
Trajectories for the Optimal Collection of Information
Matthew R. Kirchner
Department of ECE

University of California, Santa Barbara
Santa Barbara, CA 93106-9560

kirchner@ucsb.edu

David Grimsman
Computer Science Department

Brigham Young University
Provo, UT

grimsman@cs.byu.edu
João P. Hespanha

Department of ECE
University of California, Santa Barbara

Santa Barbara, CA 93106-9560
hespanha@ece.ucsb.edu

Jason R. Marden
Department of ECE

University of California, Santa Barbara
Santa Barbara, CA 93106-9560

jmarden@ece.ucsb.edu

Abstract—We study a scenario where an aircraft has multiple
heterogeneous sensors collecting measurements to track a target
vehicle of unknown location. The measurements are sampled
along the flight path and our goals to optimize sensor placement
to minimize estimation error. We select as a metric the Fisher
Information Matrix (FIM), as “minimizing” the inverse of the
FIM is required to achieve small estimation error. We propose
to generate the optimal path from the Hamilton–Jacobi (HJ)
partial differential equation (PDE) as it is the necessary and
sufficient condition for optimality. A traditional method of lines
(MOL) approach, based on a spatial grid, lends itself well to
the highly non-linear and non-convex structure of the problem
induced by the FIM matrix. However, the sensor placement
problem results in a state space dimension that renders a
naive MOL approach intractable. We present a new hybrid
approach, whereby we decompose the state space into two parts:
a smaller subspace that still uses a grid and takes advantage
of the robustness to non-linearities and non-convexities, and the
remaining state space that can be found efficiently from a system
of ODEs, avoiding formation of a spatial grid.
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1. INTRODUCTION
We present a method to optimize vehicle trajectories to gain
maximal information for target tracking problems. The
scenario currently being studied is an aircraft receiving
passive information from sensors rigidly mounted to the
airframe. These sensors include, but are not limited to,
infrared or visible spectrum, as well as RF receivers that
measure the frequency shifts from an external transmitter.
The measurements are sampled in order to determine the
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Figure 1. An illustration of the target tracking problem. An
aircraft collects measurement for sensors as it flies along a

path, attempting to estimate the location of the ship, denoted
here as θ. Modifying the path of the vehicle can greatly

improve the estimation performance.

location of a target vehicle. The placement of the sensors is
determined by the path of the aircraft, influencing how much
information is gained as well as the overall effectiveness of
estimating where the target is located. By optimizing the
trajectory, we can achieve maximum information gain, and
hence the greatest accuracy in localizing the target.

This problem is a generalization of what appeared in [1],
where the path of the vehicle was fixed and a subset of
measurements were selected only from along this path. In
this context we optimize a metric of the cumulative Fisher
Information Matrix (FIM) of the aircraft path, which is
motivated by its connection to the (Bayesian) Cramér-Rao
lower bound [2]. The LOGDET metric is chosen as this gives a
D-optimal estimate, essentially corresponding to minimizing
the volume of the error ellipsoid, and additionally provides
favorable numeric properties. It is worth noting that while the
focus of this paper is the LOGDET metric, other metrics may
be considered, provided the metric meets certain conditions
that are outlined in what follows in the paper. Of particular
interest would be the trace of the inverse metric, as that
gives the A-optimal estimate, effectively minimizing the
mean-square estimate error. Analysis of the trace of the
inverse metric is outside the scope of this paper and will be
investigated in future work.

We formulate the problem in such a way that the
optimal value function satisfies a Hamilton-Jacobi (HJ)
partial differential equation (PDE), from which the optimal
trajectories immediately follow. Naively, a solution of the
corresponding HJ PDE using a grid-based method would
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have many advantages since they handle the non-linear and
non-convex problems that arises in FIM-based optimization.
However, the sensor estimation problem induces a state space
dimension that renders typical grid-based methods [3] for
PDE solutions intractable due to the exponential dimensional
scaling of such methods. Recognition of this problem is not
new, and the phrase “curse of dimensionality” was coined
decades ago by Richard Bellman [4]. This creates a large
gap between the rigorous theory of HJ equations and practical
implementation on many problems of interest, especially
vehicle planning and coordination problems.

New research has emerged in an attempt to bridge
this technological gap, including trajectory optimization
approaches [5], [6], [7], machine learning techniques [8],
[9], [10], and sub-problem decomposition [11], [12]. The
structure of the sensor placement problem lends itself well
to the later strategy. Unique in this context, though, is that
we do not need to abandon spatial grids entirely, instead
forming a hybrid approach. This leverages the strength of
grid-based methods in dealing with the non-convexities that
commonly arise when using the FIM matrix, but restricts their
applications to a small subspace of the problem.

In what follows we formally introduce the sensor estimation
problem and form its corresponding HJ PDE. We then
proceed to show a new hybrid method of lines (MOL)
approach that involves decomposing the state space. and
conclude with simulated results of the optimal trajectories
that result from heterogeneous sensors tracking the location
of a mobile target. Section 2 shows how the information
collecting problem gives rise to nonlinear dynamics with a
cascade structure, that the input only directly affects one first
subcomponent of the state, whereas the optimization criteria
only depends on a second subcomponent. Section 3 addresses
the optimal control of this type of systems using the HJ PDE
and the classical MOL. Section 4, develops the theory needed
for the new hybrid method of lines, which is applicable to
systems in a cascade form. This type of systems arises
naturally in formation collecting, but the hybrid methods of
lines can be applied to the optimal of more general cascade
systems. Section 5 specializes the hybrid MOL to the
information collection. Section 6 includes simulation results
for a particular vehicle model and sensor type.

2. THE VEHICLE SENSING PROBLEM
We choose as our vehicle a Dubin’s car [13] and denote by
(X,Y, ψ) := x ∈ X := R2 × SO (2) the vehicle state where
X and Y are the rectangular positional coordinates of the
vehicle center and ψ is the heading angle. The dynamics are
defined by

d

ds
x (s) = f (x (s)) +Bu (s) , a.e. s ∈ [0, t] (1)

where

f (x) =

[
v cosψ
v sinψ

0

]
, B =

[
0
0
1

]
, (2)

where u (s) ∈ U := [−ωmax, ωmax] is the allowable control
set of turn rates and v is the fixed forward speed of the vehicle.
The admissible control set is defined as

U [0, t] := {u (·) : [0, t]→ U |u (·) is measurable} . (3)

Our method applied to vehicles that can be expressed in
the general form (1), which includes the Dubins vehicle

in (2). The Dubins vehicle with bounded turning rate is
particularly interesting because it is a low-dimensional model
that generates trajectories that are easy to track by an aircraft
flying at constant speed and altitude.

The vehicle defined above has a group of rigidly attached
sensors collecting measurements. The measurements,
denoted as y, are sampled in order to determine an unknown
random variable, θ. The measurements are assumed to be
random variables dependent on θ with density function

y ∼ ρ (y|θ) .

Assuming that all measurements y are conditionally
independent given θ, the cumulative Bayesian Fisher
Information Matrix (FIM) associated with the estimation of
θ is of the form

FIM (t, x, u (·)) := Q0 +

∫ t

0

Q (γ (s;x, u (·))) ds,

where
Q (x) := Eθ [Q (x; θ)] , (4)

with

Q (x; θ) := Ey

[(
∂ log ρ (y|θ, x)

∂θ

)>(
∂ log ρ (y|θ, x)

∂θ

)]
,

(5)
and

Q0 := Eθ

[(
∂ log ρ (θ)

∂θ

)>(
∂ log ρ (θ)

∂θ

)]
,

where ρ (θ) is the a-priori probability density function for
θ. The formula above assumes a scenario where the
measurement, y (t), is collected by one sensor or by multiple
independent sensors that generate at the same (constant)
sampling rate. When multiple independent sensors collect
measurements at constant but different sampling rates, the
FIM matrix can be factored for each sensor i:

Q (t, x, u (·)) =
∑
i

F iQi (γ (s;x, u (·))) ,

where F i is the sampling rate of the i-th sensor. The above
matrices are given from [14], where the expectation over y
in (5) is given in closed form for some distributions, see for
example [1, Sec. 5]. While the outer expectation over θ in (4)
is rarely known in closed form, many approximation schemes
can be employed, for example Monte Carlo sampling or
Taylor series expansion.

The placement of the sensors is determined by the path of
the aircraft, influencing how much information is gained as
well the overall effectiveness of estimating θ. Therefore
we optimize the trajectory to achieve maximum information
gain, and hence the greatest performance in estimating θ
from the measurements y. For a given initial state x ∈ X
and terminal time t ∈ [0,∞), we define the following cost
functional:

J (t, x, u (·)) := G (CFIM (t, x, u (·))) + log det (Q0) , (6)

where
G (x, z) := − log det

(
vec−1z

)
,
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We denote by V (t, x) the value function defined as

V (t, x) = inf
u(·)∈U [0,t]

J (t, x, u (·)) , (7)

which can be interpreted as the maximal information gain for
a family of trajectory optimization problems parameterized
by initial state x ∈ X and terminal time t ∈ [0,∞).

The cost functional in (7) is not in a standard form, so we
convert the problem into a common standard, the so-called
Mayer form. To do this we augment the state vector with
z ∈ Z := dom (G). Our new state becomes

χ := (x, z)
>
,

with augmented dynamics

d

ds
χ (s) = f̂ (χ (s) , u (s)) =

[
f (x (s))
` (x (s))

]
+

[
B
0

]
u (s) ,

(8)
with

` (x (s)) := vec (Q (x (s))) ,

where vec is the vectorize operator that reshapes a matrix into
a column vector and 0 is a vector of zeros of the same number
of elements as the augmented variable z. If we fix the z initial
condition such that

z = vec (Q0) , (9)

then the cost functional (6) can equivalently written as

J (t, x, u (·)) = J (t, χ, u (·)) = G
(
vec−1 (z)

)
, (10)

where we denote by Z = vec−1 (z) the inverse operator such
that

vec
(
vec−1 (z)

)
= z.

Hereafter we will denote by G̃ as the function G with the
input reshaped as a function of z with

G̃ (z) := G
(
vec−1 (z)

)
. (11)

Likewise the value function is equivalently written as

V (t, χ) = inf
u(·)∈U [0,t]

J (t, χ, u (·)) . (12)

3. DECOMPOSITION OF COUPLED SYSTEMS
The approach we will develop to solve (12) is applicable to
a more general class of cascade systems that we introduce in
this section, and for which we discuss the use of HJ methods
for optimal control. Denote by χ := (x, z)

> where x ∈ X =
Rn and z ∈ Z = Rm. The state has coupled dynamics as
follows:{

ẋ (s) = f (x (s)) + g (x (s))u (s) a.e s ∈ [0, t]
ż (s) = ` (x (s)) ,

(13)

with u ∈ U , where U is a closed convex set. We denote by
[0, t] 3 s 7→ γ (s;x0, u (·)) ∈ Rn the x state trajectory that
evolves in time according to (1) starting from initial state x0
at t = 0. The trajectory γ is a solution of (1) in that it satisfies
(1) almost everywhere:{
γ̇ (s;x0, u (·)) = f (γ (s;x0, u (·))) + g (γ (s;x0, u (·)))u,
γ (0;x0, u (·)) = x0.

(14)

Likewise, we denote by [0, t] 3 s 7→ ξ (s;χ0, u (·)) the
trajectory of the z variable and it satisfies the following
almost everywhere:{

d
dsξ (s;χ0, u (·)) = ` (γ (s;x0, u (·))) ,
ξ (0;χ0, u (·)) = z0.

(15)

Note that the trajectory can be found directly from the
expression:

ξ (s;χ0, u (·)) := z0 +

∫ s

0

` (γ (τ ;x0, u (·))) dτ. (16)

Denote G : Rm → R as the terminal cost function such that
the mapping

Z 3 z 7→ G (z) ∈ R,
We define the cost functional

J (t, χ, u (·)) := G (ξ (t;χ, u (·))) ,

and the associated value function as

V (t, χ) := inf
u(·)∈U [0,t]

J (t, χ, u (·)) ,

where U [0, t] is defined as in (3).

We denote by

f̂ (χ, u) :=

[
f (x) + g (x)u

` (x)

]
,

the joint vector field in (13). We assume that f̂ , U , and G
satisfy the following regularity assumptions:

(F1) (U, d) is a separable metric space.
(F2) The maps f̂ : X × U → Rn+m and G : Z → R are
measurable, and there exists a constant L > 0 and a modulus
of continuity ω : [0,∞) → [0,∞) such that for ϕ (χ, u) =

f̂ (χ, u) , G (z), we have for all χ, χ′ ∈ X ×Z , and u, u′ ∈ U

|ϕ (χ, u)− ϕ (χ′, u′)| ≤ L ‖χ− χ′‖+ ω (d (u, u′)) ,

and
|ϕ (0, u)| ≤ L.

(F3) The maps f̂ , and G are C1 in χ, and there exists a
modulus of continuity ω : [0,∞) → [0,∞) such that for
ϕ (χ, u) = f̂ (χ, u) , G (z), we have for all χ, χ′ ∈ X × Z ,
and u, u′ ∈ U

|ϕχ (χ, u)− ϕχ (χ′, u′)| ≤ ω (‖χ− χ′‖+ d (u, u′)) .

Hamilton–Jacobi Formulation

Under a set of mild Lipschitz continuity assumptions, there
exists a unique value function (12) that satisfies the following
Hamilton–Jacobi (HJ) equation [15] with V (t, χ) being the
viscosity solution of the partial differential equation (PDE)
for s ∈ [0, t]

Vs (s, χ) +H (χ, Vχ (s, χ)) = 0, (17)
V (0, χ) = G (z) ,

where σ := (p, λ)
> and

H (χ, σ) := min
u∈U

H (χ, u, σ) , (18)
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with the Hamiltonian, H , defined by

H (χ, u, σ) =

〈[
f (x) + g (x)u

` (x)

]
,

[
p
λ

]〉
= 〈f (x) , p〉+ 〈g (x)u, p〉+ 〈` (x) , λ〉 .

In the case where the set U is bounded by a norm, i.e.

U = {u ∈ Rnu | ‖u‖ ≤ c} , (19)

for some c, then (18) is given in closed form by

H (χ, ρ) = 〈f (x) , p〉+
∥∥∥g (x)

>
p
∥∥∥
∗

+ 〈` (x) , λ〉 , (20)

where ‖(·)‖∗ is the dual norm to ‖(·)‖ in (19). We denote by
π the control that optimizes the Hamiltonian and is given by

π (s, χ) := arg min
u∈U

H (χ, u, Vχ (s, χ)) .

We note here that under mild assumptions, the viscosity
solution of (17) is Lipschitz continuous in both s and χ
[16, Theorem 2.5, p. 165]. This implies by Rademacher’s
theorem [17, Theorem 3.1.6, p. 216] the value function
is differentiable almost everywhere. For what follows, we
assume that the value function has continuous first and second
derivatives. The points where this fails to be true only exists
on a set of measure zero, and any practical implementation
of the method presented will only evaluate points where the
first and second derivatives exist. A characterization of the
differentiability of the value function is outside the scope
of this paper and a full rigorous treatment will appear in
forthcoming work.

Necessary Conditions of the Optimal Trajectories

Fix x ∈ X and z ∈ Z as initial conditions and fix the
terminal time t. Denote by γ̄ (s) and ξ̄ (s) as the optimal state
trajectories such that

γ̄ (s) := γ̄ (s;χ) = γ (s;x, ū (·;χ)) ,

and
ξ̄ (s) := ξ̄ (s;χ) = ξ (s;x, z, ū (·;χ)) ,

such that ū optimizes (12). By Pontryagin’s theorem [18]
there exists adjoint trajectories p (s) := p (s;χ) and λ (s) :=
λ (s;χ) such that the function

[0, t] 3 s 7→
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
(21)

is a solution of the characteristic system
˙̄γ (s) = Hp

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

˙̄ξ (s) = Hλ
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

ṗ (s) = −Hx
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

λ̇ (s) = −Hz
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

(22)

almost everywhere s ∈ [0, t] with boundary conditions

p (t) = 0, λ (t) = Gz
(
ξ̄ (t)

)
.

Numerical Approximations Viscosity Solutions to First-Order
Hyperbolic PDEs

Traditional methods for computing the viscosity solution to
(17) rely on constructing a discrete grid of points. This is
typically chosen as a Cartesian grid, but many other grid
types exist. The value function is found using a method of
lines (MOL) approach by the solving the following family of
ODEs, pointwise at each grid point χk =

(
xk, zk

)
∈ S :=

X × Z:{
φ̇
(
s, χk

)
= −H

(
χk, Dχφ

(
s, χk

))
, s ∈ [0, t]

φ
(
0, χk

)
= G

(
zk
)
,

(23)

where φ
(
s, χk

)
should be viewed as an approximation to the

value function V
(
s, χk

)
in (17) and

Dχφ
(
s, χk

)
≈ φχ

(
s, χk

)
is obtained by a finite difference scheme used to approximate
the gradient of φ at grid point k. Care must be taken
when evaluating finite differences of possibly non-smooth
functions and the family of Essentially Non-Oscillatory
(ENO) methods were developed to address this issue [19].
The advantage of the method of lines is that we can compute
(23) independently at each grid point with φ

(
t, χk

)
≈

V
(
t, χk

)
. Under certain conditions, for example the Lax-

Richtmyer equivalence theorem [20],

∆s→ 0, ∆χ→ 0 =⇒ φ
(
t, χk

)
→ V

(
t, χk

)
when the scheme is both consistent, i.e. the error between
φ
(
t, χk

)
and V

(
t, χk

)
tends to zero, and stable. In this

case, stability is enforced when the time step, ∆s, satisfies
the Courant-Friedrichs-Lewy (CFL) condition [21]. When
the HJ equation is a non-linear PDE, then additionally a
Lax-Friedrichs approximation [22], [23] is needed to ensure
stability. In the Lax-Friedrichs method the Hamiltonian in
(23) is replaced by

Ĥ
(
χ, σ+, σ−

)
:=H

(
χ,
σ+ + σ−

∈

)
− ν (χ)

>
(
σ+ + σ−

2

)
,

where inputs D+
χ φ
(
s, χk

)
→ σ+ and D−χ φ

(
s, χk

)
→

σ− are the right and left side bias finite differencing
approximations to the gradient, respectively. The term
ν (χ) is the artificial dissipation and depends on Hσ (χ, σ),
the gradient of the Hamiltonian with respect to the adjoint
variable. The MOL approach in (23) becomes{

φ̇
(
s, χk

)
= −Ĥ

(
χk, D+

χ φ
(
s, χk

)
, D−χ φ

(
s, χk

))
,

φ
(
0, χk

)
= G

(
zk
)
,

(24)

In general, no closed form solution exists to (24) and
therefore an explicit Runge-Kutta scheme is employed. If
the first order Euler method is used to solve (24), then we
have the following time-marching scheme with iteration for
s ∈ [0, t]:
φ
(
s+ ∆s, χk

)
= φ

(
s, χk

)
−∆sĤ

(
χk, D+

χ φ
(
s, χk

)
, D−χ φ

(
s, χk

))
,

φ
(
0, χk

)
= G

(
zk
)
.

(25)
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The reader is encouraged to read [3] for a comprehensive
review on numeric numeric methods to solving first-order
hyperbolic HJ PDEs.

4. HJB DECOMPOSITION
We are especially interested in problems for which the
x-component of the state in (13) has a relatively small
dimension, but z-component does not. This is common
in the vehicle sensing problem discussed in Section 2,
because the dimension of z scales with the square of the
number of parameters to be estimated and therefore, even
for simple vehicle dynamics and a relatively small number
of parameters, the dimension of the state χ is too large to
apply (25). To overcome this challenge, we present an hybrid
method of lines that uses a grid over x, but no grid over z.

A key challenge to creating such a method is to find a closed-
form expression for the gradient of the value function with
respect to z, so as to avoid finite differencing schemes in z.
Taking advantage of the specific structure of the problem,
we show that we can use a grid over the state variable x to
compute Dxφ

(
s, χk

)
≈ φx

(
s, χk

)
with finite differences,

but avoid a grid over the state variable z by solving a family
of ODEs to compute Dzφ

(
s, χk

)
. This is supported by the

following theorem.
Theorem 1. Suppose the value function V (s, χ) is twice
differentiable at (s, χ) ∈ [0,∞)×S . Then at any point χ, the
gradient of the value function with respect to z can be found
using the following ODE:V̇z (s, χ) = − ∂

∂z

〈
Gz
(
ξ̄ (s)

)
, ` (x)

〉
−Rx (s, χ, π (s, χ) , f (x) , g (x)) ,

Vz (0, χ) = Gz (z) ,
(26)

where

Rx (s, χ, u, α, β) :=
∂

∂x

{〈
Gz
(
ξ̄ (s)

)
, α
〉

(27)

+
〈
Gz
(
ξ̄ (s)

)
, βu

〉}
. (28)

The proof of Theorem 1 will need the following technical
lemma.
Lemma 2. Suppose that the gradient Vz (t, χ) exists at
(t, χ) ∈ [0,∞) × S. Then the gradient of the value function
with respect to the augmented variable is given by

Vz (t, χ) = Gz
(
ξ̄ (t;χ)

)
.

Proof. Recall from (16) and applying the optimal control
sequence,

ξ̄ (s) = z +

∫ s

0

` (γ̄ (τ)) dτ.

Therefore

Gz

(
z +

∫ t

0

` (γ̄ (τ)) dτ

)
= Gz

(
ξ̄ (t)

)
:= λ (t) . (29)

Recognize that (29) is the boundary condition of the
characteristic system (22), and that

Vz (t, χ) = λ (0)

= Gz
(
ξ̄ (t)

)
−
∫ 0

t

Hz
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
ds.

Where the first line above uses the connection between the
adjoint variable, λ, and the value function [16, Theorem 3.4,
p. 235]. Observing that the Hamiltonian (20) does not
depend on the argument z, then it follows that

Hz
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
= 0, s ∈ [0, t] ,

which leads to

Vz (t, χ) = Gz
(
ξ̄ (t)

)
.

We now proceed to the proof of Theorem 1.

Proof. Fix x, z and noting the original HJB equation (17):

V̇z (s, χ) =
∂

∂s
{Vz (s, χ)}

=
∂

∂z
{Vs (s, χ)}

=
∂

∂z
{−H (χ, Vx (s, χ) , Vz (s, χ))} .

From the definition of the Hamiltonian

V̇z (s, χ) =
∂

∂z

{
− 〈Vz (s, χ) , ` (x)〉 − 〈Vx (s, χ) , f (x)〉

−min
u∈U
〈Vx (s, χ) , g (x)u〉

}
.

Fix time s ∈ [0, t], and define the function

ϕs (χ, u) : = min
u∈U

F s (χ, u) ,

where
F s (χ, u) := 〈Vx (s, χ) , g (x)u〉 ,

and recall that

π (s, χ) := arg min
u∈U

〈Vx (s, χ) , g (x)u〉 .

Since by assumption both Vx (s, χ) and Vzx (s, χ) exist, and
F s (χ, u) is differentiable at χ, this implies the gradient of ϕs
can by found [24, Theorem 4.13] with the following relation:

ϕsz (χ, u) = F sz (χ, π (s, χ)) .

This gives

V̇z (s, χ) =− ∂

∂z
{〈Vz (s, χ) , ` (x)〉}

− ∂

∂z
{〈Vx (s, χ) , α〉}

∣∣∣∣
α=f(x)

− ∂

∂z
{〈Vx (s, χ) , βu〉}

∣∣∣∣
u=π(s,χ),β=g(x)

.
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Noting the symmetry of the gradients with respect to x, z we
have

V̇z (s, χ) =− ∂

∂z
{〈Vz (s, χ) , ` (x)〉}

− ∂

∂x
{〈Vz (s, χ) , α〉}

∣∣∣∣
α=f(x)

− ∂

∂x
{〈Vz (s, χ) , βu〉}

∣∣∣∣
u=π(s,χ),β=g(x)

,

and then applying Lemma 2, the result follows.

Method of Lines with State Space Decomposition

Recall that we denote by φ (s, χ) the numeric approximation
to the value function, V (s, χ). The proposed hybrid MOL
is relies on an approximations Dxφ (s, χ) of the gradient
of the value function with respect to x, Vx (s, χ), that is
based on the Lax-Friedrichs approximation. However, the
approximation Φ (s, χ) of the gradient of the value function
with respect to z, Vz (s, χ), is obtained by solving an ODE in
time and does not require a spatial grid. In view of this, this
method computes the two approximations φ

(
s, xk, z

)
and

Φ
(
s, xk, z

)
on points

(
xk, z

)
∈ S where the xk are restricted

to a finite grid of the x-component of the state, whereas z
is not restricted to a grid. To accomplish this, we need the
following assumption that, together with Theorem 1, leads to
the following MOL.

Suppose that the first term in (26) can be written as

∂

∂z

{〈
Gz
(
ξ̄ (s)

)
, ` (x)

〉}
= Υ

(
x, z,Gz

(
ξ̄ (s)

))
, (30)

and fix z for any z ∈ Z . Denote by Φ
(
s, xk, z

)
≈

φz
(
s, xk, z

)
= Gz

(
ξ̄ (s)

)
as the gradient estimate of the

value function with respect to z. Then from Theorem 1
and Lemma 2, we construct the following method of lines
approach, for

(
xk, z

)
∈ S:

φ̇
(
s, xk, z

)
= −H̃

(
xk, z,D+

x φ
(
s, xk, z

)
, D−x φ

(
s, xk, z

)
,

Φ
(
s, xk, z

) )
,

Φ̇
(
s, xk, z

)
= −Υ

(
xk, z,Φ

(
s, xk, z

))
−Rx

(
s, xk, z, π

(
s, xk, z

)
, f
(
xk
)
, g
(
xk
))
,

φ
(
0, xk, z

)
= G (z) ,

Φ
(
0, xk, z

)
= Gz (z) ,

(31)
where

H̃
(
x, z, ρ+, ρ−, λ

)
:=H

(
x, z,

ρ+ + ρ−

2
, λ

)
− ν (x)

>
(
ρ+ + ρ−

2

)
,

is the Lax-Friedrichs approximation. The Lax-Friedrichs
approximation is only needed in the x dimension since that
is the only space where a grid is constructed for computing
finite differences.

5. OPTIMAL INFORMATION COLLECTION
Recall that the system (8) presented in Section 2 is of the form
of Section 3, and we can use Theorem 1 to construct a method

of lines. Recall that for Dubins car, U = [−ωmax, ωmax], and
the optimal Hamilton (18) becomes

H (x, z, p, λ) = 〈f (x) , p〉+ωmax

∣∣B>p∣∣+〈λ, vec (Q (x))〉 ,

and optimal control policy is given by

π (s;x, z) :=arg min
u∈U

H (x, z, u, Vx (s, x, z) , Vz (s, x, z))

∈

−ωmax B>Vx (s, x, z) < 0
[−ωmax, ωmax] B>Vx (s, x, z) = 0
ωmax B>Vx (s, x, z) > 0.

(32)

In order to compute the first term in (26) for the vehicle
tracking problem presented in Section 2, we present the
following lemma.

Lemma 3. Let χ ∈ S . When G (z) = −log det
(
vec−1 (z)

)
and ` (x) = vec (Q (x)), then

∂

∂z

〈
Gz
(
ξ̄ (s)

)
, ` (x)

〉
= vec

(
vec−1

(
Gz
(
ξ̄ (s)

))
·Q (x) · vec−1

(
Gz
(
ξ̄ (s)

)))>.
Proof. Define Ξ̄ (z) := Ξ (s;x, z, ū (·)) = vec−1

(
ξ̄ (s;χ, ū (·))

)
as the optimal auxiliary state trajectory at the time, s,
reshaped into a matrix. The matrix forms simplifies the
following proof and the computations in the examples to
follow. We also denote by Z := vec−1 (z). The gradient with
respect to a matrix of a function F (Z) is the matrix defined
by

∂

∂Z
F (Z) := vec−1

{[
∂F (Z)

∂Zij

]
i,j

}
.

Recall (11) and from Lemma 2 that Vz (s, x, z) =

Gz
(
Ξ̄ (z)

)
= vec−1

(
Ξ̄ (z)

−1
)

. Then we have

∂

∂z

〈
Gz
(
ξ̄ (s)

)
, ` (x)

〉
= vec

(
∂

∂Z
tr
(

Ξ̄ (z)
−1
Q (x)

))
.

We direct our attention to the term inside the vec operator in
the last line above, and find

∂

∂Zij
tr
(

Ξ̄ (z)
−1
Q (x)

)
= tr

(
∂

∂Zij

{
Ξ̄ (z)

−1
}
Q (x)

)
= tr

(
−Ξ̄ (z)

−1 ∂Ξ̄ (z)

∂Zij
Ξ̄ (z)

−1
Q (x)

)

where the last line is from [25]. Noting ∂Ξ̄(z)
∂Zij

= ∂Ξ̄(z)
∂Z

∂z
∂Zij

,

recalling from Proposition 5 that ∂Ξ̄(z)
∂Z = I and noting

∂z
∂Zij

= Sij := eie
>
j , where ek is a vector with a 1 in k-th
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Figure 2. An optimal path computed for the first example,
shown in red. In this example, the aircraft is only using

Doppler shift measurements. The blue dashed circle is the
95% error ellipse of the prior distribution on θ, which in this

example represents the position of the vehicle target.

element and zeros elsewhere. We now have

∂

∂Zij
tr
(

Ξ̄ (z)
−1
Q (x)

)
= −tr

(
Ξ̄ (z)

−1
eie
>
j Ξ̄ (z)

−1
Q (x)

)
= −tr

(
e>j Ξ̄ (z)

−1
Q (x) Ξ̄ (z)

−1
ei

)
= −e>j Ξ̄ (z)

−1
Q (x) Ξ̄ (z)

−1
ei

=
[
Ξ̄ (z)

−1
Q (x) Ξ̄ (z)

−1
]
ji
,

=
[
vec−1

(
Gz
(
ξ̄ (s)

))
·Q (x) · vec−1

(
Gz
(
ξ̄ (s)

))]
ji

and the result follows.

Note Lemma 3 gives us the relation in (30) for the sensing
trajectory problem, and when in matrix form as in the proof,
gives a relationship that is simple to compute.

6. RESULTS
We consider a passive RF sensor that measures the Doppler
frequency shift in the carrier frequency, denoted as F , arising
from the relative motion between transmitting vehicle and the
receiver. Note that we do not need to decode the underlying
transmission, as we are only tracking the carrier frequency.
More details about the derivation of this, as well as other
sensor models can be found in [1].

We assume in this paper the sensor produces conditionally
independent measurements, each with a Gaussian distribution
with mean µF (θ). While the mean vector depends on the
parameter of interest, θ, the covariance does not depend2 on
θand is given as ΣF . This gives a closed form expression for

2It is not required that the covariance to be independent of θ, but it simplifies
the example here.

(5) for measurement F , as

Q (x; θ) =

(
∂µF (θ)

∂θ

)>
Σ−1
F

(
∂µF (θ)

∂θ

)
, (33)

where ∂µF (θ)
∂θ denotes the Jacobian matrix of µF (θ) [26].

To estimate the expectation and find the expression (4),
we choose a second-order Taylor series expansion. Let
Qij (x; θ) denote the i, j-th element of the (33), and θ is
a random variable with mean µθ and covariance Σθ. Then
we approximate the element with a second order Taylor
expansion as

Qij (x; θ) ≈Qij (x;µθ) +∇Qij (x;µθ)
>

(θ − µθ)

+
1

2
(θ − µθ)>Hij (x;µθ) (θ − µθ) ,

where Hij (x; θ) is the hessian matrix of Qij (x; θ) with
respect to θ. The expected value is then found as

Eθ [Qij (x; θ)] ≈ Qij (x;µθ) +
1

2
tr (ΣθHij (x;µθ)) . (34)

The closed-form gradient ∂µF (θ)
∂θ in (33) are found from [1],

while the Hessian values were found using the CASADI
toolbox [27].

In the example the parameters to be estimated, θ, consist of
the (X,Y ) ∈ R2 position of the target vehicle. The prior
distribution of θ is given as

θ ∼ N
([

0
0

]
, υ2I

)
,

where υ = 10m is the standard deviation. The sensor
measures the Doppler shifts with noise standard deviation of
ΣF = 1. The sensing aircraft is flying 1000m above the
ground level where the target vehicle is located and the turn
rate is limited with ωmax = 0.05 rad/s.

Figure 2 shows the optimal path from the initial condition of
X (0) = 50m, Y (0) = −36.6m, and ψ (0) = −π. The
initial angle of −π implies the tracking aircraft is moving
from right to left initially at t = 0. It can be seen in the
figure that the optimal path begins with turning maneuvers
before traveling straight along a ray extending outward from
the center of the prior distribution of θ. Conceptually, travel
along this ray will give maximum variation in Doppler shift,
but the early maneuvers are still necessary since multiple
directions of measurements are required to fully localize
using only Doppler measurements

Figure 3 shows a series of optimal paths generated with same
initial conditions for X (0) and ψ (0), but with a variation
in the initial condition, Y (0). The vertical initial condition,
Y (0), were chosen uniformly from a range [−50, 50]. While
the trajectories are different quantitatively from that of Figure
2, they share the same qualitative properties of an initial
maneuver to gain measurements in various directions before
traveling away from the prior belief, on a ray extending
directly from the center.

7. CONCLUSION
We present a hybrid method of lines approach for solving
a class of Hamilton–Jacobi PDEs that arise in the optimal

7



Figure 3. Here a series of optimal trajectories are shown in
red from different starting locations, with each vehicle

starting out moving from right to left. Same as in Fig. 2, the
aircraft is only using Doppler shift measurements. The blue
circle is the 95% error ellipse of the prior distribution on θ.

placement of sensors. This method provides for robustness,
where needed, in the x subspace by using a classic grid
approach with finite differencing. It avoids a grid in the
z subspace and hence scales well with the number of z
dimensions. We applied this to a trajectory optimization
problem where the goal is to find the trajectory that minimizes
the estimation error from the measurements collected along
the calculated path. Future work includes investigating
metrics other than LOGDET such as the trace of the inverse
and studying if the hybrid method of lines approach can be
generalized to a broader class of systems.

APPENDICES

A. HAMILTONIAN REGULARITY
ASSUMPTIONS

Let n be the dimension of the augmented state variable χ, and
denote by σ := (p, λ)

>, and with a slight abuse of notation
note that H (s, χ, σ) = H (s, x, z, σ) = H (s, x, z, p, λ) and
vice versa. We introduce a set of mild regularity assumptions:

(H1) The Hamiltonian

[0, t]×X ×Z ×Rn 3 (s, x, z, p, λ) 7→ H (s, x, z, p, λ) ∈ R

is continuous.
(H2) There exists a constant c > 0 such that for all
(s, x, z) ∈ [0, t] × X × Z and for all σ′, σ′′ ∈ Rn, the
following inequalities hold

|H (s, x, z, σ′)−H (s, x, z, σ′′)| ≤ κ1 (χ) ‖σ′ − σ′′‖ ,

and
|H (s, x, z,0)| ≤ κ1 (χ) ,

with κ1 (χ) = c (1 + ‖χ‖).
(H3) For any compact set M ⊂ Rn there exists a constant
C (M) > 0 such that for all χ′, χ′′ ∈ M and for all (s, σ) ∈
[0, t]× Rn the inequality holds

|H (s, χ′, σ)−H (s, χ′′, σ)| ≤ κ2 (σ) ‖χ′ − χ′′‖ ;

with κ2 (σ) = C (M) (1 + ‖σ‖).
(H4) The terminal cost function

Rn 3 χ 7→ G (χ) ∈ R,

is continuous.

Next we present an important theorem on the existence and
uniqueness of viscosity solutions of the Hamilton–Jacobi
equation.

Theorem 4 ([28, Theorem II.8.1, p. 70]). Let assumptions
(H1) − (H4) hold. Then there exists a unique viscosity
solution to (17).

B. SUPPORTING PROPOSITIONS
Proposition 5. Let χ ∈ S, then

∂

∂z
ξ (t;χ, ū (·)) = I.

Proof. By assumption, the terminal point of the state
trajectory ζ (t;χ, ū (·)) is differentiable with respect to initial
condition χ ∈ S. Defining the Jacobin, for s ∈ [0, t],

m (s) :=

[
mxx (s) mx,z (s)
mzx (s) mzz (s)

]
=

[
γ̄x (s) γ̄z (s)
ξ̄x (s) ξ̄z (s)

]
=

∂

∂χ
ζ (s;χ, ū (·)) .

We have from [16, Chapter 5, Equation 3.23] that m (t)
satisfies the following matrix equation almost everywhere:{

ṁ (s) = f̂χ
(
ζ̄ (s;χ, ū (·)) , ū (s)

)
m (s) , s ∈ [0, t] ,

m (0) = I.

8



From which the mzz partition is written as{
ṁzz (s) = `z (γ̄ (s;χ, ū (·)))mzz (s) , s ∈ [0, t] ,
mzz (0) = I.

Since ` does not depend on z, we have

ṁzz (s) = 0, ∀s ∈ [0, t] ,

and the result follows.
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