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Abstract— We consider a discrete-time linear system for
which the control input is updated at every sampling time, but
the state is measured at a slower rate. We allow the state to be
sampled according to a periodic schedule, which dictates when
the state should be sampled along a period. Given a desired
average sampling interval, our goal is to determine sampling
schedules that are optimal in the sense that they minimize the h2

or the h∞ closed-loop norm, under an optimal state-feedback
control law. Our results show that, when the desired average
sampling interval is an integer, the optimal state sampling turns
out to be evenly spaced. This result indicates that, for the h2

and h∞ performance metrics, there is relatively little benefit to
go beyond constant-period sampling.

I. INTRODUCTION

The standard paradigm in digital control is to periodically
sample the system’s output, compute the control action, and
update the system’s input. Digital to analog and analog to
digital converters often dictate these operations to occur
at evenly spaced times, even if, occasionally, at different
rates [1]. However, when, for example, the controller and
sensor processing units ran on shared processors or con-
trol signals are transmitted over shared networks, different
sensor and control update schedules are imposed or can be
selected [2]. Here we address how to optimize the sampling
schedules.

We consider a discrete-time linear system for which the
control input is updated at every time step and the state is
sampled according to an arbitrary periodic schedule; each
schedule is characterized by the intervals between consecu-
tive samples in a period h. The cost of a sampling schedule is
measured by the h2 or h∞ closed-loop system norms under
an optimal control law. We tackle the problem of picking
optimal sampling schedules with a desired rational average
sampling interval.

In the h2 framework, we start by establishing a key result
stating that the expected value of a quadratic cost in the
interval between two samples is a convex function of the
length of the interval (in a natural sense for functions with
discrete domains). Moreover, we show that the h2 norm can
be written as a weighted average of samples of this convex
function at the lengths of the intervals characterizing the
periodic schedule. These two facts lead to a simple way to
modify a schedule in order to decrease the associated h2

norm: take two arbitrary intervals characterizing the schedule
and reduce the largest by the same amount that the smallest
is increased. This implies that:
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1) An h-periodic schedule with m intervals between sam-
pling is optimal if (and only if under mild conditions)
all of these intervals are either equal to b hmc or d hme
where b·c, d·e denote the floor and the ceil.

2) When h
m is an integer, then evenly sampled sampling is

optimal and, in fact, it is the unique optimal schedule
(under mild assumptions).

3) The plot optimal achievable h2 norm versus average rate
is a continuous piece-wise affine function connecting
the pairs (1/h, J2,h) where J2,h is the h2 norm of
periodic control with integer average sampling interval
h (see Figure 3 below).

The results are briefly connected to existing results in the
literature for continuous-time sampled data systems (see
Remarks 2, 3 below).

In the h∞ framework, we show that the h∞ norm only
depends on the longest interval in a schedule, and it is a non-
decreasing function of this longest interval. This implies that:

1) A sampling schedule guarantees the smallest attenua-
tion bound (h∞ norm) achievable for a given rational
average sampling time h

m if (and only if under mild
assumptions) the largest interval does not exceed d hme.
Note that the optimal schedules (in this sense) are in
general different from the ones for the h2 case.

2) Also here, when h
m is an integer, then evenly sampled

sampling is optimal and it is the unique optimal sched-
ule (under mild assumptions).

3) The plot optimal achievable h∞ norm versus average
sampling time (or average rate) is a discontinuous
piece-wise constant function, where these constants are
equal to the h∞ norms corresponding to evenly spaced
sampling with integer average sampling interval h (see
Figure 4 below).

A numerical example illustrates the results.
There are some related results in the literature, reviewed

next. The co-design of the control and scheduling of tasks has
been proposed in several papers, see e.g., [3]. The superiority
of evenly spaced sampling in the context of continuous-time
output feedback sampled linear systems has been established
in [4], both in the H2 and H∞ senses, using arguments based
on the Youla parameterization. The results in [5], a discrete-
time extension of [4] considering the h∞ setting, do not
explicitly handle evenly spaced sampling. In the h2 setting,
the impact of the variability of the sampling sequence has
been studied in [6], which implies the optimality of evenly
spaced sampling for sampled data systems. However, note
that our results are different from the ones in [5], [6]. In
particular, in the h2 setting, neither the above mentioned



convexity properties nor the comparison between arbitrarily
schedules differing by two intervals appear in [6]. In partic-
ular, while [6] shows that the h2 norm is not necessarily a
monotone function of the variance of the sampling intervals,
from the properties established here we can provide a sim-
ple method to find sampling schedules that monotonically
improve the h2 norm (see Remark 1 below). In the h∞
sense besides providing a discrete-time result analogous
to the continuous-time provided in [4], we address some
of its implications not addressed in the literature. Besides
the tools we use to derive our results are very different
from the tools used in [4], [6], [5]. While a convexity
property continuous-time version of the h2 periodic problem
has been established in [7], the property is different from
the one given here as will be clarified in the sequel. The
paper [8] goes beyond the present case for the h∞ problem
and searches for state-dependent (event-triggered) scheduling
policies that can outperform periodic control. Some of the
results in the present paper, which considers only the periodic
time-triggered case, are used in [8]. There are also results
that advocate the use of aperiodic sampling, such as [9]
and [10]. In [9] an aperiodic sampling scheme is proposed
that guarantees at least the same attenuation bound of evenly-
spaced sampling for a finite horizon problem. However, this
aperiodic sampling scheme is shown to converge to periodic
control (see Lemma [9] ), so that there is no contradiction
with the result presented here. See [4] for an explanation of
why the results in [10] do not contradict the superiority of
evenly spaced sampling in the average cost sense consider
also here.

The paper is organized as follows. Section II states the
problem and Section III, IV provide the main results pertain-
ing to h2 and h∞ respectively. Section V provides numerical
examples and Section VI gives concluding remarks. The
proofs of some auxiliary results are given in the appendix.

II. PROBLEM FORMULATION AND PROBLEM STATEMENT

Consider a linear system

xt+1 = Axt +B2ut +B1wt, t ∈ N0 := N ∪ {0}, (1)

with the following output of interest

zt = C2xt +D21ut, (2)

where xt ∈ Rnx , ut ∈ Rnu , zt ∈ Rp, wt ∈ Rnw for t ∈ N0.
Without loss of generality, we assume that C>2 D21 = 0,
and define Q := C>2 C2 and R = D>21D21. Futhermore, we
consider B1 = I and use the notation B = B2. We assume
that (A,B) is controllable, (A,C2) is observable and R > 0.

We assume that the sensors provide the full state xt.
However, not necessarily at every time t. In fact, we assume
the following measured output

yt =

{
xt, if σt = 1,

∅ if σt = 0,

where σt is a periodic binary function with period h ∈ N
and yt = ∅ means that the state is not available at time t.

When

σt =

{
1 if t is zero or an integer multiple of h,
0 otherwise.

(3)

we have evenly spaced sampling. Let s` be the sampling
times defined as s`+1 = s` + τ`, s0 = 0 with τ` =
min{j ∈ N|σs`+j = 1}. With a periodic schedule, the
sampling intervals τ` eventually repeat themselves, i.e., τ`
= τ`+j for some j > 0. Note that the first sampling
intervals T := (τ0, . . . , τj−1), characterize the periodic
schedule. Let the average sampling interval be denoted by
h = 1

j (
∑j−1
`=0 τ`) and the average rate be denoted by r = 1

h .
Note that both r and h are rational numbers. Examples of
periodic sampling schedules with the same average rate are
(σ0, σ1, σ2, . . . , ) = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, . . . ) and
(σ0, σ1, σ2, . . . , ) = (1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, . . . ). The
control input ut can be updated at every time t as a function
of the information set Jt = {xr|r ∈ {0, . . . , t}, σr = 1} that
is ut = µu,t(Jt) for some functions µu,t. Performance is
measured by either the h2 norm or the h∞ norm.

The h2 norm is defined as follows. Assume that {wk|k ∈
N ∪ {0}} is a sequence of zero-mean independent and
identically distributed random variables with E[wkw

ᵀ
k ] =

W ≥ 0. Then the h2 norm is defined as the average cost

J2 = lim
T→∞

1

T
E[

T−1∑
t=0

‖zt‖2] (4)

We use the notation J2,h to denote J2 for evenly space
sampling schedules (3).

To define the h∞ norm let w = (w0, w1, w2, . . . ),
z = (z0, z1, z2, . . . ), define the inner product 〈w, z〉 =∑∞
t=0 w

>
t zt and norm ‖w‖2 :=

√
〈w,w〉, and let `2 be the

Hilbert space of sequences with bounded norm. The system
provides an attenuation bound γ from the input disturbances
to the output of interest if

‖z‖2 ≤ γ2‖w‖2, ∀w ∈ `2, for x0 = 0. (5)

We are interested in ensuring that (5) holds for the smallest
possible γ. The initial condition x0 may be non-zero pro-
vided that we redefine (5) along the lines discussed, e.g.,
in [11]. The disturbances depend on the information set
It = {xr|r ∈ {0, . . . , t}} that is wt = µw,t(It), for some
functions µw,t. We define πu = (µu,0, µu,1, . . . ) as the pol-
icy of the controller and πw = (µw,0, µw,1, . . . ) as the policy
of the disturbances. Then, for a given periodic sampling
sequence characterized by T , the h∞ norm coincides with
the smallest attenuation bound and is given by

γT := inf{γ|∃πu such that (5) holds when the scheduler
is h-periodic with sampling intervals T }.

(6)
For evenly spaced sampling (3) we use the alternative
notation

γh := inf{γ|∃πu such that (5) holds
when the scheduler is given by (3)}.

(7)



Fig. 1: A non-standard sampled feedback ystem consists
of a controller C and a periodic scheduler S, which sends
measurement/state data to the controller; G represents the
plant.

Naturally if τi = h for every i ∈ {0, . . . , j − 1}, we have
γh = γT .

A sampling schedule characterized by τ1
0 , . . . , τ

1
j1−1 for

some j1 is said to be (strictly) superior to another sampling
schedule τ2

0 , . . . , τ
2
j2−1 in the h2 (h∞) sense if the corre-

sponding optimal controller achieves a non-larger (strictly
smaller) h2 (h∞) cost. It is said to be optimal if there is not
a different strictly superior schedule.

We are interested in finding optimal sampling schedules
with average sampling interval h

m in the h2 and h∞ sense.

III. MAIN RESULTS FOR h2 CONTROL

The following standard result shows that the optimal h2

norm, associated with the optimal controller can be written
in terms of a key function β. Let P be the unique positive
definite (since Q is positive definite) solution to

P = AᵀPA+Q−AᵀPB(R+BᵀPB)−1BᵀPA.

and let Z = AᵀPB(BᵀPB + R)−1BᵀPA and K =
−(BᵀPB + R)−1BᵀPA. Let tr(X) denote the trace of a
matrix X .

Proposition 1: The optimal cost (4) is given by

J2 = tr(PW ) +
1

h
(

j−1∑
`=0

β(τ`)) (8)

where β(1) = 0 and, for p > 1,

β(p) = tr
(
Z(

p−1∑
s=1

Y (s))
)
, (9)

where Y (s) =
∑s−1
r=0A

rWAᵀr for s ∈ N. Moreover, an
optimal control policy that minimizes (4) is

uk = Kx̂k|k (10)

where
x̂k+1|k = Ax̂k|k +Buk

x̂k|k =

{
x̂k|k−1, if σk = 1,

x̂k|k−1, if σk = 0.

�
The proof is given in the appendix.

A function with discrete domain f(i), i ∈ N, is said to be
convex if

f(i) ≤ f(i+ 1) + f(i− 1))

2
, ∀i ∈ N \ {1}. (11)

A key result of the present paper is the following obser-
vation that β is convex.

Theorem 1: The function β(i), i ∈ N, defined in (9), is
convex.

Proof: We have, for i ∈ N, β(i+1)−β(i) = tr(ZY (i))
and, for i ∈ N \ {1}

(β(i+ 1)− β(i))− (β(i)− β(i− 1)) = tr(AiWAᵀi) ≥ 0.

The convexity of β is used in the next theorem to improve
upon a periodic schedule, by replacing two of its sampling
intervals by two alternative sampling intervals that are closer
to their means.

Theorem 2: Consider a given periodic schedule with pe-
riod h and characterized by j intervals T = (τ0, . . . , τj−1).
Given any two distinct τi > τl construct a modified schedule
T̄ = (τ̄0, . . . , τ̄j−1) with

τ̄` =


τi − p, if ` = i

τj + p, if ` = l

τ`, otherwise.

for some p ∈ {0, . . . , b(τi − τl)/2c}. Then, T̄ is superior to
T in the h2 sense.

Proof: Let J2 and J̄2 denote the optimal costs associ-
ated with the original and modified schedules, respectively.
Note that both schedules have the same period denoted by
h. Due to (8) is suffices to prove that

J2 − J̄2 =
1

h
(β(τi) + β(τl)− (β(τi − p) + β(τl + p))) ≥ 0.

(12)
Since β(i) is convex we have, for any p ∈ N,

β(i+ p+ 1)− β(i+ p) ≥ β(i+ p)− β(i+ p− 1) ≥ . . .
≥ β(i+ 1)− β(i) ≥ 0, ∀i ∈ N.

(13)
From this fact we conclude that

β(τi)− β(τi − p) =

p−1∑
k=0

β(τi − k)− β(τi − 1− k)

≥
p−1∑
k=0

β(τl + p− k)− β(τl + p− 1− k)

= β(τl + p)− β(τl)
(14)

which implies (12) concluding the proof.
This results has several implications given next.
Corollary 1: An h-periodic schedule with m intervals

between sampling is optimal if m1 of these intervals equal
h1 = b hmc and m2 equal h2 = d hme where m1 + m2 = m
h1m1 + h2m2 = h. Moreover, the corresponding h2 norm
is equal to

m1

h
β(h1) +

m2

h
β(h2) (15)



Furthermore, if β(i+ 1) > β(i) for every i ∈ N, then these
optimal schedules are unique in the class of schedules with
period h.

Proof: We can list all possible schedules with period
h and m sampling intervals and compute the associated h2

norm. Note that all the schedules that meet the form in the
present corollary have the same h2 norm due to (8). If such
an h2 norm is minimal we conclude the sufficiency part.
In turn, if we have a schedule with minimal h2 norm that
does not take the form stated in the present corollary, due to
Theorem 2, we can modified it without increasing the cost
so that it does meet the mentioned form, so that it is equally
optimal. If β(i + 1) > β(i) for every i ∈ N this leads to
a contradiction meaning that only the schedules of the form
stated in the present corollary are optimal.

It is immediate from (9) that a sufficient condition for
β(i+ 1) > β(i) for every i ∈ N is KW 6= 0.

Corollary 1 implies the following:
i) In general there might be more than one optimal

schedule, e.g., if h = 10, m = 4, 1010100100 are
1001010010 are both optimal.

ii) Given a desired rational average sampling time h
m , the

optimal schedules are the ones that have m1 intervals
equal to b hmc and m2 equal to d hme.

(iii) Note that we can write (15) as follows

β(h1)(h1 + 1− ζ) + β(h1 + 1)(ζ − h1)

ζ
|ζ= h

m

since h = m1h1 +m2h1 +m2 and

(h1 + 1− h/m)

h/m
=

=0︷ ︸︸ ︷
h1m1 + h1m2 +m2 − h+m1

h

(h/m− h1)

h/m
=

m2︷ ︸︸ ︷
h− h1m1 − h2m2

h

Rewriting (15) in terms of the rate r = 1/ξ we have

β(h1)(r(h1 + 1)− 1) + β(h1 + 1)(1− rh1)|r=m
h

Thus, the plot optimal achievable h2 norm versus av-
erage rate is (a restriction to the rational numbers of)
a continuous piecewise affine function connecting the
pairs (1/h, J2,h) where J2,h is the h2 norm of periodic
control with integer average sampling interval h (see
Figure 3 below).

Corollary 1 also implies the following result.
Corollary 2: Evenly spaced sampling is optimal in the

class of periodic schedulers with integer average sampling
time h ∈ N. This is the unique optimal schedule if g(h−1) <
g(h) < g(h+1) when h > 1 and if g(1) < g(2) when h = 1.

�
Remark 1: One simple method to arrive at an optimal

sampling schedule as given in Corollary 1 from an arbitrary
scheduled is to recursively reduce the largest interval by
the same amount that the smallest is increased, and set
this amount to the largest possible according to Theorem 2.

The resulting sequence of sampling schedules monotonically
improves the h2 norm.

Remark 2: The paper [12] considers a continous-time
version of sampled data periodic control with average in-
tersampling time hc ∈ R>0. This reference provides the
following expression for the cost of periodic control with
average sampling period hc:

Jc(hc) = δc +
1

hc
βc(hc), βc(hc)=

∫ hc

0

tr(Zc

∫ s

0

V (r)dr)ds

(16)
where V (s) =

∫ s
0
eAcrWce

Aᵀ
c r, Ac is the system matrix,

Wc is a positive semi-definite matrix proportional to the
covariance of the stochastic disturbances and the expressions
for δs and Zc are omitted here. Note that analogously
to the discrete-time case βc is a convex function since
β′′c (hc) = tr(ZcV (hc)) ≥ 0. Due to this convexity property,
many results of the previous section can be extended to the
sampled-data case; however we do not pursue this further
here.

Remark 3: A different result, shown in [13], states that if
we write (16) as a function of the average rate r = 1/h such
a function βc(1/r) = rβc(

1
r ) is convex. Note, however, that

neither Jc(h) nor J2(h) are in general convex function of h.

IV. MAIN RESULTS FOR h∞ CONTROL

We start by considering evenly spaced sampling (3) and
by providing a method to compute γh, given by (7). Let us
first define three matrix transformations:

Fa(P ) := P + P (γ2I − P )−1P

Fc(P ) := A>PA+Q−A>PB(B>PB +R)−1B>PA

Fo(P ) := A>PA+Q.

for a given γ ∈ R>0. When h = 1 the following iteration
Pt+1 = Fc(Fa(Pt)) with P0 = 0 is monotone in the sense
that Pt+1 ≥ Pt converges if γ2I > Pt for every t ∈ N0

to the unique positive definite solution P̄γ of the algebraic
Riccati equation

P̄γ = Fc(Fa(P̄γ)), (17)

see [11] (although the expressions in [11] appear in a
different but equivalent form). Due to monotonicity, γ2I >
P̄γ implies that γ2I > Pt for every t ∈ N0. Provided that
this condition holds, (5) holds for a policy πx specified by
ut = Kγxt, where

Kγ = −(R+B>Fa(P̄γ)B)−1B>Fa(P̄γ)A. (18)

If γ is such that γ2I ≥ Pt does not hold for some t, then (5)
does not hold for any πu.

However, if h > 1 the conditions on γ for the existence
of such a control policy are stricter, i.e., γ needs to be
larger [14]. They actually become stricter as h increases
leading to non-decreasing sequence of γh, as stated in the
next lemma.

Lemma 1: Suppose that γ2I > P̄γ , and consider the
following iteration, with M1 = P̄γ ,

Mk+1 = Fo(Fa(Mk)), k ∈ {1, 2, . . . , h}, (19)



which can be ran as long as γ2I−Mk is not singular. Then:
(i) if γ2I−Mk > 0, for all k ∈ {1, . . . , h}, then, for all

k∈{1, . . . , h− 1}, Mk+1≥Mk.
(ii) for every h ∈ N, inf{γ|γ2I −Mh > 0} = γh, where

γh is given by (7).
(iii) for every h ∈ N, γh+1 ≥ γh. �

The proof is given in the appendix.
We turn now to general schedules. The following result

provides a simple way of computing the h∞ norm associated
with a general schedule from the h∞ norm associated with
an evenly spaced schedule.

Theorem 3: Consider a periodic schedule characterized by
the intervals T := (τ0, . . . , τj−1). Let τ̄ = max{τi|i ∈
{0, 1, . . . , j − 1}}. Then,

γT = γτ̄ .

�

Proof: Suppose that γT > γτ̄ . Pick a γ such that γT >
γ > γτ̄ . Then for any given arbitrary control policy and for
schedules T there exists a w ∈ `2 such that ‖z‖2−γ2‖w‖2 >
0 i.e., limT→∞

∑T−1
t=0 zᵀt zt−γ2wᵀ

t wt > 0. This implies that
there exists a t ∈ N and a w ∈ `2 such that, for t̄ ≥ t,

t̄−1∑
t=0

zᵀt zt − γ2wᵀ
t wt > 0 (20)

Suppose that we pick t̄ to be a multiple of h. Using Lemma 2
in the appendix, we conclude that if we pick the control
policy ut = Ktxt, t ∈ {0, 1, . . . , τ̄} where the Kt are
obtained from the iteration (27) initialized with Pτ = Y0 = 0
and τ = t̄, we get

t̄−1∑
k=0

z>k zk − γ2w>k wk =
>
x0︸︷︷︸
=0

P0x0−

t̄−1∑
k=0

(wk − Lk(Axk +Buk))
>(γ2I − Pk+1)(wk − Lk(Axk +Buk))

(21)
provided that the γ2I − Pt are invertible. This is indeed

the case since as we now argue γ2I − Pt > 0 for every
t ∈ {0, 1, . . . , t̄− 1}. To see this it suffices to establish that
Pt ≤ P̄γ for every t ∈ {0, 1, . . . , t̄− 1} since γ2I − P̄γ > 0
by hypothesis. If we run the iteration (27) for τ = t̄ with
Y0 = P̄γ we obtain Pt = Pγ for every t ∈ {0, 1, . . . , t̄}.
From the monotonicity property of Lemma 1 we conclude
that the Pt obtained when Y0 = 0 satisfy Pt ≤ P̄γ for
every t ∈ {0, 1, . . . , t̄−1} as desired. Note that (21) implies∑t̄−1
t=0 z

ᵀ
t zt − γ2wᵀ

t wt ≤ 0 for every disturbance sequence
which contradicts (20).

Suppose now that
γT < γτ̄

so that for the schedule T we can guarantee that

‖z‖2 − γ2‖w‖2 < 0 (22)

for some γ, γT < γ < γτ̄ and for every w ∈ `2. Note that
in this case γ2I −Mτ̄ has an eigenvalue which is negative.

Let `m ∈ arg max{τ`|` ∈ {0, . . . , j − 1}} so that τ`m = τ̄
and consider the following disturbance policy

wt =



ξ, t ∈ {0, . . . , s`m − 1}
L̃τ̄ (Axt +But) + η if t = s`m

L̃τ̄−t−s`m(Axt+But), if t∈{s`m+1, . . . , s`m+τ̄−1}
L̄t(Axt +But) t ∈ {s`m + τ̄ , . . . , s`m + τ̄ + q}
0, if t ≥ s`m+1 + q + 1

where:

• ξ ∈ Rnx is an arbitrary constant;
• η ∈ Rnx will be chosen in the sequel;
• L̃k = (γ2I −Mk)−1Mk, k ∈ {1, . . . , τ̄ − 1};
• L̄t, t ∈ {s`m + τ̄ , . . . , s`m + τ̄ + q} are given by (31)

in Lemma 4 below (with k = s`m + τ̄ ) and q is such
that ‖xᵀs`m+τ̄Gqxs`m+τ̄ −xᵀs`m+τ̄ P̄γxs`m+τ̄ | < α for a
given and arbitrary α > 0. Such a q depends on xs`m+τ̄

and exists due to Lemma 4.

Then

‖z‖2 − γ2‖w‖2

=

s`m−1∑
t=0

zᵀt zt − γ2wᵀ
t wt︸ ︷︷ ︸

:=c

+

s`m+τ̄−1∑
t=s`m

zᵀt zt − γ2wᵀ
t wt

+

∞∑
t=s̄`m+τ̄

zᵀt zt − γ2wᵀ
t wt︸ ︷︷ ︸

≥xᵀ
s`m

+τ̄Gqxs`m
due to (29) below

≥ c+

s`m+τ̄−1∑
t=s`m

zᵀt zt − γ2wᵀ
t wt + xᵀs`m+τ̄ P̄τxs`m+τ̄

−xᵀs`m+τ̄ P̄τxs`m+τ̄ + xᵀs`m+τ̄Gqxs`m+τ̄︸ ︷︷ ︸
≥α

≥ c+ α+ xᵀs`m P̄τxs`m −
s`m+τ̄−1∑
k=s`m

(wk − w̃k)>(γ2I −Ms`m+τ̄−k)(wk − w̃k)) (23)

= c+ α+ xᵀs`m P̄τxs`m − η
ᵀ(γ2I −Mτ̄ )η > 0

where w̃k = L̃τ̄−k−s`m(Axk+Buk), in (23) we have used
Lemma 3 below with Y0 = Pτ and τ = τ̄ , and in the
last inequality we have picked η to be aligned with an
eigenvector associated with an eigenvalue of (γ2I−Mτ̄ ) that
is negative and multiplied by a constant high enough to make
the expression positive. This contradicts (22) concluding the
proof.

Theorem 3 has several consequences discussed next.
Corollary 3: A sampling schedule guarantees the smallest

attenuation bound (h∞ norm) achievable for a given rational
average sampling time h

m if its largest interval does not
exceed h̃ = d hme. Moreover, if

γh̃−1 > γh̃ > γh̃+1 (24)



the schedules satisfying this property are the unique sched-
ules that guarantee the smallest attenuation bound. Further-
more, under (24), the schedule with smallest average rate
that guarantees this attenuation bound corresponds to evenly
space sampling.

�

Note that also here there can be multiple optimal schedules
(in the sense of this corollary), but are in general different
from the ones for the h2 case.

Due to this corollary, the plot optimal achievable h∞
norm versus average sampling time (or average rate) is
(a restriction to the rational numbers of) a discontinuous
piecewise constant function, where these constants are equal
to the h∞ norms of evenly spaced sampling with integer
average sampling interval h (see Figure 4 below).

Note that we can have schedules corresponding to arbi-
trarily poor h∞ norm and maximum sampling rate. In fact,
the schedule characterized by h = ωb+ b

τi =

{
1, if i ∈ {0, . . . , ωb}
b, if i = ωb+ 1

leads to an h∞ norm γb and average rate ωb
(ω+1)b . For systems

for which γb → ∞ as b → ∞, the h∞ norm becomes
arbitrary poor while the average rate converges to 1 as
b→∞ and ω →∞.

V. NUMERICAL EXAMPLE

Suppose that

A =

1 1 1
0 1 1
0 0 1

 , B =

0
0
1

 , Q = I3, R = 1,

where I3 is the identity matrix. The values of β(h), J2,h,
and γh are given in Table I and plotted in Figures 2, 3, 4,
respectively.

In Figures 3 the optimal h2 value achievable with the
corresponding rational average sampling time is plotted and
in Figure 4 plotted and the optimal h∞ value achievable with
the corresponding rational average rate is plotted.

VI. CONCLUSIONS

In this paper we have characterized sampling schedules
that are optimal for h2 and h∞ feedback control. We have
shown that if the desired average intersampling time is h then
evenly spaced sampling is optimal in both senses. However,
when the desired average intersampling time is not an integer,
then the class of optimal schedules is different in the h2 and
h∞ senses. While for h2 schedules close to evenly spaced

h 1 2 3 4 5 6
β(h) 0 38.1 179.1 548.2 1361.3 2960.2
J2,h 14.3 33.4 73.9 151.9 286.5 507.6
γh [3.805 7.97 14.55 24.18 37.45 54.58

TABLE I: Values of β(h), J2,h, and γh for h ∈ {1, 2, . . . , 6}
for the numerical example.

Fig. 2: β(h) versus h

Fig. 3: J2,h versus average rate

Fig. 4: γh versus average sampling interval

sampling are still optimal, in the h∞ framework the h∞ norm
is only dictated by the largest sampling interval.

APPENDIX

PROOF OF PROPOSITION 1

Consider the following cost

E[

T−1∑
t=0

‖zt‖2 + xᵀTPxT ] (25)

where T = mh for some m ∈ N. From standard optimal
control results, the optimal policy that minimizes (25) is (10)
where x̂k|k is a Kalman filter estimate, and the optimal cost
is

xᵀ0Px0 +

T−1∑
t=0

tr(ZΦt) + T trace(ZW ). (26)



where Φt = E[(xt− x̂t|t)(xt− x̂t|t)ᵀ], see [15, Ch. 5]. Since
xt−x̂t|t = 0 when σt = 1, Φt resets to Φt = 0 when σt = 1.
Moreover, it is a periodic function equal to

Φt =

{
0 if σt = 1,

Y (t− s¯̀(t)), otherwise,

where ¯̀(t) = max{`|s` ≤ t}. Then

lim
T→∞

1

T

T−1∑
t=0

tr(ZΦt) =
1

h
(

j−1∑
`=0

γ(τ`))

Dividing (26) by T and taking the limit as T →∞ we obtain
the desired conclusion (note that (10) is the unique optimal
policy for (26) but not unique for (4) while still optimal).

PROOF OF LEMMA 1

(i) When k = 1, M1 = P̄γ = Fc(Fa(P̄γ)) = M2 −
A>Fa(P̄γ)B(B>Fa(P̄γ)B + R)−1B>Fa(P̄γ)A ≤ M2. We
now prove that, Fo(Fa(P )) is a monotone map in the sense
that Fo(Fa(P1)) ≤ Fo(Fa(P2))when P1 ≤ P2. This follows
from the fact that, for P < γ2I and that for an arbitrary x

xᵀFo(Fa(P ))x = xᵀQx+ max
w

(Ax+ w)ᵀP (Ax+ w)

Using induction, suppose that Mk−1 ≤ Mk for some k ∈
{2, . . . , h − 1}. Then Fo(Fa(Mk−1)) ≤ Fo(Fa(Mk)) and,
concluding the proof.

(ii) In [14] it is shown that γh = inf{γ|γ2I−D̄>h diag(I⊗
Q, P̄γ)D̄h > 0}, with

D̄h =


I 0 . . . 0
A I . . . 0
...

...
...

...
Aτ−1 Aτ−2 . . . I


and the condition γ2I − D̄>h diag(I ⊗ Q, P̄γ)D̄h > 0
is equivalent to the following function being concave in
w0, . . . , wh−1:

h−1∑
k=0

z>k zk − γ2w>k wk + x>h P̄γxh,

where xk+1 = Axk + wk for k ∈ {0, 1, . . . , h − 1}.
Applying dynamic programming to maximize this function
with respect to w`+1, . . . , wh−1, for ` ∈ {0, . . . , h− 1}, we
obtain that this cost is equal to∑̀

k=0

z>k zk − γ2w>k wk + x>`+1M`x`+1

We can rewrite this expression as
`−1∑
k=0

z>k zk − γ2w>k wk + x>` (Q+A>M`A)x`

+ w>` (M` − γ2I)w` + 2w>` M`Ax`

from which clear that this function is concave in w` if and
only if γ2I −M` > 0 where ` ∈ {1, . . . , h} is arbitrary.

(iii) Follows from (i) and (ii).

AUXILIARY LEMMAS

Lemma 2: If 0 ≤ P1 ≤ P2 then

Fc(Fa(P1)) ≤ Fc(Fa(P2))

�
Proof: The proof follows by noticing that, for every

x ∈ Rnx

xᵀFc(Fa(P1))x = min
u

max
w

xᵀQx+ uᵀRu− γ2wᵀw+

(Ax+Bu+ w)ᵀP (Ax+Bu+ w)ᵀ.

Lemma 3: Consider (1), (2), and the following iteration

Pk−1 = Fc(Fa(Pk)), k ∈ {τ, τ − 1, . . . , 0} (27)

with Pτ = Y0 for some Y0 ≥ 0 and where γ is such that
γ2I −Pk is invertible for every k ∈ {τ, τ − 1, . . . , 0}. Then
τ−1∑
k=0

z>k zk − γ2w>k wk + x>τ Pτxτ = x>0 P0x0+

τ−1∑
k=0

(uk −Kkxk)
>(R+B>Fa(Pk+1)B)(uk −Kkxk)−

τ−1∑
k=0

(wk − Lk(Axk +Buk))
>(γ2I − Pk+1)(wk − Lk(Axk +Buk))

(28)
where Kk and Lk are given by

Kk = −(R+B>Fa(Pk+1)B)−1B>Fa(Pk+1)A,

Lk = (γ2I − Pk+1)−1Pk+1A

for k ∈ {0, 1, . . . , τ − 1} �
Proof. By completion of squares we obtain for every k ∈

{0, . . . , τ − 1}

− γ2w>k wk + x>k+1Pk+1xk+1 = f1(xk, uk, wk, k)+

(Axk+Buk)
> (Pk+1 + Pk+1(γ

2I − Pk+1)
−1Pk+1)︸ ︷︷ ︸

=Fa(Pk+1)

(Axk +Buk)

where
f1(x, u, w, k) =

− (w − Lk(Ax+Bu))>(γ2I − Pk+1)(w − Lk(Ax+Bu))

Using this equality and again by completion of squares we
obtain
z>k zk−γ

2w>k wk+x
>
k+1Pk+1xk+1=f1(xk, uk, wk, k)+f2(xk, uk, k)

+ x>k (Q+A>P̃k+1A−A>P̃k+1B(R+B>P̃k+1B)−1B>P̃k+1A)︸ ︷︷ ︸
P̃k

xk.

where f2(x, u) = (u − Kkx)>(R + B>Fa(Pk+1)B)(u −
Kkx) and P̃k+1 = Fa(Pk+1). Then, using these identities
for k = τ − 1,
τ−1∑
k=0

z>k zk − γ2w>k wk + x>τ Pτxτ = f2(xτ−1, uτ−1)+

τ−2∑
k=0

z>k zk − γ2w>k wk+x>τ−1Pτxτ−1+f1(xτ−1, uτ−1, wτ−1)

Applying the same procedure for k = τ − 2, k = τ − 3 until
k = 0 we conclude the desired result.



Lemma 4: Consider (1) and γ such that γ2I − P̄γ > 0.
Then ∞∑

t=k

z>t zt − γ2w>t wt ≥ x>k Gqxk, (29)

when

wt =

{
L̄q−(t−k)(Axt +But), if k ≤ t < k + q

0, if t ≥ k + q
(30)

where, for k ∈ {1, . . . , q},

L̄k = (γ2I −Gk−1)−1Gk−1 (31)

and, for k ∈ {0, . . . , q − 1},

Gk+1 = Fc(Fa(Gk)) (32)

with G0 = PLQ where PLQ is the unique positive definite
solution to the algebraic Riccati equation

PLQ = A>PLQA+PLQ−A>PLQB(R+B>PLQB)−1B>PLQA.

Moreover, for any x ∈ Rnx and α ∈ R>0, there exists q ∈ N,
denoted by q = ζ(x, α), such that

‖xᵀGqx− xᵀP̄γx‖ < α. (33)

Such q can be found by running (32) until (33) is met. �
Proof: Since (1) is time-invariant it suffices to prove the

result for t = 0, which simplifies the notation. Let JE(xr) =
minut=µu,t(Jt)

∑∞
t=r z

>
t zt−γ2wᵀ

t wt when wt = 0 for every
t ≥ r in (1). The standard Linear Quadratic Regulator (LQR)
policy is the optimal policy for ut and leads to the cost
JE(xr) = x>r PLQxr. Consider now

JG,r(x0) =

min
ut=µu,t(Jt)

max
wt=µw,t(It)

r−1∑
t=0

z>t zt − γ2w>t wr + JE(xr)

From standard arguments for quadratic games [11, Ch. 3],
JG,r(x0) = x>0 Grx0, for optimal disturbance policy (30) and
optimal control policy ut = Kq−(t−k)xt, for t ∈ {k, . . . , k+
q}, Kk = −(R + B>Fa(Gk−1)B)−1B>Fa(Gk−1)A. This
implies (29). Moreover, JG,r+1(x0) ≥ JG,r(x0), and
limr→∞Gr = P̄γ , which implies (33) is met for some q,
which can be found with the stated method.

REFERENCES

[1] A. Cuenca, J. Alcaina, J. Salt, V. Casanova, and R. Pizá, “A packet-
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