

]
−x(m)

}
(A.4b)

=
K

∑
i=1

cihi(x)

{[
n

∏
j=1

m j

∑
q=0

Cm j
q xm j−q

j aq
i j

]
−x(m)

}
(A.4c)

and ai j := νi j−µi j. As (Lψ)(x) is simply a linear combination of monomials of x, we

have from (A.3) that the time derivative of µ(m) is a linear combination of moments.

Moreover as

(Lψ)(x) =
K

∑
i=1

cihi(x)

{[
n

∏
j=1

m j

∑
q=0

Cm j
q xm j−q

j aq
i j

]
−x(m)

}
(A.5a)

=
K

∑
i=1

cihi(x)

{
n

∑
j=1

Cm j
1

x(m)

x j
ai j + . . .

}
, (A.5b)

the highest order moment appearing in µ̇(m) is determined by the degree of the poly-

nomial

K

∑
i=1

cihi(x)
n

∑
j=1

Cm j
1 ai j

x(m)

x j
. (A.6)

As x(m) is a monomial of degree m, and hi(x) can be a polynomial of degree at most

2, the polynomial (A.6) is a polynomial in x of degree at most m+1. Thus the highest

order moment that can appear in the time derivative of µ(m) is of order m+1. Hence,

if one constructs a vector

µ = [µ(m1), · · · ,µ(mk)]
T ∈ Rk, mp ∈ Nn

≥0, ∀p ∈ {1, , . . . ,k} (A.7)

containing all the moments of x of order upto R, then its time derivative is given by

µ̇ = â+Aµ +Bµ̄ (A.8)

135



where µ̄ ∈ Rr is a vector of moments of order R + 1. Let n̄ = k− n∗+ 1, where n∗

denotes the row in the vector µ from where the Rth order moments of x start appearing.

Then all elements in the first n∗−1 rows of matrix B will be zero. This is because the

time derivative of a moment of order less than R, is dependent at most on moment of

order up to R which are already present in the vector µ .
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Appendix B

Optimal feedback strength

B.1 Effects of nonlinearities in g(x)

For the transcriptional response given by (4.24) the time evolution of the moments

E[x], E[x2] are given by

dE[x]
dt

=g(x∗)Nx−dxE[x]+g′(x∗)NxE[x]+
g′′(x∗)

2
NxE[x2]−g′(x∗)Nxx∗

−g′′(x∗)NxE[x]x∗+
g′′(x∗)

2
Nxx∗2 (B.1a)

dE[x2]
dt

=g(x∗)(N2
x +V 2

x )+dxE[x]+2g(x∗)NxE[x]+g′(x∗)(N2
x +V 2

x )E[x]

−2dxE[x2]+2g′(x∗)NxE[x2]+
g′′(x∗)

2
(N2

x +V 2
x )E[x2]

+g′′(x∗)NxE[x3]−g′(x∗)(N2
x +V 2

x )x∗−2g′(x∗)NxE[x]x∗

−g′′(x∗)(N2
x +V 2

x )E[x]x∗−2g′′(x∗)NxE[x2]x∗

+
g′′(x∗)

2
(N2

x +V 2
x )x∗2 +g′′(x∗)NxE[x]x∗2 (B.1b)
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which can be written more compactly as dE[x]
dt

dE[x2]
dt

= a+A

 E[x]

E[x2]

+B E[x3], (B.2)

for some vector a and matrices A and B. The above moment dynamics is not closed

as the time derivative of E[x] and E[x2] depends on E[x], E[x2] and E[x3]. We use

moment closure techniques to approximate E[x3] as a nonlinear function of E[x] and

E[x2] and close the above set of differential equations. A standard assumption at this

point is to assume that the third cumulant of the distribution is zero, which will be valid

approximation as long as the distribution is symmetrically distributed about its mean.

Referring the reader to [16, 49, 33] for further details we approximate E[x3] as

E[x3]≈ 3E[x]E[x2]−2E[x]3. (B.3)

Denoting the steady-state values of the moments E[x] and E[x2] by x∗q and E∗[x2],

respectively, we have from (B.2) and (B.3) that

0 = a+A

 x∗q

E∗[x2]

+B
(

3x∗qE∗[x2]−2x∗3
q

)
. (B.4)

Analytically solving for these steady-state moments from (B.4) is not an easy task and

we use perturbation methods to compute approximate steady-states. This is done by

writing x∗q as a perturbation about x∗ and E∗[x2] as a perturbation about x∗2
q, as follows

x∗q := x∗(1+ ε1), E∗[x2] := x∗2
q(1+ ε2). (B.5)

Assuming

ε
2
1 � 1, ε

2
2 � 1, |ε1ε2| � 1 (B.6)
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we have from (B.5)

E∗[x2]≈ x∗2(1+2ε1 + ε2) (B.7a)

3x∗qE∗[x2]−2x∗3
q ≈ x∗3(1+3ε1 +3ε2). (B.7b)

Substituting (B.7) in (B.4) we obtain

0 = ã +̃A

 ε1

ε2

 (B.8)

for some vector ã and matrix Ã. Solving for ε1 and ε2 from (B.8) we have

ε1 =
1

1+ Nxx∗g′′(x∗)CV 2
int

2λ

−1, (B.9a)

CV 2
int−quad =

E∗[x2]−x∗2
q

x∗2
q

= ε2 =
CV 2

int

1+ Nxx∗g′′(x∗)CV 2
int

2λ

(B.9b)

where CV 2
int is given by (4.20).

B.2 Extrinsic and intrinsic contributions of noise

We model the time evolution of the number of molecules x and z through a Stochas-

tic Hybrid System (SHS) with state y = [z,x]T characterized by trivial continuous dy-

namics

ẏ =

 ż

ẋ

= 0 (B.10a)
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and four reset maps

y 7→ φ1(y) =

 z+Nz

x

 , y 7→ φ2(y) =

 z−1

x

 (B.10b)

y 7→ φ3(y) =

 z

x+Nx

 , y 7→ φ4(y) =

 z

x−1

 (B.10c)

with corresponding transition intensities given by

λ1(y) = Kz, λ2(y) = dzz, (B.11a)

λ3(y) = g(x∗,z∗)+
dg(x,z∗)

dx
|x=x∗(x−x∗)+

dg(x∗,z)
dz

|z=z∗(z− z∗), (B.11b)

λ4(y) = dxx. (B.11c)

Using (4.8) we have that the time evolution of all the first and second order moments

of y is given by 

dE[z]
dt

E[x]
dt

E[z2]
dt

E[x2]
dt

E[zx]
dt


= ā+ Ā



E[z]

E[x]

E[z2]

E[x2]

E[zx]


(B.12)

for some vector ā and matrix Ā. A steady-state analysis of (B.12) shows that the

steady-state average number molecules of the protein, x∗, is given as the solution to

(4.16) and the total noise level in the protein population is given by (4.33).
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B.3 Limit of noise suppression

It is not easy to derive an explicit expression for the minimum protein noise,

CVtot−min. However, for the biologically meaningful case of

b� 1, Tz � Tnr, (B.13)

analytical formulations for both CVtot−min and the optimal level of feedback strength

which achieves this minimum noise are possible. When these assumptions are true we

have from (4.53) that the total protein noise level is given by

CV 2
tot = CV 2

int−nr

(
1+(ax∗)M)2

1+(M +1)(ax∗)M +S2CV 2
z

(
1+(ax∗)M

1+(M +1)(ax∗)M

)2

. (B.14)

Straightforward calculus shows that the right-hand-side of (B.14) is minimum when

(ax∗)M =
M−2+

√
M
√

8S2CV 2
z +MCV 2

int−nr/CVint−nr

2(M +1)
, (B.15)

which implies from (B.14) and (4.38) that

CV 2
tot−min =

2L

(1+M)2
(√

MCVint−nr +
√

8S2CV 2
z +MCV 2

int−nr

)2

L = 4S4CV 4
z +19MS2CV 2

z CV 2
int−nr +4M2CV 4

int−nr

+5
√

MS2CV 2
z CVint−nr

√
8S2CV 2

z +MCV 2
int−nr

+4
√

M3CV 3
int−nr

√
8S2CV 2

z +MCV 2
int−nr (B.16)

and

amin =
dx
√

M
2g0Nx(M +1)

(
3
√

M +
√

8S2CV 2
z +MCV 2

int−nr/CVint−nr

)
P (B.17a)

P =

M−2+
√

M
√

8S2CV 2
z +MCV 2

int−nr/CVint−nr

2(M +1)


1
M

. (B.17b)
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In situations where the assumptions listed in (B.13) do not hold, both CVtot−min and

amin can be obtained numerically by minimizing the right-hand-side of (4.53).

From (4.55) we conclude that when Tz � Tnr, the protein noise CVtot−nr when there

is no feedback is

CV 2
tot−nr = CV 2

int−nr +S2CV 2
z . (B.18)

Hence, given experimental measurements of CVtot−nr and the minimal noise CVtot−min

in the protein population, one can determine CVz by simultaneously solving (B.16)

and (B.18). In cases where only CVtot−min is obtained experimentally, then given an

estimate of CVint−nr, one can compute CVz from (B.16).

In addition to the above assumptions (i.e., b� 1 and Tz � Tnr) if we also have that

CV 2
int−nr � S2CV 2

z , (B.19)

then (B.16) reduce to

CV 2
tot−min ≈

S2CV 2
z

(1+M)2 +
5SCVzCVint−nr

√
M√

2(1+M)2
. (B.20)

B.4 Estimating the noise in the exogenous signal

Assuming the source of extrinsic noise to be the plasmid population, we have from

Section 4.3 that g(x,z) = zg(x) and therefore

S =
z∗

g(x∗,z∗)
dg(x∗,z)

dz
|z=z∗ = 1. (B.21)

For this synthetic auto-regulatory gene network b = 0 and we calculate from the reac-

tion rates provided in Table I of [11],

CV 2
int−nr ≈ 0.008, Tnr/Tz ≈ 0.1. (B.22)
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As the assumptions listed in (B.13) hold, we use the formulas in Appendix B.3 to

quantify the noise CVz in the exogenous signal. Using M = 1, the above estimate of

CVint−nr, and the experimentally obtained value of CVtot−min ≈ 0.4, we obtain from

(B.20) that CVz = CVplasmid is approximately 0.64.

B.5 Gene expression model with transcription and trans-

lation

In this section we consider a model of gene expression which takes into account

the mRNA dynamics. Here the protein production is decomposed into two steps: tran-

scription and translation (as shown in Figure B.1). We assume that the mRNA is tran-

Figure B.1. A model for gene expression with transcription and translation.

scribed from the gene GeneX at a constant rate Tx and the protein X is translated from

the mRNA at a constant rate Lx. Both mRNA and the protein decay at rates ax and dx

respectively. As the average lifetime of a mRNA is 1/ax and proteins are made from it

at rate Lx, Nx = Lx/ax denotes the number of proteins produced per mRNA, which is
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referred to as the burst size of the gene GeneX . We denote by mx and x, the number

of molecules of the mRNA and protein X, respectively. As a continuous determin-

istic model based on chemical rate equations does not provide information about the

stochastic fluctuation in the protein, we consider a stochastic formulation that treats

births and deaths of the mRNA and the protein as probabilistic events. Given that

x(t) = x and mx(t) = mx, the probabilities of the four reactions corresponding to births

and deaths of the mRNA and the protein happening in the infinitesimal time interval

(t, t +dt] are given by

Pr{x(t +dt) = x,mx(t +dt) = mx +1}= Txdt (B.23a)

Pr{x(t +dt) = x,mx(t +dt) = mx−1}= axmxdt (B.23b)

Pr{x(t +dt) = x+1,mx(t +dt) = mx}= Lxmxdt (B.23c)

Pr{x(t +dt) = x−1,mx(t +dt) = mx}= dxxdt. (B.23d)

We model the time evolution of the number of molecules x and mx through a Stochastic

Hybrid System (SHS), the state of which is y = [mx,x]T . This SHS is characterized by

trivial continuous dynamics

ẏ = 0, (B.24)

four reset maps φi(y)

y 7→ φ1(y) =

 mx +1

x

 , y 7→ φ2(y) =

 mx−1

x

 (B.25a)

y 7→ φ3(y) =

 mx

x+1

 , y 7→ φ4(y) =

 mx

x−1

 (B.25b)

and corresponding transition intensities

λ1(y) = Tx, λ2(y) = axmx, λ3(y) = Lxmx, λ4(y) = dxx (B.26)
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corresponding to transcription, translation, mRNA and protein degradation. We now

determine the time evolution of the first and second order moments of y, i.e., the ex-

pected values E[mx], E[x], E[x2], E[m2
x ] and E[mxx]. Using the Dynkin’s formula for

the above SHS we have

dE[mx]
dt

= Tx−axE[mx] (B.27a)

dE[x]
dt

= LxE[mx]−dxE[x] (B.27b)

dE[m2
x ]

dt
= Tx +axE[mx]+2TxE[mx]−2axE[m2

x ] (B.27c)

dE[x2]
dt

= LxE[mx]+dxE[x]+2LxE[mxx]−2dxE[x2] (B.27d)

dE[mxx]
dt

= LxE[m2
x ]+TxE[x]−dxE[mxx]−axE[mxx]. (B.27e)

The steady-state moments are then given by

m∗
x := lim

t→∞
E[mx(t)] =

Tx

ax
(B.28a)

x∗ := lim
t→∞

E[x(t)] =
LxTx

dxax
=

NxTx

dx
(B.28b)

E∗[m2
x ] := lim

t→∞
E[m2

x(t)] =
axTx +T 2

x
a2

x
(B.28c)

E∗[x2] := lim
t→∞

E[x2(t)] =
LxTx

dxax
+

Lx(dxaxLxTx +dxLxT 2
x +axLxT 2

x )
d2

x a2
x(dx +ax)

(B.28d)

E∗[mxx] := lim
t→∞

E[mx(t)x(t)] =
dxaxLxTx +dxLxT 2

x +axLxT 2
x

dxa2
x(dx +ax)

. (B.28e)

Using the above steady-state we obtain the following coefficient of variation of x

CV 2
int−nr =

1+Nx + e
x∗(1+ e)

(B.29)

where e = dx/ax is the ratio of the protein and the mRNA degradation rate. As men-

tioned before e is generally small and in the limit where e goes to zero, CVint−nr reduces

to

CV 2
int−nr =

1+Nx

x∗
. (B.30)
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Comparing (B.30) with (4.11) we see that the noise in the protein population (when

e ≈ 0) is the same as that obtained from the model presented in Section 4.1 with

V 2
x = N2

x +Nx.

B.6 Auto-regulatory gene network with transcription

and translation

We now put a feedback in the gene expression model introduced in Appendix B.5.

We model the feedback by assuming that the transcription rate of the gene is given

by g(x) when x denotes the number of protein molecules in the cell. As done in

Section 4.2.1 we use a linear approximation

g(x)≈ g(x∗)+g′(x∗)(x−x∗) (B.31)

where x∗ is the steady-state average number of protein molecules. The corresponding

SHS for this auto-regulatory gene network has trivial dynamics and reset maps given

by (B.25), and corresponding transition intensities

λ1(y) = g(x∗)+g′(x∗)(x−x∗), λ2(y) = axmx, λ3(y) = Lxmx, λ4(y) = dxx. (B.32)

Analysis similar to that done in Appendix B.5 shows that the steady-state coefficient

of variation of x is given by

CV 2
int =

dx(1+Nx)
[g(x∗)−x∗g′(x∗)]Nx(1+ e)

+
e

(1+ e)x∗
(B.33)

where e = dx/ax is the ratio of the protein and mRNA degradation rate. Notice that

when e≈ 0, the noise in protein numbers reduces to

CV 2
int =

dx(1+Nx)
[g(x∗)−x∗g′(x∗)]Nx

(B.34)

which is identical to that obtained in (4.20) with V 2
x = N2

x +Nx.
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B.7 Minimum limit of noise suppression with mRNA

dynamics

We now investigate the intrinsic noise in the protein population given by (B.33) for

the special class transcriptional response given by

g(x) =
g0

1+(ax)M . (B.35)

Substituting (B.35) in (B.33) we have

CVint =

√
[1+(ax∗)M][e(1+(ax∗)M +M(ax∗)M)+(1+Nx)(1+(ax∗)M)

(1+Nx + e)(1+(ax∗)M +M(ax∗)M)
CVint−nr

(B.36)

where

CV 2
int−nr =

1+Nx + e
x∗(1+ e)

(B.37)

is the intrinsic noise in the protein when there is no feedback (i.e., a = 0). When e≈ 0,

the limit of noise suppression is given

CVint−min

CVint−nr
=
√

4M
M +1

(B.38)

which is identical to that obtained in Section 4.4.1 (see equation (4.48)). Numerical

analysis suggests that as we now increase e from zero (i.e., the mRNA half life is no

longer small compared to protein half life) the limit of noise suppression decreases and

is lower than what is predicted by (B.38). For example, for e = 1 (i.e., the mRNA and

protein have same half lives) numerical analysis shows that for a burst size of Nx = 10

there can be at most a 4.7% reduction in intrinsic noise from CVint−nr for M = 2 where

as for M = 4 we can have a 17.4% reduction. These maximum reductions are slightly

smaller compared to the 5.7% and 20% reduction in intrinsic noise for the same values

of M (see Section 4.4.1) when e≈ 0.
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Appendix C

Incorporating extrinsic noise in the

cascade of genes

Consider a exogenous signal z defined by the following birth-death process

Pr{z(t +dt) = z+Nz | z(t) = z}= Kzdt (C.1a)

Pr{z(t +dt) = z−1 | z(t) = z}= dzzdt (C.1b)

where Kz and dz represent the production and degradation rate of z, respectively, and

Nz is a random variable with mean Nz and variance V 2
z . Let protein X1 be expressed

from a gene GeneX1 and given by the following birth-death process

Pr{x1(t +dt) = x1 +N1 | x1(t) = x1}= K1dt (C.2a)

Pr{x1(t +dt) = x1−1 | x1(t) = x1}= d1x1dt (C.2b)

where x1 is the number of molecules of the protein X1. Protein X1 activates a gene

GeneX2 to make protein X2 with the transcription rate of GeneX2 given by zx1. Our

goal is to relate the noise in the protein X2 to the noise in protein X1 and the exogenous
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signal z. As before, we model the above process by a SHS with trivial dynamics

ẏ = 0, y = [z,x1,x2] (C.3)

with six reset maps

y 7→ φ1(y) =


z+Nz

x1

x2

 , y 7→ φ2(y) =


z−1

x1

x2

 , (C.4a)

y 7→ φ3(y) =


z

x1 +N1

x2

 , y 7→ φ4(y) =


z

x1−1

x2

 , (C.4b)

y 7→ φ5(y) =


z

x1

x2 +N2

 , y 7→ φ6(y) =


z

x1

x2−1

 , (C.4c)

and corresponding transition intensities

λ1(y) = Kz, λ2(y) = dzz, λ3(y) = K1, λ4(y) = d1x1, λ5(y) = zx1, λ6(y) = d2x2.

(C.5)

We now construct a vector µ with

µ =
[
E[z], E[x1], E[x2], E[z2], E[x2

1], E[x2
2], E[zx1],E[zx2], E[x1x2], E[zx1x2]

]T
.

(C.6)

Using Dynkin’s equations we have that the time derivative of µ is given by

µ̇ = ā+ Āµ + B̄µ̄, µ̄ =
[
E[z2x1], E[zx2

1], E[z2x2
1]
]T

(C.7)

for some vector ā and matrices Ā and B̄. Using the fact that the stochastic processes x1

and z are independent, we have

µ̄ =
[
E[z2]E[x1], E[z]E[x2

1], E[z2]E[x2
1]
]T

(C.8)
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which leads to a closed system of differential equations given by

µ̇ = ā+ Āµ + B̄µ̄, µ̄ =
[
E[z2]E[x1], E[z]E[x2

1], E[z2]E[x2
1]
]T

. (C.9)

Solving for the steady-state of (C.9) we have

CV 2
X2

=
N2

x∗2
+ξCV 2

X1
+ζCV 2

z +δCV 2
z CV 2

X1
(C.10)

where

ξ =
d2

d1 +d2
< 1, ζ =

d2

dz +d2
< 1, δ =

d2

dz +d2 +d2
< 1, (C.11)

and CVz, CVX1 are the noise in the exogenous signal z and protein X1, respectively. The

quantity x∗2 denotes the steady-state average number of molecules of protein X2.
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