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State Estimation for Asynchronously Switched Sampled-Data Systems
Sharad C. Shankar, Guosong Yang, João P. Hespanha

Abstract— Asynchronously switched sampled-data sys-
tems can help model power systems and vehicles that evolve
in continuous-time with switching behavior and discrete
time measurements. We address the problem of jointly
estimating a switching signal, with uncertainty in the exact
switching times, as well as the continuous states of the
system. We prove stability of the standard Kalman filter
under uncertainty in the switching time, with statistical
bounds relating to the sampling period. We then propose
a method for estimation of switching times as well as
a method for efficient joint estimation of the state and
switching signal inspired by the interacting multiple-model
extended-Viterbi algorithm. We validate our algorithms in
simulation for a power converter and maneuvering vehicle.

I. INTRODUCTION

Real-world systems are often best modeled in con-
tinuous time, for example using equations of motion,
but with measurements taken at discrete instants [1].
Many systems also vary their behavior between discrete
modes, either by their construction or to simplify control
[2]; for example, a vehicle with a gearbox transmission,
power systems using switched circuits or sources, or an
aircraft with several trim conditions including cruising
and banked turning. In real-world systems we must also
consider noise in our measurements, usually represented
by random additive noise. A practical formulation for
such systems is a stochastic sampled-data switched
system [3], given by

9xptq “ fpσptq, xptq, uptqq ` wptq

yptkq “ hpσptkq, xptkqq ` vptkq,

where xptq is the state, uptq is an input, wptq is a dis-
turbance, yptkq is a measured output subject to random
noise vptkq, σptq is a “switching signal” taking values
in a finite set that tells us the active mode at time t, and
tk are discrete times indexed by k. The control of such
systems is addressed in [4].

State estimation of discrete-time switched systems
has attracted considerable attention, including works
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by Alessandri et al [5]. In these papers, the un-
known switching signal is estimated using a Maximum-
Likelihood method combined with either Kalman filter-
ing or Moving Horizon Estimation of the continuous
states. In contrast, Interacting Multiple-Model (IMM)
approaches to hybrid system state estimation have been
suggested in [6] and [7]. Ho [8] augmented these meth-
ods using Viterbi algorithm concepts to obtain pseudo
Maximum-A-Posteriori (MAP) solutions to the win-
dowed estimation problem. In [9], a review of estimation
methods for switched systems is provided.

In these prior works, it is always assumed that
switches occur only at times that measurements are
obtained, in other words the sampling times. There
are papers that consider estimation of continuous-time
switched systems like [10], [11], and [12]. In [13],
the authors consider switches that occur at a constant
offset from the measurement times. However we could
not find prior works that consider the problem of fully
asynchronous switches with sampled measurements.

In this paper we address state estimation when
switches can occur at any time between measurement
samples. In Section III we provide results on the con-
vergence of Kalman filtering methods in the setting
where the switching signal is known at sampling times,
but exact switching times are unknown. We build upon
analysis first done by Anderson and Moore [14], and
more recently extended by Zhang [15]. Our results
provide bounds on the mean error and mean-squared
(MSE) of the estimates, which can be useful in the
context of control [16].

In Section IV we provide a method for simultaneously
estimating the state xptq and switching signal σptq. This
method is inspired by the IMM extended-Viterbi (IMM-
EV1) approach [8]. In Section V, we show simulations
that demonstrate our theoretical results and validate the
performance of our algorithm.

II. PRELIMINARIES

We consider a linear sampled-data output-error
switched system,

9xptq “ Apσptqqxptq ` Bpσptqquptq (1)
yptkq “ Hxptkq ` vk, (2)



for xptq P Rn, uptq P Rℓ, vk, yk P Rm, and
Apσptqq P tAp1q, . . . , ApLqu a nˆn matrix, Bpσptqq P

tBp1q, . . . , BpLqu a nˆ ℓ matrix, with switching signal
σptq P t1, . . . , Lu. Our goal is to jointly estimate
the switching signal and state at discrete periodically
sampled timesteps tk “ kT , where T is the sampling
period. We denote the state, input, and active mode at
the discrete timesteps as xk “ xptkq, uk “ uptkq and
σk “ σptkq respectively, as well as the active system
matrices Ak “ Apσptkqq and Bk “ Bpσptkqq. We
impose a dwell time τd ą T so that switches occur
at least τd apart from each other and at most once per
sample. We can then parametrize the signal σt by the
sequences tσku and tt̄ku, where the latter specifies the
exact time at which a switch occurs within the interval
rtk, tk`1q.

III. KALMAN FILTER CONVERGENCE

We assume a zero order hold (ZOH) for the input, so
that we have an exact discrete time update equation

xk`1 “ Fkxk ` Gkuk, (3)

where
Fk “ eAk`1pT´t̄kqeAk t̄k. (4)

and

Gk “ Fk

ż t̄k

0

e´AkτBkdτ `

ż T

t̄k

eAk`1pT´τqBk`1dτ.

(5)

A. Conditions for Observability

We consider the following definition of observability
for a time-varying discrete-time linear system [15].

Definition 1 (Uniform Observability): The sequence
pFk, Hq is uniformly observable i.e. there exist constants
h P Zą0 and ρ1 P Rą0 such that for all x P Rn

ρ1∥x∥2 ď x1

˜

k`h
ÿ

i“k

Φ1
k`h,iH

1R´1HΦk`h,i

¸

x

where Φi,k – Fi´1 ¨ ¨ ¨Fk`1Fk.
In many cases, uniform observability of time-varying
systems like switched systems is difficult to verify for
all possible switching signals [17]. By imposing a dwell
time, uniform observability of each mode can generate
uniform observability of the switched system.

Assumption 1 (Each mode observable):
Suppose that each unswitched pair
tpeAp1qT , Hq, . . . , peApLqT , Hqu represents a uniformly
observable system with constants h1, . . . , hL,
ρ11, . . . , ρ

L
1 .

Lemma 1: Suppose that we have Assumption 1 and
τd ą hT , where h – maxth1, . . . , hLu, then the
switched system in (3), (2) is uniformly observable
for every admissible switching sequence with constants
h “ 2h ´ 1 and ρ1 “ mintρ11, . . . , ρ

L
1 u, that do not

depend on the sequence.

Proof. Given that τd ą h̄T , the system must spend
greater than hj timesteps in any mode j. In order to
guarantee that the time window rtk, tk`hq contains at
least hj samples uninterrupted in a single mode j, then
our window must be at least h “ 2h̄ ´ 1 samples long.
In any window of this length we must have,

ρ∥x∥2 ď x1

˜

k`2h̄´1
ÿ

i“k

Φ1
i,kH

1R´1HΦi,k

¸

x

where ρ “ mintρ11, . . . , ρ
L
1 u. l

B. Errors in System Matrices

A Kalman filter is the MAP state estimator of a
discrete-time system. Kalman filters compute state es-
timates x̂k and their associated covariance matrices Pk

at sample k. We assume that our initial conidition is
a random variable xp0q „ N px̂0, P0q and that vk „

iid N p0, Rq for R a mˆm symmetric positive-definite
matrix. We compute the estimate at sample k ` 1 by
combining yk`1 with a prediction x̂k`1|k based on
the previous estimat x̂k. These sources of information
are combined through the Kalman gain matrix Kk,
which depends on the system matrices as well as the
measurement noise variance R. When we do not know
system matrices Fk and Gk exactly, due to uncertainty
in switching times, but have estimates F̂k and Ĝk, then
our output-error Kalman filter update equations are of
the form,

x̂k`1|k “ F̂kx̂k ` Ĝku (6)

Pk`1|k “ F̂kPkF̂
1
k (7)

Kk “ pF̂kPkF̂
1
kqH 1pHpF̂kPkF̂

1
kqH 1 ` Rq´1 (8)

x̂k`1 “ pI ´ KkHqx̂k`1|k ` Kkyk`1 (9)
Pk`1 “ pI ´ KkHqPk`1|k. (10)

First we provide error bounds for our estimated system
matrices assuming that we know the correct sequence
tσku but not the exact switching times tt̄ku, instead
using estimates tt̂ku plugged into (4), (5) to compute
F̂k and Ĝk. In this scenario we will bound the error
of our state estimates using bounds on the error of the
estimated state transition matrices due to switching time
uncertainty.
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Lemma 2 (Error in Estimation of System Matrices):
For a transition between modes i and j, let the error in
switching time estimation be denoted rt – t̂ ´ t̄, then
the estimation error, rF – F̂ ´F is bounded in norm as

∥ rF∥ ď |rt|∥Apjq ´ Apiq∥ep∥Apjq´Apiq∥`3∥Apiq∥`∥Apjq∥qT

ď T∥Apjq ´ Apiq∥ep∥Apjq´Apiq∥`3∥Apiq∥`∥Apjq∥qT

(11)
and the estimation error, rG – Ĝ ´ G is bounded in
norm as

∥ rG∥ ď ∥ rF∥e∥Apiq∥T ∥Bpiq∥ ` |rt|e∥Apjq∥T

¨
`

e∥Apiq∥T ∥Bpiq∥ ` e∥Apjq∥T ∥Bpjq∥
˘

.
(12)

Proof. Call Fj “ eApjqpT´t̄q, Fi “ eApiqt̄, Ej –

e´Apjqrt and Ei – eApiqrt. We then have that F̂ “

F̂jF̂i “ FjEjEiFi, so rF “ FjpEjEi ´ IqFi, then

∥ rF∥ ď ∥EjEi ´ I∥∥Fj∥∥Fi∥
ď ∥pEj ´ E´1

i qEi∥ep∥Apjq∥`∥Apiq∥qT

ď ∥pe´Apjqrt ´ e´ApiqrtqeApiqrt∥ep∥Apjq∥`∥Apiq∥qT .

Then using the fact that ∥eX`Y ´eX∥ ď ∥Y ∥e∥X∥`∥Y ∥

[18] where Y “ ´Apjqrt ´ Apjqrt and X “ ´Apiqrt, we
obtain (11).

Our error in G, after some manipulation, can be
written as

rF

ż t̂

0

e´ApiqτBpiqdτ ` eApjqpT´t̄q

ż

rt

0

e´ApiqτBpiqdτ

´ eApjqpT´t̄q

ż

rt

0

eApjqτBpjqdτ

from which we obtain

∥ rG∥ ď ∥ rF∥
ż t̂

0

e∥Apiq∥τ∥Bpiq∥dτ

` e∥Apjq∥T
ż ∥rt∥

0

`

e∥Apiq∥τ∥Bpiq∥

` e∥Apjq∥τ∥Bpjq∥
˘

dτ

which gives us (12) after computing integrals. l

The bounds in (11) and (12) guarantee that the errors
in F̂ and Ĝ go to zero as the error in t̂ goes to zero,
which happens when our sampling period goes to zero.
These bounds also improve as the Apiq’s become more
similar to each other.

C. Bounds on Estimation Errors

To bound the estimation error of our filter, we denote
the filter error by ek – x̂ ´ x, and the prediction error
be zk`1 – xk`1 ´ F̂ x̂k ´ Ĝkuk. With switching time
uncertainty, the error propagates as

ek`1 “ pI ´ KkHqzk`1 ` Kkvk`1 (13)

where in a sampling period in which no switch occurs,

zk`1 “ F̂kek (14)

and in a period where a switch occurs,

zk`1 “ F̂kek ` rFkxk ` rGkuk. (15)

We define the mean squared errors Σk – Ereke
1
ks

and Ωk – Erzkz
1
ks. These update as

Σk`1 “ pI ´KkHqΩk`1pI ´KkHq1 `KkRK 1
k. (16)

where when no switch occurs,

Ωk`1 “ F̂kΣkF̂
1
k (17)

and when a switch occurs,

Ωk`1 “ F̂kΣkF̂
1
k ` F̂kErekx

1
ks rF 1

k ` rFkErxke
1
ksF̂k

` rFkE
“

xkx
1
k

‰

rF 1
k ` F̂kEreksu1

k
rGk

` rFkE rxksu1
k
rG1
k ` rGkukE rxks

1
rF 1
k

` rGkukEreks1F̂ 1
k ` rGkuku

1
k
rG1
k.

(18)
We will need the following:
Assumption 2: Suppose that Pk|k´1 is positive and

bounded above for all k. The upper bound is shown in
[15]. Let λ denote the maximum, and λ the minimum
eigenvalue that P´1

k|k´1 can have.
Fact 1 (Observability of error dynamics): In [15] it

is shown that if the sequence pF̂k, Hq uniformly ob-
servable then the sequence pF̂kpIn ´ Kk´1Hq, Hq is
also uniformly observable, i.e. there exists ρ3 P Rą0

such that for the same h as in Definition 1,

ρ3∥e∥2 ď e1

˜

k`h
ÿ

i“k

Φ̄1
i,kH

1R´1HΦ̄i,k

¸

e

for all e, where Φ̄i,k – Fi´1pIn ´Ki´2Hq ¨ ¨ ¨FkpIn ´

Kk´1Hq.
We now present a theorem bounding the expected

prediction error and mean-squared prediction error.
Theorem 1 (Bounds on prediction error): Given As-

sumptions 1 and 2, and suppose E rx1
kxks ă γ2, and

∥uk∥ ă δ for all k, let

d –
α3

ρ3
λpγ2∥ rFk∥2 ` 2γδ∥ rFk∥∥ rGk∥ ` δ2∥ rGk∥2q
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where α3 “ 1 ` α1{α2, α1 ą 0 the largest possible
eigenvalue of H 1Pk|k´1H for all k, and α2 ą 0 the
smallest eigenvalue of R. Then there exist constants β ą

0 and ξ ą 0 such that if

cpaq –
λ

λ

`

a ` β
?
a ` ξ

˘

for a P Rą0, then for any i P Zą0

∥E rzk`is∥2 ď max
␣

c
`

∥E rzks∥2
˘

, c pcpdqq
(

(19)

Furthermore, there exist constants ωh ą 0 and ωh´1 ą

0, such that the prediction MSE is bounded for all times
k ` j, j P Zą0. as

trpΩk`jq

ď max

"

λ

λ
ptrpΩkq ` 2ωh´1q ,

λ

λ

ˆ

2λσ3

ρ3
ωh ` 2ωh

˙*

(20)

A proof is provided in the Appendix.
Remark 1 (Estimation error bounds): Given the

bounds in Theorem 1, we can also bound E reks and
Σk for arbitrary k using

∥E reks∥ ď ∥I ´ Kk´1H∥∥E rzks∥ (21)

and

trpΣkq ď ∥I ´ Kk´1H∥2trpΩkq ` ∥Kk´1∥2trpRq (22)

which follow from (13) and (16) respectively.
Notably, the assumption E rx1

kxks ă γ2 also serves as
a bound on ∥E rxks∥2 and variance of xk. This theorem
and remark state that the dwell time condition ensures
that intermittent model uncertainties due to switching
do not lead to unbounded growth in our state estimation
errors. We will now present an algorithm that allows us
to exploit this property.

IV. JOINT ESTIMATION OF STATE AND SWITCHING

In Theorem 1, the error in the state estimates is driven
by the switching time errors appearing in Lemma 2.
We will augment the IMM Extended-Viterbi Kalman
filter (IMM-EV1 KF) [8] with the maximum likelihood
problem of estimating switching time within a single
sample interval given by

Jkpτq – p
`

yk`1|xk`1 “ x̂k`1|k,t̄“τ

˘

Where x̂k`1|k,t̄“τ is computed, for example using (4),
(5). We can search for the optimum of this cost by
gridding the sample period rtk, tk`1q with g points tτiu

g
1

where τi – iT
g ´ T

2g . We can then compute

t̂k “ arg max
τi

Jkpτiq. (23)

+

-

+

-

Fig. 1. Boost Converter Circuit

We can now state Algorithm 1, a heuristic method which
builds on the IMM-EV1 Kalman filter by including our
gridded switching time estimation. To ensure that λ
exists in Assumption 2, we add ϵI to each Pk|k´1 for
some small ϵ ą 0.

Algorithm 1 IMM-EV1 Kalman filter
filter bank tpx̂1

k, P
1
k q, . . . , px̂L

k , P
L
k qu

mode probabilities a1k, . . . , a
L
k

for i from 1 to L do
for j from 1 to L do

compute t̂ijk for switch from i to j using (23)
let bij “ Jkpt̂ijk q

end for
ĵ “ maxj bij

compute x̂i
k`1, and P i

k`1 from x̂ĵ
k, P ĵ

k , and t̂iĵk ,
aik`1 “ biĵa

ĵ
k

end for
normalize aik`1’s

V. SIMULATIONS

In this sections we provide simulations to validate our
theory and joint estimation algorithms.

A. Boost Converter

A boost converter is a popular switching power con-
verter for stepping up a DC voltage without transformers
or amplifiers. This is necessary when a high-power
source is not available to perform amplification. A model
for a realistic boost converter is provided in [19]. We
have dynamics as given in (1) where

Ap1q “

„

´R1{L1 0
0 ´1{R0C0

ȷ

,

Ap2q “

„

´R1{L1 ´1{L1

1{C0 ´1{R0C0

ȷ

,

Bp1q “ Bp2q “ r1{L1 0s1.

Here, x “ riL v0s1 and u “ vin. We additionally choose
y “ v0, or in other words H “ r0 1s. We use the values
R1 “ 2 ohms, L1 “ 500 microhenrys, R0 “ 50 ohms,
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Fig. 2. Example state evolution for Boost Converter starting with
switches every 1.2 ms then increasing to every 0.9 ms at 0.02 seconds,
blue dashed line indicates iL and red solid line indicates v0.

T {g (ms) 0.5 0.25 0.167 0.125 0.1
RMSEpiLq (amps) 13.5 10.7 9.40 9.17 9.09
RMSEpv0q (volts) 2.74 2.15 2.00 1.96 1.89

TABLE I
EFFECT OF INCREASINGLY PRECISE GRIDDED SWITCHING TIME

ESTIMATION ON KALMAN FILTER RMSE, 100 TRIALS

C0 “ 470 microfarads, and vin “ 100 volts from [19].
Figure 2 shows the result of simulating this system.

We simulated 10 seconds of operation with switch
frequencies ranging from 1.2 to 0.9 ms/switch, and
output voltages ranging between 100 and 120 volts,
with measurement noise corresponding to R “ 5 volts2.
Table I shows how effective the gridded estimation in
(23) is when sampling at 0.5 ms for different values
of g over 100 trials. As expected more precision in the
switching time interval leads to more accuracy in the
Kalman filter estimates, with diminishing returns.

B. Vehicle Maneuver Tracking

A model of a continuous-time Switched System rep-
resenting a vehicle moving in two dimensions with
x “ rx1 9x1 x2 9x2s1 is given by,

Ap1q “ Ap2q “ Ap3q “ I2 b

„

0 1
0 0

ȷ

Bp1q “
“

0 0 0 0
‰1

Bp2q “
“

0 ´1 0 1
‰1

Bp3q “
“

0 1 0 ´1
‰1

where b denotes the Kronecker product, with τd ą 1
second and measurements sampled every 0.5 seconds.
This double-integrator system corresponds to the dis-
crete time switched systems used in [8], among others.

0 1 2 3 4 5

x
1

 [m]
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x
2

 [
m

]

truth

IMM-EV1 KF g=1

IMM-EV1 KF g=2

IMM-EV1 KF g=5

Fig. 3. Single trial of vehicle true and estimated trajectories using
Algorithm 1 for g “ 1, 2, 5
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Fig. 4. Vehicle position and velocity estimation RMSE over 500 MC
trials, Algorithm 1 with g “ 2 shown with red circles, g “ 5 with
yellow squares, and g “ 10 with purple triangles. Blue x’s mark the
switching times.

Its discretization with ZOH over timestep T is given by

F p1q “ F p2q “ F p3q “ I2 b

„

1 T
0 1

ȷ

(24)

Gp1q “
“

0 0 0 0
‰1

Gp2q “

”

´T 2

2 ´T T 2

2 T
ı1

Gp3q “

”

T 2

2 T ´T 2

2 ´T
ı1

.

We consider a single trajectory over 10 seconds, with
uptq “ 1, starting in mode 1, swiching to mode 2 at 1.65
seconds, to mode 3 at 2.75 seconds, and back to mode
1 at 3.9 seconds. The resulting trajectory is shown in
Figure 3 along with a single trial of estimate trajectories
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Dπ ą 0 s.t. π
„

´I 0
0 d

ȷ

´

«

´
ρ3

α3
I Λ1

kpP´1
k|k´1q1q

q1P´1
k|k´1Λk q1P´1

k|k´1p rFkxk ` rGkukq

ff

ą 0 (31)

Dπ ą 0 s.t.
ρ3
α3

´ π ą 0 and πd ´ q1P´1
k|k´1q ´ p

ρ3
α3

´ πqq1P´1
k|k´1ΛkΛ

1
kpP´1

k|k´1q1q ą 0 (32)

computed using Algorithm 1 where

H “

„

1 0 0 0
0 0 1 0

ȷ

, R “

„

0.05 0
0 0.05

ȷ

.

We compute the RMSE over 500 monte carlo trials, and
the results for varying divisions, g, of our sampling time
are show in Figure 4.

VI. CONCLUSIONS

We showed stability under dwell-time constraints of
Switched System Kalman filtering errors with intermit-
tent uncertainty in system dynamics due to unknown
switching times. The bounds developed, while con-
servative, give us guarantees and intuition about filter
implementations like the IMM-EV1 KF. Simulations of
a boost converter and maneuvering vehicle showed im-
provement in the accuracy of filtering algorithms when
we improved the precision of switching time estimates.

An immediate extension is to consider requirements
on control algorithms to satisfy the assumptions in
Theorem 1. It would be interesting to extend these
results to nonlinear problems, for which our analysis
could be applied to linearized error dynamics.

APPENDIX
PROOF OF THEOREM 1

From (13)-(15) we get that

E rzk`1s “ F̂kpI ´ Kk´1HqE rzks

when no switch occurs between samples k and k ` 1,
and

E rzk`1s “ F̂kpI ´ Kk´1HqE rzks ` rFkE rxks ` rGkuk

when a switch occurs. We use the Lyapunov function

Vk – E rzks
1
P´1
k|k´1E rzks

which from Assumption 2 is positive definite and upper
bounded. We have that

Vk`1 ´ Vk “ ´E rzks
1
H 1S´1

k HE rzks (25)

when no switch occurs, where Sk – HPk`1|kH
1 ` R.

When a switch occurs,

Vk`1 ´ Vk “ ´E rzks
1
H 1S´1

k HE rzks

` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q.
(26)

where Λk – F̂kpI ´KkHq and q – rFkE rxks ` rGkuk.
It is derived in [15] that,

E rzks
1
H 1S´1

k HE rzks ď ´
1

α3
E rzks

1
H 1R´1HE rzks

(27)
for α3 ą 0 defined in our theorem. For a switch
occurring between times k and k ` 1 but no switches
in the interval tk ` 1, . . . , k ` hu we then know that
Vk`h ´ Vk is bounded above by

´
1

α3
E rzks

1

˜

k`h
ÿ

i“k

Φ̄1
i,kH

1R´1HΦ̄i,k

¸

E rzks

` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q.

From uniform observability and Fact 1 we have

Vk`h ´ Vk ď ´
ρ3
α3

∥E rzks∥2 ` 2q1P´1
k`1|kΛkE rzks

` q1P´1
k|k´1q.

(28)
In other words, we now know that

Φ̄1
k`h,kP

´1
k`h|k`h´1Φ̄k`h,k ´ P´1

k|k´1 ď ´
ρ3
α3

I. (29)

We want to show that for a switch occurring between
samples k and k ` 1, the expected prediction error at
sample k ` h satisfies,

#

Vk`h ă Vk if ∥E rzpkqs∥2 ą d

∥E rzpk ` hqs∥2 ă cpdq if ∥E rzpkqs∥2 ď d

for some constant d ą 0, and positive continuous
function cp¨q. We proceed by considering the two cases:

1) Suppose ∥E rzks∥2 ą d. We want to show that

∥E rzks∥2 ą d ñ Vk`h ´ Vk ă 0 (30)

Applying S-procedure [20] to (28), we know that (30)
is true if and only if (31) is true. By Schur complement,
this is equivalent to (32). If we choose π “

ρ3

α3
´ ε for

some small enough ε ą 0, such that if

d ą
α3

ρ3
λpγ2∥ rFk∥2 ` γδ∥ rFk∥∥ rGk∥ ` δ2∥ rGk∥2q

then we satisfy the conditions in (32) and therefore show
that the Lyapunov function decreases before the next
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switch occurs. Then the maximum value attained by
∥E rzk`is∥2 for i ą 0 satisfies

∥E rzk`is∥2 ď
λ

λ

`

∥E rzks∥2 ` β∥E rzks∥ ` ξ
˘

(33)

where
β – 2∥Λ∥pγ∥ rFk∥ ` δ∥ rGk∥q (34)

ξ – γ2∥ rFk∥2 ` γδ∥ rFk∥∥ rGk∥ ` δ2∥ rGk∥2 (35)

2) Suppose ∥E rzks∥2 ď d. Then by substituting d
into (26) we get

Vk`1 ď pλ ´ λminp∥H 1S´1
k H∥qqd ` λβ

?
d ` λξ.

(36)
Since we showed that the Lyapunov function is non-
increasing over a timestep with no switch and must
decrease over h or more timesteps with no switch, then
(36) gives us an upper bound on Vi for k ă i ă k ` j
where k` j is the sample where the next switch occurs.
Then

∥E rzk`js∥2 ď cpdq –
λ

λ

`

d ` β
?
d ` ξ

˘

(37)

which is a bound greater than d. If ∥E rzk`js∥2 ą d
then applying (33) to (37) tells us the maximum value
attained by ∥E rzk`is∥2 for i ą 0 must satisfy

∥E rzk`is∥2 ď cpcpdqq (38)

(33) and (38) produce (19).
To prove (20) we will use the following Lyapunov

function,
Wk – trpP´1

k|k´1 ¨ Ωkq

and proceed by similar analysis as with the expected
error. We will use the following Ruhe trace inequality
[21, Fact 5.12.4, p. 333]:

Fact 2: For positive semi-definite Hermitian matrices
A and B with eigenvalues ordered largest to smallest,
a1 ě a2 ě ¨ ¨ ¨ ě an ě 0 and b1 ě b2 ě ¨ ¨ ¨ ě bn ě 0
respectively, the following holds

n
ÿ

i“1

an´i`1bi ď trpABq ď

n
ÿ

i“1

aibi (39)

which gives us

λtrpΩkq ď trpP´1
k|k´1Ωkq ď λtrpΩkq (40)

where λ and λ are the maximum and minimum eigen-
values respectively attainable by P´1

k|k´1 which are given
by Assumption 2. We can bound the update of our
Lyapunov function, Wk`1 ´ Wk, over the step after

a switch using (16)-(18), (39), (40), and the fact that
2E re1xs ď εE re1es ` 1

εE rx1xs for arbitrary ε ą 0 as

Wk`1 ´ Wk ď tr
ˆ

`

Φ̄1
k`1,kP

´1
k`1|kΦ̄k`1,k ´ P´1

k|k´1

˘

Ωk

˙

` λε∥F̂k∥∥ rFk∥trpΣkq ` λTk

(41)
where

Tk`1 “ pF̂kE reks ` rFkE rxksq1
rGkuk

` u1
k
rG1
kpF̂kE reks ` rFkE rxksq

`
1

ε
rF 2
kE

“

x1
kxk

‰

` rG2
k∥uk∥2

` F̂kKk´1RK 1
k´1F̂

1
k

with a switch. The Lyapunov function change over h
steps, Wk`h ´ Wk, is then bounded by

tr
´´

Φ̄1
k`h,kP

´1
k`h|k`h´1Φ̄k`h,k ´ P´1

k|k´1 ` εηI
¯

Ωk

¯

` tr

˜

P´1
k`h|k`h´1

h´1
ÿ

i“0

Φ̄1
k`i|kTk`h´1´iΦ̄k`i|k

¸

where η – λ∥F̂k∥∥ rFk∥∥I ´ Kk´1H∥ and Ti “

∥F̂iKi´1RK 1
i´1F̂

1
i∥ when i ‰ k. From (40) and (29),

we get

Wk`h ´ Wk ď

ˆ

´ρ3
α3

` εη

˙

trpΩkq

` λtr

˜

h´1
ÿ

i“0

Φ̄1
k`h|k`iTk`iΦ̄k`h|k`i

¸

(42)
We choose ε “ ρ3{p2α3ηq, which also affects the value
of Tk. Therefore we see that over any h steps, if the
MSE at time k satisfies

trpΩkq ą
2λα3

ρ3
tr

˜

h´1
ÿ

i“0

Φ̄1
k`h|k`iTk`iΦ̄k`h|k`i

¸

(43)

then Wk`h ´Wk ď 0. We note that it might be possible
to achieve a better bound with different choice of ε.
We must then consider the fact that unlike for the
expected error in (27), the Lyapunov function Wi can
now increase even in non-switch intervals due to the
Tk terms. We will again deal with this by splitting into
two cases. First let ωj be defined as the upper bound
derived from our upper bounds on Fk, Kk, etc., as well
as bounds on rF and rG from Lemma 2, and bound on
∥E rzks∥ in (19), of the quantity

tr

˜

j´1
ÿ

i“0

Φ̄1
k`j|k`iTk`iΦ̄k`j|k`i

¸

ď ωj ,
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for any k. We know that for any j ą 0,

Wk`j ´ Wk ď λωj

Let us consider the two cases:
1) Suppose trpΩkq ą 2λα3

ρ3
ωh. Then (41) and (42) tell

us that Wk`h ă Wk and the maximum value between
k and k ` h is bounded as

trpΩk`jq ď
λ

λ
ptrpΩkq ` ωh´1q for j P tk, . . . , k ` hu,

(44)
which is also the maximum value attained until some
trpΩk`jq ď λα3

ρ3
ωh, since the value cannot increase over

h steps otherwise. This brings us to our next case:
2) Suppose trpΩkq ď 2λα3

ρ3
ωh. Now the maximum

value that trpΩk`1q could attain is

trpΩk`1q ď
λ

λ

ˆ

2λα3

ρ3
ωh ` ω1

˙

If we achieved the maximum then trpΩk`1q ą 2λα3

ρ3
ωh,

so Wk`h`1 ď Wk`1 and therefore the maximum value
of trpΩk`jq for all j ą 0 is bounded as

trpΩk`jq ď
λ

λ

ˆ

2λα3

ρ3
ωh ` ωh

˙

j P Zą0 (45)

with (44) and (45) combine to prove (20), with an
additional ωh´1 or ωh added to each to account for the
case of starting in non-switch timestep. l
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