
REAL-TIME AUTONOMOUS MINIATURE CAR PERCEPTION
AND CONTROL FOR PACKAGE DELIVERY

Selim Karahan∗, Eduardo Lopez∗, Brian Montoya∗,
Justice Shepard∗, Haodong Wu∗, Sean Anderson†

Department of Electrical and Computer Engineering
University of California Santa Barbara

Santa Barbara, CA
skarahan@ucsb.edu, eduardolopez@ucsb.edu, brianmontoya@ucsb.edu,

justiceshepard@ucsb.edu, haodongwu@ucsb.edu, seananderson@ucsb.edu

Faculty Advisor:
João Hespanha

ABSTRACT

Autonomous vehicles increasingly play an important role in daily life. Low-stakes use cases can
enable people’s familiarity and confidence in these systems, helping to establish public trust. The
Neutronomous project aims to enable food and package delivery via a low-cost, easy-to-fabricate
one-tenth scale autonomous car. Three Raspberry Pis execute real-time parallel computations for
sensing and localization via an environmentally robust LiDAR, and state estimation and high-level
planning via an IMU-enabled GPS. This build is ideal for a self-driving robot to navigate college
and corporate campuses, as well as small towns. The Neutronomous car’s practical and accessible
implementation paves the way for continued integration of autonomous vehicles in public spaces.

INTRODUCTION

The Department of Electrical and Computer Engineering at University of California Santa Barbara
facilitates year-long undergraduate senior capstone projects in which teams of students work on a
project that is often scoped and funded by an industry partner. In this case, the project was funded
by the International Foundation for Telemetering.

The team aimed to develop a small-scale autonomous car based on the F1TENTH framework de-
veloped at the University of Pennsylannia [1]. Autonomous vehicles are becoming more common
in daily life as well as popular culture but still face significant challenges for adoption. Technical
challenges include difficult-to-predict road conditions, sensor interference, and variable weather

∗The authors contributed equally to this work.
† Graduate student mentor in the Department of Electrical and Computer Engineering.

1



conditions. Hardware and overall cost of engineering development impose financial burdens, and
the public needs to be able to trust autonomous systems. The team aimed to address the latter
challenge by prototyping a small-scale car to efficiently deliver packages on campus settings. By
safely demonstrating obstacle avoidance, the car would thus increase public confidence in such
technology.

The F1TENTH project is an open-source project utilized in universities. The project enables stu-
dents and researchers alike to learn about perception, planning, control, and the role of autonomous
systems in society. The project is taught in the form of a course with the end goal of racing, hence
the F1 (i.e. Formula One) in the name. Additionally, the scale of the car is one-tenth of a standard
car.

Through the use of ROS packages and hardware inspired by the original F1TENTH project, the
main technical challenges lay in integrating the hardware components and developing efficient
code for real-time control. This paper aims to convey the hardware and software configuration as
well as technical challenges faced during development.

VEHICLE HARDWARE

The vehicle components were all off-the-shelf in order to make the final product accessible and
affordable. The components used were similar to those suggested on the F1TENTH website (final
build in Figure 1). The main differences were the use of an IMU and GPS, no camera, and Rasp-
berry Pi computers instead of a NVIDIA Jetson NX. The choice of components was based on a
desire to use common sensors (i.e. IMU/GPS and LiDAR) as well as supply-chain availability (i.e.
Raspberry Pi in lieu of the NVIDIA Jetson).

A. Sensing

At the sensing level, we mounted a BerryGPS-IMU on one of the single board computers and a
RPLiDAR A3M1 on the front of the vehicle. The advantage of the GPS integrated with IMU is
a compact form-factor that can be mounted on the Raspberry Pi. The LiDAR system provides
2D 360 degree scans of the surroundings with 20m range outdoors and 25 meter range indoors at
a 10Hz scanning frequency. A key feature of the RPLiDAR product is its resistance to daylight
interference allowing for both indoor and outdoor use.

B. Computers

For computation we used three Raspberry Pi 4 single board computers. Each has a 1.5GHz 64-
bit ARM processor with 4GB of RAM. As illustrated in Figure 2, each Pi performed a specific
task: sensing and low-level tasks, LiDAR processing and SLAM, and trajectory planning. Due
to high computational needs for SLAM as well as the trajectory planning, it made sense to split
this computation across multiple boards. While more powerful single board computers are on
the market, the Raspberry Pi has a strong development community and is cost-effective. Another
advantage of parallel computation is that it allows for parallel development of subcomponents (e.g.

2



Figure 1: The fully-built car is shown with the LiDAR on the front of the vehicle.

the LiDAR was set up and tested independently before integrating with the rest of the stack). This
allowed the team to test, develop code, and tune the sensors independently from one another during
early stages of the process.

C. Vehicle base and actuators

Starting from the base, the team used a Traxxas Slash 4x4, which ships with the wheels, sus-
pension, radio transmitter, 12V lithium polymer battery, remote control, antenna, electronic speed
controller (ESC), Titan 12T 550 brushed DC motor, and a built-in steering servo. The radio trans-
mitter and antenna were removed, with the ESC being replaced by a Vedder ESC (VESC). The
stock product allows for speeds over 60 mph if desired. In order to mount the computers, LiDAR,
and VESC on the car, we laser-cut a platform that would elevate these components above the motor
and battery. The finished car is shown in Figure 1. An additional (Anker) power-bank is included

3



for the purpose of separating the power supply of the car from the computers. This was simply to
eliminate the need for a voltage converter.

Figure 2: The sensors feed data to a corresponding Raspberry Pi, which after performing computations,
outputs a control signal to the actuators.

SOFTWARE

The team utilized ROS [2] packages to enhance the adaptability of the system as well as to enable
off-the-shelf algorithms for perception and control. The overall software architecture is illustrated
in Figure 3.

D. Sensing

The team focused on indoor navigation to start, such that the RPLiDAR and IMU provided the
sensing. The GPS in the GPS-IMU only functions appropriately outdoors. The IMU was used for
generating odometry data, namely pose and linear and angular velocity. By using the RPLiDAR,
the team could use simultaneous localization and mapping (SLAM), which estimates the car’s
position in a local map (i.e. the area that is visible to the RPLiDAR) as well as the car’s pose.
An example of accurate mapping in the lab space is shown in Figure 4(a). With the intention of
running in real-time, the SLAM algorithm allows for continuously building the local map as the
car moves throughout the space of interest. In particular, the team used the ROS Hector SLAM
package [3]. Hector SLAM is a two-dimensional SLAM system based on a robust scan matching
technique, suiting the two-dimensional scans coming from the RPLiDAR.

In addition, because the SLAM data was useful for odometry purposes in addition to generating

4



Figure 3: The ROS software configuration is shown superimposed on the Pi boards where computations
would take place.

local cost maps, the team utilized the robot localization ROS package [4]. This package enabled
sensor fusion between the IMU and the SLAM output by using an extended Kalman filter (EKF).
This generates more accurate odometry data. For example, IMUs rely on accelerometers and
therefore do no generate useful information when the car is moving at constant velocity in a straight
line. Meanwhile, the linear velocity can be inferred from the rate of change in the local cost map
from the SLAM algorithm. In this way, sensor fusion can help to improve the state estimates of
the system.

It’s worth noting that the GPS can be used to improve state estimates when outdoors as well as
provide the location of the car when traversing large areas. Due to the focus on indoor navigation
for the duration of the project, the GPS was not utilized.

An issue that the team ran into when working on SLAM was distortion of the local cost map when
turning (Figure 4(b)). The result of this was an inaccurate cost map. The underlying reasons for
this distortion were ultimately unclear but were potentially related to the Raspberry Pi being under-
powered for handling the RPLiDAR’s data or more fundamental configuration issues when setting
up Hector SLAM.

5



Figure 4: (a) Hector SLAM is able to accurately map the lab space where multiple small objects such as
chairs and desks occlude small sections. (b) The team encountered issues when turning the car, resulting in
inaccurate maps.

E. Planning and Control

The planning and control system contained three levels. The two highest levels planned the path
of the car, and this was executed using the ROS package move base [5]. Generally, move base
uses two cost maps. What is known as the “global cost map” provides a general map of the area
capturing larger, static features. In the context of this project, this can be generated from exploring
a region of interest, such as a campus, by using manual control while running the SLAM algorithm.
By using the GPS for localization on the global cost map, waypoints could be determined for where
to go next. The lower level planning (second level) utilized the “local cost map”. This captures
real-time information such as dynamic obstacles and local features left out of the more granular
global version. The actual path planning algorithm used is A∗. Lastly, move base is configured to
output a velocity and angular velocity reference. Due to the system being nonholonomic, this was
transformed into a velocity and steering angle reference. In turn, a PID controller communicating
with the VESC tracked the reference linear velocity, and similarly a PID controller working with
the servo tracked the reference steering angle.

F. Integration

The team developed the subsystems in parallel with the aim to integrate them using the communi-
cation flexibility provided by ROS. The architecture depicted in Figure 3 indicates the information
flow. In particular, SLAM using the raw data from the LiDAR publishes to cost map, which is the
local cost map. The local cost map, also known as an occupancy map, defines whether a point on
the mapped space is occupied. The data is stored in a matrix with zero corresponding to empty
and one corresponding to occupied. By using Bayesian inference, the entries become probabilities
of occupancy rather than simply boolean. The local cost map gives the path planner, move base,
information about local obstacles and can be used for sensor fusion. At the same time, the GPS
and IMU are providing odometry data to the odom topic, which is read by move base. Utilizing

6



these two topics, move base publishes the aforementioned references to cmd vel. The references
are then transformed in the base controller to desired velocity and steering angle. In order for the
base controller to utilize feedback, it subscribes to the odom topic to get the current linear veloc-
ity. Since there are not sensors to read the actual heading angle, the current steering angle can
be inferred from the combined linear and angular velocity. Lastly, the base controller (both PIDs)
publish to control effort. The control signal is sent to the servo and motor.

It is worth noting that since the sensors are not all in the same place on the car, the tf topic allows
for transforms such that all computations use the same coordinate frame.

When integrating the subsystems, the team faced a few challenges. At the sensing level, the team
encountered persistent issues with establishing an accurate cost map due to the distortion when
turning. This limited testing to driving in straight lines or very slow turns. Finally, during the final
days of the project, after getting move base to output reference signals, the base controller would
not compile due to issues in ROS. This led to the inability to fully test the autonomy of the car. As
a result of this, the team was only able to demonstrate the performance of the car moving under
manual control. This manual control was instated earlier on in the project to allow for developing
global cost maps. By accessing the Pi via secure shell protocol (SSH), the team controlled the
speed and turning of the car via keyboard commands.

CONCLUSIONS

The capstone project aimed to develop a miniature autonomous car for campus-scale delivery
purpose. While the end result did not meet the original goal, the team was able to gain valuable
experience in working with sensing/perception, planning and control, and software development
with ROS. Furthermore, by considering the objective of furthering public trust in autonomous
systems, the team engaged with the question of what role autonomous systems play in society. In
this way, the team was successful in meeting the goals of the F1TENTH project. By using different
components than the well-documented ones on the F1TENTH website, the team set forth a greater
challenge for itself. If given more time in the future, it would be rewarding to finish the car and
demonstrate the capabilities originally set forth.

ACKNOWLEDGEMENTS

The team would like to thank Destin Wong, who was a teaching assistant for the course, as he
contributed much time and valuable insight throughout the project. We would also like to thank
the International Foundation for Telemetering for funding the project.

REFERENCES

[1] B. Zheng and J. Betz, “F1TENTH.” https://f1tenth.org/, 2022.

[2] I. Open Source Robotics Foundation, “ROS.” https://ros.org/, 2022.

7



[3] S. Kohlbrecher, “hector slam - ROS Wiki.” http://wiki.ros.org/hector slam, 2022.

[4] T. Moore, “robot localization - ROS Wiki.” http://wiki.ros.org/robot localization, 2022.

[5] E. Marder-Eppstein, “move base - ROS Wiki.” http://wiki.ros.org/move base, 2022.

8


