
Commutative monoid formalism for weighted coupled cell networks and invariant
synchrony patterns∗

Pedro Sequeira† , A. Pedro Aguiar† , and João P. Hespanha‡

Abstract. This paper presents a framework based on matrices of monoids for the study of coupled cell networks.
We formally prove within the proposed framework, that the set of results about invariant synchrony
patterns for unweighted networks also holds for the weighted case. Moreover, the approach described
allows us to reason about any multi edge and multi edge-type network as if it was single edge and
single edge-type. Several examples illustrate the concepts described. Additionally, an improvement
of the coarsest invariant refinement (CIR) algorithm to find balanced partitions is presented that
exhibits a worst-case complexity of O(|C|3), where C denotes the set of cells.

Key words. Coupled cell networks, Synchrony, Balanced partitions

AMS subject classifications. 34A34, 34C45

1. Introduction. Networks are used to describe systems with multiple components called
nodes or cells. These cells can be pairwise connected by edges, describing the effect that
one cell has on the other. These edges can be either directed or undirected and can also have
weights in order to parameterize their interaction.
Such networks are ubiquitous, be it in the natural world or in engineering. From an electronic
circuit or the electric grid, to the neural networks in our brain, food webs or the spread of a
virus in a pandemic, this is a fundamental structure to study.
A big step in understanding these structures was the realization that real-world networks
show properties that are pervasive across very different domains of application, such as being
‘small-world’ [16] and having a ‘scale-free’ degree distribution [3], and the existence of ‘mo-
tifs’ [8]. All these properties are related to the structure of the network and would not appear
in a random one. Reviews on these types of statistical properties and their use in real-world
applications are presented in [10], [4].
There are networks in which synchrony between the different cells is of the utmost impor-
tance [15]. Some examples are the cardiac pacemaker cells responsible for our heartbeat, the
flashing of a swarm of fireflies, the consensus problem in control theory and the different gaits
in animal locomotion generated by ‘central pattern generators’ (CPG). There are, however,
situations in which too much synchronism is actually undesirable, such as in epileptic seizures
in the brain.

∗Submitted to the editors at 21 of December of 2020.
Funding: This work was supported in part by the FCT Project IMPROVE (POCI-01-0145-FEDER-031823),

funded by the FEDER Funds through the COMPETE2020 - POCI, in part by the National Funds (PIDDAC) and in
part by the National Science Foundation under Grant No. ECCS-2029985. The work of P. Sequeira was supported by
a Ph.D. Scholarship, grant SFRH/BD/119835/2016 from Fundação para a Ciência e a Tecnologia (FCT), Portugal
(POCH program).
†Faculdade de Engenharia, Universidade do Porto, Portugal (pedro.sequeira@fe.up.pt, pedro.aguiar@fe.up.pt).
‡Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA (hes-

panha@ece.ucsb.edu).

1

mailto:pedro.sequeira@fe.up.pt
mailto:pedro.aguiar@fe.up.pt
mailto:hespanha@ece.ucsb.edu
mailto:hespanha@ece.ucsb.edu

2 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

The model most commonly used to describe synchronism is the Kuramoto model, which con-
sists on a large set (N → ∞) of simple oscillators that are weakly coupled in an all-to-all
fashion. Some reviews on the Kuramoto and its variants can be found in [2], [5], [12]. This
simplistic network structure is, however, in direct opposition to our interest in understanding
how the structure of network constrains the function executed by a networked system. The
approach in this paper allows us to analyze patterns of synchrony that result exclusively from
the topology of the network, regardless of the details of the specific dynamics. We consider
both continuous and discrete-time dynamical systems.
The theory of coupled cell networks (CCN) was first mathematically formalized in [14], [7] and
[6]. In that work, the concept of admissibility was defined by the minimal properties that
a function must obey to model a network. This formalism is based on groupoids of bijections
between in-neighborhoods of cells. This line of work also introduced the notion of quotient
network, which is a smaller network that describes the behavior of the original network when
the state of a system is in an invariant synchrony pattern. This means that some cells are
sharing the same state and will continue doing so. Some issues arose from the fact that this
formalism assumed only single edges between each ordered pair of cells. However, a quotient
network might not satisfy this assumption even if the original network of interest does. This
issue was solved by the ‘multiarrow formalism’ developed in [7], which allows the existence of
multiple edges between the same pair of cells and self-loops. This formalism has been used
with simple integer weights, in which the weight is used to represent a number of identical
‘unitary’ edges in parallel. This particular case is the simplest weighted case scenario and
the previous formalism happens to be able to cover it. In this paper we properly extend the
theory to be able to deal with the general weighted case. This theory is also more general
in the sense that it does not require the so called ‘consistency condition’, which is enforced
by changing the original network into another one that contains the exact same synchrony
patterns. However, this change is not invertible and one loses dynamical information when
doing so. We find that such an artificial condition is not necessary.
In this paper, a formalism based on matrices of commutative monoids is introduced in sec-
tion 2. This formalism allows us to extend the previous known results about CCN’s to networks
with weighted connections, with arbitrary amount of edges and edge types. We develop the
concept of oracle functions, which allows us to evaluate the dynamics of different networks
that are composed of the same cell types in a very systematic and self-consistent manner.
In section 3 we use the new and more general definitions of admissibility to extend the previ-
ous known results about balanced partitions and invariant synchrony spaces.
In section 4 we focus on the particular case where the output set of the admissible functions
is a vector space. Furthermore, we provide results in terms of local robustness that apply for
this type of spaces.
Section 5 verifies that the connection between quotient networks and synchrony spaces given
by balanced partitions work as expected in the general framework.
In section 6 we prove that the lattice structure of balanced partitions is the same as usual.
Here, the join operation (∨) is proved in a novel, algebraic way, instead of the usual duality
argument between balanced partitions and invariant subspaces.
In section 7 we propose a novel CIR algorithm for arbitrary weights which has a worst-case
time complexity of O(|C|3) instead of O((|E|+ |C|)4) as in [1], where C and E denote the sets

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 3

of cells and edges, respectively.

2. Weighted multi-edge CCN’s. In this section we describe a formalism based on a
matrix of monoids to represent networks and show that the previous known results about
CCN’s can be extended to networks with multi edge, multi edge-type, weighted connections.

2.1. CCN formalism. We start by introducing the definition of a cell coupled network
according to the general weight formalism of this paper.

Definition 2.1. A network G consists on a set of cells CG, where each cell has a type, given
by an index set T = {1, . . . , |T |} according to TG : CG → T and has an |CG | × |CG | in-adjacency
matrix MG. The entries of MG are elements of a family of commutative monoids {Mij}i,j∈T
such that [MG]cd = mcd ∈Mij, for any cells c, d ∈ CG with types i = TG(c), j = TG(d). �

We will write the monoid operation and the identity element ofMij as ‖ij and 0ij respectively.
The entries of mcd are able to encode the complete connectivity (multi edge, multi edge-type)
of the directed edges from d to c. This is thanks to the algebraic structure of the commutative
monoid which we illustrate in the following section.

Remark 2.2. The subscripts G are omitted when the network of interest is clear from
context. �

2.2. Commutative monoids. The commutative monoid is the simplest algebraic structure
that can be used to describe arbitrary finite parallels of edges. In this paper, we denote the
monoid ‘sum’ operation by ‖, due to the context in which it is used, with the meaning of
‘adding in parallel’. Nevertheless, it is convenient to think of this as a sum. Likewise, the
notation

∑
is used to describe parallels of multiple edges. In this context, the element

0M ∈M should be interpreted as ‘no edge’.
The commutative monoid is associative and commutative. This reflects the fact that, for any
given set of edges in parallel, it is irrelevant the order in which we enumerate the individual
edges. Those are exactly the properties that provide invariance to this symmetry.
Note that we do not impose the existence of inverse elements since it is not guaranteed that
we can cancel the effect of a set of edges by adding more edges to it in parallel.
We now show how a commutative monoid can be explicitly constructed using what is called
a presentation.
The first step is to create a free commutative monoid. Given a set W, that describes
elemental edges, the free commutative monoid on W is W = (W∗, ‖f), where W∗ is the set of
all finite multisets of the elements of W, which represents all possible finite parallels of edges.
Here, ‖f encodes the multiset sum (free sum) and the element 0W is the empty multiset. Note
that the set W itself does not need to be finite, or even countable.
At this point, the structure is certainly a commutative monoid. However, it is not yet capable
of describing an arbitrary one. In particular, it is blind to the possibility of different sets of
edges in parallel being equivalent (with regard to the application at hand). For instance, if we
are working with the parallel of resistors, we would like to be able to encode into the structure
the fact that 30‖15 = 20‖20, from basic circuit theory.
In order to generalize this, the second step of the procedure is to quotient the free commutative
monoid W over a congruence relation R. A congruence relation on an algebraic structure

4 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

is an equivalence relation that is compatible with that structure. In our case, this means that
we require R to be such, that the quotient M = W/R is a commutative monoid. Here, we
think of the equivalence relation R as a function in W∗ → M such that its level sets are the
corresponding equivalence classes.
In order to satisfy the compatibility condition, we require that if R(a1) = R(a2) = A and
R(b1) = R(b2) = B then R(a1‖fb1) = R(a2‖fb2) = A‖B, for any such a1, a2, b1, b2 ∈ W∗.
That is, for any equivalence classes, we can choose any of its elements as a representative, and
when operating them (‖f) the result should be exactly the same, which defines a consistent
operation ‖ on the equivalence classes.
Note that any commutative monoid has a presentation. Given a commutative monoid M =
(M, ‖), we can create the free monoid W = (M∗, ‖f). To this end, define the congruence
relation R : M∗ →M such that for any element w = w1‖f . . . ‖fwk, with w ∈M∗ and wi ∈M,
i ∈ {1, . . . , k}, we have R(w) = w1‖ . . . ‖wk. Then, we have that M =W/R.
We can also construct our commutative monoid of interestM using the set that describes the
elemental edges W and defining the congruence relation R implicitly using a set of equations
E. This can be written as M = 〈W|E〉. In the particular case of a free monoid, we write
M = 〈W|〉. We illustrate these concepts with the following examples.

Example 2.3. Consider the commutative monoid generated by finite parallels of resistors.
In this case, one has M = 〈W|E〉, with

W = R+
0 ∪ {∞}

and

E =

w1‖w2 = w1w2/(w1 + w2) ∀w1, w2 ∈W : w1 + w2 6= 0

w1‖∞ = w1 ∀w1 ∈W
0‖0 = 0

This allows us to verify that indeed 30‖15 = 20‖20. In particular, those parallels are equivalent
to an elemental edge of value 10. For the case of resistors, any set of parallel edges can be
simplified into a single edge in W. This is not true in general for an arbitrary commutative
monoid.
The identity of this monoid is 0M = ∞. Note that there is no element in M, except for the
identity 0M that has an inverse. That is, if there is a finite resistor w between two nodes, there
is no resistor w−1 that we can add in parallel that will cancel it, that is w‖w−1 = 0M = ∞.
�

Remark 2.4. Note that this formalism is extremely general. It allows us to parameterize
individual edges with anything we might want, such as complex numbers, vectors, matrices,
functions or any data structure as abstract as necessary. �

In Example 2.3 it can be seen that the zero-valued resistor, which is not the ‘zero’ of the
monoid (0M), is an annihilator. That is, an element a ∈ M such that w‖a = a for all
w ∈M. Not every monoid has an annihilator, but if it exists, it is unique.

Example 2.5. Consider the commutative monoid M = (N, ·), that is, the integers under
the usual product, which has 0M = 1. Define now the free monoid N = (({1} ∪ P)∗ , ‖f),

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 5

where P is the set of prime numbers and 0N = 1. Then, the fundamental theorem of arithmetic
says that these monoids are two different ways of describing the exact same object. They are
called isomorphic. This means that there is a bijective mapping f : ({1} ∪ P)∗ → N that
preserves the monoid structure (isomorphism). In particular, f(p1‖fp2) = f(p1) · f(p2) for all

p1, p2 ∈ ({1} ∪ P) and f(0N) = 0M. We can find such an f by defining f
(∑k

i=1 pi

)
=
∏k

i=1 pi,

in which
∑

is with regard to the multiset sum ‖f . This satisfies f(1) = 1 and the bijectivity
comes from the uniqueness of prime factorization. �

Remark 2.6. Note that for the monoid N in Example 2.5, in opposition to the resistor
case (Example 2.3), two elemental edges in parallel are almost never equivalent to another
elemental edge. In fact, the only exception is the parallel with identity elements, for which
this is inevitable. �

Example 2.7. The structure M = (R → R, ∗), that is, the set of (generalized) functions
together with the convolution operation forms a commutative monoid. Its identity is 0M =
δ(·), the dirac delta distribution. �

Example 2.8. Consider a network with two types of elemental edges, each with its own
commutative monoid structure. For instance, M1 = (R,+) and M2 = (R→ [−1, 1] , ·).
We can merge them into a single commutative monoid by doing a direct product M =
M1 ×M2.
An element m ∈M is an ordered pair [m1,m2] such that m1 ∈ R and m2 ∈ R→ [−1, 1].
The operation ‖ of the new monoid is then given by

w‖v = [w1, w2] ‖ [v1, v2] = [w1 + v1, w2 · v2]

That is, the concatenation of applying the respective monoid operations to each component.
The identity element of the new monoid is 0M = [0M1 , 0M2] = [0, 1]. �

This approach of constructing a commutative monoid M by merging smaller monoids that
represent different edge-types, allows us to use a single monoid structure to fully describe the
possible multi edge, multi edge-type connectivity between two cells.
Note that for each particular pair of cell types i, j ∈ T , we could have different monoid
structures, which we denote as Mij , with respect to directed edges from cells of type j into
cells of type i.
The network connectivity of the network can then be described by a single matrix whose
entries are elements of the appropriate monoid.

2.3. Partition representations. In this paper we often refer to each class of a given par-
tition on the set of cells C by the term color.
Consider a given partition A that divides a set of cells C into r colors. We can associate
with each color an index from {1, . . . , r}. Then, if a cell c ∈ C has the color associated with
index k we say that A(c) = k. This association allows us to represent the partition by saying
that two cells c, d ∈ C have the same color if and only if A(c) = A(d). We can think of this
representation as a column vector or a function.
Another very useful representation is to define a partition matrix P of size |C| × r such that
[P]ck = 1 if A(c) = k and [P]ck = 0 otherwise.

6 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

Note that the same partition can be indexed by {1, . . . , r} in different ways which will cor-
respond to multiple partition matrices that are related to each other by a reordering of their
columns.
The number of colors in a partition is called its rank, which in fact, corresponds to the rank
of any of its matrix representations. That is, r = rank(A) = rank(P).
Given two partitions A, B on a set of cells C, we say that A is finer than B if for all c, d ∈ C

(2.1) A(c) = A(d) =⇒ B(c) = B(d)

which is denoted as A ≤ B. Conversely, B is said to be coarser than A. Roughly speaking,
(2.1) means that if any pair of cells in partition A have the same color, then these two cells
also have the same color in B. In other words, if we merge some of the colors of A together,
we can obtain B. Conversely, we can obtain A by starting with B and splitting some of its
colors into smaller ones.
The trivial partition, in which each individual cell has its own color is the finest, its rank is
|C| and can be represented by any |C| × |C| permutation matrix, one of which is the identity.
We will often use the partition and its matrix interchangeably, that is, PA ≤ B or PA ≤ PB
to mean A ≤ B.
If A ≤ B, then there is a partition B/A on the set of colors of A that describes how to merge
them in order to achieve partition B. That is, (B/A◦A)(c) = B(c). Equivalently, for partition
matrices such that PA ≤ PB, there exists a partition matrix PAB, representing B/A such that
PB = PAPAB. The next example illustrates these concepts.

Example 2.9. Consider a set of cells C = {a, b, c, d} and partitions A = {{a, b}, {c}, {d}},
B = {{a, b, c}, {d}}. We have that A ≤ B. Moreover, if one defines the characteristic matrices
PA, PB as

PA =

1 0 0
1 0 0
0 1 0
0 0 1

 PB =

0 1
0 1
0 1
1 0

where the column number of each matrix corresponds to the index of the color that are
arbitrarily assigned, then, there is a matrix PAB

PAB =

0 1
0 1
1 0

such that PB = PAPAB. Note that in PAB, the rows corresponds to the colors in A, and
the columns to the colors in B, with the 1’s describing the inclusion relationship between the
different colorings.
These matrices correspond to a particular indexing such that the partitions can also be rep-

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 7

resented as the column vectors/functions

A =

1
1
2
3

 B/A =

2
2
1

 B =

2
2
2
1

Note for example that A(4) = 3 and B/A(3) = 1, that is, (B/A ◦ A)(4) = 1 which is equal to
B(4). �

Note that due to the particular structure of the characteristic matrices it is possible to multiply
them together with matrices whose elements are not necessarily in the usual real/complex
fields. For a characteristic matrix P and a given matrix M of appropriate dimensions, the
product PM is always well-defined as an ‘expansion’ of M where its rows get replicated. If
the product is MP , then it consists of sums of columns of M which requires a ‘sum’ operation
to be defined on its elements (e.g., operations ‖ij if M represents a network).

2.4. Admissibility. In this section, we describe the properties that a function f : X → Y
has to respect in order to describe some first-order property of a network. Such a prop-
erty, when evaluated at a particular cell c ∈ C, is given by some fc : X → Yi, with i = T(c)
that is dependent only on the states of cells in the set {c ∪ N−(c)}, where N−(c) is the in-
neighborhood of c, that is, N−(c) = {d ∈ C : mcd 6= 0ij , i = T(c), j = T(d)}.
For this purpose, we impose on such functions two minimal assumptions (see Definition 2.10)
that makes them behave as would be expected.
Note that these functions can be used to define measurements on a network, e.g., y = f(x),
as well as to describe the evolution of dynamical systems, e.g., ẋ = f(x) or x+ = f(x).
This does not mean that everything on a network has to (or can) be defined by such a func-
tion. For instance, the second derivative or the two-step evolution of the mentioned dynamical
systems will not be of this form. Those functions will be ‘second-order’ in the sense that they
are dependent on they first and second in-neighborhoods (neighbor of neighbor). They are,
however, fully defined from the original first-order functions.
Consider the simple network of Figure 2.1a, (which could be part of a larger network) consist-
ing on cell 3 and its in-neighborhood. We have cell types T = {1, 2} which represent ‘circle’
and ‘square’ cells, respectively. We use ‖ to mean ‖12 since it is the only monoid operation
in this example. Since cells 1 and 2 are of the same cell type (square) (T(1) = T(2) = 2)
and also, are currently in the same state (x1 = x2), the total input received by cell 3 at that
instant, is the same as if both edges originated from a single ‘square’ cell with that state.
Furthermore, if the weights cancel (w1‖w2 = 012), then cell 3 should act as if cells 1, 2 are
not there whenever x1 = x2. Moreover, the input received by a cell is independent of how we
draw the network, that is, we do not expect f3 to be different if cell 2 was at the left of cell
1. That is, f3 should obey

f3

(
x3;
[
w1 w2

]
,

[
x1
x2

])
= f3

(
x3;
[
w2 w1

]
,

[
x2
x1

])
Extending these principles, if two cells c, d are in the same internal state xc = xd = x and if
the edge-compression argument can transform their in-neighborhoods into the same network,

8 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

x1 x2

x3

w1 w2

(a) Original

x1 = x2

x3

w1‖w2

(b) Merged

Figure 2.1: Edge merging

then fc = fd. This is illustrated in Figure 2.2, with the monoid operation ‖ being the usual
addition. If we write the state and weight vectors from left to right, we get

x1 x1 x2

x

1 1 3

(a) First input set

x2 x1 x2

x

1 2 2

(b) Second input set

x2 x1

x

3 2

(c) Common edge compression
to both input sets

Figure 2.2: Input equivalent networks

xA =
[
x1 x1 x2

]>
xB =

[
x2 x1 x2

]>
x =

[
x2 x1

]>
wA =

[
1 1 3

]
wB =

[
1 2 2

]
w =

[
3 2

]
for each of the Figures 2.2a to 2.2c, respectively. The process of edge-merging the in-
neighborhoods from Figures 2.2a and 2.2b into Figure 2.2c can be described through the
partition matrices PA, PB

PA =

0 1
0 1
1 0

 PB =

1 0
0 1
1 0

such that

xA = PAx, xB = PBx

wAPA = w = wBPB

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 9

where we considered that the edge merging can only be done with edges that come from cells
of the same type in the same state. That is, we have also assumed implicitly that

TA = PAT, TB = PBT

where TA, TB and T describe the typings of the corresponding cells, that is,

TA =
[
2 2 1

]> TB =
[
1 2 1

]> T =
[
1 2

]>
This type checking can be omitted if declare that, by definition, the states of two cells can
only be compared in the first place if they are of the same type. That is, if P satisfies this
assumption in x = Px, there will be no danger of trying to ‘sum’ elements of different monoids
in wP = w.
This edge-merging example motivates the following definitions.

Definition 2.10. Consider the set of cell types T , and the related sets {Xj ,Yj}j∈T together

with a family of commutative monoids {Mij}j∈T , for a given fixed i ∈ T . Take a function f̂i
defined on

f̂i : Xi ×
◦⋃

k∈N|T |0

(
Mk

i × Xk
)
→ Yi(2.2)

where
◦⋃

denotes the disjoint union and k =
[
k1, . . . , k|T |

]
is a multi-index with ki ∈ N0 for

all i ∈ T such that Xk := Xk1
1 × . . .× Xk|T |

|T | and Mk
i :=Mk1

i1 × . . .×M
k|T |
i|T | .

The function f̂i is called an oracle component of type i, if it has the property that for every
x ∈ Xi, x ∈ Xk, w ∈Mk

i , x ∈ Xk, w ∈Mk
i and partition matrix P , that satisfy

(2.3)

{
x = Px

wP = w

then

(2.4) f̂i(x; w,x) = f̂i(x; w,x)

Furthermore, if w has its kth element (corresponding to cell ck) equal to 0ij, with j = T(ck),
then

(2.5) f̂i(x; w,x) = f̂i(x; w−k,x−k)

where w−k, x−k denotes the result of removing the kth element of the original vectors w, x.
In (2.3), equality between states assumes compatible cell types. �

The disjoint union allows us to distinguish neighborhoods of different types, that is, the set
X1×X1 is always taken as a different set from X1×X2 even in the particular case of X1 = X2.

10 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

Remark 2.11. Note that the way the domain of f̂i was defined allows us to deal with
variable input set configurations. This is an equivalent, but cleaner way of defining a family
of functions, each on a different domain based on its specific input set, such that they are all
connected by the self-consistency rules that we expect from them. This way, we can use a
single function to describe what really matters to us, that is, describing how a cell is affected
by its in-neighbors. �

Remark 2.12. It is easy to verify that for a permutation matrix P that preserves cell
typing (Xk = PXk) we have

f̂i(x; w,x) = f̂i(x; wP>, Px)

which is in accordance to the idea that a cell does not care about the order in which its input
set is drawn. �

The oracle set is the set of all |T |-tuples of oracle components, such that each element of the
tuple represents one of the types in T . It is denoted as

F̂T =

|T |∏
i=1

F̂i

where F̂i is the set of all oracle components of type i . We are always implicitly assuming
sets {Xi,Yi}i∈T and commutative monoids {Mij}i,j∈T . Note that modeling some aspect of a

network that follows our assumptions is effectively choosing one of the elements of F̂T , which
we call oracle functions.

Definition 2.13. Consider a network G defined on a cell set C with cell types in T according
to the cell type partition T, and an in-adjacency matrix M . Assume without loss of generality
that the cells are ordered according to the cell types such that we can associate with the network
a state X := Xk and output Y := Yk sets, with |C| = |k|

|k| =
|T |∑
i=1

ki

and ki is the number of cells in C of type i ∈ T .
A function f : X→ Y, given as

f = (fc)c∈C , with fc : X→ Yi, i = T(c)

is said to be G-admissible if there is some oracle function f̂ ∈ F̂T , f̂ = (f̂i)i∈T such that

(2.6) fc(x) = f̂i (xc; mc,x)

for x ∈ X, where xc is the cth coordinate of x and mc is the cth row of matrix M . In this case
we write f = f̂ |G. �

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 11

The set of all G-admissible functions is denoted as FG . It can be thought of as the result of
evaluating F̂T at G, which can be written as F̂T |G . Note that process of evaluating oracle
functions at a network is not necessarily injective. There might be oracle functions f̂ , ĝ ∈ F̂T

with f̂ 6= ĝ such that f̂ |G = ĝ|G .
The next example makes explicit the relation between the connectivity graph of a network
and how that constraints any possible admissible function that acts on it.

Example 2.14. Figure 2.3 shows an example of a CCN of three cells of the same type.
This CCN can be described by the in-adjacency matrix M

1 2

3

Figure 2.3: Simple network with admissible functions that have the structure given by (2.8)–
(2.10)

(2.7) M =

1 0 1
1 0 1
1 1 1

together with the cell type partition T = {{1, 2, 3}}. This means that a suitable f ∈ FG should
have the following structure

f1(x) = f̂(x1;
[
1 0 1

]
,x)(2.8)

f2(x) = f̂(x2;
[
1 0 1

]
,x)(2.9)

f3(x) = f̂(x3;
[
1 1 1

]
,x)(2.10)

for some f̂ ∈ F̂T . Note that here T only has one type, that is F̂◦ = F̂T . Therefore, we
use f̂ interchangeably as both oracle function and oracle component. It is exactly the same
treatment as not differentiating between an one-dimensional vector and the element it contains.
�

To make more explicit the importance of a rigorous definition for admissibility, the following
example presents a case that might look reasonable at a first glance but ends up not being
admissible.

Example 2.15. Consider the simple network in Figure 2.1 that was used to illustrate the
edge merging concept. We will propose a function on the original network Figure 2.1a and
verify if it satisfies our assumptions.
We consider that the cells have associated state and output sets given by X1 = X2 = Y1 = R,
such that T = {1, 2} identify the cell types ‘circle’ and ‘square’ respectively.

12 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

The directed edges from ‘square’ into ‘circle’ are inM12 and we denote ‖12 by ‖ for simplicity.
Given functions g : R→ R and p : M12 → R, with p(012) = 0, it is tempting to think that the
function f3, could be modeled by

f3(x) = g(x3) + p(w1)x1 + p(w2)x2 + p(w1)p(w2)x1x2(2.11)

After all, if we simultaneously switch w1 ↔ w2 and x1 ↔ x2, f3 would still look the same.
Consider, w1 = w, x1 = x and w2 = 012. Then, if cell 3 only had one neighbor (of type
square), f3 would be given by

f3(x) = g(x3) + p(w)x

If we have x1 = x2 = x12, from the edge-merging principle, we should be in the situation of
Figure 2.1b. We would have

f3(x) = g(x3) + p(w1‖w2)x12

However, from direct substitution on (2.11) we obtain

f3(x) = g(x3) + (p(w1) + p(w2) + p(w1)p(w2)x12)x12

which means that this is not admissible since

p(w1‖w2) = p(w1) + p(w2) + p(w1)p(w2)x12

goes against the assumption that p depends only on the edge weights.
Consider that instead f3 was modeled as

f3(x) = g(x3) + p(w1)x1 + p(w2)x2 + p(w1)p(w2)
x1 + x2

2

Following the exact same approach this requires

p(w1‖w2) = p(w1) + p(w2) + p(w1)p(w2)

which is a valid constraint. It only depends on its inputs and is compatible with a commutative
monoid structure, that is,

p(w‖012) = p(w)

p(w1‖w2) = p(w2‖w1)

p((w1‖w2)‖w3) = p(w1‖(w2‖w3))

Note that for each of the three equalities, the inputs for both members are the same element
of M12. The same input of a function has to output the same value. �

Remark 2.16. Assume that in the previous example there was an annihilator element in
M12, that is, an element a12 ∈ M12 such that w‖a12 = a12 for all w ∈ M12. Then, either
p(a12) = −1 or we are in the non interesting case where p(w) = 0 for all w ∈M12.
An example of an annihilator is the short-circuit (R = 0) with regard to the parallel of
resistors, as in Example 2.3. �

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 13

Remark 2.17. Note that we solved the problem of the 2-coupling component being qua-
dratic on x12 when x1 = x2 = x12 by modeling that component additively with (x1 + x2)/2.
This is not the only approach. Consider now that we have some function q : M12 × R → R
with q(012, x) = 0 such that we model f3 by

f3(x) = g(x3) + q(w1, x1) + q(w2, x2) + q(w1, x1)q(w2, x2)

This is also valid when

q(w1‖w2, x) = q(w1, x) + q(w2, x) + q(w1, x)q(w2, x)

Similarly, this also compatible with a commutative monoid structure. �

3. Invariant synchrony. In subsection 2.4 we introduced the concept of oracle components
f̂i ∈ F̂i which describe the way a cell of type i ∈ T reacts to its input set in a way that is self-
consistent. That is, having the same state and equivalent inputs generates the same output
and the output is only functionally dependent on the in-neighbors.
The functional modeling of a network G should then be though of as choosing an oracle
function f̂ ∈ F̂T and constraining it to G as in Definition 2.13. This gives us an G-admissible
function f ∈ FG such that f = f̂ |G .
The oracle components, which are the core concept of the modeling of a network were defined
in terms of equality relationships. This motivates the study of whether a set of equality
relations in the state set X are preserved by f regardless of the specific admissible f that acts
on the network.

Definition 3.1. Given a partition A ≤ T we call the subset of X

(3.1) ∆X
A = {x ∈ X : A(c) = A(d) =⇒ xc = xd}

the polydiagonal of A in X. �

This means that any x ∈ ∆X
A can be given by x = Px for some x, where P is a characteristic

matrix of A. Note that

(3.2) A ≤ B ⇐⇒ ∆X
A ⊇ ∆X

B

Definition 3.2. If for a function f : X→ Y and a partition A ≤ T we have

(3.3) f
(

∆X
A

)
⊆ ∆Y

A

then f is A-invariant. �

Note that if f is A-invariant, then for every x ∈ X such that x = Px, with P representing
A, there is y such that f(Px) = Py. This means that there is a function f : X → Y with
X = PX, Y = PY such that

(3.4) f(Px) = Pf(x)

14 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

Consider a discrete-time system x+ = f(x) that evolves according to an G-admissible map
f : X→ X. If f is A-invariant, then

(3.5) xn0 ∈ ∆X
A =⇒ xn ∈ ∆X

A ∀n ∈ N : n ≥ n0

Similarly, for a continuous-time system ẋ = f(x) that evolves according to an G-admissible
vector field f(x) : X→ TxX where f is Lipschitz, X is a smooth manifold and TxX its tangent
space at x. If f is A-invariant, then

(3.6) x(t0) ∈ ∆X
A =⇒ x(t) ∈ ∆X

A ∀t ∈ R

Note that in both cases the polydiagonals ∆X
A are invariant with respect to the dynamics.

Moreover, the evolution of x is fully determined by x, which in turn evolves according to

(3.7) x+\ẋ = f(x)

The following concept relates the structure of a network with its capability to preserve a given
synchrony pattern. This works by verifying whether, for a given coloring of the network, if
cells that have the same color also have colored input sets that are equivalent.

Definition 3.3. Consider a network G defined on a cell set C with a cell type partition T
and an in-adjacency matrix M . A partition A ≤ T with characteristic matrix P is said to be
balanced on G if for all c, d ∈ C

A(c) = A(d) =⇒ mcP = mdP(3.8)

where mc,md are the cth and dth rows of matrix M . �

A balanced partition is usually indicated with the symbol ./. Note that a partition is balanced
if and only if there is a matrix Q of elements in the appropriate monoids {Mij}i,j∈T such that

(3.9) MP = PQ

Clearly, the trivial partition is always balanced. That is, for any M , the condition (3.9) is
satisfied with P = I and Q = M . We now show the following result.

Theorem 3.4. Consider FG, defined on a network G with sets {Xi,Yi}i∈T and commutative
monoids {Mij}i,j∈T .
If a partition ./ on G is balanced, then every f ∈ FG is ./-invariant. �

Proof. Consider x ∈ ∆X
./, that is, x = Px for some x. From the balanced definition

(3.8) we have ./(c) = ./(d) =⇒ mcP = mdP , which satisfies conditions (2.3) and therefore
from the definition of admissibility fc(Px) = fd(Px). This means that there is a f such that
f(Px) = Pf(x) and every G-admissible function f ∈ FG is ./-invariant.

The unweighted version of this theorem is presented in [14], [7] and [6] as an equivalence.
Note however, that although the forward direction is a strong result (./ balanced =⇒ f
is ./-invariant ∀f ∈ FG , for any FG), the backwards one is extremely weak by comparison,
requiring every single G-admissible function to be ./-invariant. For this reason, we present
the backwards direction separately.

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 15

Theorem 3.5. Consider FG, defined on a network G with sets {Xi,Yi}i∈T and commutative
monoids {Mij}i,j∈T .
For a partition ./ on G, if every f ∈ FG is ./-invariant, then ./ is balanced. �

Proof. Assume ./ is not balanced. Then, there are ./(c) = ./(d) such that mcP 6= mdP .
Consider k one of the colors in which they differ. That is, [mcP]k 6= [mdP]k.
Moreover, choose some state x ∈ ∆X

./, that is, x = Px, such that xk is different from all other
entries of x.
Then, there is an f ∈ FG , that is, f = f̂ |G such that f̂i (x; w,x) = y1 if w, summed over the
entries such that x is xk, results into [mcP]k, and f̂i (x; w,x) = y2 otherwise, with y1 6= y2,
y1, y2 ∈ Yi and i = T(c).
Then, we have an f ∈ FG and x such that f (Px) 6∈ ∆Y

./. Therefore, the only way to not be
able to find such an f , is for ./ to be balanced.

For the unweighted case, the authors of [14], [7] and [6] proved the backwards direction by
actually proving a stronger result that they hid away in the proof.
Their result is stronger in the sense that they show that only a particular subset of FG is
necessary to be ./-invariant to enforce ./ to be balanced. This works in the weaker framework
of the unweighted case, which corresponds to the simple monoid structure M = (N0,+).
Nevertheless, a stronger result deserves to be shown in its own right. Therefore, in the next
section, we present similar results for special cases of monoids that extends their previous
result.

4. Output vector spaces. The following results apply when the output sets are vector
spaces.

Lemma 4.1. Consider F̂i, defined on an output set Yi that is a vector space. Then, F̂i is
itself a vector space. �

Proof. Consider components f̂i, ĝi ∈ F̂i. Defining, ĥi = f̂i + ĝi, means that if conditions
(2.3) are satisfied for f̂i and ĝi, then

ĥi(x; w,x) = f̂i(x; w,x) + ĝi(x; w,x)

= f̂i(x; w,x) + ĝi(x; w,x)

= ĥi(x; w,x)

which means that ĥi satisfies condition (2.4). Condition (2.5) is verified in exactly the same
way. Therefore, ĥi ∈ F̂i.
If f̂i satisfies (2.4) and (2.5) then αf̂i also satisfies it for any scalar α. Therefore αf̂i ∈ F̂i and
F̂i is a vector space.

Corollary 4.2. Consider F̂T , defined on the output sets {Yi}i∈T that are vector spaces.
Then, F̂T is itself a vector space. �

Lemma 4.3. Assume F̂T is a vector space. Evaluation on a network (|G) is a linear oper-
ator. �

Proof. Consider oracle functions f̂ , ĝ ∈ F̂T . Since F̂T is a vector space, there is a ĥ ∈ F̂T

16 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

such that ĥ = f̂ + ĝ. Define f = f̂ |G and g = ĝ|G . Then h = ĥ|G is such that

hc(x) = ĥi (xc; mc,x)

= f̂i (xc; mc,x) + ĝi (xc; mc,x)

= fc(x) + gc(x)

for all c ∈ C with i = T(c). That is, (f̂ + ĝ)|G = f̂ |G + ĝ|G .
Similarly, for any f̂ ∈ F̂T and any scalar α, there is a ĥ ∈ F̂T such that ĥ = αf̂ . Define
f = f̂ |G . Then h = ĥ|G is such that

hc(x) = ĥi (xc; mc,x)

= αf̂i (xc; mc,x)

= αfc(x)

for all c ∈ C with i = T(c). That is, (αf̂)|G = α · f̂ |G .
Therefore, evaluation on a network (|G) is a linear operator on F̂T .

Corollary 4.4. Assume F̂T is a vector space. Then, FG = F̂T |G is also a vector space. �

Corollary 4.5. Assume F̂T is a vector space. Then, evaluating at a network G (operator
|G) partitions the space of functions F̂T into affine planes parallel to the kernel (or nullspace)
ker(|G) such that each plane represents the set of oracle functions that behave the same in that
network, that is,

f̂ |G = ĝ|G ⇐⇒ f̂ − ĝ ∈ ker(|G)

for every f̂ , ĝ ∈ F̂T . �

We now present synchrony properties for output vector spaces.

Lemma 4.6. Assume FG is a vector space. Then, for any partition A ≤ TG, the subset of
FG that is A-invariant is also a vector space. �

Proof. Consider functions f, g ∈ FG that are A-invariant. Defining, h = f + g, if x = Px,
where P is a partition matrix that represents A, we have

h(Px) = f(Px) + g(Px)

= Pf(x) + Pg(x)

= P
(
f(x) + g(x)

)
= P

(
h(x)

)
so h is also A-invariant. Moreover,

αf(Px) = P
(
αf(x)

)
for any scalar α.

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 17

Corollary 4.7. Assume FG = F̂T |G is a vector space. Then, for any partition A ≤ TG, the
subset of F̂T that is A-invariant is also a vector space. �

In a practical application, the nominal admissible function f∗ that we desire in theory might
not be the one that is actually realized. This motivates the interest in having some sort of
local robustness so functions f that are sufficiently close to f̂ show similar properties.

Corollary 4.8. Assume FG is a normed vector space. Given a f∗ ∈ FG, if we require that
for some ε > 0, all the functions f ∈ FG in the ball ‖f − f∗‖ < ε are A-invariant, then the
whole FG has to be A-invariant. �

This means that asking for local robustness in terms of A-invariance is the same as requiring
the whole FG to be A-invariant, that is, global A-invariance.
From Theorem 3.5, we know this can only be achieved when A is a balanced partition in G.
We now present special cases for particular monoids in which we only require certain subsets
of FG to be A-invariant in order to enforce A to be balanced.
The usual proof for Theorem 3.5 in the unweighted and scalar-weighted cases, uses functions
that are linear in the weights. This approach, however, does not scale well to general weight
sets. Note that the analogous in this framework is to consider functions that are additive in
the weights, that is,

p(w1‖w2) = p(w1) + p(w2)

If there is an annihilator in M, then p(w) = 0M for all w ∈M. That is, only the trivial case
for such functions exists. We now present an extension of the linear in the weights argument
to a particular type of weight monoids for which it works.

Remark 4.9. We always assume non-trivial output vector spaces. That is, Yi 6= {0}.
Otherwise, synchrony would always be trivially guaranteed but it would be a non-interesting
particular case. �

Remark 4.10. If the state sets Xi only have one element, then it is irrelevant to talk about
synchronicity in the first place. For this reason, we are assuming that the state sets are
non-singleton and we can choose xa 6= xb with xa, xb ∈ Xi. �

Theorem 4.11. Consider non-trivial output vector spaces {Yi}i∈T and assume that the
edges are in the monoid M = 〈M|E〉, with M = R×W and

E = {λ1w‖λ2w = (λ1 + λ2)w, ∀λ1, λ2 ∈ R, w ∈W}

where W is not necessarily countable.
Consider the set of oracle components f̂i , i ∈ T , that are only dependent on neighbors that
are in a specific state xk, of the form

f̂i

(
x;
∑

λww, xk

)
= λev, v ∈ Yi,v 6= 0Yi

for some e ∈W.
If the subset of oracle functions in FG that are built with f̂i’s of the type above is ./-invariant,
then ./ is balanced in G. �

18 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

Proof. Assume ./ is not balanced. Then, there are ./(c) = ./(d) such that mcP 6= mdP .
Consider k one of the colors in which they differ. That is, [mcP]k 6= [mdP]k.
Moreover, choose some state x ∈ ∆X

./, that is, x = Px, such that xk is different from all other
entries of x.
An element of the monoid M can be written as linear combination over a finite subset of
elements in W, that is,

∑
λww. If [mcP]k 6= [mdP]k, then they differ on the associated

coefficient of at least one element e ∈ W. Then, there is an f̂i as defined above, sensitive to
that element e, so that f̂i (x; [mcP]k , xk) = λcev 6= λdev = f̂i (x; [mdP]k , xk).
Then, we have an f ∈ FG and x such that f (Px) 6∈ ∆Y

./. Therefore, the only way to not be
able to find such an f , is for ./ to be balanced.

The next result is valid for systems in which the weight set allows for the existence of an
annihilator. However, the monoid is almost free, in the sense that its congruence relation does
not define further equivalence classes.

Theorem 4.12. Consider non-trivial output vector spaces {Yi}i∈T and assume that the
edges are either on a free monoid M = 〈W|〉 or the result of adding an annihilator to a
free monoid. That is, M = 〈{a} ∪W|E〉, with

E = {w‖a = a, ∀w ∈M}

where W is not necessarily countable.
Consider the set of oracle components f̂i , i ∈ T , that are only dependent on neighbors that
are in a specific state xk, of the form

f̂i

(
x;
∑

w, xk

)
= v

∏
p(w), v ∈ Yi,v 6= 0Yi

If the subset of oracle functions in FG that are built with f̂i’s of the type above is ./-invariant,
then ./ is balanced in G. �

Proof. Assume ./ is not balanced. Then, there are ./(c) = ./(d) such that mcP 6= mdP .
Consider k one of the colors in which they differ. That is, [mcP]k 6= [mdP]k.
Moreover, choose some state x ∈ ∆X

./, that is, x = Px, such that xk is different from all other
entries of x.
An element of the monoid M can be written as a finite sum over elements in W. Call
the support, that is, the elements that appear at least once in [mcP]k as w1, . . . , wn and the
support of [mdP]k as v1, . . . , vm. We can, with some function p, assign to each distinct element
of the union of both sets, a distinct prime number, with the exception of the zero element
0M and a possible annihilator a, in which we have instead that p(0M) = 1 and p(a) = 0.
If [mcP]k 6= [mdP]k, then, there is an f̂i as defined above, so that f̂i (x; [mcP]k , xk) 6=
f̂i (x; [mdP]k , xk).
Then, we have an f ∈ FG and x such that f (Px) 6∈ ∆Y

./. Therefore, the only way to not be
able to find such an f , is for ./ to be balanced.

Remark 4.13. Note that additional conditions on E, that defines congruence relation of
the monoid, might invalidate this approach, e.g., w1‖w2 = w3‖w4, where all weights are
different. �

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 19

5. Quotients. In this section we describe how the behavior of a network G when evaluated
at some polydiagonal ∆./ for some balanced partition ./ can be described by a smaller network
Q.

Definition 5.1. Consider a network G defined on a cell set CG with a cell type partition TG
and an in-adjacency matrix M . Take a partition ./ balanced on G.
The quotient network Q of G over ./, denoted Q = G/./ is defined on a cell set CQ = CG/./
with a cell type partition TQ = TG/./ and an in-adjacency matrix Q given by MP = PQ, where
P represents ./. �

Definition 5.2. Consider networks G and Q such that Q = G/./ and some G-admissible
function f = f̂ |G, with f̂ ∈ F̂T .
The quotient function g of f over the balanced partition ./, denoted g = f/./ is given by
g = f̂ |Q. �

Lemma 5.3. The quotient function g = f/./ is well-defined since is does not depend on the
particular choice of oracle function. That is, for any f̂1, f̂2 ∈ F̂T

f̂1|G = f̂2|G =⇒ f̂1|Q = f̂2|Q

that is, a particular f ∈ FG implies a unique g ∈ FQ. �

Proof. By assumption of f̂1|G = f̂2|G we have,

f̂1i (xk; mc, Px) = f̂2i (xk; mc, Px)

for all c ∈ CG with k = ./(c).
Since qk = mcP , where the weight vector qk is the kth row of Q, an in-adjacency matrix of
Q. This implies

f̂1i (xk; qk,x) = f̂2i (xk; qk,x)

for any k ∈ CQ, with i = TQ(k). That is f̂1|Q = f̂2|Q.

In section 3 it was shown that any admissible f ∈ FG when evaluated on ∆./ can be determined
by a simpler function, related to it by (3.4). The following results show that this is what
connects the quotient network and quotient function.

Theorem 5.4. Consider a network G and a partition ./ balanced on it. Let f ∈ FG. The
function obtained by constraining f to the polydiagonal ∆./, is the quotient function g = f/./,
that is,

f(Px) = Pg(x)

�

Proof. Consider some oracle function f̂ ∈ F̂T such that f = f̂ |G and g = f̂ |Q. Then, when
x ∈ ∆./, that is x = Px, we have that

fc(Px) = f̂i (xk; mc, Px)

= f̂i(xk; qk,x)

= gk(x)

20 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

since qk = mcP , for all c ∈ CG with i = TG(c) and k = ./(c). Therefore, the function
g = (gk)k∈CQ is related to f by equation (3.4).

Example 5.5. Consider the given partition A = {{1, 2}, {3}} on the CCN of Example 2.14
(Figure 2.3). One partition matrix of A is

(5.1) P =

1 0
1 0
0 1

in which each column identifies one of the colors of the partition. From this we obtain the
product

(5.2) MP =

1 1
1 1
2 1

Note that rows 1 and 2 are the same. That means that for any admissible f we have f1(x) =
f2(x) when x1 = x2.
Observe that this is in agreement with the functional form we wrote in (2.8) and (2.9).
Since the rows of MP respect an equality relationship according to A, then A is balanced and
there is a quotient matrix Q that obeys the balanced condition (3.9). In fact, the quotient
matrix Q is

(5.3) Q =

[
1 1
2 1

]
which is directly obtained from MP by compressing its rows according to A.
The behavior of this CCN when x1 = x2 is then described by the smaller CCN given by the
quotient matrix Q which is represented in Figure 5.1b. The coloring is a way of representing

1 2

3

(a) Original

1,2

3

2

(b) Quotient

Figure 5.1: Color-coded network of Figure 2.3 and its quotient over the balanced partition
{{1, 2}, {3}}

the partition A = {{1, 2}, {3}} over which the quotient is done. Note that in both Figures 5.1a
and 5.1b each gray cell receives one connection from a gray cell and one connection from a
white cell. On the other hand, each white cell receives a connection from a white cell and two

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 21

connections from a gray cell. The function g = f/./ has the following structure

g12(x) = f̂(x12;
[
1 1

]
,x)(5.4)

g3(x) = f̂(x3;
[
2 1

]
,x)(5.5)

where f̂ ∈ F̂T is any oracle function such that f = f̂ |G . �

Remark 5.6. Note that finding a balanced partition from its graph representation or its
matrix M is not obvious. See Example 5.7. �

Example 5.7. Consider the following network illustrated in Figure 5.2. Since cells 2 and

1 2 3

Figure 5.2: Chain CCN

3 have the same type of input it might be tempting to think that A = {{1}, {2, 3}} should be
balanced. Note, however, that the rows of the corresponding matrix MP (5.6) do not respect
the row equalities according to A, which means that it is not balanced.

(5.6) MP =

0 0
1 0
0 1

Another way to see this is to color the cells according to the partition (Figure 5.3) and see
that cells with the same color do not have equivalent colored input sets. Note that cells 2 and

1 2 3

Figure 5.3: Unbalanced coloring

3 are both gray but one of them receives one edge from a white cell and the other receives
one edge from a gray cell. Therefore, this coloring (partition) is not balanced. In fact, it can
be easily seen that the only balanced partition of this network is the trivial one. �

The following result shows that the quotient operation is transitive.

Lemma 5.8. Consider networks G0, G1, G2 such that there are balanced partitions ./01, ./12
such that G1 = G0/./01 and G2 = G1/./12. Then, there is a partition ./02 with ./01 ≤ ./02 such
that G2 = G0/./02. Furthermore, P02 = P01P12 where the matrices represent the corresponding
indexed partitions. �

Proof. Name the cell type partitions of the networks T0, T1, T2 accordingly. Then,

T0 = P01T1, T1 = P12T2

22 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

implies

T0 = (P01P12)T2

Let M0, M1, M2 represent the in-adjacency matrices of the networks. From being balanced
we know that

M0P01 = P01M1, M1P12 = P12M2

by multiplying the first equality by P12 on the right

M0(P01P12) = P01(M1P12)

= (P01P12)M2

which means that

G2 = (G0/./01) /./12 = G0/./02

and that P02 = P01P12.

The next results shows how two different quotients of the same network can be related by one
of them being a quotient of the other

Lemma 5.9. Consider networks G0, G1, G2 such that there are balanced partitions ./01,
./02 such that G1 = G0/./01 and G2 = G0/./02. If ./01 ≤ ./02 there is a balanced partition
./12 such that G2 = G1/./12. Furthermore, P02 = P01P12 where the matrices P represent the
correspondingly indexed partitions. �

Proof. Name the cell type partitions of the networks T0, T1, T2 accordingly. Then,

T0 = P01T1, T0 = P02T2

from ./01 ≤ ./02 we know that there is a partition matrix P12 such that

P02 = P01P12

replacing P02 in the second equality

T0 = P01P12T2

using the first equality

P01T1 = P01(P12T2)

Since P01 has full column rank, it can be canceled on the left

T1 = P12T2

Let M0, M1, M2 represent the in-adjacency matrix of the networks. From being balanced we
know that

M0P01 = P01M1, M0P02 = P02M2

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 23

replacing P02 in the second equality

(M0P01)P12 = P01P12M2

which by the first balanced equality

(P01M1)P12 = P01P12M2

now, canceling P01 on the left is allowed

M1P12 = P12M2

which means that ./12, represented by P12 is balanced on G1 and

G2 = G1/./12

6. Lattice of balanced partitions. This sections presents the properties of ΛG , which
denotes the set of all balanced partitions of a given network G.
In [13] it is shown that ΛG forms a lattice under the sub-partition operation ≤ as described in
(2.1). That is, it forms a partially ordered set such that for any ./1, ./2 ∈ ΛG , there also exist
in ΛG partitions ./1 ∨ ./2 and ./1 ∧ ./2 which are the least upper bound or join and the
greatest lower bound or meet. This means that there is a maximal (>) and a minimal
(⊥) balanced partitions, the last of which we already know to be the trivial partition.
The coarsest invariant refinement (CIR) algorithm, is a polynomial-time algorithm that was
first developed in [1] with the goal of finding the maximal balanced partition. Recently, in [9]
it was noted that this algorithm does more that just finding the maximal balanced partition.
In fact, given any input partition, it outputs the greatest balanced partition that is finer (≤)
than the input one. Therefore, the maximal partition is given by > = cir(T). We now show
that the meet (∧) and join (∨) are also defined.

Lemma 6.1. For every pair ./1, ./2 ∈ ΛG there is a least upper bound or join ./3 ∈ ΛG
denoted by ./3 = ./1 ∨ ./2. �

Proof. Any partition ./ that is simultaneous coarser than ./1 and ./2 has to obey
./1(c) = ./1(d)

or

./2(c) = ./2(d)

=⇒ ./(c) = ./(d)

For such partition, any chain of cells c = c1, . . . , ck = d such that either ./1(ci) = ./1(ci+1) or
./2(ci) = ./2(ci+1) implies that ./(c) = ./(d). The finest such partition ./3 is the one such
that ./3(c) = ./3(d) if and only if there is such a chain.
We now show that ./3 is balanced. Choose any two colors A,B ∈ ./3. Since ./1, ./2 are
both sub-partitions of ./3 there are colors b11, . . . , b

1
k1
∈ ./1 and b21, . . . , b

2
k2
∈ ./2 such that

B =
⋃k1

i=1 b
1
i =

⋃k2
i=1 b

2
i . For any c, d ∈ A such that ./i(c) = ./i(d) for some i ∈ {1, 2} we have

that ∑
e∈bij

wce =
∑
e∈bij

wde ∀j ∈ {1, . . . , ki}

24 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

which implies ∑
e∈B

wce =
∑
e∈B

wde

since for each link of the chain this value is preserved, it is also preserved across the whole
chain and therefore the whole color A. This applies to every pair of colors A,B ∈ ./ which
means that ./ is balanced.

Lemma 6.2. For every pair ./1, ./2 ∈ ΛG there is a greatest lower bound or meet ./3 ∈ ΛG
denoted by ./3 = ./1 ∧ ./2. �

Proof. Any partition ./ that is simultaneous finer than ./1 and ./2 has to obey

./(c) = ./(d) =⇒

{
./1(c) = ./1(d)

./2(c) = ./2(d)

call ./12 the coarsest such partition, created by making the implication into an equivalence.
Since such a partition is unique, ./3 is given by ./3 = cir(./12). Note that there was no reason
to believe that ./12 was itself balanced and can be verified empirically not to be.

The following result relates the lattice of a network with the lattice of one of its quotients.

Lemma 6.3. Consider networks G and Q related by Q = G/./. Then, there is a one-to-one
correspondence between the elements of ΛQ and the elements of ΛG that are coarser than ./.
This relation is given as PG = P./PQ where PG, PQ represent partitions in ΛG, ΛQ respectively.
Therefore, we say that ΛQ = ΛG/./. �

Proof. Lemma 5.8 shows that for any partition ./12 ∈ ΛQ there is a partition ./02 ∈ ΛG ,
coarser than ./, such that P02 = P./P12. Conversely, Lemma 5.9 shows that for any ./02 ∈ ΛG
that is coarser than ./ there is a partition ./12 ∈ ΛQ such that they are related to each other
in the same way as before.

The problem of trying to get an exhaustive list of the elements of a lattice Λ can be potentially
intractable. Note that given a partition, it is easy and efficient to verify whenever it is balanced.
However, even for relatively small networks, the set of all possible partitions is simply too
large to do an exhaustive search on it. The number of partitions on a set is given by the Bell
numbers Bn (also called exponential numbers), referenced in the online database OEIS (The
On-Line Encyclopedia of Integer Sequences by the code A000110 [11]. A method to reduce the
search space is described in [9]. The algorithm, called ‘SPLIT and CIR’, uses the idea that
instead of testing all (

∏r
i=1(Bki − 1)) sub-partitions of >, one can apply the CIR method to

its
(∑r

i=1 2ki−1
)

immediate descendants and then repeat, finding all the balanced partitions
layer by layer.
The specific gains of this approach are difficult to analyze and can be highly dependent of
the particular network of study (e.g., the number of layers in the lattice ΛG). A worst-case
scenario (all Bn partitions balanced) evaluation could be too pessimistic and a bad metric to
decide if it would be an approach of interest for application in a real-world network.
This worst-case is scenario is a shortcoming that is common to all approaches that try to find
all the balanced partitions in an explicit exhaustive way. Consider for example an all-to-all

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 25

uniform-connection network of size n, with a single cell type. In this case, even for a relatively
small n, the lattice would be too large to enumerate its (Bn) elements or draw any schematic,
yet it can be described in one simple sentence (i.e., “every partition is balanced”). Ironically,
the simplest network, whose lattice is the easiest to determine corresponds exactly to the
worst-case scenario of such methods.

7. CIR algorithm improvement. In this section we describe our improvement of the CIR
algorithm that works with general weight sets and has a worst-case complexity of O(|C|3) in
the case of a dense graph and O(|C|2) in the sparse case.
Consider a network represented by a matrix M together with an initial partition A0 ≤ T
represented by matrix P0, of which we want to find the coarsest refinement (e.g., make P0 the
characteristic matrix of T if the goal is to find the maximal balanced partition >).

7.1. Method. The idea of this algorithm is to start with the initial partition A0 and
progressively refine it in a conservative manner. That is, given a partition Ai, we construct
a partition Ai+1 ≤ Ai such that any balanced partition finer than Ai is also finer than Ai+1.
We create Ai+1 by taking each color of Ai and splitting its cells according to whenever their
corresponding rows in MPi match or not. If Ai+1 = Ai the algorithm has converged and we
found Ai = cir(A0), otherwise we continue iterating.

Lemma 7.1. According to the described iterative method, any balanced partition finer than
Ai is also finer than Ai+1. �

Proof. Assume that there are cells c, d such that Ai(c) = Ai(d) but rows c and d of MPi

do not match perfectly (assume on kth column). Note that the kth color of Ai will correspond
to either a color, or a union of colors of any balanced partition finer than Ai. This means
that no matter what refinement happens, the cells c and d will have no chance of having the
same color in a balanced refinement, since if the sum of the parts is different, it will not be
possible for the parts themselves to match. Therefore, any balanced partition finer than Ai

is also finer than Ai+1.

Remark 7.2. Note that if at a certain iteration no more refinement happens, that means
that the balanced condition (3.8) has been achieved and we found cir(A0). �

Lemma 7.3. The iterative procedure always converges in at most |C| − rank(A0) iterations.
�

Proof. Note that in each iteration, either the rank of the partition increases or the al-
gorithm stops because a balanced partition was achieved. In the worst case scenario, the
rank increases by one until the trivial partition is reached. Therefore, the algorithm always
converges in at most |C| − rank(A0) iterations.

Since this algorithm always converges, this shows by construction that cir(A0) exists. That
is, for any partition A0, there is a unique balanced partition Ai = cir(A0) such Ai ≤ A0 and
./ ≤ Ai for any balanced partition ./ such that ./ ≤ A0.

7.2. Efficient implementation and cost analysis. Note that a partition matrix P on a
set of cells C can be efficiently represented by a vector of size |C| as seen in Example 2.9.
Calculating the product MPi consists on summing (‖) certain elements of M according to the

26 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

pattern described in Pi. To compare rows of MPi previous works considered a quadratic cost
which was the bottleneck of the algorithm. If the appropriate data structure (hash table) is
used, such operation is of the order O(rank(Ai)). A pseudo-code description of the algorithm
implementation is presented in Algorithms 7.1 and 7.2.

Algorithm 7.1 CIR algorithm

M ← CCN matrix
p0 ← initial partition vector
r0 ← rank of p0
pnew ← p0
rnew ← r0
repeat
pold ← pnew
rold ← rnew
(pnew, rnew)← cir iteration(M,pold, rold)

until rnew == rold

Algorithm 7.2 CIR iteration

M ← CCN matrix
pold ← previous partition vector
rold ← rank of pold
pnew ← new partition vector
rnew ← 0
for r = 1: |C| do
v ← zero vector of size rold
for c : (r, c) ∈ E do
v[pold(c)]← v[pold(c)] +M(r, c)

end for
s← vec2string([pold(r), v])
value← hash table.find(s)
if value NOT FOUND then
rnew←rnew +1
pnew[r]← rnew
hash table.insert(s, rnew)

else
pnew[r]← value

end if
end for

Lemma 7.4. This implementation of the CIR algorithm leads to a worst-case complexity
of O(|C|3)). �

Proof. In each iteration we are summing (‖) a total of |E| entries of M . The lookup and
insertion in an hash table are fast operations with complexity O(1) which are each executed

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 27

|C| times. The |C| strings that are used as key in the hash table have size proportional to
rank(Ai).
The complexity of the ith iteration is then O(|E|+ |C|+ |C|rank(Ai)). In the worst-case
scenario the rank increases by one and the number of iterations is O(|C|). This implies total
worst-case complexity of O(|C|3).

Remark 7.5. In practice, the number of iterations seems to be much lower than |C| which
means that this is a very pessimistic upper bound for the complexity. �

We illustrate this algorithm with the following example.

Example 7.6. Consider the network illustrated in Figure 7.1 with cell type partition T =
{{1, 2, 5, 6}, {3, 4}}. The edge weight monoid is the same as in the parallel of resistors (Ex-
ample 2.3). We assume that the arrows all represent values of 30. Note that the zero of the
monoid is 0M =∞. This is represented by the matrix in (7.1).

1 2

3

4

5 6

Figure 7.1: Network of Example 7.6 illustrating the CIR algorithm

(7.1) M =

30 30 30 ∞ ∞ ∞
30 30 30 ∞ ∞ ∞
30 ∞ ∞ 30 30 ∞
∞ ∞ 30 ∞ 30 30
30 ∞ ∞ ∞ 30 ∞
∞ 30 ∞ ∞ 30 ∞

If we are interested in finding the top partition >, we initialize A0 = T. This partition can be
represented by the matrix P0

A0 =

1
1
2
2
1
1

 P0 =

1 0
1 0
0 1
0 1
1 0
1 0

28 PEDRO SEQUEIRA, A. PEDRO AGUIAR, AND JOÃO P. HESPANHA

Applying the algorithm we get

[
A0 MP0

]
=

1 15 30
1 15 30
2 15 30
2 15 30
1 15 ∞
1 15 ∞

whose row comparison determines the next iteration A1 and P1

A1 =

1
1
2
2
3
3

 P1 =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

Applying the same procedure

[
A1 MP1

]
=

1 15 30 ∞
1 15 30 ∞
2 30 30 30
2 ∞ 30 15
3 30 ∞ 30
3 30 ∞ 30

and we get the second iteration defined by

A2 =

1
1
2
3
4
4

 P2 =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

[
A2 MP2

]
=

1 15 30 ∞ ∞
1 15 30 ∞ ∞
2 30 ∞ 30 30
3 ∞ 30 ∞ 15
4 30 ∞ ∞ 30
4 30 ∞ ∞ 30

We can now see that A2 = A3. This means that we have converged and A2 = cir(A0) =
cir(T) = >.
This is not the only non-trivial balanced partition on this network. For example, with an initial

WEIGHTED COUPLED CELL NETWORKS AND INVARIANT SYNCHRONY PATTERNS 29

partition B0 = {{1, 2, 5}, {3, 4}, {6}} we find the other balanced partition B1 = cir(B0) =
{{1, 2}, {3}, {4}, {5}, {6}}.
Note that we already knew that any other balanced partitions would have to be finer that >.
Therefore we could have instead just verified if any of the partitions {{1}, {2}, {3}, {4}, {5, 6}}
or {{1, 2}, {3}, {4}, {5}, {6}} were balanced. �

8. Conclusion. This paper generalizes the theory of coupled cell networks to multi edge
and multi edge-type networks with arbitrarily complex edge weights. The formalism that was
introduced here is simpler than the usual one based on groupoids of bijections of input sets.
Moreover, we do not require the networks to obey such an artificial condition such as the
‘consistency condition’. We extend previous results about balanced partitions and invariant
synchrony patterns to this more general setting. An implementation of the CIR algorithm
is presented which has a worst-case time complexity of O(|C|3) in opposition to the previous
O((|E|+ |C|)4) cost.

REFERENCES

[1] J. W. Aldis, A polynomial time algorithm to determine maximal balanced equivalence relations, Interna-
tional Journal of Bifurcation and Chaos, 18 (2008), pp. 407–427.

[2] A. Arenas, A. D́ıaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex
networks, Physics reports, 469 (2008), pp. 93–153.

[3] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, science, 286 (1999), pp. 509–
512.

[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks: Struc-
ture and dynamics, Physics reports, 424 (2006), pp. 175–308.

[5] F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Auto-
matica, 50 (2014), pp. 1539–1564.

[6] M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: the groupoid formalism, Bulletin of
the american mathematical society, 43 (2006), pp. 305–364.

[7] M. Golubitsky, I. Stewart, and A. Török, Patterns of synchrony in coupled cell networks with
multiple arrows, SIAM Journal on Applied Dynamical Systems, 4 (2005), pp. 78–100.

[8] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs:
simple building blocks of complex networks, Science, 298 (2002), pp. 824–827.

[9] J. M. Neuberger, N. Sieben, and J. W. Swift, Invariant synchrony subspaces of sets of matrices,
arXiv preprint arXiv:1908.05797, (2019).

[10] M. E. Newman, The structure and function of complex networks, SIAM review, 45 (2003), pp. 167–256.
[11] OEIS, The on-line encyclopedia of integer sequences. https://oeis.org/A000110, 2019. Accessed: 2019-

010-30.
[12] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, The kuramoto model in complex networks,

Physics Reports, 610 (2016), pp. 1–98.
[13] I. Stewart, The lattice of balanced equivalence relations of a coupled cell network, in Mathematical

Proceedings of the Cambridge Philosophical Society, vol. 143, Cambridge University Press, 2007,
pp. 165–183.

[14] I. Stewart, M. Golubitsky, and M. Pivato, Symmetry groupoids and patterns of synchrony in coupled
cell networks, SIAM Journal on Applied Dynamical Systems, 2 (2003), pp. 609–646.

[15] S. H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization, Scientific American,
269 (1993), pp. 102–109.

[16] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’networks, nature, 393 (1998),
pp. 440–442.

https://oeis.org/A000110

	Introduction
	Weighted multi-edge CCN's
	CCN formalism
	Commutative monoids
	Partition representations
	Admissibility

	Invariant synchrony
	Output vector spaces
	Quotients
	Lattice of balanced partitions
	CIR algorithm improvement
	Method
	Efficient implementation and cost analysis

	Conclusion

