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ABSTRACT

This paper studies topological entropy of switched nonlinear sys-

tems. We construct a general upper bound for the topological en-

tropy in terms of an average of the asymptotic suprema of the mea-

sures of Jacobian matrices of individual modes, weighted by the

corresponding active rates. A general lower bound is constructed in

terms of an active-rate-weighted average of the asymptotic infima

of the traces of these Jacobian matrices. For switched systems with

diagonal modes, we construct upper and lower bounds that only

depend on the eigenvalues of Jacobian matrices, their relative order

among individual modes, and the active rates. For both cases, we

also construct more conservative upper bounds that require less

information on the switching, with their relations illustrated by

numerical examples of a switched Lotka–Volterra ecosystem model.
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1 INTRODUCTION

In systems theory, topological entropy describes information gener-

ation rate in terms of the growth rate of the number of trajectories

distinguishable with a finite precision, or the complexity growth

rate of a system acting on a set with finite measure. Adler et al.

first defined topological entropy as an extension of Kolmogorov’s

metric entropy [17], quantifying the expansion of a map via the

minimal cardinality of a subcover refinement [1]. A different defini-

tion in terms of the maximal number of trajectories separable with

a finite precision was introduced by Bowen [5] and independently
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by Dinaburg [12]. An equivalence between these two notions was

established in [6]. Most existing results on topological entropy are

for time-invariant systems, as time-varying dynamics introduce

complexities that require new methods to understand [16, 18]. This

work on the topological entropy of switched systems aims at con-

tributing to our understanding of some of these complexities.

Entropy also plays a prominent role in control theory, where

information flow occurs between sensors and controllers for gen-

erating feedback controls. First, a notion of topological feedback

entropy was introduced for discrete-time systems [26], following

the construction in [1]. Its definition extended the classical entropy

concepts and described the growth rate of control complexity as

time evolves. Later, a notion of invariance entropy was proposed

for continuous-time systems [9], which is closer in spirit to the

trajectory-counting formulation in [5, 12]. An equivalence between

these two notions was established in [10]. Results from [9] were

extended from set invariance to exponential stabilization in [8].

This paper studies the topological entropy of continuous-time

switched nonlinear systems. Switched systems have become a pop-

ular topic in recent years (see, e.g., [19, 27] and references therein).

In general, a switched system does not inherit the stability proper-

ties of its individual modes. For example, a switched system with

two stable modes may still be unstable [19, p. 19]. It is well known

that a switched linear system generated by a finite family of pair-

wise commuting Hurwitz matrices is globally exponentially stable

under arbitrary switching (see, e.g., [19, Th. 2.5, p. 31]). This result

has been generalized to global uniform asymptotic stability for

switching nonlinear systems with pairwise commuting, globally

asymptotically stable modes [24, 33]. A simplest case of pairwise

commuting modes is when the system functions are simultaneously

diagonalizable. This motivates us to consider switched systems with

diagonal modes in addition to the general case.

Our interest in the topological entropy of switched systems is

strongly motivated by its relation to the data-rate requirements in

control problems. For a linear time-invariant control system, the

minimal data rate for feedback stabilization is given by the sum of

the positive real parts of eigenvalues of the system matrix [13] (or,

for discrete-time systems, the sum of their logarithms [13, 25, 30]),

which is equal to the topological entropy in open-loop [5, 9]. Data-

rate conditions and entropy notions for nonlinear time-invariant

control systems were established in [8, 22, 26]. For switched sys-

tems, however, neither the minimal data rate nor the topological

entropy are completely understood. Sufficient data rates for feed-

back stabilization of switched linear systems were established in

[21, 35]. Similar data-rate conditions were constructed in [28] by

extending the estimation entropy from [23]. In [36, 37], formulae



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Guosong Yang, Daniel Liberzon, and João P. Hespanha

and bounds for the topological entropy of switched linear systems

were constructed in terms of the active rates of individual modes,

an approach which is also adopted in the current work. Relations

between topological entropy and stability of switched linear sys-

tems were established in [34, 37]. For discrete-time switched linear

systems, the topological entropy under worse-case switching se-

quences was obtained based on Joint Spectral Radius [3], while

a formula for estimation entropy was derived under additional

regularity conditions [31].

For switched nonlinear systems, topological entropy has not

been explored so far. This paper’s main contribution is to construct

upper and lower bounds for the topological entropy of switched

nonlinear systems, which generalizes previous results for switched

linear systems in [36, 37]. In Section 2, we present the definition of

topological entropy for switched systems, and provide a standard

construction of spanning and separated sets using a notion of grid.

We also define switching-related quantities such as active rates of

individual modes, and construct upper and lower bounds for the

distance between two solutions and a lower bound for the volume

of a reachable set. These bounds are essential to the computation

of topological entropy, and are also of independent interest.

In Section 3, we construct a general upper bound for the topolog-

ical entropy of switched nonlinear systems, in terms of an average

of the measures of Jacobian matrices of individual modes, weighted

by the corresponding active rates and maximized over the 𝜔-limit

set. A general lower bound is constructed in terms of an active-

rate-weighted average of the traces of these Jacobian matrices,

minimized over the 𝜔-limit set. In Section 4, we consider the case

with diagonal modes (i.e., each scalar component of the nonlin-

ear system functions only depends on the corresponding scalar

component of the state), and construct improved upper and lower

bounds that only depend on the eigenvalues of Jacobian matrices,

their relative order among individual modes, and the active rates.

In both the general case and the case with diagonal modes, we also

construct upper bounds that are more conservative but require less

information on the switching, with their relations illustrated by

numerical examples of a switched Lotka–Volterra ecosystem model.

Section 5 concludes the paper with a brief summary and remarks

on future research directions.

Notations: Let R≥0 := [0,∞), R>0 := (0,∞), and N := {0, 1, . . .}.
Denote by 𝐼𝑛 the identity matrix in R𝑛×𝑛 ; the subscript is omitted

when the dimension is implicit. For a complex number𝑎 ∈ C, denote

by Re(𝑎) its real part. For a vector 𝑣 ∈ R𝑛 , denote by 𝑣𝑖 its 𝑖-th scalar
component and write 𝑣 = (𝑣1, . . . , 𝑣𝑛). For a matrix 𝐴 ∈ R𝑛×𝑛 ,

denote by tr(𝐴), det(𝐴), and spec(𝐴) its trace, determinant, and

spectrum (as a multiset) respectively. For a finite set 𝐸, denote by
|𝐸 | its cardinality. For a set 𝐾 ⊂ R𝑛 , denote by vol(𝐾) and co(𝐾) its
volume (Lebesgue measure) and convex hull, respectively. Denote

by ‖𝑣 ‖∞ := max1≤𝑖≤𝑛 |𝑣𝑖 | the ∞-norm of a vector 𝑣 ∈ R𝑛 , and

by ‖𝐴‖∞ := max1≤𝑖≤𝑛
∑𝑛

𝑗=1 |𝑎𝑖 𝑗 | the induced∞-norm of a matrix

𝐴 = [𝑎𝑖 𝑗 ] ∈ R
𝑛×𝑛 . By default, all logarithms are natural logarithms.

For a function 𝑓 : R𝑚 × R𝑛 → R𝑘 , denote by 𝐽𝑥 𝑓 (𝑟, 𝑣) ∈ R
𝑘×𝑛 the

Jacobian matrix of 𝑓 (𝑟, 𝑥) with respect to 𝑥 at (𝑟, 𝑣).

2 PRELIMINARIES

Consider a family of continuous-time nonlinear dynamical systems

	𝑥 = 𝑓𝑝 (𝑥), 𝑝 ∈ P (1)

with the state 𝑥 ∈ R𝑛 , in which each system is labeled with an index

𝑝 from a finite index set P, and all functions 𝑓𝑝 : R𝑛 → R
𝑛 are

continuously differentiable. We are interested in the corresponding

switched system defined by

	𝑥 = 𝑓𝜎 (𝑥), (2)

where 𝜎 : R≥0 → P is a right-continuous, piecewise constant

switching signal. We call the system with index 𝑝 in (1) the 𝑝-th
mode of the switched system (2), and 𝜎 (𝑡) the active mode at time

𝑡 . We denote by 𝜉𝜎 (𝑡, 𝑥) the solution to (2) at time 𝑡 with initial

state 𝑥 and switched signal 𝜎 , which, under the above assumptions,

is absolutely continuous in 𝑡 , differentiable in 𝑥 , and satisfies the

differential equation (2) away from discontinuities of 𝜎 , which are

called switching times, or simply switches. We assume that there

is at most one switch at each time, and finitely many switches

on each finite time interval (i.e., the set of switches contains no

accumulation point). We denote by 𝑁𝜎 (𝑡, 𝜏) the number of switches

on an interval (𝜏, 𝑡].

2.1 Entropy definitions

In this subsection, we define the topological entropy of the switched

system (2) with a switching signal 𝜎 and initial states drawn from

a compact set with nonempty interior 𝐾 ⊂ R𝑛 called the initial

set. Let ‖ · ‖ be some chosen norm on R𝑛 and the corresponding

induced norm on R𝑛×𝑛 . Given a time horizon 𝑇 ≥ 0 and a radius

𝜀 > 0, we define the following open ball in R𝑛 with center 𝑥 :

𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ) :=

{
𝑥 ∈ R𝑛 : max

𝑡 ∈[0,𝑇 ]
‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ < 𝜀

}
. (3)

We say that a finite set 𝐸 ⊂ 𝐾 is (𝑇, 𝜀)-spanning if

𝐾 ⊂
⋃
𝑥 ∈𝐸

𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ), (4)

or equivalently, for each 𝑥 ∈ 𝐾 , there is a point 𝑥 ∈ 𝐸 such that

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ < 𝜀 for all 𝑡 ∈ [0,𝑇 ]. Let 𝑆 (𝑓𝜎 , 𝜀,𝑇 , 𝐾) denote
the minimal cardinality of a (𝑇, 𝜀)-spanning set, which is nonde-

creasing in 𝑇 and nonincreasing in 𝜀. The topological entropy of

the switched system (2) with initial set 𝐾 and switching signal 𝜎 is

defined in terms of the exponential growth rate of 𝑆 (𝑓𝜎 , 𝜀,𝑇 , 𝐾) by

ℎ(𝑓𝜎 , 𝐾) := lim
𝜀↘0

lim sup
𝑇→∞

1

𝑇
log 𝑆 (𝑓𝜎 , 𝜀,𝑇 , 𝐾) ≥ 0. (5)

For brevity, we at times refer to ℎ(𝑓𝜎 , 𝐾) simply as the (topological)

entropy of (2).

Remark 2.1. In view of the equivalence of norms on a finite-

dimensional vector space, the values of ℎ(𝑓𝜎 , 𝐾) are the same for all

norms ‖ · ‖ on R𝑛 . In particular, the topological entropy is invariant

under a change of basis. Unless otherwise specified, we take ‖ · ‖

to be the∞-norm on R𝑛 or the induced∞-norm on R𝑛×𝑛 .

Next, we provide an equivalent definition for the entropy of the

switched system (2). With 𝑇 and 𝜀 given as before, we say that a

finite set 𝐸 ⊂ 𝐾 is (𝑇, 𝜀)-separated if

𝑥 ∉ 𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ) (6)
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for all distinct points 𝑥, 𝑥 ∈ 𝐸, or equivalently, there is a time

𝑡 ∈ [0,𝑇 ] such that ‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ ≥ 𝜀. Let 𝑁 (𝑓𝜎 , 𝜀,𝑇 , 𝐾)
denote the maximal cardinality of a (𝑇, 𝜀)-separated set, which is

also nondecreasing in 𝑇 and nonincreasing in 𝜀. The entropy of (2)

can be equivalently formulated in terms of the exponential growth

rate of 𝑁 (𝑓𝜎 , 𝜀,𝑇 , 𝐾); cf. [15, p. 110].

Proposition 2.2. The topological entropy of the switched system

(2) satisfies

ℎ(𝑓𝜎 , 𝐾) = lim
𝜀↘0

lim sup
𝑇→∞

1

𝑇
log𝑁 (𝑓𝜎 , 𝜀,𝑇 , 𝐾). (7)

2.2 Standard spanning and separated sets

Given a time horizon 𝑇 ≥ 0 and a radius 𝜀 > 0, we provide a stan-

dard construction of (𝑇, 𝜀)-spanning and (𝑇, 𝜀)-separated sets by ex-
tending the notion of grid in [37]. Given a vector 𝜃 = (𝜃1, . . . , 𝜃𝑛) ∈
R
𝑛
>0 which may depend on 𝑇 and 𝜀, we define the following grid

on the initial set 𝐾 :

𝐺 (𝜃 ) := {(𝑘1𝜃1, . . . , 𝑘𝑛𝜃𝑛) ∈ 𝐾 : 𝑘1, . . . , 𝑘𝑛 ∈ Z}. (8)

As 𝐾 is a compact set with nonempty interior, there exist closed

hypercubes 𝐵1 with radius 𝑟1 > 0 and 𝐵2 with radius 𝑟2 > 0 such

that 𝐵1 ⊂ 𝐾 ⊂ 𝐵2. Then the cardinality of the grid 𝐺 (𝜃 ) satisfies
𝑛∏
𝑖=1

⌈
2𝑟1
𝜃𝑖

⌉
≤ |𝐺 (𝜃 ) | ≤

𝑛∏
𝑖=1

(⌊
2𝑟2
𝜃𝑖

⌋
+ 1

)
.

For a point 𝑥 ∈ 𝐺 (𝜃 ), let 𝑅(𝑥) be the open hyperrectangle with

center 𝑥 and sides 2𝜃1, . . . , 2𝜃𝑛 , that is,

𝑅(𝑥) := {𝑥 ∈ R𝑛 : |𝑥1 − 𝑥1 | < 𝜃1, . . . , |𝑥𝑛 − 𝑥𝑛 | < 𝜃𝑛}. (9)

Then the points in 𝐺 (𝜃 ) adjacent to 𝑥 are on the boundary of the

closure of 𝑅(𝑥), and the union of all 𝑅(𝑥) covers 𝐾 , that is,

𝐾 ⊂
⋃

𝑥 ∈𝐺 (𝜃 )

𝑅(𝑥).

Comparing the hyperrectangle 𝑅(𝑥) with the open ball 𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 )
defined by (3), we obtain the following result, which extends [37,

Lemma 2]; the proof is along the same lines and thus omitted here.

Lemma 2.3. 1. If the vector 𝜃 ∈ R𝑛>0 is selected so that

𝑅(𝑥) ⊂ 𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ) ∀𝑥 ∈ 𝐺 (𝜃 ), (10)

then the grid 𝐺 (𝜃 ) is (𝑇, 𝜀)-spanning. If (10) holds for all 𝑇 ≥ 0 and

𝜀 > 0, and all 𝜃𝑖 are nonincreasing in 𝑇 , then the topological entropy

of the switched system (2) satisfies1

ℎ(𝑓𝜎 , 𝐾) ≤ lim
𝜀↘0

lim sup
𝑇→∞

𝑛∑
𝑖=1

log(1/𝜃𝑖 )

𝑇
. (11)

2. If the vector 𝜃 ∈ R𝑛>0 is selected so that

𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ) ⊂ 𝑅(𝑥) ∀𝑥 ∈ 𝐺 (𝜃 ), (12)

then the grid 𝐺 (𝜃 ) is (𝑇, 𝜀)-separated. If (12) holds for all 𝑇 ≥ 0 and

𝜀 > 0, and all 𝜃𝑖 are nonincreasing in 𝑇 , then the topological entropy

of the switched system (2) satisfies

ℎ(𝑓𝜎 , 𝐾) ≥ lim
𝜀↘0

lim sup
𝑇→∞

𝑛∑
𝑖=1

log(1/𝜃𝑖 )

𝑇
. (13)

1The upper bound (11) holds whenever the limit on the right-hand side exists, which
is always the case for the grids in this paper; the same holds for the lower bound (13).

2.3 Active times and active rates

In this subsection, we introduce switching-related quantities that

are useful for computing the entropy of switched systems. The

active time of the 𝑝-th mode over an interval [0, 𝑡] is defined by

𝜏𝑝 (𝑡) :=
∫ 𝑡

0
1𝑝 (𝜎 (𝑠)) d𝑠, 𝑝 ∈ P (14)

with the indicator function

1𝑝 (𝜎 (𝑠)) :=

{
1, 𝜎 (𝑠) = 𝑝,

0, 𝜎 (𝑠) ≠ 𝑝.

We also define the active rate of the 𝑝-th mode over [0, 𝑡] by

𝜌𝑝 (𝑡) := 𝜏𝑝 (𝑡)/𝑡, 𝑝 ∈ P (15)

with 𝜌𝑝 (0) := 1𝑝 (𝜎 (0)), and the asymptotic active rate of the 𝑝-th
mode by

𝜌𝑝 := lim sup
𝑡→∞

𝜌𝑝 (𝑡), 𝑝 ∈ P . (16)

Clearly, the active times 𝜏𝑝 are nonnegative and nodecreading, and

satisfy
∑
𝑝∈P 𝜏𝑝 (𝑡) = 𝑡 for all 𝑡 ≥ 0; the active rates 𝜌𝑝 take values

in [0, 1] and satisfy
∑
𝑝∈P 𝜌𝑝 (𝑡) = 1 for all 𝑡 ≥ 0. In contrast, due

to the limit supremum in (16), it is possible that
∑
𝑝∈P 𝜌𝑝 > 1 for

the asymptotic active rates 𝜌𝑝 , as illustrated in [37, Example 1].

In [37, Lemma 1], it was shown that for a family of scalars {𝑐𝑝 ∈

R : 𝑝 ∈ P}, we have

lim sup
𝑇→∞

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

𝑐𝑝𝜏𝑝 (𝑡) = max

{
lim sup
𝑡→∞

∑
𝑝∈P

𝑐𝑝𝜌𝑝 (𝑡), 0

}
.

Next, we present a technical lemma that generalizes this result to

the case with a family of integrable functions.

Lemma 2.4. For a family {𝑎𝑝 : 𝑝 ∈ P} of integrable functions

𝑎𝑝 : R≥0 → R, we have

lim sup
𝑇→∞

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

∫ 𝑡

0
𝑎𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠

= max

{
lim sup
𝑡→∞

∑
𝑝∈P

1

𝑡

∫ 𝑡

0
𝑎𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠, 0

}
. (17)

Moreover, the first term in the maximum on the right-hand side of

(17) satisfies

lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑝𝜌𝑝 (𝑡) ≤ lim sup
𝑡→∞

∑
𝑝∈P

1

𝑡

∫ 𝑡

0
𝑎𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠

≤ lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑝𝜌𝑝 (𝑡) (18)

with2

𝑎𝑝 := lim inf
𝑡→∞, 𝜎 (𝑡 )=𝑝

𝑎𝑝 (𝑡), 𝑎𝑝 := lim sup
𝑡→∞, 𝜎 (𝑡 )=𝑝

𝑎𝑝 (𝑡), 𝑝 ∈ P .

Before proving Lemma 2.4, we note that the sum on the left-hand

side of (17) is in fact the integral of 𝑎𝜎 over [0, 𝑡], that is,∫ 𝑡

0
𝑎𝜎 (𝑠) (𝑠) d𝑠 =

∑
𝑝∈P

∫ 𝑡

0
𝑎𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠 . (19)

2If {𝑡 ≥ 0 : 𝜎 (𝑡 ) = 𝑝 } is a bounded set, then the corresponding limit supremum and

limit infimum are taken to be 0.
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Proof of Lemma 2.4. For brevity, we define the following func-

tions 𝜂, 𝑎 : R≥0 → R and constant 𝑎 ∈ R ∪ {∞}:

𝜂 (𝑡) :=
∑
𝑝∈P

∫ 𝑡

0
𝑎𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠, 𝑎(𝑇 ) :=

1

𝑇
max

𝑡 ∈[0,𝑇 ]
𝜂 (𝑡),

with 𝑎(0) := max{𝑎𝜎 (0) (0), 0}, and

𝑎 := lim sup
𝑡→∞

𝜂 (𝑡)

𝑡
.

First, we establish (17), that is, lim sup𝑇→∞ 𝑎(𝑇 ) = max{𝑎, 0}.
The definition of 𝑎 implies 𝑎(𝑇 ) ≥ max{𝜂 (𝑇 )/𝑇, 0} for all 𝑇 > 0,

and thus lim sup𝑇→∞ 𝑎(𝑇 ) ≥ max{𝑎, 0} (in particular, if 𝑎 = ∞

then lim sup𝑇→∞ 𝑎(𝑇 ) = ∞). It remains to prove that when 𝑎
is finite, the reverse inequality holds as well. The definition of 𝑎
implies that for an arbitrary 𝛿 > 0, there is a large enough 𝑡𝛿 ≥ 0

such that

𝜂 (𝑡) < (𝑎 + 𝛿) 𝑡 ∀ 𝑡 > 𝑡𝛿 .

For a time 𝑇 > 𝑡𝛿 , let

𝑡∗(𝑇 ) ∈ argmax
𝑡 ∈[0,𝑇 ]

𝜂 (𝑡),

which exists as the function 𝜂 is continuous. Then 𝜂 (𝑡∗(𝑇 )) ≥

𝜂 (0) = 0. If 𝑡∗(𝑇 ) ∈ (𝑡𝛿 ,𝑇 ], then

𝑎(𝑇 ) =
𝜂 (𝑡∗(𝑇 ))

𝑇
≤

𝜂 (𝑡∗(𝑇 ))

𝑡∗(𝑇 )
< 𝑎 + 𝛿.

Otherwise 𝑡∗(𝑇 ) ∈ [0, 𝑡𝛿 ], and thus 𝑡∗(𝑇 ) = 𝑡∗(𝑡𝛿 ) and

𝑎(𝑇 ) =
𝜂 (𝑡∗(𝑇 ))

𝑇
=
𝜂 (𝑡∗(𝑡𝛿 ))

𝑇
.

Combining the two cases above, we obtain

𝑎(𝑇 ) ≤ max

{
𝑎 + 𝛿,

𝜂 (𝑡∗(𝑡𝛿 ))

𝑇

}
∀𝑇 > 𝑡𝛿 .

Hence

lim sup
𝑇→∞

𝑎(𝑇 ) ≤ max{𝑎 + 𝛿, 0}.

As 𝛿 > 0 is arbitrary, we have

lim sup
𝑇→∞

𝑎(𝑇 ) ≤ max{𝑎, 0},

and thus (17) holds.

Second, we establish (18), that is,

lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑝𝜌𝑝 (𝑡) ≤ 𝑎 ≤ lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑝𝜌𝑝 (𝑡),

Recall that the index set P is finite. Following the definitions of 𝑎𝑝
and 𝑎𝑝 , for an arbitrary 𝛿 > 0, there is a large enough 𝑡𝛿 ≥ 0 such

that for all 𝑝 ∈ P, we have

(𝑎𝑝 − 𝛿) 1𝑝 (𝜎 (𝑡)) ≤ 𝑎𝑝 (𝑡) 1𝑝 (𝜎 (𝑡)) ≤ (𝑎𝑝 + 𝛿) 1𝑝 (𝜎 (𝑡))

for all 𝑡 > 𝑡𝛿 . Therefore, we have

𝑎 ≤ lim sup
𝑡→∞

∑
𝑝∈P

(𝑎𝑝 + 𝛿)𝜌𝑝 (𝑡) = lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑝𝜌𝑝 (𝑡) + 𝛿,

𝑎 ≥ lim sup
𝑡→∞

∑
𝑝∈P

(𝑎𝑝 − 𝛿)𝜌𝑝 (𝑡) = lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑝𝜌𝑝 (𝑡) − 𝛿.

Thus (18) holds as 𝛿 > 0 is arbitrary. �

2.4 Bounds for distance between solutions and
volume of reachable set

In preparation for the computation of topological entropy, we con-

struct upper and lower bounds for the distance between two solu-

tions to the switched system (2) and a lower bound for the volume

of its reachable set. For brevity, we denote by 𝜉𝜎 (𝑡, 𝐾) := {𝜉𝜎 (𝑡, 𝑥) :
𝑥 ∈ 𝐾} the reachable set of (2) at time 𝑡 from initial set 𝐾 .

Following [11, p. 30], for an induced norm ‖ · ‖ on R𝑛×𝑛 , the

matrix measure 𝜇 : R𝑛×𝑛 → R is defined by

𝜇 (𝐴) := lim
𝑡↘0

‖𝐼 + 𝑡𝐴‖ − 1

𝑡
.

For standard norms, there are explicit formulae for the matrix mea-

sure; for example, for the induced∞-norm, we have

𝜇 (𝐴) = max
1≤𝑖≤𝑛

(
𝑎𝑖𝑖 +

∑
𝑗≠𝑖

|𝑎𝑖 𝑗 |

)
(20)

for a matrix 𝐴 = [𝑎𝑖 𝑗 ] ∈ R
𝑛×𝑛 . For all induced norms ‖ · ‖ on R𝑛×𝑛 ,

the function 𝜇 is convex and satisfies [11, Th. 5, p. 31]

−𝜇 (−𝐴) ≤ Re(𝜆) ≤ 𝜇 (𝐴) ≤ ‖𝐴‖ ∀𝐴 ∈ R𝑛×𝑛,∀𝜆 ∈ spec(𝐴) .
(21)

Proposition 2.5. For all initial states 𝑥, 𝑥 ∈ 𝐾 , the corresponding
solutions to the switched system (2) satisfy

𝑒
𝜂
𝜎
(𝑡 )

‖𝑥 − 𝑥 ‖ ≤ ‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ ≤ 𝑒𝜂𝜎 (𝑡 ) ‖𝑥 − 𝑥 ‖ ∀ 𝑡 ≥ 0

(22)

with

𝜂
𝜎
(𝑡) :=

∑
𝑝∈P

∫ 𝑡

0

(
min

𝑣∈co(𝜉𝜎 (𝑠,𝐾))
−𝜇 (−𝐽𝑥 𝑓𝑝 (𝑣))

)
1𝑝 (𝜎 (𝑠)) d𝑠,

𝜂𝜎 (𝑡) := max
𝑣∈co(𝐾)

∑
𝑝∈P

∫ 𝑡

0
𝜇 (𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))) 1𝑝 (𝜎 (𝑠)) d𝑠 .

Also, the reachable set of (2) satisfies

vol(𝜉𝜎 (𝑡, 𝐾)) ≥ 𝑒𝛾𝜎 (𝑡 ) vol(𝐾) ∀ 𝑡 ≥ 0 (23)

with

𝛾𝜎 (𝑡) := min
𝑣∈𝐾

∑
𝑝∈P

∫ 𝑡

0
tr(𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))) 1𝑝 (𝜎 (𝑠)) d𝑠 .

Note that 𝜂
𝜎
, 𝜂𝜎 , and 𝛾𝜎 are in fact constructed in terms of the

integrals of the measure (or its minimum) and the trace of the active

Jacobian matrix over [0, 𝑡], rewritten via the transformation (19).

Proof of Proposition 2.5. Let’s consider a linear time-varying

(LTV) system

	𝑥 = 𝐴(𝑡) 𝑥 (24)

with a piecewise continuous matrix-valued function 𝐴 : R≥0 →

R
𝑛×𝑛 . For all 𝑣 ∈ R𝑛 , its solution 𝜉 (𝑡, 𝑣) with initial state 𝑣 and

state-transition matrix Φ𝐴 (𝑡, 0) satisfy [11, Th. 27, p. 34]

𝑒
∫ 𝑡

0
−𝜇 (−𝐴(𝑠)) d𝑠 ‖𝑣 ‖ ≤ ‖𝜉 (𝑡, 𝑣)‖

= ‖Φ𝐴 (𝑡, 0) 𝑣 ‖ ≤ 𝑒
∫ 𝑡

0
𝜇 (𝐴(𝑠)) d𝑠 ‖𝑣 ‖ ∀ 𝑡 ≥ 0 (25)

and

det(Φ𝐴 (𝑡, 0)) = 𝑒
∫ 𝑡

0
tr(𝐴(𝑠)) d𝑠 ∀ 𝑡 ≥ 0 (26)



Topological entropy of switched nonlinear systems HSCC ’21, May 19–21, 2021, Nashville, TN, USA

(Liouville’s formula [7, Prop. 2.18, p. 152]).

First, wewrite the Jacobianmatrix 𝐽𝑥 𝜉𝜎 (𝑡, 𝑣) of a solution 𝜉𝜎 (𝑡, 𝑣)
to the switched system (2) as a matrix solution to the LTV system

(24) with an appropriate system matrix 𝐴(𝑡), based on a common

procedure in nonlinear systems analysis (see, e.g., [20, Sec. 4.2.4]).

For all 𝑣 ∈ R𝑛 , we have 𝐽𝑥 𝜉𝜎 (0, 𝑣) = 𝐼 and

𝜕𝑡 𝐽𝑥𝜉𝜎 (𝑡, 𝑣) = 𝐽𝑥 	𝜉𝜎 (𝑡, 𝑣) = 𝐽𝑥 𝑓𝜎 (𝑡 ) (𝜉𝜎 (𝑡, 𝑣)) 𝐽𝑥𝜉𝜎 (𝑡, 𝑣)

for all 𝑡 ≥ 0 that are not switching times. Hence for each fixed

𝑣 ∈ R𝑛 , the Jacobian matrix 𝐽𝑥𝜉𝜎 (𝑡, 𝑣) is the principal fundamental

matrix solution [7, Def. 2.12, p. 150] to the LTV system (24) with

the system matrix 𝐴(𝑡) := 𝐽𝑥 𝑓𝜎 (𝑡 ) (𝜉𝜎 (𝑡, 𝑣)), and is thus equal to

the state-transition matrix Φ𝐴 (𝑡, 0). Let 𝜈 (𝜌) := 𝜌𝑥 + (1 − 𝜌) 𝑥
for 𝜌 ∈ [0, 1]. Then 𝜈 (𝜌) ∈ co(𝐾) for all 𝜌 ∈ [0, 1]. Hence the

upper bound in (25) with 𝐴(𝑡) = 𝐽𝑥 𝑓𝜎 (𝑡 ) (𝜉𝜎 (𝑡, 𝑣)) and Φ𝐴 (𝑡, 0) =
𝐽𝑥𝜉𝜎 (𝑡, 𝑣) implies3

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ = ‖𝜉𝜎 (𝑡, 𝜈 (1)) − 𝜉𝜎 (𝑡, 𝜈 (0))‖

=

����
∫ 1

0
𝐽𝑥𝜉𝜎 (𝑡, 𝜈 (𝜌)) (𝑥 − 𝑥) d𝜌

���� ≤ max
𝑣∈co(𝐾)

‖ 𝐽𝑥𝜉𝜎 (𝑡, 𝑣) (𝑥 − 𝑥)‖

≤

(
max

𝑣∈co(𝐾)
𝑒
∫ 𝑡

0
𝜇 ( 𝐽𝑥 𝑓𝜎 (𝑠 ) (𝜉𝜎 (𝑠,𝑣))) d𝑠

)
‖𝑥 − 𝑥 ‖ = 𝑒𝜂𝜎 (𝑡 ) ‖𝑥 − 𝑥 ‖

for all 𝑡 ≥ 0, that is, the upper bound in (22) holds.

Second, we write the difference between two solutions 𝜉𝜎 (𝑡, 𝑥) −
𝜉𝜎 (𝑡, 𝑥) to the switched system (2) as a solution to the LTV system

(24) with an appropriate system matrix 𝐴(𝑡), based on a similar

procedure to the one in the first part. Let 𝜈 (𝑡, 𝜌) := 𝜌𝜉𝜎 (𝑡, 𝑥) +
(1 − 𝜌)𝜉𝜎 (𝑡, 𝑥) for 𝜌 ∈ [0, 1]. Then 𝜈 (𝑡, 𝜌) ∈ co(𝜉𝜎 (𝑡, 𝐾)) for all
𝜌 ∈ [0, 1] and 𝑡 ≥ 0, and 𝜕𝜌𝜈 (𝑡, 𝜌) = 𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥). Thus

𝜕𝑡 (𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)) = 𝑓𝜎 (𝑡 ) (𝜉𝜎 (𝑡, 𝑥)) − 𝑓𝜎 (𝑡 ) (𝜉𝜎 (𝑡, 𝑥))

= 𝑓𝜎 (𝑡 ) (𝜈 (𝑡, 1)) − 𝑓𝜎 (𝑡 ) (𝜈 (𝑡, 0))

=

(∫ 1

0
𝐽𝑥 𝑓𝜎 (𝑡 ) (𝜈 (𝑡, 𝜌)) d𝜌

)
(𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥))

for all 𝑡 ≥ 0 that are not switching times. Hence 𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)
is the solution with initial state 𝑥 − 𝑥 to the LTV system (24) with

the system matrix 𝐴(𝑡) :=
∫ 1

0
𝐽𝑥 𝑓𝜎 (𝑡 ) (𝜈 (𝑡, 𝜌)) d𝜌 . Thus the lower

bound in (25) implies4

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ ≥ 𝑒
∫ 𝑡

0
−𝜇

(
−
∫ 1

0
𝐽𝑥 𝑓𝜎 (𝑠 ) (𝜈 (𝑠,𝜌)) d𝜌

)
d𝑠 ‖𝑥 − 𝑥 ‖

= 𝑒
∑

𝑝∈P

∫ 𝑡

0
−𝜇

(
−
∫ 1

0
𝐽𝑥 𝑓𝑝 (𝜈 (𝑠,𝜌)) d𝜌

)
1𝑝 (𝜎 (𝑠)) d𝑠 ‖𝑥 − 𝑥 ‖

for all 𝑡 ≥ 0. Moreover, as the function 𝜇 is convex, for all 𝑝 ∈ P,

we have

−𝜇

(
−

∫ 1

0
𝐽𝑥 𝑓𝑝 (𝜈 (𝑡, 𝜌)) d𝜌

)
≥

∫ 1

0
−𝜇 (−𝐽𝑥 𝑓𝑝 (𝜈 (𝑡, 𝜌)) d𝜌

≥ min
𝑣∈co(𝜉𝜎 (𝑡,𝐾))

−𝜇 (−𝐽𝑥 𝑓𝑝 (𝑣)) ∀ 𝑡 ≥ 0.

Hence the lower bound in (22) holds.

3The construction based on integrating 𝐽𝑥 𝜉𝜎 (𝑡, 𝑣) along the line segment connecting
𝑥 and 𝑥 is inspired by similar ones in the proofs of [4, Th. 4.2] for time-invariant
systems with a compact state space and [29, Th. 1] for contractive systems.
4The construction based on integrating 𝐽𝑥 𝑓𝜎 (𝑣) along the line segment connecting
𝜉𝜎 (𝑡, 𝑥) and 𝜉𝜎 (𝑡, 𝑥) is inspired by a similar one in [32, Sec. 2.5] for time-varying
systems.

Finally, Liouville’s formula (26) with 𝐴(𝑡) = 𝐽𝑥 𝑓𝜎 (𝑡 ) (𝜉𝜎 (𝑡, 𝑣))
and Φ𝐴 (𝑡, 0) = 𝐽𝑥𝜉𝜎 (𝑡, 𝑣) from the first part implies

vol(𝜉𝜎 (𝑡, 𝐾)) =
∫
𝐾
| det(𝐽𝑥 𝜉𝜎 (𝑡, 𝑣)) | d𝑣

≥

(
min
𝑣∈𝐾

| det(𝐽𝑥𝜉𝜎 (𝑡, 𝑣)) |

)
vol(𝐾)

=

(
min
𝑣∈𝐾

𝑒
∫ 𝑡

0
tr( 𝐽𝑥 𝑓𝜎 (𝑠 ) (𝜉𝜎 (𝑠,𝑣))) d𝑠

)
vol(𝐾) = 𝑒𝛾𝜎 (𝑡 ) vol(𝐾)

for all 𝑡 ≥ 0, that is, (23) holds. �

Additionally, we provide the following upper and lower bounds

for the distance between two solutions in terms of the active times

𝜏𝑝 , which are more conservative than those in (22) but illustrate the

effect of switching and will be useful for establishing bounds for

the topological entropy of switched systems with diagonal modes.

Corollary 2.6. For all initial states 𝑥, 𝑥 ∈ 𝐾 , the corresponding
solutions to the switched system (2) satisfy

𝑒
∑

𝑝∈P 𝜇
𝑝
(𝑡 )𝜏𝑝 (𝑡 )

‖𝑥 − 𝑥 ‖ ≤ ‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖

≤ 𝑒
∑

𝑝∈P 𝜇𝑝 (𝑡 )𝜏𝑝 (𝑡 ) ‖𝑥 − 𝑥 ‖ ∀ 𝑡 ≥ 0 (27)

with

𝜇
𝑝
(𝑡) := min

𝑠∈[0,𝑡 ], 𝜎 (𝑠)=𝑝, 𝑣∈co(𝜉𝜎 (𝑠,𝐾))
−𝜇 (−𝐽𝑥 𝑓𝑝 (𝑣)),

𝜇𝑝 (𝑡) := max
𝑠∈[0,𝑡 ], 𝜎 (𝑠)=𝑝, 𝑣∈co(𝐾)

𝜇 (𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))),
𝑝 ∈ P,

where the active times 𝜏𝑝 are defined by (14).

Proof. The upper bound in (27) follows from the upper bound

in (22) and the property that

𝜂𝜎 (𝑡) ≤
∑
𝑝∈P

∫ 𝑡

0

(
max

𝑣∈co(𝐾)
𝜇 (𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣)))

)
1𝑝 (𝜎 (𝑠)) d𝑠

≤
∑
𝑝∈P

𝜇𝑝 (𝑡)

∫ 𝑡

0
1𝑝 (𝜎 (𝑠)) d𝑠 =

∑
𝑝∈P

𝜇𝑝 (𝑡)𝜏𝑝 (𝑡) ∀ 𝑡 ≥ 0.

The lower bound in (27) follows from the lower bound in (22) and

the property that

𝜂
𝜎
(𝑡) ≥

∑
𝑝∈P

𝜇
𝑝
(𝑡)

∫ 𝑡

0
1𝑝 (𝜎 (𝑠)) d𝑠 =

∑
𝑝∈P

𝜇
𝑝
(𝑡)𝜏𝑝 (𝑡) ∀ 𝑡 ≥ 0.

�

Remark 2.7. Suppose the switched system (2) satisfies that

1. for each 𝑝 ∈ P, the measure of Jacobian matrix 𝜇 (𝐽𝑥 𝑓𝑝 (𝑣))
has a global upper bound 𝜇∗𝑝 , or

2. the convex hull of initial set co(𝐾) is a subset of a compact

positively invariant set 𝑆 , and let 𝜇∗𝑝 := max𝑣∈𝑆 𝜇 (𝐽𝑥 𝑓𝑝 (𝑣)).

Then (27) implies that for all initial states 𝑥, 𝑥 ∈ 𝐾 , we have

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ ≤ 𝑒
∑

𝑝∈P 𝜇∗𝑝𝜏𝑝 (𝑡 ) ‖𝑥 − 𝑥 ‖ ∀ 𝑡 ≥ 0,

which is more conservative but simpler than the upper bounds

in (22) and (27). Similarly, a more conservative but simpler lower

bound than the ones in (22) and (27) can be constructed for the

cases with globally lower-bounded measures 𝜇 (𝐽𝑥 𝑓𝑝 (𝑣)), or with a

compact positively invariant set containing 𝐾 . Similar results hold

for the lower bound (23). On the other hand, without a global bound
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for each 𝜇 (𝐽𝑥 𝑓𝑝 (𝑣)) and without a compact positively invariant set,

the functions 𝜂
𝜎
, 𝜂𝜎 , 𝜇𝑝

, and 𝜇𝑝 in (22) and (27) may be unbounded.

3 ENTROPY OF GENERAL SWITCHED
NONLINEAR SYSTEMS

In this section, we establish upper and lower bounds for the entropy

of the switching nonlinear system (2).

Theorem 3.1. The topological entropy of the switched system (2)

is upper-bounded by

ℎ(𝑓𝜎 , 𝐾) ≤ max

{
lim sup
𝑡→∞

∑
𝑝∈P

𝑛𝜇𝑝𝜌𝑝 (𝑡), 0

}
(28)

with

𝜇𝑝 := lim sup
𝑠→∞, 𝜎 (𝑠)=𝑝

max
𝑣∈co(𝐾)

𝜇 (𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))), 𝑝 ∈ P, (29)

and lower-bounded by

ℎ(𝑓𝜎 , 𝐾) ≥ max

{
lim sup
𝑡→∞

∑
𝑝∈P

𝜒𝑝𝜌𝑝 (𝑡), 0

}
(30)

with

𝜒𝑝 := lim inf
𝑠→∞, 𝜎 (𝑠)=𝑝

min
𝑣∈𝐾

tr(𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))), 𝑝 ∈ P, (31)

where the active rates 𝜌𝑝 are defined by (15).

Proof. First, we prove the upper bound (28). Fix a time horizon

𝑇 ≥ 0 and a radius 𝜀 > 0. The upper bound in (22) implies that for

all initial states 𝑥, 𝑥 ∈ 𝐾 , the corresponding solutions to (2) satisfy

max
𝑡 ∈[0,𝑇 ]

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ ≤ 𝑒
max

𝑡∈[0,𝑇 ]
𝜂𝜎 (𝑡 )

‖𝑥 − 𝑥 ‖. (32)

Consider the grid 𝐺 (𝜃 ) defined by (8) with

𝜃𝑖 := 𝑒
− max

𝑡∈[0,𝑇 ]
𝜂𝜎 (𝑡 )

𝜀, 𝑖 ∈ {1, . . . , 𝑛},

and the corresponding hypercubes 𝑅(𝑥) defined by (9). Comparing

(9) and (32) to (3), we see that 𝑅(𝑥) ⊂ 𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ) for all 𝑥 ∈ 𝐺 (𝜃 ).
Then Lemma 2.3 implies that𝐺 (𝜃 ) is (𝑇, 𝜀)-spanning. As𝑇 ≥ 0 and

𝜀 > 0 are arbitrary, and all 𝜃𝑖 are nonincreasing in 𝑇 , the upper
bound (11) implies

ℎ(𝑓𝜎 , 𝐾) ≤ lim
𝜀↘0

lim sup
𝑇→∞

𝑛∑
𝑖=1

log(1/𝜃𝑖 )

𝑇

= lim sup
𝑇→∞

1

𝑇
max

𝑡 ∈[0,𝑇 ]
𝑛𝜂𝜎 (𝑡) + lim

𝜀↘0
lim sup
𝑇→∞

𝑛 log(1/𝜀)

𝑇

≤ lim sup
𝑇→∞

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

∫ 𝑡

0
𝑎1𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠

with

𝑎1𝑝 (𝑠) := max
𝑣∈co(𝐾)

𝑛𝜇 (𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))), 𝑝 ∈ P .

Then the upper bound (28) follows from (17) and the upper bound

in (18) with the functions 𝑎𝑝 (𝑡) := 𝑎1𝑝 (𝑡) for 𝑝 ∈ P.

Second, we establish the lower bound (30) using volume-based

arguments. Fix a time horizon 𝑇 ≥ 0 and a radius 𝜀 > 0. The lower

bound (23) implies that the reachable set 𝜉𝜎 (𝑇, 𝐾) of (2) satisfies

vol(𝜉𝜎 (𝑇, 𝐾)) ≥ 𝑒𝛾𝜎 (𝑇 ) vol(𝐾).

Let 𝐸 be a minimal (𝑇, 𝜀)-spanning set. Then (3) and (4) imply

𝜉𝜎 (𝑇, 𝐾) ⊂
⋃
𝑥 ∈𝐸

{𝑥 ∈ R𝑛 : ‖𝑥 − 𝜉𝜎 (𝑇, 𝑥)‖ < 𝜀},

and thus the corresponding volumes satisfy (recall that we take

‖ · ‖ to be the∞-norm; see Remark 2.1)

vol(𝜉𝜎 (𝑇, 𝐾)) ≤
∑
𝑥 ∈𝐸

vol{𝑥 ∈ R𝑛 : ‖𝑥 − 𝜉𝜎 (𝑇, 𝑥)‖ < 𝜀} = |𝐸 | (2𝜀)𝑛 .

Therefore, the minimal cardinality of a (𝑇, 𝜀)-spanning set satisfies

𝑆 (𝑓𝜎 , 𝜀,𝑇 , 𝐾) = |𝐸 | ≥ vol(𝜉𝜎 (𝑇, 𝐾))/(2𝜀)
𝑛 ≥ 𝑒𝛾𝜎 (𝑇 ) vol(𝐾)/(2𝜀)𝑛,

which, combined with the definition of entropy (5), implies

ℎ(𝑓𝜎 , 𝐾) ≥ lim
𝜀↘0

lim sup
𝑇→∞

1

𝑇
log

(
𝑒𝛾𝜎 (𝑇 ) vol(𝐾)/(2𝜀)𝑛

)
= lim sup

𝑇→∞

𝛾𝜎 (𝑇 )

𝑇
+ lim
𝜀↘0

lim sup
𝑇→∞

log(vol(𝐾)/(2𝜀)𝑛)

𝑇

≥ lim sup
𝑇→∞

1

𝑇

∑
𝑝∈P

∫ 𝑇

0
𝑎2𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠

with

𝑎2𝑝 (𝑠) := min
𝑣∈𝐾

tr(𝐽𝑥 𝑓𝑝 (𝜉𝜎 (𝑠, 𝑣))), 𝑝 ∈ P .

Then the lower bound (30) follows from the lower bound in (18)

with the functions 𝑎𝑝 (𝑡) := 𝑎2𝑝 (𝑡) for 𝑝 ∈ P and the property that

ℎ(𝑓𝜎 , 𝐾) ≥ 0. �

Thinking of the non-switched case as a switched system with a

constant switching signal, Theorem 3.1 implies the following result

for the entropy of nonlinear time-invariant systems.

Corollary 3.2. The topological entropy of the 𝑝-th nonlinear

time-invariant system in (1) is upper-bounded by

ℎ(𝑓𝑝 , 𝐾) ≤ max{𝑛𝜇𝑝 , 0} (33)

with the constant 𝜇𝑝 defined by (29), and lower-bounded by

ℎ(𝑓𝑝 , 𝐾) ≥ max{𝜒𝑝 , 0} (34)

with the constant 𝜒𝑝 defined by (31).

Based on the upper bound (28), we construct the following upper

bounds for the entropy of (2) that require less information on the

switching signal.

Corollary 3.3. The topological entropy of the switched system

(2) is upper-bounded by

ℎ(𝑓𝜎 , 𝐾) ≤
∑
𝑝∈P

max{𝑛𝜇𝑝 , 0}𝜌𝑝 (35)

with the asymptotic active rates 𝜌𝑝 defined by (16), and also by

ℎ(𝑓𝜎 , 𝐾) ≤ max
𝑝∈P

max{𝑛𝜇𝑝 , 0}, (36)

where the constants 𝜇𝑝 are defined by (29).
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Proof. First, the upper bound (28) and the subadditivity of limit

suprema imply

ℎ(𝑓𝜎 , 𝐾) ≤ max

{ ∑
𝑝∈P

lim sup
𝑡→∞

𝑛𝜇𝑝𝜌𝑝 (𝑡), 0

}

≤
∑
𝑝∈P

max{𝑛𝜇𝑝 , 0} lim sup
𝑡→∞

𝜌𝑝 (𝑡) =
∑
𝑝∈P

max{𝑛𝜇𝑝 , 0}𝜌𝑝 .

Second, the upper bound (28) also implies

ℎ(𝑓𝜎 , 𝐾) ≤ max

{
lim sup
𝑡→∞

(
max
𝑝∈P

𝑛𝜇𝑝

) ∑
𝑝∈P

𝜌𝑝 (𝑡), 0

}

= max

{
max
𝑝∈P

𝑛𝜇𝑝 , 0

}
= max

𝑝∈P
max{𝑛𝜇𝑝 , 0}. �

Remark 3.4. Consider the case where all the functions 𝑓𝑝 in (2)

are linear, that is, there is a family of matrices {𝐴𝑝 ∈ R𝑛×𝑛 : 𝑝 ∈ P}

such that for all 𝑝 ∈ P, we have

𝑓𝑝 (𝑥) = 𝐴𝑝𝑥 ∀𝑥 ∈ R𝑛 .

Then the constants 𝜇𝑝 and 𝜒𝑝 defined by (29) and (31) satisfy

𝜇𝑝 = 𝜇 (𝐴𝑝 ), 𝜒𝑝 = tr(𝐴𝑝 ) ∀𝑝 ∈ P .

Hence Theorem 3.1 generalizes [37, Th. 1], and Corollary 3.3 gen-

eralizes [37, Remark 5].

Remark 3.5. 1. The constants 𝜇𝑝 and 𝜒𝑝 defined by (29) and

(31) only depend on the measure and the trace of each Jacobian

matrix 𝐽𝑥 𝑓𝑝 (𝑣) over the 𝜔-limit set from the convex hull of initial

set co(𝐾) and that from𝐾 , respectively, instead of over all reachable
points from co(𝐾) and 𝐾 , respectively. In particular, (28), (35), and

(36) will yield finite values for the case with unbounded Jacobian

matrices but a compact global attractor.

2. In view of Remark 2.7, if each 𝜇 (𝐽𝑥 𝑓𝑝 (𝑣)) has a global upper
bound 𝜇∗𝑝 , or an upper bound 𝜇

∗
𝑝 over a compact positively invariant

set containing co(𝐾), then the upper bounds (28), (35), and (36) hold
with 𝜇∗𝑝 in place of 𝜇𝑝 . Similarly, a more conservative but simpler

lower bound than (30) can be constructed for the case with globally

lower-bounded traces tr(𝐽𝑥 𝑓𝑝 (𝑣)), or with a compact positively

invariant set containing 𝐾 .
3. For a fixed family of functions {𝑓𝑝 : 𝑝 ∈ P}, compared with

the upper bound (28), the upper bound (35) depends on the asymp-

totic active rates 𝜌𝑝 instead of the active rates 𝜌𝑝 , and the upper

bound (36) does not involve active rates at all. If a global upper

bound 𝜇∗𝑝 is used in place of 𝜇𝑝 for each 𝑝 , then (36) is independent

of switching.

4. The upper bound (28) is tighter than the upper bounds (35)

and (36). The upper bounds (35) and (36) are both useful in the sense

that neither is more conservative than the other, as it is possible

that
∑
𝑝∈P 𝜌𝑝 > 1. The relations between the upper bounds (28),

(35), and (36) are illustrated numerically in Example 3.6 below.

Example 3.6. Consider the following switched nonlinear system

in the nonnegative orthant R𝑛≥0 from [2]:

	𝑥𝑖 = 𝑓 𝑖𝜎 (𝑥) :=

(
𝑟 𝑖𝜎 +

𝑛∑
𝑗=1

𝑎
𝑖 𝑗
𝜎 𝑥 𝑗

)
𝑥𝑖 , 𝑖 ∈ {1, . . . , 𝑛} (37)

with the state 𝑥 ∈ R𝑛≥0, a switching signal 𝜎 : R≥0 → P, and

a finite index set P. Each individual mode 𝑝 of (37) is a Lotka–

Volterra ecosystemmodel that describes the population dynamics of

𝑛 species in a biological community [14, Ch. 5], where 𝑥𝑖 denotes the
population density of the 𝑖-th species, 𝑟 𝑖𝑝 ∈ R quantifies the intrinsic

growth rate of the 𝑖-th population, 𝑎𝑖𝑖𝑝 < 0 is a self-interaction term

justified by the limitation of resources in the environment, and

𝑎
𝑖 𝑗
𝑝 ∈ R for 𝑗 ≠ 𝑖 is an interaction term quantifying the influence of

the 𝑗-th population on the 𝑖-th one. Switching in (37) may be due

to seasonal changes or other environmental factors. Clearly, R𝑛≥0 is

a positively invariant set for (37).

Consider the switched system (37) in R2≥0 with the index set

P = {1, 2}, the coefficients (𝑟11 , 𝑟
2
1 ) = (−1, 2) and (𝑟12 , 𝑟

2
2 ) = (3,−1),

the self-interaction terms 𝑎111 = 𝑎221 = 𝑎112 = 𝑎222 = −1, and the

interaction terms 𝑎121 = 𝑎211 = 𝑎122 = 𝑎212 = 0.1. Clearly, in R2≥0,
mode 1 has an attractor (0, 2) and a saddle point (0, 0) with the

stable manifold R≥0 × {0}, and mode 2 has an attractor (3, 0) and a
saddle point (0, 0) with the stable manifold {0} ×R≥0. Based on [2],

(37) is uniformly ultimately bounded (UUB) in R𝑛≥0 and its 𝜔-limit

set is a subset of Ω := [0, 3.04] × [0, 2.03]. Note that Ω is not a

positively invariant set for (37).

We construct two switching signals 𝜎1 and 𝜎2 as follows (we
denote by 0 < 𝑡1 < 𝑡2 < · · · the sequence of switching times and

let 𝑡0 := 0, with 𝜎 = 1 on [𝑡2𝑘 , 𝑡2𝑘+1) and 𝜎 = 2 on [𝑡2𝑘+1, 𝑡2𝑘+2)):

• 𝜎1 with periodic switches: For 𝑘 ∈ 𝑁 , let 𝑡𝑘 := 1000𝑘 . Then
simple computation yields 𝜌1 = 𝜌2 = 0.5.

• 𝜎2 with constant set-points: Let 𝑡1 := 1. For 𝑘 ≥ 1, let 𝑡2𝑘 :=
min{𝑡 > 𝑡2𝑘−1 : 𝜌2 (𝑡) ≥ 0.9} and 𝑡2𝑘+1 := min{𝑡 > 𝑡2𝑘 :

𝜌1 (𝑡) ≥ 0.9}. Then simple computation yields 𝑡𝑘 = 9𝑘−1 +

9𝑘−2 for 𝑘 ≥ 2 and 𝜌1 = 𝜌2 = 0.9.

Typical trajectories of the individual modes 1 and 2 and the switched

system (37) with switching signals 𝜎1 and 𝜎2 are plotted in Fig. 1

below.

The Jacobian matrices of individual modes of (37) are given by

𝐽𝑥 𝑓1 (𝑣) =

[
−1 − 2𝑣1 + 0.1𝑣2 0.1𝑣1

0.1𝑣2 2 + 0.1𝑣1 − 2𝑣2

]
,

𝐽𝑥 𝑓2 (𝑣) =

[
3 − 2𝑣1 + 0.1𝑣2 0.1𝑣1

0.1𝑣2 −1 + 0.1𝑣1 − 2𝑣2

]
.

As (37) is UUB and its 𝜔-limit set is a subset of Ω, for all initial sets
𝐾 ⊂ R𝑛≥0, one can obtain upper bounds for the constants 𝜇𝑝 defined

by (29) by replacing the limit suprema over {𝑡 ≥ 0 : 𝜎 (𝑠) = 𝑝} and
maxima over co(𝐾) in (29) with maxima over Ω. Hence

𝜇1 = lim sup
𝑡→∞, 𝜎 (𝑠)=1

max
𝑣∈co(𝐾)

𝜇 (𝐽𝑥 𝑓1 (𝜉𝜎 (𝑡, 𝑣))) ≤ max
𝑣∈Ω

𝜇 (𝐽𝑥 𝑓1 (𝑣))

= max
𝑣∈Ω

max{−1 − 1.9𝑣1 + 0.1𝑣2, 2 + 0.1𝑣1 − 1.9𝑣2} ≤ 2.31,

𝜇2 = lim sup
𝑡→∞, 𝜎 (𝑠)=2

max
𝑣∈co(𝐾)

𝜇 (𝐽𝑥 𝑓2 (𝜉𝜎 (𝑡, 𝑣))) ≤ max
𝑣∈Ω

𝜇 (𝐽𝑥 𝑓2 (𝑣))

= max
𝑣∈Ω

max{3 − 1.9𝑣1 + 0.1𝑣2, −1 + 0.1𝑣1 − 1.9𝑣2} ≤ 3.21.

The upper bounds for ℎ(𝑓𝜎1 , 𝐾) and ℎ(𝑓𝜎2 , 𝐾) computed using (28),

(35), and (36) for all 𝐾 ⊂ R𝑛≥0 are summarized in Table 1 below. In

particular, the upper bound (28) for ℎ(𝑓𝜎2 , 𝐾) can be computed as
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(d) Switching signal 𝜎2

Figure 1: Trajectories of the switched system (37) for (a) mode 1 with

initial states (4, 3) , (3, 2) , (3, 0.1) , and (3, 0) ; (b) mode 2 with initial

states (4, 3) , (3, 2) , (0.1, 2) , and (0, 2) ; (c) switching signal 𝜎1 with

initial states (4, 3) , (3, 0) , (0, 2) , and (0, 0) ; (d) switching signal 𝜎2 with

initial state (4, 3) . The circles mark the beginning of segments after

switching. The gray rectangle represents Ω = [0, 3.04] × [0, 2.03].

follows:

ℎ(𝑓𝜎2 , 𝐾) ≤ lim sup
𝑡→∞

(
2𝜇1𝜌1 (𝑡) + 2𝜇2𝜌2 (𝑡)

)
≤ lim sup

𝑡→∞
2
(
2.31(1 − 𝜌2 (𝑡)) + 3.21𝜌2 (𝑡)

)
= 2(2.31 + (3.21 − 2.31)𝜌2) = 6.24.

The numerical results are consistent with the discussions on the re-

lations between the upper bounds (28), (35), and (36) in Remark 3.5.4.

Table 1: Upper bounds for the entropy of the switched system (37).

(𝜌1, 𝜌2) (28) (35) (36)

𝜎1 (0.5, 0.5) 5.52 5.52 6.42
𝜎2 (0.9, 0.9) 6.24 9.94 6.42

4 ENTROPY OF SWITCHED DIAGONAL
SYSTEMS

Consider the case where for each 𝑝 ∈ P and 𝑖 ∈ {1, . . . , 𝑛}, the
𝑖-th scalar component 𝑓 𝑖𝑝 of the function 𝑓𝑝 only depends on the

corresponding scalar component 𝑥𝑖 of the state 𝑥 . For brevity, we
consider 𝑓 𝑖𝑝 as a function on R and denote by 𝑓 𝑖𝑝 (𝑥𝑖 ) the 𝑖-th scalar

component of 𝑓𝑝 (𝑥). Then (2) becomes the switched diagonal system

defined by

	𝑥𝑖 = 𝑓 𝑖𝜎 (𝑥𝑖 ), 𝑖 ∈ {1, . . . , 𝑛}. (38)

Clearly, the 𝑖-th scalar component of the solution 𝜉𝜎 (𝑡, 𝑥) also only

depends on the corresponding scalar component 𝑥𝑖 of the initial
state 𝑥 . For brevity, we denote by 𝜉𝑖𝜎 (𝑡, 𝑥𝑖 ) the 𝑖-th scalar component

of the solution 𝜉𝜎 (𝑡, 𝑥), and by 𝜉𝑖𝜎 (𝑡, 𝐾) := {𝜉𝑖𝜎 (𝑡, 𝑥𝑖 ) : 𝑥 ∈ 𝐾} the

projection of the reachable set 𝜉𝜎 (𝑡, 𝐾) onto the 𝑖-th dimension. In

this section, we establish upper and lower bounds for the entropy

of the switched diagonal system (38) that are generally tighter than

the results of simply applying the bounds from Section 3 to (38).

Theorem 4.1. The topological entropy of the switched diagonal

system (38) satisfies

lim sup
𝑇→∞

𝑛∑
𝑖=1

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

𝑎𝑖𝑝𝜏𝑝 (𝑡) ≤ ℎ(𝑓𝜎 , 𝐾)

≤ lim sup
𝑇→∞

𝑛∑
𝑖=1

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

𝑎𝑖𝑝𝜏𝑝 (𝑡) (39)

with
𝑎𝑖𝑝 := inf

𝑠≥0, 𝜎 (𝑠)=𝑝
min

𝑣𝑖 ∈co(𝜉𝑖𝜎 (𝑠,𝐾))
(𝑓 𝑖𝑝 )

′(𝑣𝑖 ),

𝑎𝑖𝑝 := sup
𝑠≥0, 𝜎 (𝑠)=𝑝

max
𝑣∈co(𝐾)

(𝑓 𝑖𝑝 )
′(𝜉𝑖𝜎 (𝑠, 𝑣𝑖 ))

(40)

for 𝑖 ∈ {1, . . . , 𝑛} and 𝑝 ∈ P, where the active times 𝜏𝑝 are defined

by (14); it is also upper-bounded by

ℎ(𝑓𝜎 , 𝐾) ≤
𝑛∑
𝑖=1

max

{
lim sup
𝑡→∞

∑
𝑝∈P

𝑎𝑖𝑝𝜌𝑝 (𝑡), 0

}
(41)

with

𝑎𝑖𝑝 := lim sup
𝑠→∞, 𝜎 (𝑠)=𝑝

max
𝑣∈co(𝐾)

(𝑓 𝑖𝑝 )
′(𝜉𝑖𝜎 (𝑠, 𝑣𝑖 )) (42)

for 𝑖 ∈ {1, . . . , 𝑛} and 𝑝 ∈ P, where the active rates 𝜌𝑝 are defined

by (15).

Proof. Fix a time horizon 𝑇 ≥ 0 and a radius 𝜀 > 0. Applying

the upper and lower bounds (27) and the upper bound in (22) for

the distance between solutions to each scalar component of (38),

we obtain that for all initial states 𝑥, 𝑥 ∈ 𝐾 , the corresponding

solutions satisfy (recall that we take ‖ · ‖ to be the ∞-norm; see

Remark 2.1)

max
1≤𝑖≤𝑛

𝑒
max

𝑡∈[0,𝑇 ]

∑
𝑝∈P

𝜇𝑖
𝑝
(𝑡 )𝜏𝑝 (𝑡 )

|𝑥𝑖 − 𝑥𝑖 | ≤ max
𝑡 ∈[0,𝑇 ]

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖

≤ max
1≤𝑖≤𝑛

𝑒
max

𝑡∈[0,𝑇 ]

∑
𝑝∈P

𝜇𝑖𝑝 (𝑡 )𝜏𝑝 (𝑡 )
|𝑥𝑖 − 𝑥𝑖 | (43)

with

𝜇𝑖
𝑝
(𝑡) := min

𝑠∈[0,𝑡 ], 𝜎 (𝑠)=𝑝, 𝑣𝑖 ∈co(𝜉𝑖𝜎 (𝑠,𝐾))
(𝑓 𝑖𝑝 )

′(𝑣𝑖 ) ≥ 𝑎𝑖𝑝 ,

𝜇𝑖𝑝 (𝑡) := max
𝑠∈[0,𝑡 ], 𝜎 (𝑠)=𝑝, 𝑣∈co(𝐾)

(𝑓 𝑖𝑝 )
′(𝜉𝑖𝜎 (𝑠, 𝑣𝑖 )) ≤ 𝑎𝑖𝑝

for 𝑖 ∈ {1, . . . , 𝑛} and 𝑝 ∈ P, and also

max
𝑡 ∈[0,𝑇 ]

‖𝜉𝜎 (𝑡, 𝑥) − 𝜉𝜎 (𝑡, 𝑥)‖ ≤ max
1≤𝑖≤𝑛

𝑒
max

𝑡∈[0,𝑇 ]
𝜂𝑖𝜎 (𝑡 )

|𝑥𝑖 − 𝑥𝑖 |, (44)

with

𝜂𝑖𝜎 (𝑡) := max
𝑣∈co(𝐾)

∑
𝑝∈P

∫ 𝑡

0
(𝑓 𝑖𝑝 )

′(𝜉𝑖𝜎 (𝑠, 𝑣𝑖 )) 1𝑝 (𝜎 (𝑠)) d𝑠
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for 𝑖 ∈ {1, . . . , 𝑛}.
First, consider the grid 𝐺 (𝜃 ) defined by (8) with

𝜃𝑖 := 𝑒
− max

𝑡∈[0,𝑇 ]

∑
𝑝∈P

𝜇𝑖𝑝 (𝑡 )𝜏𝑝 (𝑡 )
𝜀, 𝑖 ∈ {1, . . . , 𝑛},

and the corresponding hyperrectangles 𝑅(𝑥) defined by (9). Com-

paring (9) and (43) to (3), we see that 𝑅(𝑥) ⊂ 𝐵𝑓𝜎 (𝑥, 𝜀,𝑇 ) for all
𝑥 ∈ 𝐺 (𝜃 ). Then Lemma 2.3 implies that𝐺 (𝜃 ) is (𝑇, 𝜀)-spanning. As
𝑇 ≥ 0 and 𝜀 > 0 are arbitrary, and all 𝜃𝑖 are nonincreasing in𝑇 , the
upper bound (11) implies

ℎ(𝑓𝜎 , 𝐾) ≤ lim
𝜀↘0

lim sup
𝑇→∞

𝑛∑
𝑖=1

log(1/𝜃𝑖 )

𝑇

= lim sup
𝑇→∞

𝑛∑
𝑖=1

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

𝜇𝑖𝑝 (𝑡)𝜏𝑝 (𝑡) + lim
𝜀↘0

lim sup
𝑇→∞

𝑛 log(1/𝜀)

𝑇

≤ lim sup
𝑇→∞

𝑛∑
𝑖=1

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

𝑎𝑖𝑝𝜏𝑝 (𝑡),

that is, the upper bound in (39) holds.

Second, following similar arguments to those in the first part

while considering

𝜃𝑖 := 𝑒
− max

𝑡∈[0,𝑇 ]

∑
𝑝∈P

𝜇𝑖
𝑝
(𝑡 )𝜏𝑝 (𝑡 )

𝜀, 𝑖 ∈ {1, . . . , 𝑛},

we can show that 𝐺 (𝜃 ) is (𝑇, 𝜀)-separated, and the lower bound

(13) implies the lower bound in (39).

Finally, following similar arguments to those in the first part of

the proof of Theorem 3.1 while considering

𝜃𝑖 := 𝑒
− max

𝑡∈[0,𝑇 ]
𝜂𝑖𝜎 (𝑡 )

𝜀, 𝑖 ∈ {1, . . . , 𝑛},

we can show that𝐺 (𝜃 ) is (𝑇, 𝜀)-spanning, and the upper bound (11)
implies

ℎ(𝑓𝜎 , 𝐾) ≤ lim sup
𝑇→∞

𝑛∑
𝑖=1

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

∫ 𝑡

0
𝑎𝑖𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠

≤

𝑛∑
𝑖=1

lim sup
𝑇→∞

1

𝑇
max

𝑡 ∈[0,𝑇 ]

∑
𝑝∈P

∫ 𝑡

0
𝑎𝑖𝑝 (𝑠) 1𝑝 (𝜎 (𝑠)) d𝑠

with

𝑎𝑖𝑝 (𝑠) := max
𝑣∈co(𝐾)

(𝑓 𝑖𝑝 )
′(𝜉𝑖𝜎 (𝑠, 𝑣𝑖 )), 𝑝 ∈ P,

where the last inequality is due to the subadditivity of limit suprema.

Then we obtain the upper bound (41) by applying (17) and the

upper bound in (18) in each scalar component with the functions

𝑎𝑝 (𝑡) := 𝑎𝑖𝑝 (𝑡) for 𝑝 ∈ P. �

Based on the upper bound (41), we construct the following upper

bounds for the entropy of (38) that require less information on the

switching signal; the proof is along the lines of that of Corollary 3.3

and thus omitted here.

Corollary 4.2. The topological entropy of the switched diagonal

system (38) is upper-bounded by

ℎ(𝑓𝜎 , 𝐾) ≤
∑
𝑝∈P

(
𝑛∑
𝑖=1

max{𝑎𝑖𝑝 , 0}

)
𝜌𝑝 (45)

with the asymptotic active rates 𝜌𝑝 defined by (16), and also by

ℎ(𝑓𝜎 , 𝐾) ≤ max
𝑝∈P

(
𝑛∑
𝑖=1

max{𝑎𝑖𝑝 , 0}

)
, (46)

where the constants 𝑎𝑖𝑝 are defined by (42).

Remark 4.3. Consider the case where all the functions 𝑓 𝑖𝑝 in (38)

are linear, that is, there is a family of diagonal matrices {𝐷𝑝 =
diag(𝑎1𝑝 , . . . , 𝑎

𝑛
𝑝 ) ∈ R

𝑛×𝑛 : 𝑝 ∈ P} such that

𝑓𝑝 (𝑥) = 𝐷𝑝𝑥 ∀𝑥 ∈ R𝑛,∀𝑝 ∈ P .

Then the constants 𝑎𝑖𝑝 , 𝑎
𝑖
𝑝 , and 𝑎

𝑖
𝑝 defined by (40) and (42) satisfy

𝑎𝑖𝑝 = 𝑎𝑖𝑝 = 𝑎𝑖𝑝 = 𝑎𝑖𝑝 ∀ 𝑖 ∈ {1, . . . , 𝑛},∀𝑝 ∈ P .

Hence Theorem 4.1 generalizes [36, Th. 7 and Prop. 8], and Corol-

lary 4.2 generalizes [36, Cor. 10].

Remark 4.4. 1. The constants 𝑎𝑖𝑝 and 𝑎𝑖𝑝 defined by (40) de-

pend on the partial derivatives (𝑓 𝑖𝑝 )
′(𝑣𝑖 ) over the convex hull of

all reachable points from the initial set 𝐾 and over all reachable

points from the convex hull co(𝐾), respectively, whereas 𝑎𝑖𝑝 de-

fined by (42) only depends on (𝑓 𝑖𝑝 )
′(𝑣𝑖 ) over the 𝜔-limit set from

co(𝐾). Their difference is due to the different constructions of the

upper and lower bounds in (22) and the upper bound in (27). In

particular, (41), (45), and (46) will yield finite values for the case

with unbounded partial derivatives but a compact global attractor.

2. In view of Remark 2.7, if each (𝑓 𝑖𝑝 )
′(𝑣𝑖 ) has a global upper

bound 𝑎𝑖∗𝑝 , or an upper bound 𝑎𝑖∗𝑝 over a compact positively in-

variant set containing co(𝐾), then the upper bound in (39) and

the upper bounds (41), (45), and (46) hold with 𝑎𝑖∗𝑝 in place of 𝑎𝑖𝑝
and 𝑎𝑖𝑝 . Similarly, a more conservative but simpler lower bound

than the one in (39) can be constructed for the case with globally

lower-bounded (𝑓 𝑖𝑝 )
′(𝑣𝑖 ), or with a compact positively invariant

set containing 𝐾 .
3. For a fixed family of functions {𝑓𝑝 : 𝑝 ∈ P}, compared with

the upper bound in (39) and the upper bound (41), the upper bound

(45) depends on the asymptotic active rates 𝜌𝑝 instead of the active

rates 𝜌𝑝 , and the upper bound (46) does not involve active rates at

all. If a global upper bound 𝑎𝑖∗𝑝 is used in place of 𝑎𝑖𝑝 for each 𝑝 and

𝑖 , then (46) is independent of switching.

4. The upper bound (41) is tighter than the upper bounds (28),

(45), and (46), while (45) and (46) are tighter than the upper bounds

(35) and (36), respectively. The upper bound in (39) and the upper

bound (41) are both useful in the sense that neither is more conser-

vative than the other, due to their difference explained in item 1;

however, if the 𝜔-limit set from co(𝐾) contains all reachable points
from co(𝐾), then the former is tighter than the latter. The same

conclusion holds between the upper bound in (39) and the upper

bounds (35) and (36). The upper bounds (45) and (46) are both useful

in the same sense, as it is possible that
∑
𝑝∈P 𝜌𝑝 > 1. The relations

between the upper bounds (28), (41), (45), and (46), and the one in

(39) are illustrated numerically in Example 4.5 below.

Example 4.5. Consider the switched nonlinear system (37) in

the nonnegative orthant R𝑛≥0 in Example 3.6. In this example, we
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consider the case where the interaction terms 𝑎
𝑖 𝑗
𝑝 = 0 for all 𝑗 ≠ 𝑖

and 𝑝 ∈ P. Then (37) becomes the switched diagonal system

	𝑥𝑖 = 𝑓 𝑖𝜎 (𝑥𝑖 ) := (𝑟 𝑖𝜎 + 𝑎𝑖𝑖𝜎𝑥𝑖 ) 𝑥𝑖 , 𝑖 ∈ {1, . . . , 𝑛}. (47)

Note that for each 𝑝 ∈ P and 𝑖 ∈ {1, . . . , 𝑛}, we have 𝑓 𝑖𝑝 (𝑥𝑖 ) < 0 if

𝑥𝑖 > max{−𝑟 𝑖𝑝/𝑎
𝑖𝑖
𝑝 , 0}. Thus (47) is UUB in R𝑛≥0 and its 𝜔-limit set

is a subset of the positively invariant set [2]

Ω :=
𝑛∏
𝑖=1

[
0,max

{
max
𝑝∈P

−
𝑟 𝑖𝑝

𝑎𝑖𝑖𝑝
, 0

}]
.

Consider the switched diagonal system (47) in R2≥0 with the

same index set and parameters as those in Example 3.6 except no

interaction terms. Clearly, the individual modes have the same

attractors and saddle points as those in Example 3.6, and the pos-

itively invariant set Ω = [0, 3] × [0, 2]. Typical trajectories of the
individual modes 1 and 2 and the switched diagonal system (47)

with the switching signals 𝜎1 and 𝜎2 defined in Example 3.6 are

plotted in Fig. 2 below.
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(a) Mode 1

0 1 2 3 4 5
0
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(b) Mode 2
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2
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4

(c) Switching signal 𝜎1

0 1 2 3 4 5
0

1

2

3

4

(d) Switching signal 𝜎2

Figure 2: Trajectories of the switched diagonal system (47) for (a)

mode 1 with initial states (4, 3) , (3, 2) , (3, 0.1) , and (3, 0) ; (b) mode 2

with initial states (4, 3) , (3, 2) , (0.1, 2) , and (0, 2) ; (c) switching signal

𝜎1 with initial states (4, 3) , (3, 0) , (0, 2) , and (0, 0) ; (d) switching signal

𝜎2 with initial state (4, 3) . The circles mark the beginning of seg-

ments after switching. The gray rectangle represents the positively

invariant set Ω = [0, 3] × [0, 2].

The Jacobian matrices of individual modes of (47) are given by

𝐽𝑥 𝑓1 (𝑣) =

[
−1 − 2𝑣1 0

0 2 − 2𝑣2

]
, 𝐽𝑥 𝑓2 (𝑣) =

[
3 − 2𝑣1 0

0 −1 − 2𝑣2

]
.

As (47) is UUB and its 𝜔-limit set is a subset of Ω, for all initial
sets 𝐾 ⊂ R𝑛≥0, one can obtain upper bounds for the constants 𝜇𝑝
and 𝑎𝑖𝑝 defined by (29) and (42) by replacing the limit suprema over

{𝑡 ≥ 0 : 𝜎 (𝑠) = 𝑝} and maxima over co(𝐾) in (29) and (42) with

maxima over Ω. Hence

𝜇1 ≤ max
𝑣∈Ω

𝜇 (𝐽𝑥 𝑓1 (𝑣)) = max
𝑣∈Ω

max{−1 − 2𝑣1, 2 − 2𝑣2} = 2,

𝜇2 ≤ max
𝑣∈Ω

𝜇 (𝐽𝑥 𝑓2 (𝑣)) = max
𝑣∈Ω

max{3 − 2𝑣1, −1 − 2𝑣2} = 3,

and

𝑎11 ≤ max
𝑣∈Ω

−1 − 2𝑣1 = −1, 𝑎21 ≤ max
𝑣∈Ω

2 − 2𝑣2 = 2,

𝑎12 ≤ max
𝑣∈Ω

3 − 2𝑣1 = 3, 𝑎22 ≤ max
𝑣∈Ω

−1 − 2𝑣2 = −1.

Moreover, as Ω is a positively invariant set for (47), if 𝐾 ⊂ Ω,
then one can obtain the same upper bounds for the constants 𝑎𝑖𝑝
defined by (40), that is, 𝑎11 ≤ −1, 𝑎21 ≤ 2, 𝑎12 ≤ 3, and 𝑎22 ≤ −1.

The upper bounds for ℎ(𝑓𝜎1 , 𝐾) and ℎ(𝑓𝜎2 , 𝐾) computed using (28),

(41), (45), and (46) for all 𝐾 ⊂ R𝑛≥0, as well as (39) for all 𝐾 ⊂ Ω,
are summarized in Table 2 below. For the case with 𝜎2, the upper
bounds (28) and (41) are computed along the lines of computing

(28) in Example 3.6; the upper bound in (39) is computed along

the lines of computing ℎ(𝐷𝜎2 ) in [37, Example 3 and Appendix E].

The numerical results are consistent with the discussions on the

relations between the upper bounds (28), (39), (41), (45), and (46) in

Remark 4.4.4.

Table 2: Upper bounds for the entropy of the switched diagonal

system (47).

(𝜌1, 𝜌2)
𝐾 ⊂ R𝑛≥0 𝐾 ⊂ Ω

(28) (41) (45) (46) (39)

𝜎1 (0.5, 0.5) 5 1.5 2.5 3 1.5
𝜎2 (0.9, 0.9) 5.8 4.3 4.5 3 2.79

5 CONCLUSION

We established upper and lower bounds for the topological entropy

of switched nonlinear systems, which generalized previous results

for switched linear systems in [36, 37] and furthered our under-

standing of how switching affects topological entropy. A feature

of most bounds presented here is that they only depend on the

Jacobian matrices of system functions over the 𝜔-limit set instead

of all reachable points, and thus will yield a finite value for the case

with unbounded Jacobian matrices but a compact global attractor.

Future research directions include analyzing the complexity of

computing the upper bounds for topological entropy in this paper,

studying the relation between these upper bounds and existing sta-

bility conditions for switched nonlinear systems, and establishing

bounds for the topological entropy of switched nonlinear systems

with more general commutation relations than diagonal modes.
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