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Abstract— We study the problem of designing an input to
a dynamical system that is optimal at estimating unknown
parameters in the system’s model. We take the A and D
optimality criteria on the Fisher Information Matrix associated
with the estimation problem as our optimization objective.
Our main motivation is the estimation of the physiological
parameters that appear in pharmacokinetic dynamics using a
relatively short set of measurements. In this context, model
inputs correspond to the intravenous injection of drugs and
input selection needs to consider safety constraints that include
max-min instantaneous injection rates and total dosage amount.
We divide the time interval available for the experiment into
learning and optimization stages. We use the initial learning
stage to obtain a preliminary estimate for the system’s model.
Then we find an optimal input for the optimization stage so
that we can improve upon this initial estimate.

I. INTRODUCTION

Learning system dynamics from measured data can be a
significant challenge when long time series of measurements
are difficult to obtain. This challenge is especially important
in biology-related fields such as pharmacokinetics, where
subject-to-subject variability is large and time-series of mea-
surements can be difficult to collect. In such systems, it is
crucial to maximize the information content of the limited
data that can be collected.

Pharmacokinetics is the study of how drugs diffuse within
and are removed from the body [1] and pharmacokinetics
provide a model for this process. Even for the same drug at
the same dose, these dynamics typically exhibit significant
variability across individuals. Because of this, the develop-
ment of new drugs [2] and/or the design of individualized
treatment regimens [3], [4] require understanding the in-
dividualized pharmacokinetics based on a single or a small
number of identification experiments. This has historically
proven difficult, as the time resolution of the traditional
methods of measuring drug concentration is quite poor.
The recently developed Electrochemical-aptamer-based (E-
AB) sensor platform, however, supports seconds-resolution
in these measurements, in turn providing an unprecedentedly
high-precision window into pharmacokinetics [4].

Motivated by these recent developments, we are inter-
ested in scenarios where a single experiment is performed
to estimate drug-specific pharmacokinetic parameters of an
animal, and relatively little information is known about those
parameters before the experiment starts. Such experiments

*This work was supported by National Institutes of Health under Grant
R01 A1145206 and National Science Foundation under Grant ECCS
2029985

1University of California, Santa Barbara, Santa Barbara, CA 93106, The
USA. Correspondence: m erdal@ucsb.edu

typically consist of administering a drug and measuring the
time evolution of the drug concentration in one or several
compartments in the body. The experiment design problem
consists of selecting a time-profile for the drug administration
to obtain the best possible estimates for the pharmacokinetic
parameters while respecting key safety constraints that are
typical drug-injection protocols.

We use the Fisher Information Matrix (FIM) to assess the
information content that can be extracted from the measure-
ments collected in an experiment. We recall that the inverse
of the FIM is equal to the error covariance of an optimal
estimator that is able to achieve the Cramér–Rao bound and
therefore a FIM with a “small” inverse is associated with
an estimation problem that can be solved with small mean-
square errors. The FIM can thus be viewed as a measure of
information content [5]. We consider both the A and D scalar
criteria to assess optimality on FIM, which are common in
the experiment design literature [6].

It is well known that the exact value of the FIM depends
on the true system. This issue has been even called the
“Achilles’ heel of optimal input design” in [7], as it does not
really make sense to do system identification if we know the
system in the first place. This problem usually resolved with
some prior information taken from previous experiments or
literature. However, especially for drugs with large subject-
to-subject variability, little prior information may be available
on the pharmacokinetic parameter values. For such problems,
we propose a two-stage approach for optimal experiment
design that uses an initial “learning” stage to build coarse
parameter estimates, followed by an “optimization” stage that
injects the drug according to a time profile that has been
optimized for the specific individual.

Optimal experiment design problem enjoys a rich history,
and it can be posed for different purposes such as system
identification or adaptive control. These differing objectives
change the criterion by which we call an input profile opti-
mal. We focus on experiment design for system identification
but we refer to [8], [9] for a detailed survey of differing
objectives.

The complexity of finding solutions to experiment design
problems is highly dependent on the specifics of the problem
in the hand. For example, it can be posed as a convex
program by using linear matrix inequalities (LMI) when the
input is optimized over a spectrum [7], [10]. Unfortunately,
optimizing over the spectrum prevents us from imposing
most time-domain constraints, which are required for safety
in pharmacokinetic studies.

It was shown that solving experiment design problems



with optimality criterion based on the FIM with time-domain
amplitude constraints is generally NP-hard [11]. Convex
semidefinite relaxations have been used to deal with this
complexity issue. However, the solution to the relaxed prob-
lem is usually not compatible with the original feasible space.
This requires a projection back to the original feasible space
from the relaxed solutions. Examples of such projections are
discussed in [11], [12]. Similar relaxation techniques were
also used to solve the optimal experiment design problem,
together with a constraint on the sum of the input in [13].

We propose to solve the original experiment design prob-
lem using a software tool, CasADI [14], that employs au-
tomatic differentiation together with an nonlinear program
solver, IPOPT [15], without having to relax the problem or
projecting back to the feasible space. This approach allows
us to execute the optimization procedure fast and reliably,
and thereby similar techniques recently attracted attention
[16].

We formally introduce the optimal experiment design
problem in Section II for a generic discrete-time linear time
invariant (LTI) system. The specific pharmacokinetic model
and the relevant safety constraints are introduced in Section
III. We introduce our two-stage approach that involves the
initial identification and the subsequent optimization stages
in Section IV. We, then, validate our approach on a hypo-
thetical drug that follows a three compartment model, and
discuss the numerical results in Section V.

II. OPTIMAL EXPERIMENT DESIGN

We consider a parametrized discrete linear system model
of the form

xpt` 1q “ Apθqxptq `Bpθquptq (1a)
yptq “ Cpθqxptq `Dpθquptq ` ηptq (1b)

@t P t1, . . . , Nu, where θ P Rnθ is a vector of unknown
parameters, xptq P Rnx is the state of the system, uptq P
Rnu a known input, yptq P Rny the measured output, and
ηptq P Rny stochastic measurement noise. When the initial
condition xp1q is unknown, we include it in the vector θ.

A. Fisher Information Matrix

The Fisher Information Matrix (FIM) associated with the
estimation of the parameter θ is denoted by Iθ P Rnθˆnθ and
is defined as a positive definite matrix whose pi, jqth entry
is equal to

Iθij pūq “ E
„

B log ppȳ; ū, θq

Bθi

B log ppȳ; ū, θq

Bθj

ˇ

ˇ

ˇ

ˇ

θ



, (2)

where ȳ P RNny and ū P RNnu are the observations and the
inputs vector, defined as

ȳ “
“

yp1qT yp2qT . . . ypNqT
‰T

ū “
“

up1qT up2qT . . . upNqT
‰T
,

and ppȳ; ū, θq is the probability density function (pdf) of
the measurements in ȳ given the input sequence ū and the
parameter vector θ.

The following result provides an explicit formula for the
FIM associated with the parameter θ in (1), based on the
matrix

Mpθq “

»

—

–

Cxp1q D . . . 0
...

...
. . .

...
CAN´1xp1q CAN´2B . . . D

fi

ffi

fl

, (3)

where we omitted from the right-hand side the dependence
of A, B, C, D, and xp1q on the parameter vector θ.

Theorem 1: Assume that the measurement noise vectors
ηptq in the LTI system (1) are identically independently dis-
tributed zero-mean Gaussian random vectors with covariance
matrix equal to Σn. Then the entries of the FIM are quadratic
in the input ū with

Iθij pūq “ ūTaggMpθ, i, jqūagg, (4)

where ūagg “
“

1 ūT
‰T

and

Mpθ, i, jq “
BMpθq

Bθi

T
`

I b Σ´1
n

˘ BMpθq

Bθj
,

Proof: Because the vectors ηptq are identically indepen-
dently distributed zero-mean Gaussian random vectors with
a covariance matrix Σn, each measurement yptq is also a
Gaussian random vector with a covariance of Σn. Moreover,
the expected value of the output of an LTI system (1) at the
time t is given by the variation of constants formula [17].

E ryptq; ū, θs “ CAtxp1q ` C
t´1
ÿ

`“1

At´`´1Bup`q `Duptq,

where the matrices A,B,C,D are all functions of parameter
vector θ but we drop the θ notation in these matrices for
brevity. We can stack each of these expected outputs and
express this computation in vector form

µȳ :“ E rȳ; ū, θs “Mpθq

„

1
ū



loomoon

ūagg

.
(5)

Now that we also have an explicit formula for the expected
value of ȳ, we can express the log likelihood of ȳ as,

log p pȳ; ū, θq “ ´
nyN

2
logp2πq `

1

2
log det

`

Σ̄´1
˘

´
1

2
pȳ ´ µȳq

T
Σ̄´1 pȳ ´ µȳq ,

(6)

where Σ̄ “ pIN b Σnq We take the derivative with respect
to the ith entry of θ,

B log p pȳ; ū, θq

Bθi
“
Bµȳ
Bθi

T

Σ̄´1 pȳ ´ µȳq

“ ūTagg
BMpθq

Bθi

T

Σ̄´1 pȳ ´ µȳq .

Then we take the expected value as in (2), which leads to,

Iθij pūq “ E
„

B log ppȳ; ū, θq

Bθi

B log ppȳ; ū, θq

Bθj

ˇ

ˇ

ˇ

ˇ

θ



“
Bµȳ
Bθi

T

Σ̄´1 Bµȳ
Bθj

“ ūTaggMpθ, i, jqūagg,

(7)



where Mpθ, i, jq “ BMpθq
Bθi

T `

I b Σ´1
n

˘

BMpθq
Bθj

.

B. Optimization criteria

The A and D optimality criteria are commonly used to
construct a scalar metric that captures the information content
of a set of measurements and are formally defined by

fApIθq “ Tr
`

I´1
θ

˘

, fDpIθq “ ´ log detpIθq, (8)

respectively [6]. For Gaussian measurement vectors, the A
optimality criterion is proportional to the mean square esti-
mation error (or the sum of the square of the estimation errors
associated with each entry of θ) of an optimal estimator,
whereas the D optimality criteria is proportional to the
volume of the confidence region around the estimates defined
by level sets of the posterior pdf of the parameters given the
measurements.

Since the criteria in (8) generally depend on the value
of the unknown parameter θ, we need to minimize the
expected value of one of these criteria with respect the prior
distribution of θ, leading to the following optimization

ū˚ “ arg min
ūPU

Eθ
”

f
`

Iθpūq
˘

ı

, (9)

where fp¨q is either fAp¨q or fDp¨q in (8), Eθ refers to the
expectation taken over the prior distribution of θ, and U is
a set of admissible control inputs.

In general, the expected value in the right-hand side of (9)
cannot be computed in closed form and needs to be replaced
by an empirical average, leading to the following sample
average approximation (SAA) [18]:

ū˚ “ arg min
ūPU

1

K

K
ÿ

k“1

f
`

Iθkpūq
˘

, (10)

where the θk are independent random samples extracted from
the prior distribution for θ. Since minimizing the criteria
in (10) is computationally difficult for a large number of
samples K, we take advantage of the fact that both optimality
criteria functions in (8) are convex with respect to the cone
of positive definite matrices [19] and use Jensen’s inequality
to conclude that

1

K

K
ÿ

k“1

f
`

Iθkpūq
˘

ě f
´ 1

K

K
ÿ

k“1

Iθkpūq
¯

. (11)

Rather than minimizing the empirical average in the left-
hand side of this inequality, we minimize instead its lower
bound in the right-hand side.

ū˚ “ arg min
ūPU

f
´

Îpūq
¯

, Îpūq–
1

K

K
ÿ

k“1

Iθkpūq. (12)

This optimization is much more attractive, because we can
conclude from (4) in Theorem 1 that the pi, jqth entry of Ī
is given by

Îijpūq “ ūTagg

´ 1

K

K
ÿ

k“1

Mpθk, i, jq
¯

ūagg, (13)

which shows that the average 1
K

řK
k“1Mpθk, i, jq does not

depend on the control input ū and can be pre-computed
without adding complexity to the optimization in (12).

We acknowledge that minimizing a lower-bound is, in
general, not ideal since it may not lead to a smaller real
objective. However, our results, presented in Table II, for
a generic numerical example indicate that the lower bound
in (11) indeed leads to more accurate estimates.

III. PHARMACOKINETIC MODEL

We use the discretized version of a classical compartmen-
tal model [20] with nx compartments and nu inputs:

xipt` 1q “ p1´ kEiqxiptq

`

nx
ÿ

j“1
j‰i

kji pxjptq ´ xiptqq `
nu
ÿ

`“1

kUi`u`ptq, (14)

where xi is the drug concentration in compartment i, kEi
is the elimination rate in compartment i, kji is the rate
constant associated with the transfer from the jth into ith

compartments, u`ptq is the `th exogenous injection at time t,
and kUi` is the transfer rate for u` into the ith compartment.

In this model, we have kji “ 0 when the concentration of
compartment j does not affect the concentration in compart-
ment i, kEi “ 0 when the drug is not being metabolized nor
excreted from compartment i, and kUi` “ 0 when there is no
drug infusion into compartment i from `th infusion channel.

We also assume that not all these compartments are
available to be observed. Instead, we assume that there are
ny sensors each of which measuring a different compartment
with some noise in the measured values.

We can express the dynamics (14) in terms of the
parametrized discrete LTI system in (1) with D “ 0̄ P

Rnyˆnu and appropriate choices for the matrices A,B,C:
The non-diagonal entries of A P Rnxˆnx are given by
Aij “ kji . The diagonal entries of A are given by

Aii “ ´kEi ´
n
ÿ

j“1
j‰i

kji .

The entries of the matrix B P Rnxˆnu are given by Bi` “
kUi` . By assuming that specific entries of the matrices A and
B are zero, we are implicitly introducing some knowledge
regarding the underlying network of compartments for the
particular drug.

Finally, each row i of the matrix C P Rnyˆnx has a
single entry at the entry pi, jq where j corresponds to the
compartment whose concentration is measured by the ith
sensor.

The vector θ P Rnθ of unknown parameters contains all
the pharmacokinetic parameters, including all the nonzero
entries of the matrix B, the nonzero non-diagonal entries of
A, and the nonzero elimination rates in diagonal entries of
A. When the initial condition of the system is not known, it
needs to be added to the parameters vector.. We define the
feasible set U in (12) next.



Pharmacokinetic Constraints

When conducting experiments to collect pharmacokinetic
measurements from living animals one needs to follow pre-
approved safety procedures that specify maximum and mini-
mum instantaneous injection rates and maximum dosage over
a certain period of time. Therefore, the set U of admissible
inputs in the problem (12) needs to be restricted to the input
profiles that satisfy

umin ď uptq ď umax, @t P t1, . . . , N ´ 1u (15a)
N´1
ÿ

t“1

uptq ď dmax, (15b)

where the vector inequalities are element-wise, umin and
umax are the minimum and maximum infusion rates, and
dmax is the maximum total dose. We consider input profiles
that have N´1 time instances. This is because, the D matrix
in the pharmacokinetic model is assumed to be a zero matrix.
Therefore, with N measurements, we cannot observe the
impact of upNq on the system.

IV. TWO-STAGE APPROACH

To address the lack of prior knowledge on the values of
the pharmacokinetic parameters, we divide the experiment
into two stages: An initial “learning” stage in which a
fixed time profile of drug infusion is used, followed by an
“optimization” stage where we use an infusion profile that
has been optimized for the specific individual. This two-stage
approach enable us to gather data during the learning stage to
construct a coarse estimate for the parameters, which is used
to compute an optimal infusion profile for the optimization
stage. The overall procedure consists of the following steps:

1) Apply a fixed drug infusion profile from times t “
1 through t “ N0 and collect drug concentration
measurements.

2) Compute a “coarse” posterior distribution for the un-
known parameter vector θ, given the data collected for
t P t1, . . . , N0u.

3) Compute the optimal infusion profile for times t “
N0`1 through t “ N´1 by solving an optimization of
the form (12), using samples drawn from distributions
computed in step 2.

4) Apply the optimized drug infusion profile from times
t “ N0 ` 1 through the final time t “ N ´ 1 and
collect drug concentration measurements.

5) Compute a final estimate for the unknown parame-
ter vector θ given the whole data collected for t P
t1, . . . , Nu.

In the remainder of this section, we first discuss the
approach used for system identification in steps 2 and 5,
followed by the optimization performed in step 3.

A. System Identification

The approach used for system identification relies on the
following property of multi-variable Gaussian distributions,
which enables the computation of the posterior mean and
covariance of the parameters θ given the measurement ȳ from

the joint distribution of θ and ȳ through an optimization,
rather than through integration of the joint density.

Lemma 1: For a given input ū, if the conditional distri-
bution of θ given the measurements in ȳ is a multivariate
Gaussian, then this distribution has the following mean and
covariance matrix:

E rθ|ȳ; ūs “ arg max
θPRnθ

log pΘ,Ȳ pθ̄, ȳ; ūq (16a)

Cov rθ|ȳ; ūs “ ´

ˆ

B log pΘ,Ȳ pθ, ȳ; ūq

Bθ2

˙´1

, (16b)

where pȲ ,Θpθ, ȳ; ūq is the joint distribution of θ and ȳ, for
the given input ū.

Proof: We can use the Bayes’ rule to expand the
logarithm of the conditional pdf of θ given the measurements
ȳ as follows

log pΘ|Ȳ pθ|ȳ; ūq ` log pȲ pȳ; ūq “ log pΘ,Ȳ pθ, ȳ; ūq,

where log pȲ pȳ; ūq denotes the marginal distribution of ȳ.
Since the conditional distribution of θ given ȳ is assumed to
be Gaussian, the logarithm of its pdf is of the form

log pθ̄|Ȳ pθ|ȳ; ūq “ ´
nθ
2

logp2πq `
nθ
2

log detpΣ´1
θ|ȳq

´
1

2

`

θ ´ µθ|ȳ
˘T

Σ´1
θ|ȳ

`

θ ´ µθ|ȳ
˘

, (17)

where µθ|ȳ and Σθ|ȳ denote the mean and covariance ma-
trix of the conditional distribution. From this formula, we
conclude that

E rθ|ȳ; ūs “ µθ|ȳ “ arg max
θPRnθ

log pȲ ,Θpθ̄, ȳ; ūq

Cov rθ|ȳ; ūs “ Σθ|ȳ “ ´

ˆ

B log pΘ,Ȳ pθ, ȳ; ūq

Bθ2

˙´1

.

The usefulness of Lemma 1 stems from the observation
that the joint pdf of θ and ȳ that appears in the formulas in
the right-hand side of (16) can be easily computed in closed
form for the system (1) and is given by

pΘ,Ȳ pθ, ȳ; ūq “ pȲ |Θ pȳ|θ; ūq pΘpθq, (18)

where pȲ |Θ pȳ|θ; ūq is defined as in (6). The result then
shows that we can optimize/differentiate (18) to obtain the
mean and variance of the posterior distribution using (16).

In general, the posterior conditional distribution in (17)
is not Gaussian, but we can still regard the right-hand side
of (17) as a second order Taylor series approximation to the
exact distribution. In this case, the formulas in (16) will have
some error that should be small as long as the second order
approximation is reasonable.

Furthermore, if we assume that the prior distribution on
θ in (18) is uninformative in the sense that it has a large
covariance, optimizing/differentiating (18) will be approxi-
mately the same as optimizing/differentiating (6). Therefore,
we solve the maximum likelihood estimation (MLE) problem
for system identification

θ̂ “ arg max
θPRnθ

log p pȳ|θ; ūq , (19)



and take the solution to be approximately (16a). We also
note that inverse of the hessian of the MLE problem at the
solution will give us the approximate value of (16b).

B. Experiment Design

We use the approximate Gaussian posterior distribu-
tion (16) obtained in the learning stage as a prior for
the experiment design problem (12) under the constraints
introduced in Section III.

min
ūPRN´1

f

˜

1

K

K
ÿ

k“1

Iθkpūq

¸

(20a)

s.t.
N0`N´1

ÿ

i“N0`1

ūpiq ď dmax

ūpiq ě umin, @i P tN0 ` 1, . . . , N ´ 1u

ūpiq ď umax, @i P tN0 ` 1, . . . , N ´ 1u

ūpiq “ ū0piq, @i P t1, 2, . . . , N0u

,

(20b)

where the optimality criteria f is as in (8), Îθ is defined
as in (13), N0 is the initial input horizon, ū0 is the initial
input profile applied during this time, and N is the number of
samples for the optimal experiment design. We highlight that
FIM, Îθ, depends on a large ū with N ´ 1 entries. However,
first N0 entries of it are fixed to ū0piq in order to account
for the initial data collection period.

We then use a nonlinear programming solver to solve (20)
but it is typically important to pick good initializations for the
solver due to the lack of convexity. We choose a finite family
of “Bang-bang” injection protocols with control inputs whose
values switch between rates umin and umax. This type of
input profiles is commonly used in practice and also found
to be performing well in previous studies [13]. Motivated
by this, we propose to initialize the nonlinear programming
solver with the best such input. Over a finite discrete-time
horizon of length N , there is only a finite number of bang-
bang inputs but comparing all of them is generally not
practical because the number of possible combinations grows
super-exponentially with the horizon length N even for a sin-
gle input. The following process of choosing initializations is
defined to be a scalar input but for a multi-channel input case,
one can use this procedure for each channel independently,
which would take the complexity to the nuth power.

We look for the combinations in a coarse manner in order
to limit the number of possible combinations. We divide the
overall design interval of length N´N0´1 into m segments
of length N´N0´1{m and keep the input constant over each
segment. More precisely we choose ` segments to infuse at
the maximum allowed rate and at the minimum rate for the
remaining m´ ` segments. Therefore, we use sets of length
` to define each input we consider.

uc̄ptq “

#

umax

P

t
m

T

P c̄

umin otherwise
(21)

@t P t1, 2, . . . , N´N0´1u, where rxs stands for the smallest
integer larger than x P Q, and c̄ is any subset of t1, 2, . . . ,mu
with ` elements. We note that integers, m, ` P Z, must satisfy

`

m
ď

dmax ´ uminpN ´N0 ´ 1qT

pN ´N0 ´ 1qpumax ´ uminqT

in order to satisfy the total dosage constraint.
Now we choose m, ` such that the total dosage require-

ment is satisfied and the total number of possible combina-
tions is not very high. Then, we define the set of all possible
combinations, Cpm, lq, and find the optimal combination,

c̄˚ “ tc˚1 , c
˚
2 , . . . , c

˚
l u “ arg min

c̄PCps,lq

f
´ 1

K

K
ÿ

k“1

Iθkpuc̄q
¯

where f is one of the criteria in (8), and the coarse input uc̄
is defined as (21).

Once we have the initialization, we run a primal-dual
interior point solver [15] to solve the problem (12).

V. RESULTS AND DISCUSSION

We use a hypothetical drug that does not appear in the
body naturally and follows the three compartment model
depicted in Fig. 1.

The drug is injected into the blood stream (which corre-
sponds to the “vein” compartment) and diffuses both to the
brain (which is represented by the “brain” compartment) and
to the rest of body that we represent by a single “distribution
compartment.” We can measure drug concentration in the
first two compartments, which is in line with the current
capabilities of the electrochemical sensing [4], [21], [22]

The corresponding pharmacokinetic model follows
from (14) and is of the form

xpt` 1q “

»

–

´kV0 0 kDV
kVB ´kB0 0
kVD 0 ´kD0

fi

flxptq `

»

–

kUV
0
0

fi

fluptq

(22a)

yptq “

„

1 0 0
0 1 0



xptq ` ηt, (22b)

where kV0
“ kEV `kDV ´1, kB0

“ kEB `kVB ´1, kD0
“

kVD ´1, ηt are independent and identically distributed zero-
mean Gaussian noise and we use the notation described

Vein

Dist.

Brainuptq
kVB

kVD

kEV kEB

kDV

kU

Fig. 1. Network view of three compartment model.
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Fig. 2. Comparison of different drug administration profiles. The drug administration profiles are shown in the top row, where a dashed black line
separates the initial data collection period from the experiment design period. Each input profile is shown with a color consistent with Fig. 4. The second
and the third rows show the corresponding simulated vein and brain responses, respectively, with noisy measurements (black dots), and the estimated
system response (red line). Each column of plots corresponds to specific drug administration profile, from left to right: injection of a second bolus injection
at the maximum level allowed, continuous administration of the drug at the maximum constant level allowed by the total dose constraint, administration
of a maximum magnitude with duration limited by the total dose constraint, the A-optimal input, and the D-optimal input.

in Section III, with the understanding that the subscripts
V, B and D stand for the vein, brain and the distribution
compartments. We assume that the additive noise in-vein
and in-brain measurements are not correlated and they have
variances σ2

V and σ2
B ,respectively. We use the values given

in Table I to simulate the system and find an optimal input
profile. The values we use are consistent with what we
observe during pharmacokinetic experiments carried out in
our laboratory [4], [23].

We follow a scenario where we have a design horizon
of 60 minutes, i.e. N “ 241 (including the last sample),
and we are able to sample the system every 15 seconds [3].
We divide this horizon into two stages: a 15 minutes,
i.e. N0 “ 60, long learning stage and 45 minutes long
optimization stage. We assume that we have two allowed
drug administration protocols;

1) Bolus injection at 20µmol{min over a minute and can
be repeated every 30 minutes.

2) Continuous infusion at maximum rate of 20µmol{min
for a total of maximum 300µmol of drug.

We start by applying the bolus injection protocol. We
then collect data during the learning stage, and use this data
to obtain a distribution over parameter values θ, using the
methodology in Section IV-A.

Once we have this distribution, we sample from it to
compute the average matrices appearing in the quadratic
terms of FIM as in (13). We use K “ 1000 samples for
this purpose. Then we design the optimal input profile in
the optimization stage, following the continuous infusion
protocol with umin “ 0. This is done by using the method
in Section IV with N0 “ 60 and N “ 160 corresponding to

a 15 and 45 minutes stages, respectively.
We use the initialization approach described in Section IV-

B with m “ 15, ` “ 10, which corresponds to 3003 possible
combinations. We then use a nonlinear solver to find local
solutions to the optimization problem (20). We particularly
use IPOPT [15] together with linear algebra solver MA57
from HSL [24], and software tool that uses automatic dif-
ferentiation (AD) to compile our problem, CasADI [14]. An
important advantage of using an AD-based solver is that the
solver, once created (ahead of the experiment), does not need
to numerically approximate to a large hessian and gradient
at every iteration. This allows fast enough computation times
for real-time experiments.

We present our findings in Fig. 2, where we compare drug
injection profiles commonly used in pharmacological studies
with the ones that result from the approach proposed here,
based on optimizing the A and D criteria.

All the drug administration profiles considered in Fig. 2
start with the same initial bolus that is used to obtain a coarse

Parameter Value
kU 0.75 min{L
kDV 0.06
kVB 0.08
kVD 0.04
kEV 0.08
kEB 0.02
σ2
V 2.5 µM2

σ2
B 0.25 µM2

TABLE I
NUMERICAL VALUES FOR OUR HYPOTHETICAL EXPERIMENT
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Fig. 3. Additional drug administration profiles, defined by different number of equal length pulses. The plots follow the same formating as Fig. 2.

estimate for the unknown parameters. Two of them (on the
right-hand side of the figure) then proceed to apply optimal
injection profiles, whereas the three other follow injection
profiles commonly used by practitioners: The first of these
corresponds to the injection of a second bolus injection
at the maximum level allowed, the second corresponds to
the continuous administration of the drug at the maximum
constant level allowed by the total dose constraint, and the
third to a pulse with magnitude umax and duration limited
by the total dose constraint. In contrast, both optimal profiles
consist of multiple pulses. This led us to question how some
obvious pre-determined pulsed profiles compare with our
proposed optimal input profiles. We consider 5 more profiles
with two to six pulses as shown in Fig. 3.

We present all our results in Table II. A and D optimal
infusion profiles outperform other candidates in their respec-
tive optimality cost measures, as expected. We see that the
number of pulses in the infusion profile make a difference
as the infusion profiles with 4 and 2 pulses perform very
well in terms of A and D optimality costs after their optimal
counterparts. However, the number of pulses is not the only
factor and the differences in individual pulse lengths also
matter as can be seen in the varying widths of pulses in
optimal profiles.

We also looked at how the performance of an infusion
profile evolves over time. This gives us an idea of how the
pulses and their widths affect the identification performance.
We choose five input profiles to do this analysis: the con-
tinuous infusion, the input profiles with 2 and 4 pulses, and
the optimal input profiles. We chose the inputs with 2 and 4
pulses since these correspond to the number of pulses in the
optimal profiles, and the continuous infusion is for the case
with no pulse.

We estimate the parameters every minute after the initial
learning phase which all input profiles in Fig. 2 and Fig. 3

share. We use (16b) to approximate the posterior covariance
of the parameter estimates. This allows the computation of
95% marginal confidence intervals (CIs) on each estimate.
We finally report the evolution of the sum of all 95% CIs
in Fig. 4, which should parallel the A-optimal costs and more
meaningful for experimenters.

We observe that the continuous infusion steadily decreases
the sum of CIs. The decrease slows down after about
minute 40 which corresponds to the time in-vein and in-brain
measurements starts leveling off.

Input Identification Sampled FIM
A-opt D-opt A-opt D-opt

double bolus 1.52ˆ 10´4 -76.88 1.51ˆ 10´4 -76.69
continuous 1.84ˆ 10´4 -85.82 1.25ˆ 10´4 -86.37

max infusion 9.26ˆ 10´5 -90.87 6.70ˆ 10´5 -91.33
2 Pulses 6.12ˆ 10´5 -91.23 5.29ˆ 10´5 -91.17
3 Pulses 4.77ˆ 10´5 -90.87 4.38ˆ 10´5 -90.74
4 Pulses 4.58ˆ 10´5 -90.20 4.08ˆ 10´5 -90.18
5 Pulses 4.40ˆ 10´5 -89.74 4.13ˆ 10´5 -89.61
6 Pulses 4.95ˆ 10´5 -88.95 4.33ˆ 10´5 -89.10

A-optimal 4.36ˆ 10´5 -90.76 4.00ˆ 10´5˚ -90.47
D-optimal 5.90ˆ 10´5 -92.22 4.79ˆ 10´5 -92.01˚

TABLE II
VALUES FOR THE OPTIMALITY CRITERIA OBTAINED WITH THE FIVE

DIFFERENT INPUT PROFILES SHOWN IN FIG. 2 AND IN FIG. 3. IN THE

COLUMNS LABELED AS “IDENTIFICATION”, WE PROVIDE THE VALUE OF

THE A AND D OPTIMALITY CRITERIA COMPUTED FOR THE ERROR

COVARIANCE MATRICES OBTAINED FROM THE SYSTEM IDENTIFICATION

APPROACH OUTLINED IN SECTION IV-A, WHEREAS IN THE ROWS

LABELS AS “SAMPLED FIM” WE PROVIDE THE CORRESPONDING VALUE

OF THE OPTIMIZATION CRITERIA IN (12) USED FOR EXPERIMENT

DESIGN. THE VALUES HIGHLIGHTED WITH ˚ ARE THUS NECESSARILY

THE SMALLEST WITHIN THEIR COLUMNS.
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Fig. 4. Change in the sum of confidence intervals as more data is given
to the estimator for the continuous (orange), the 2 pulses (dark red), the 4
pulses (turquoise), D-optimal (light green), and A-optimal (puple) infusion
profiles. We also provide the infusion profiles (except the continuous
infusion) with a common x-axis in a small box at the bottom to make
it easier to see how the switching of the input value changes the CIs.

Some more interesting insights can be gained when com-
paring the other input profiles. The inputs with both 4
pulses and 2 pulses enables faster decreases in the beginning,
compared to A and D optimal inputs, respectively. This
can be attributed to the impact of earlier switching off of
the input. However, in the long run the optimal inputs out-
perform their competitors. This is expected as optimal inputs
are optimized for the entire horizon length not for shorter
horizons.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how experiment design can be used to
improve the accuracy of parameter estimation when there is
very little prior information about the parameter values.

In the context of realistic pharmacokinetic parameters
and models, we see that optimal infusion profiles that are
designed based on an initial coarse system identification
procedure can decrease the uncertainty around the identified
parameters significantly, leading to 30-50% reductions in
sum of the confidence intervals. Because the method does
not depend on values obtained from literature or from prior
experiments, this work is especially important for systems
with dynamics that are highly subject-dependent.

In a future work, we will consider additional safety
requirements that are common in animal experiments, such
as a maximum allowed concentration in a body part. We are
also excited about the real world application of this technique
and what it will reveal about the pharmacokinetics of new
and existing drugs.
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