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ABSTRACT

We demonstrate the use of a miniature car to autonomously search an unknown environment and
successfully find a target object. With inspiration from the F1TENTH project, we use a Raspberry
Pi to run localization, mapping, and path planning software. Our software creates a map of the
car’s surroundings and avoids obstacles through simultaneous localization and mapping software
generated using LiDAR scans and odometry data. Using the resulting map, our search algorithm
calculates points for the car to explore based on distance and probability of the target being near
those points. The car’s path updates until the target has been detected using a camera. With this
project, we aim to enhance the utility of autonomous vehicles for search and identification.

INTRODUCTION

As a senior capstone project at University of California Santa Barbara, the Department of Elec-
trical and Computer Engineering conducts year-long group projects in partnership with external
institutions: this project in particular was funded by the International Foundation for Telemetering.
The team built a miniature car based on open-source designs and developed software that enables
autonomous exploration in an unknown building and location of a target object.

The team leveraged hardware designs and basic software from the open-source community F1TENTH.
F1TENTH is an international organization with the goal of fostering a community geared towards
improving autonomous system technology. F1TENTH focuses on racing with miniature cars at
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1/10 the scale of full-sized race cars, and holds international conventions where teams can race
against each other [1]. F1TENTH also seeks to cultivate interest in communications, robotics, and
controls through educational materials. F1TENTH offers open-source materials to anyone inter-
ested in order to help teams build their cars and therefore have more time to devote to creating
algorithms. This means that many cars are uniform in their hardware and teams can spend more
time making significant improvements in their software and algorithms.

Our specific project car, which we refer to as Velma, builds off the basic F1TENTH platform.
The team aimed to develop a miniature car capable of autonomously navigating through an un-
known environment while searching for a particular object. This problem is challenging due to the
car not having any prior knowledge about the layout of the area it is searching, in our case a build-
ing with multiple rooms. In order to find a desired object, the car needs to be able to efficiently
move through rooms while not crashing, map the area for keeping track of searched space, and
identify the target object from variable distances and poses. We accomplished this goal by using
off-the-shelf hardware components from the F1TENTH community, and developed software that
would enable the required search capabilities. We recount the hardware architecture and focus the
majority of this paper on the novel software developments. The final version of Velma is capable
of autonomously searching an unknown interior environment with multiple rooms and success-
fully identify and approach a target object. In addition to the main searching algorithm, Velma is
capable of several other driving modes that further expand the capabilities of the car in the realm
of autonomous driving.

HARDWARE

Our system is characterized by three main subsystems interacting with each other to achieve the
desired task. Each subsystem is a set of hardware components that communicate sensor data or
execute commands through a software interface with the central computing unit.

We designed our system around the Raspberry Pi 4–a microprocessor with the capability to man-
age our overall network. The first of our three subsystems is a camera that can detect objects and
colors, which is represented by the Pixy. The second subsystem is a sensor that can detect dis-
tances and recall a complete mapping of the area it has observed, represented by the SLAMTEC
RPLIDAR Laser Range Scanner (LiDAR). The third subsystem is a remote control car, repre-
sented by the Traxxas Slash 4WD Electric Short Course Truck. These subsystems interact with
each other via a software framework set up by Robot Operating System (ROS), which simplifies
the software design process and assists with wireless control of the system. Additionally, we are
able to remotely access the Raspberry Pi 4 through the Virtual Network Connection (VNC) across
a wireless network. This allows us to remotely interact with our entire system from a laptop while
guaranteeing the safety of the car at all times. The vehicle is powered by two batteries: one for the
drive motor and Raspberry Pi and one for the LiDAR specifically. Figure 1 depicts the final build
of the car with all components attached.

2



Figure 1: The sensing and compute components are mounted on top of the car, with the LiDAR at the front,
and the actuators internally mounted on the chassis.

A. Sensing

The LiDAR scans the environment in a 360 degree rotation and uses a simple time-of-flight calcula-
tion to determine the distance to an object in every direction. The LiDAR is the crucial component
regulating collision avoidance and overall navigation. The F1TENTH project uses LiDAR as the
main sensor for some of the movement algorithms and is also the primary sensor for our room
mapping software. As it constructs a map of the environment in real time, the LiDAR detects ob-
stacles and walls in the environment where the rest of our software moves the car to avoid them.
The LiDAR module for our project is a RPLiDAR S2, which our team chose for its high refresh
rate and improved distance calculations. The LiDAR is powered separately from the other compo-
nents using a portable battery bank.

The Pixy is an imaging sensor that uses filtering algorithms to detect colors in its field of view.
Once an object is detected, the Pixy will continue tracking the object and report its position in
terms of planar pixel coordinates within the camera frame. The image processing onboard the
camera module requires minimal CPU space, thus saving valuable space for more computationally
intensive components, such as LiDAR mapping. The Pixy acts as the main source of identification
of the object, allowing the Pi to send commands to the other peripherals to form a path toward the
object.

B. Actuation

The speed controller controls the drive and steering motors. It is connected to the Pi through a
USB, from which it receives commands to control the motors. Our project uses the VESC 6 Mk.
5 as the speed controller because of its thorough documentation on the F1TENTH website and
compatibility with Pi computers. The motors used are the servo steering motor and brushless drive
motor, which are common on racing remote controlled cars. The speed controller also reads the
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(rotations per minute) RPM of the drive motor and angle of the steering rack, which allows our car
to accurately report its linear and angular velocity.

C. Computation and Networking

The Raspberry Pi, which is mounted in the center of the car, serves as the central processing unit
for our system and has three major I/O elements connected via USB. The Pixy object detection
camera and RPLIDAR S2 sensor act as input data streams to the Pi, while the VESC is a bilat-
eral stream of data including drive commands and read back of driving status. The Raspberry
Pi utilizes these resources to process information and execute an algorithm to allow the robot to
meet our goals. The Pi also maintains a wireless connection with our laptops via a virtual network
computing (VNC) connection. The Raspberry Pi also runs the main coding structure for the robot
through ROS, which will be discussed in detail in the next section.

SOFTWARE

The framework for Velma was created in large part by our team with some help from F1TENTH
and other online resources [2] [3]. Our software framework also includes capabilities outside of
our original project goal. ROS is the overall coding framework used to run the various code and
algorithms that operate the car [4]. ROS operates by running code in snippets known as nodes that
publish and listen to topics, through which different nodes can communicate. ROS also allows for
real-time visualization of data in the system and the integration of various devices together under
one coding structure.

D. Architecture

Figure 2 depicts a simplified version of our overall ROS structure. The centerpiece of our net-
work is a multiplexer that publishes to the main drive command topic based on what driving option
the mux controller decides is relevant. The multiplexer, or mux, controller makes this decision
mainly based on input from the manual controllers, which is either a keyboard command from a
connected keyboard or from a website that sends commands over a local network. The multiplexer
also subscribes to the sensor data as it implements the emergency braking for safety. The mul-
tiplexer controller does this by obtaining the car’s current location, orientation, velocity, and the
current LiDAR map, and calculates if the car’s projected location will coincide with the location
of an obstacle. If this returns true, the driving mux stops publishing to the VESC until a drive
command is registered in the opposite direction. As the car moves, the sensor data is updated. The
self-driving algorithms use this data to determine the content of each of their own drive commands,
which are constantly being fed to the driving mux in case they are specifically called for by the
user. For the manual controllers, they must each publish to both the mux controller and the driving
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Figure 2: The graph depicts flow of information through the ROS network interacting with our software
stacks (navy blue blocks).

mux itself. This is set up so that when the mux controller receives a command to activate manual
control, it will create and publish drive messages based on input from that same manual controller
indefinitely. Once a drive message is sent to the VESC, the VESC will operate the drive motor
and steering servo. Then, as the car drives forward, the sensors will update again in a way that a
continuous loop is created in our system.

E. Target detection

The Pixy is our primary means of detecting the target object. It publishes the area, in pixels, of the
rectangle where the target is detected, the pixel coordinates of the center of this rectangle, and the
time since detected. The source code for extracting this data from a Pixy camera comes from the
Pixy’s Wiki website, but this code was adapted for our ROS network. The position of the target
object in relation to the car when seen by the camera can be determined by the area and location
of the box created by the Pixy software. Figure 3 depicts the Pixy view of the target object and the
box the software draws on the detected object. Through testing, we established a relation between
the size and position of the drawn box and the location of the target relative to the car, and we use
this relation to navigate the car to the target once it has been seen by the camera.

F. Mapping and navigation

The car keeps track of its position in the environment through simultaneous localization and map-
ping (SLAM) [5]. This program takes the LiDAR scans of the environment and uses them to
generate a map of the car’s surroundings. As the car moves around the room, SLAM uses the
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Figure 3: On the left, we show a screen capture of the Pixy camera’s view and identification of the target
object. On the right, the Pixy translates the identified object to the corresponding data.

Figure 4: From the SLAM algorithm, we can generate a high fidelity map of an indoor environment that is
continuously updated as the robot travels.

linear and angular velocity readings from the VESC to determine where on the map the car has
moved. SLAM utilizes scans of the environment from new positions to update its map to include
new areas that have been seen and increase the map accuracy of spaces already seen. SLAM also
utilizes its map and new scans to update the position of the car on the map and correct small po-
sitional errors. This process also makes use of transforms to relate the various coordinate frames
of the different sensors with each other to create a cohesive map. Figure 4 shows an example of a
SLAM map generated by our vehicle.

Velma is capable of several driving modes which can be divided into two major categories: simple
driving and map-based navigation. There are three simple driving algorithms, the first of which is
manual control where the user uses the keyboard or website to send drive commands. The second
simple algorithm is patrol which uses the LiDAR to maintain a consistent distance with a nearby
wall and drive forward along it. The final simple algorithm is advance, which uses the LiDAR to
drive towards the furthest point it detects without hitting any obstacles.

The map-based navigation algorithms are the more complex of the self-driving algorithms and
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utilize what is known as the navigation stack. The navigation stack accepts a navigation goal in the
form of coordinates on the SLAM map as inputs and outputs drive commands to navigate to the
specific point while avoiding obstacles. Velma’s algorithm also includes various fixes from pub-
licly available navigation packages that allow for a traditional steering setup and allow it to make
multiple point turns to turn around. The coordinates that are passed to the navigation stack are
determined by the navigation multiplexer. In total, there are six algorithms that use the navigation
stack, the first of which is return which navigates the car back to its starting position. The second
algorithm is roomba, which picks a random mapped point to travel to. The third algorithm is nav-
igate where the user selects a point manually in the software for the car to path to. Recall is the
fourth algorithm where the car records various points along a path traveled using manual control
and then traces its path backwards along those points. The explore algorithm is the fifth map-based
algorithm where the car travels to areas not yet mapped continuously to create a complete map of
the environment. The final map-based algorithm is search which is the main goal of the project
and is discussed in further detail in the next section.

SEARCH ALGORITHM

The searching algorithm continuously assigns values to points on the SLAM map-based on how
relevant a point is for search purposes, with higher values being more valuable for the purpose of
searching. This set of values is known as the aggregate value map and takes a weighted average of
a set of value maps, each designed to take into account a particular criteria, which will be detailed
next. The car then selects the highest value on the aggregate value map to travel to and if the target
is not identified, Velma updates the maps based on the new information and selects a new point to
navigate to. This process is repeated until the target is found.

To create the final value map, known as the aggregate value map and depicted in Figure 5, Velma
first generates five separate value maps that each represent a different important criteria for effi-
cient searching. The first value map takes into account whether an area has been searched or not
by assigning higher values to clusters of points in the currently known area not yet observed by the
car. The second value map operates similarly to the explore algorithm such that known points that
are on the frontiers of unmapped open space are assigned a nonzero value. Additionally, the third
value map accounts for the last time a point was observed: as time progresses, each point’s value
increases up to a saturation value based on how long it has been since the point was observed.
This encourages the car to re-search points if the target has not been identified after searching a
space. In order to encourage exploration of points that are easy to reach, the fourth value map
assigns higher weights to points that are within a certain distance and radius of the front of the car
than points beyond this range. The final individual value map considers obstacles: obstacles are
assigned zero-value. All of these maps are continuously generated in real-time to be used in the
aggregate value map, thus determining the next navigation goal. In practice, both the map weights
and each map’s parameters can be fine-tuned for a particular environment to enhance the searching
efficiency.
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Figure 5: The aggregate value map overlaid on the current SLAM map illustrates the overall criteria for
selecting a new navigation goal. The red points indicate a higher value of relevance for the search algorithm
than the blue points

Figure 6: The testing environment for the algorithm included a central room with multiple partitions for
desks, a hallway, and two side rooms.

When the Pixy camera detects the target object, which in our case is a large orange bucket, the
searching algorithm then selects the navigation goal to be the position of the target. The position
of the target is calculated from the Pixy camera data. The car then navigates to the bucket and,
once within a few centimeters of the target, the car stops and the searching algorithm ends.

EXPERIMENTAL RESULTS

To test the search algorithm, we use an orange bucket as the target object, which was chosen for its
large size and distinctive color with respect to the environment. The testing environment consisted
of various rooms and hallways within an old gym building on the University of California, Santa
Barbara campus. Figure 6 shows a complete SLAM map of our testing environment.

In this searching environment, Velma was able to successfully find the target in seven out of every
ten trials, with successful runs taking less than three minutes with the total distance traveled on the
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Figure 7: A successful search trial generates a map of the environment traversed by the robot and the
aggregate value map created at the conclusion of the run.

order of 15 meters. Figure 7 depicts the SLAM map and aggregate value map generated at the end
of a successful trial. This result shows that our project goal was successful in searching a complex
environment to find a target object.

CONCLUSIONS

In conclusion, we achieved our initial goal of creating an autonomous room searching robot. By
combining accurate SLAM map generation, image projection techniques using a color sensing
camera, and intelligent decision making software, we created a self-driving miniature car that can
perform an interesting and compelling task in the real world. Our team sees this project as a
research exercise that highlights the capabilities of autonomous vehicles while also identifying po-
tential issues in such designs and creating suggestion to address them. We hope that this project
serves as a resource to other groups that are attempting similar projects and as an inspiration for
those looking to further explore the world of autonomy.

Our testing highlighted aspects of the search algorithm that we could improve to increase its suc-
cess rate and efficiency. The current navigation goal selection continuously updates, which can
lead to oscillatory searching between similarly valued points. By changing the algorithm to only
update when a goal is reached, we can circumvent this issue. Additionally, in order for maps to
be generated faster and allow for trials to be repeated quicker, we can incorporate extra computing
power or optimize the code itself for speed. Finally, we could further tune the adjustable parame-
ters in the searching algorithm to increase the efficiency of the overall search algorithm.
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