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Adaptive learning in two-player Stackelberg games
with application to network security

Guosong Yang, Radha Poovendran, and João P. Hespanha

Abstract—An adaptive learning approach is proposed for solv-
ing two-player Stackelberg games with incomplete information.
Specifically, the follower’s cost is unknown to the leader, who
knows only that the follower’s response to its own action belongs
to some parametric family of functions, but not the actual
parameter value. The proposed approach is capable of simul-
taneously estimating the unknown parameter and optimizing the
leader’s action. It ensures that the estimated follower’s action and
leader’s cost become indistinguishable from their actual values
in finite time, up to a preselected, arbitrarily small error bound;
moreover, the first-order necessary condition for optimality holds
asymptotically in time for the estimated leader’s cost. Under a
persistent excitation condition, the parameter estimation error
can be bounded by a preselected, arbitrarily small constant in
finite time as well. When the parametric function known to the
leader does not match the follower’s response function perfectly,
the same convergence results can be ensured for preselected error
bounds proportional to the size of the mismatch. The approach
and convergence results are also extended to the case where
the follower’s actions cannot be observed, and are illustrated
by simulation examples in the domain of network security.

I. INTRODUCTION

In many complex engineering systems, one can find multiple
decision-making agents, each of which aims to minimize an
individual cost that also depends on the others’ decisions.
Examples of such agents and systems include processes in
a multitasking central processing unit, vehicles on a public
highway, and routers in a shared telecommunication network
such as the Internet. Originated from economics, game theory
provides a rich set of mathematical tools for understanding
the interplay between rational agents [1], which proves to be
crucial for optimizing both individual and overall performance.
Over the past decades, game-theoretic tools have become pre-
valent in numerous engineering fields such as circuit design,
congestion control, and network security [2]–[4].

Most research in game theory has focused on equilibrium in
games, especially Nash equilibrium—a tuple consisting of one
strategy for each player from which no one has an incentive to
deviate by itself [1]. This raises the question of when and how
players can reach an equilibrium without complete information
of the game. Such a question is especially important in network
security, where it is usually difficult to gather information
about an attack before it actually takes place. See [5] for an
overview of standard learning rules for Nash games.
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Another common issue in many engineering applications
of game theory is that players have asymmetric information.
For example, in a link-flooding distributed denial-of-service
(DDoS) attack such as the Crossfire attack [6], the attacker is
able to monitor changes in routing and make rapid adjustments
to sustain a high congestion level, whereas information about
the attack is usually unavailable or slow to be acquired. This
motivates us to consider Stackelberg games—a hierarchical
game model in which one player (called the follower) is able
to observe the action of the other player (called the leader)
before making its own selection [7]. For the example of link-
flooding DDoS attack above, it is natural to model the attacker
as the follower in a Stackelberg game in which the leader is
a router that tries to minimize the effect of the attack.

A Stackelberg equilibrium corresponds to a leader’s action
that minimizes its own cost, assuming that the follower se-
lects its action in response to the advertised leader’s action.
Conditions for the existence of a Stackelberg equilibrium are
generally much weaker than those for a Nash equilibrium [2,
p. 181], and there are many games with information asym-
metry where the former exists but the latter does not. For
such games, one cannot rely on standard learning rules for
Nash equilibrium, but requires a novel approach for reaching
a Stackelberg equilibrium.

In this paper, we propose an adaptive learning approach for
solving two-player Stackelberg games with incomplete infor-
mation about the follower, which provides provable guarantees
for both convergence and optimality. In Section II, we present
a problem formulation in which neither the follower’s cost
function nor its action set is known to the leader. Instead, the
follower’s response to a leader’s action is assumed to belong
to a known parametric family of functions, but the actual value
of the parameter vector is unknown. Our approach for simul-
taneously estimating the unknown parameter and optimizing
the leader’s action is formulated in Section III. The estimation
dynamics are constructed by comparing past observations
of follower’s action and leader’s cost with their estimated
values. The optimization dynamics are constructed based on
the current parameter estimate rather than the unknown actual
parameter value. Our design utilizes adaptive control tools
including projected gradient descent and hysteresis switching
to ensure feasibility, convergence, and optimality.

In Section IV, we prove that the estimated follower’s
action and leader’s cost reach in finite time values that are
indistinguishable from their actual values, up to a preselected,
arbitrarily small error bound; moreover, the first-order neces-
sary condition for optimality holds asymptotically in time for
the estimated leader’s cost. Provided that a persistent excitation
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condition holds, the parameter estimation error can be bounded
by a preselected, arbitrarily small constant in finite time as
well. Our proof provides a rigorous treatment for the existence
and convergence of solutions to the discontinuous dynamics
resulting from projection and switching. To achieve this, we
establish an invariance theorem for projected gradient descent
in continuous time using tools from differential inclusions
theory, which is of independent interest and novel to the best
of our knowledge.

In Section V, we analyze the proposed approach in the more
complicated scenario where the parametric function known to
the leader does not match the follower’s response function
perfectly. It is shown that the same convergence results can be
guaranteed for preselected error bounds that are proportional
to the size of the mismatch between the two functions.

In Section VI, we consider the more challenging case where
the leader cannot observe the follower’s actions. By construct-
ing parametric estimation for the leader’s cost (as a function
of only its own action) rather than the follower’s response, we
are able to adjust the proposed approach and ensure similar
convergence properties to those in Sections IV and V, in both
scenarios with and without mismatch in parameterization.

In Section VII, the approach and convergence results are
illustrated through simulation examples motivated by link-
flooding DDoS attacks. Section VIII concludes the paper with
a brief summary and an outlook on future research directions.

A preliminary version of some of these results was pre-
sented in the paper [8]. The current paper improves upon [8] by
adopting a notion of “practical” Stackelberg equilibrium (Defi-
nition 1), which enables us to remove unnecessary assumptions
(see Assumptions 1 and 4 and Appendix A). Moreover, we
provide a more detailed analysis in the scenario with mismatch
in parameterization (Section V), new results in the case
with unobservable follower’s actions (Section VI), and more
realistic and elaborate simulation examples (Section VII).

Related work

Stackelberg game: Introduced in 1934 as a model to explain
oligopoly [7], Stackelberg games have been frequently used
to model engineering problems with information asymmetry
such as routing [9], scheduling [10], and channel allocation
[11]. In the national security domain, mixed-integer algorithms
developed for solving Stackelberg games formed the basis of
several real-world defense programs, including the ARMOR
program deployed at the Los Angeles International Airport
[12], the IRIS program used by the US Federal Air Mar-
shals [13], and several counterterrorism programs for crucial
infrastructures such as power grid and oil reserves [14], [15].
More recently, Stackelberg semi-Markov games were used in
detecting advanced persistent threats in network security [16].

Learning in games: A well-known learning rule for Nash
games is fictitious play [17], [18]. In fictitious play, a game
with discrete action sets is played repeatedly toward the goal of
reaching a Nash equilibrium. All players assume that the oppo-
nents are playing stationary mixed strategies, and continuously
estimate these strategies by computing historical frequencies
of actions. Then they each selects an action that is optimal

against the estimated opponents’ strategies. Another common
learning approach is to rely on gradient dynamics, namely,
each player takes a step along the gradient descent direction
of its cost function, computed with the current opponents’
strategies [19], [20] or their empirical estimates [21]. Fictitious
play and gradient dynamics have drawn significant research
interests [5], [22] and have been frequently used in multi-agent
reinforcement learning [23] and distributed control [24]. The
replicator equation, a prototype of evolutionary games, often
generates the same asymptotic behaviors as those by the best
response dynamics, a continuous-time variation of fictitious
play [5], [25]. For Stackelberg games, several learning rules
have been proposed in Bayesian setups [26]–[28]. However,
these results are limited to games with discrete action sets,
which are often too restrictive for engineering applications
such as network security.

Notations: Let R+ := [0,∞) and Z+ = {0, 1, . . .}. Denote
by In the identity matrix in Rn×n; the subscript is omitted
when the dimension is clear from context. For a vector v ∈
Rn, denote by ri its i-th scalar component and write r =
(r1, . . . , rn). For a set S ⊂ Rn, denote by clS, ∂S, and coS
its closure, boundary, and convex hull, respectively. Denote by
∥v∥ the Euclidean norm of a vector v ∈ Rn, and by ∥A∥ the
corresponding induced norm (also called the spectral norm)
of a matrix A ∈ Rn×n. Denote by sB(x) the closed ball of
radius s ≥ 0 centered at a point x in Rn, namely, sB(x) :=
{z ∈ Rn : ∥z−x∥ ≤ s}. For a function f(x, z) from Rn×Rm

to Rk, denote by ∇xf(v, w) its Jacobian matrix with respect
to x at (v, w); if k = 1 then ∇xf(v, w) is the gradient with
respect to x at (v, w), taken as a row vector for consistency.

II. PROBLEM FORMULATION

A two-player game can be defined by a tuple (R,A, J,H),
in which the first and the second player select actions r ∈ R ⊂
Rnr and a ∈ A ⊂ Rna and pay costs J(r, a) and H(r, a),
respectively. In a Stackelberg model, the second player (the
follower) can observe the choice of the first one (the leader)
before making its own selection [7]. Hence a rational follower
will always select an action from the best-response set

βa(r) := argmin
a∈A

H(r, a) (1)

against a leader’s action r. We restrict our attention to compact
action sets and continuous cost functions; hence the set βa(r)
is nonempty and compact for each r ∈ R. The notion of
Stackelberg equilibrium is defined as follows (see, e.g., [2,
Def. 4.6 and 4.7, pp. 179–180]):

Definition 1 (Stackelberg equilibrium). Given a two-player
game (R,A, J,H), an action r∗ ∈ R is called a Stackelberg
equilibrium action for the leader if

max
a∈βa(r∗)

J(r∗, a) = J∗ := inf
r∈R

max
a∈βa(r)

J(r, a), (2)

where the follower’s best-response set βa(r) is defined by (1),
and J∗ is known as the Stackelberg cost for the leader. For a
constant ε > 0, an action r∗ε ∈ R is called an ε Stackelberg
action for the leader if

max
a∈βa(r∗ε )

J(r∗ε , a) ≤ J∗ + ε.
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The Stackelberg cost provides a cost that the leader is able
to guarantee against a rational follower. However, the leader
may receive a better (smaller) cost while playing a Stackelberg
equilibrium action, since the follower’s actual action does not
necessarily maximize the leader’s cost over the best-response
set; see [29], [30] and [31, Sec. 15.3] for more discussions.
In practice, it is possible that no Stackelberg equilibrium
action exists, but the leader is able to guarantee essentially
the Stackelberg cost by playing an ε Stackelberg action for a
sufficiently small ε > 0 (see the discussion after Assumption 1
and the numerical examples in Section VII).

We are interested in games with incomplete information in
which the leader does not know the follower’s cost function
or action set and thus cannot simply compute a Stackelberg
equilibrium action or an ε Stackelberg action. Specifically, the
follower selects its action by an unknown function f : R → A
such that

f(r) ∈ βa(r) ∀ r ∈ R.

To avoid confusion, we use the terminology follower’s strategy
for the function f(·), and follower’s action for the value f(r)
obtained for a given leader’s action r ∈ R. While the specific
follower’s strategy f is unknown, we do know that it belongs
to a parametric family of functions {r 7→ f̂(θ, r) : θ ∈ Θ ⊂
Rnθ}, namely, there is a parameter value θ ∈ Θ such that

f(r) = f̂(θ, r) ∀ r ∈ R. (3)

The parametric form f̂ : Θ × R → Rna , including the set
Θ, is known to the leader, but the actual parameter value
θ is unknown. The following generic regularity conditions
are imposed to ensure that an ε Stackelberg action exists,
and the gradients and projections needed for constructing our
estimation and optimization dynamics are well-defined.

Assumption 1 (Regularity). The leader’s action set R and the
parameter set Θ are compact and convex, and the follower’s
action set A is compact; the leader’s cost function J and the
parametric function f̂ are continuously differentiable, and the
follower’s cost function H is continuous.

As a result of Assumption 1, an ε Stackelberg action for
the leader exists for every ε > 0 [2, Prop. 4.2, p. 180]. The
conditions in Assumption 1 are much weaker than standard
conditions for the existence of a Stackelberg equilibrium action
(see, e.g., [2, Th. 4.8, p. 180]), which are in turn much weaker
than those for a Nash equilibrium (see, e.g., [2, Th. 4.3,
p. 173]). Therefore, they are in line with our interest in games
where no Nash equilibrium exists but a “practical” Stackelberg
equilibrium does (see the numerical examples in Section VII).

In practice, there is little loss of generality in assuming
that the unknown follower’s strategy f belongs to a known
parametric family of functions, as one can always construct
an arbitrarily accurate approximation for f on the compact
set R using a finite weighted sum of a preselected class of
basis functions. A well-known method for constructing such
approximation is the radial basis function (RBF) method [32,
Sec. 3], in which the parametric function takes the form

f̂(θ, r) :=

nθ∑
j=1

θjbj(r) :=

nθ∑
j=1

θjϕ(∥r − rcj∥/µj),

where ϕ : R+ → Rna is a fixed kernel function, and each
bj : R → Rna is an RBF with center rcj ∈ Rnr and scaling
factor µj > 0. Note that the parametric function f̂(θ, r) in the
RBF method is affine in θ for each fixed r ∈ R. This property
also holds for many other widely-used function approximation
methods such as those based on polynomials and splines [32,
Sec. 3], which motivates us to focus exclusively on such
parametric functions in this paper.

Assumption 2 (Affinity). The map θ 7→ f̂(θ, r) is affine for
each fixed r ∈ R.

The leader’s goal is to minimize its cost J(r, a) for the
follower’s action a = f(r) = f̂(θ, r), namely, to solve the
optimization problem

min
r∈R

J(r, a) = min
r∈R

J
(
r, f̂(θ, r)

)
, (4)

using past observations of follower’s action a and leader’s cost
J(r, a), but without knowing the actual parameter value θ. To
solve this problem, we propose an adaptive learning approach
that consists of the following two components:

1) Constructing a parameter estimate θ̂ ∈ Θ that approaches
the unknown value θ.

2) Adjusting the leader’s action r to minimize its estimated
cost

Ĵ(θ̂, r) := J
(
r, f̂(θ̂, r)

)
,

namely, to solve the optimization problem

min
r∈R

Ĵ(θ̂, r) = min
r∈R

J
(
r, f̂(θ̂, r)

)
. (5)

Our approach is designed based on continuous-time dynamical
systems, which is a common practice in the literature of
learning in games [5], [22].

III. ESTIMATION AND OPTIMIZATION

In this section, we construct dynamical systems for estimat-
ing the unknown parameter value and optimizing the leader’s
action. First, we recall some notions and basic properties
from convex analysis; more details can be found in standard
textbooks, e.g, [33, Ch. 6] or [34, Sec. 5.1].

We denote by [x]S the projection of a point x ∈ Rn onto a
closed convex set S ⊂ Rn, namely,

[x]S ∈ argmin
z∈S

∥z − x∥,

which is unique and satisfies [x]S = x for all x ∈ S.
We denote by TS(x) and NS(x) the tangent cone and the

normal cone to a convex set S ⊂ Rn at a point x ∈ S ,
respectively, namely,

TS(x) := cl{s(z − x) : z ∈ S, s > 0},
NS(x) := {v ∈ Rn : ∀ z ∈ S, v⊤(z − x) ≤ 0},

which are closed and convex sets that satisfy TS(x) = Rn

and NS(x) = {0} for all x ∈ S\∂S. For arbitrary convex set
S ⊂ Rn and point x ∈ S, we have

z−[z]TS(x) ∈ NS(z), [z]⊤TS(x)z =
∥∥[z]TS(x)

∥∥2 ∀ z ∈ Rn

(6)
and

v⊤w ≤ 0, [w]TS(x) = 0 ∀ v ∈ TS(x), w ∈ NS(x). (7)
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A. Parameter estimation

Our goal is to design a parameter estimate θ̂ for the
unknown value θ so that the estimation error θ̂− θ decreases
monotonically in norm, regardless of how the leader’s action
r is adjusted. Since neither θ̂−θ nor its norm can be observed
directly, we construct θ̂ in terms of the observation error

eobs :=

[
Ĵ(θ̂, r)− J(r, a)

â− a

]
, (8)

which includes the difference between the observed follower’s
action a = f̂(θ, r) and its current estimate â := f̂(θ̂, r), as
well as the difference between the known leader’s cost J(r, a)
and the estimate Ĵ(θ̂, r) = J(r, â). The following lemma
establishes a relation between eobs and θ̂ − θ:

Lemma 1. For every r ∈ R and θ, θ̂ ∈ Θ, we have

eobs = K(r, a, θ̂)(θ̂ − θ), (9)

where the gain matrix K(r, a, θ̂) is defined by

K(r, a, θ̂) :=

[∫ 1

0
∇aJ(r, ρâ+ (1− ρ)a) dρ

I

]
∇θf̂(r). (10)

With a slight abuse of notation, we denote by ∇θf̂(r)
the Jacobian matrix of f̂(θ, r) with respect to θ, as it is
independent of θ under the affine condition in Assumption 2.

Proof of Lemma 1. Given a = f̂(θ, r) and â = f̂(θ̂, r),
consider the function h : [0, 1] → R defined by

h(ρ) := J(r, ρâ+ (1− ρ)a).

As the function J is continuously differentiable, so is h. Hence

Ĵ(θ̂, r)− J(r, a) = h(1)− h(0) =

∫ 1

0

dh(ρ)

dρ
dρ

=

(∫ 1

0

∇aJ(r, ρâ+ (1− ρ)a) dρ

)
(â− a).

Moreover, as the Jacobian matrix ∇θf̂(r) is independent of θ
following the affine condition in Assumption 2, we have

â− a = f̂(θ̂, r)− f̂(θ, r) = ∇θf̂(r)(θ̂ − θ).

Therefore, (9) holds.

As a result of Lemma 1, we would have an observation error
eobs = 0 if the current parameter estimate was correct, namely,
θ̂ = θ. However, in most applications, the dimension nθ of the
parameter vector θ is much higher than the dimension na +1
of the observables, in which case the gain matrix K(r, a, θ̂)
cannot be injective, and a zero observation error eobs does not
imply a correct parameter estimate θ̂.

To ensure that the estimation error θ̂−θ decreases monoton-
ically in norm, we propose the following estimation dynamics:

˙̂
θ =

[
−λeK(r, a, θ̂)⊤eobs

]
TΘ(θ̂)

, (11)

where the gain matrix K(r, a, θ̂) is defined by (10), and λe :
R+ → {0, λθ} is a switching signal defined by

λe(t) :=


λθ if ∥eobs(t)∥ ≥ εobs;

0 if ∥eobs(t)∥ ≤ ε′obs;

lims↗t λe(s) otherwise
(12)

and λe(0) := λθ if ∥eobs(0)∥ ∈ (ε′obs, εobs) with preselected
constants εobs > ε′obs > 0 and λθ > 0. The estimation
dynamics (11) has the following features: First, its implemen-
tation only requires variables known to the leader; specifically,
computing K(r, a, θ̂) does not require knowing the actual
parameter value θ. Second, the right-hand side of (11) is
projected onto the tangent cone TΘ(θ̂) to ensure that the
parameter estimate θ̂ is always inside the feasible set Θ
[34]. However, this operation introduces discontinuities and
requires tools from differential inclusions theory to ensure
global existence and convergence of solutions. Finally, the
switching signal λe is designed so that the adaptation of θ̂
is on when ∥eobs∥ ≥ εobs and off when ∥eobs∥ ≤ ε′obs, using
a hysteresis switching rule to prevent chattering.

Under (11), the estimation error θ̂ − θ satisfies

d∥θ̂ − θ∥2

dt
= 2(θ̂ − θ)⊤

[
−λeK(r, a, θ̂)⊤eobs

]
TΘ(θ̂)

≤ 2(θ̂ − θ)⊤
(
−λeK(r, a, θ̂)⊤eobs

)
= −2λe∥eobs∥2,

where the inequality follows from the fact that θ− θ̂ ∈ TΘ(θ̂)
and the first properties in (6) and (7), and the last equality
follows from (9). Hence we conclude that the estimation
dynamics (11) ensures that

d∥θ̂ − θ∥2

dt
≤ −2λe∥eobs∥2 ≤ 0, (13)

which shows that ∥θ̂−θ∥ decreases monotonically. Moreover,
the definition of λe in (12) implies that ∥θ̂− θ∥ does not stop
approaching 0 as long as ∥eobs∥ ≥ εobs. In Section IV, we
will prove that the adaptation of θ̂ is guaranteed to terminate
in finite time, after which ∥eobs∥ < εobs will always hold.

B. Cost minimization

The estimation dynamics (11) ensures that the estimation
error θ̂ − θ decreases monotonically in norm regardless of
the leader’s actions r ∈ R. This enables a wide choice of
algorithms to adjust r toward a Stackelberg equilibrium action.
Our analysis in this paper is focused on adjusting r via a
gradient descent method, which is easy to implement and fairly
robust for a broad range of applications. The leader’s ultimate
goal is to minimize its cost J(r, a) = J(r, f̂(θ, r)), for which
the gradient descent direction depends on the unknown pa-
rameter value θ. To overcome this, we change the optimization
objective to the estimated leader’s cost Ĵ(θ̂, r) = J(r, f̂(θ̂, r)),
which depends instead on the parameter estimate θ̂. This
change is justified by the property that the difference between
the actual and estimated leader’s costs will be bounded by
∥Ĵ(θ̂, r)−J(r, a)∥ ≤ ∥eobs∥ < εobs in finite time, as we shall
prove in Section IV.

The time derivative of the estimated leader’s cost Ĵ(θ̂, r) is
given by

˙̂
J(θ̂, r) = ∇θĴ(θ̂, r)

˙̂
θ +∇rĴ(θ̂, r) ṙ, (14)

where

∇θĴ(θ̂, r) = ∇aJ(r, â)∇θf̂(r),

∇rĴ(θ̂, r) = ∇rJ(r, â) +∇aJ(r, â)∇rf̂(θ̂, r)
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with â = f̂(θ̂, r). Since we will prove that the adaptation of
θ̂ terminates in finite time, we can neglect the term with ˙̂

θ in
(14) and focus exclusively on adjusting r along the gradient
descent direction of Ĵ(θ̂, r) in r, which leads to the following
optimization dynamics:

ṙ =
[
−λr∇rĴ(θ̂, r)

⊤]
TR(r)

(15)

with a preselected constant λr > 0. Note that the right-hand
side of (15) is projected onto the tangent cone TR(r) to ensure
that the leader’s action r is always inside its action set R [34].

Substituting (15) into (14) yields

˙̂
J(θ̂, r) = ∇rĴ(θ̂, r)

[
−λr∇rĴ(θ̂, r)

⊤]
TR(r)

+∇θĴ(θ̂, r)
˙̂
θ

= −
∥∥∥[−λr∇rĴ(θ̂, r)

⊤]
TR(r)

∥∥∥2/λr +∇θĴ(θ̂, r)
˙̂
θ

= −∥ṙ∥2/λr +∇θĴ(θ̂, r)
˙̂
θ,

where the second equality follows from the second property in
(6). Hence we conclude that the optimization dynamics (15)
ensures that

˙̂
θ = 0 =⇒ ˙̂

J(θ̂, r) ≤ −∥ṙ∥2/λr ≤ 0,

which shows that Ĵ(θ̂, r) decreases monotonically when the
adaptation of θ̂ stops. In Section IV, we will prove that the
leader’s action r is guaranteed to converge asymptotically to
a set where the first-order necessary condition (FONC) for
optimality holds for the optimization problem (5).

IV. CONVERGENCE ANALYSIS

In this section, we prove convergence properties for the es-
timation and optimization dynamics introduced in Section III.

Theorem 1. Under Assumptions 1 and 2, given arbitrary
εobs > ε′obs > 0 in (12), the estimation and optimization
dynamics (11) and (15) ensure that the following properties
hold:

1) There is a time T ≥ 0 after which the parameter estimate
θ̂ and the observation error eobs satisfy

∥eobs(t)∥ < εobs, θ̂(t) = θ̂(T ) ∀ t ≥ T. (16)

2) The estimated leader’s cost Ĵ(θ̂, r) satisfies

lim
t→∞

[
−∇rĴ(θ̂(T ), r(t))

⊤]
TR(r(t))

= 0. (17)

Specifically, item 1) ensures that the adaptation of θ̂ ter-
minates in finite time, after which one cannot distinguish θ̂
from the actual parameter value θ by observing the follower’s
action a = f̂(θ, r) and the leader’s cost J(r, a), up to an error
eobs bounded in norm by the preselected constant εobs. Item 2)
means that the FONC for optimality holds asymptotically for
the optimization problem (5), as justified by the next lemma:

Lemma 2. For each fixed θ̂ ∈ Θ, at a local optimum r̂∗ of
the optimization problem (5), we have[

−∇rĴ(θ̂, r̂
∗)⊤

]
TR(r̂∗)

= 0. (18)

Proof. It is a standard result in constrained optimization that
−∇rĴ(θ̂, r̂

∗)⊤ ∈ NR(r̂∗); see, e.g., [33, Th. 6.12, p. 207].
Then (18) follows from the second property in (7).

Proof of Theorem 1. Due to projection and switching, there
may be discontinuities in the right-hand sides of (11) and (15).
Hence we prove Theorem 1 using tools from differential inclu-
sions theory; see Appendix A for the required preliminaries.

First, we establish existence of solutions for the projected
dynamical system defined by (11) and (15).

Lemma 3. For each initial value (θ̂0, r0) ∈ Θ×R, there exists
a solution to (11) and (15) over R+; specifically, there exist
absolutely continuous functions θ̂ : R+ → Θ and r : R+ → R
such that (11) and (15) hold almost everywhere in R+, with
(θ̂(0), r(0)) = (θ̂0, r0). Moreover, θ̂, r, and eobs defined by
(8), and their time derivatives ˙̂

θ, ṙ, and ėobs, are essentially
bounded over R+.

Proof. Lemma 3 can be proved using results on hysteresis
switching [35] and projected differential inclusions [34]; see
Appendix B for the complete proof.

We are now ready to prove item 1) of Theorem 1 using sim-
ilar arguments to those used in the proof of Barbalat’s lemma
[36, Lemma 3.2.6, p. 76]. Note that Barbalat’s lemma cannot
be applied directly becasue ėobs may be piecewise continuous
instead of continuous, due to projection and switching. Recall
that ∥θ̂−θ∥ decreases monotonically following (13). As ∥θ̂−θ∥
is bounded from below by 0, the limit limt→∞ ∥θ̂(t)−θ∥ exists
and is finite; hence

lim
t→∞

∫ t

0

λe(s)∥eobs(s)∥2 ds (19)

exists and is finite. Meanwhile, (11) and (12) imply that (16)
holds if there is a time T ≥ 0 for which

λe(t) = 0 ∀ t ≥ T, (20)

which we will prove by contradiction. Assume that (20) does
not hold for any T ≥ 0. Then (12) implies that there exists
a strictly increasing, unbounded time sequence (tk)k∈Z+

with
t0 > 0 such that for all k ∈ Z+, we have λe(tk) = λθ and
thus ∥eobs(tk)∥ > ε′obs. Recall that ėobs is essentially bounded
over R+, and let

δ := min

{
t0,

εobs − ε′obs
ess sups≥0 ∥ėobs(s)∥

}
> 0.

For each k ∈ Z+, consider the following two possibilities:
1) If there is a time sk ∈ [tk− δ, tk] such that ∥eobs(sk)∥ =

εobs, then (12) and the definition of δ imply that

∥eobs(t)∥ > ε′obs, λe(t) = λθ ∀ t ∈ [sk, sk+δ). (21)

2) Otherwise ∥eobs(t)∥ < εobs for all t ∈ [tk − δ, tk]; hence
(12) with λe(tk) = λθ implies that (21) holds with sk =
tk − δ.

In summary, there is an unbounded time sequence (sk)k∈Z+

such that (21) holds for all k ∈ Z+. Then we have∫ sk+δ

sk

λe(s)∥eobs(s)∥2 ds > λθ(ε
′
obs)

2δ > 0 ∀ k ∈ Z+,

which contradicts the property that (19) exists and is finite.
Hence there is a time T ≥ 0 for which (20), and therefore
(16), are both satisfied.
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Finally, we prove item 2) of Theorem 1 using the invariance
theorem for projected gradient descent from Appendix A:
After the time T in (16), the optimization dynamics (15)
become

ṙ =
[
−λr∇rĴ(θ̂(T ), r)

⊤]
TR(r)

,

which can be modeled as a projected dynamical system (45)
with the state x := r, the set S := R, and the function

g(r) := −λr∇rĴ(θ̂(T ), r)
⊤.

Hence (46) in Proposition 1 holds with V (x) := λrĴ(θ̂(T ), x).
Then (17) follows from (47).

Theorem 1 makes no claim regarding the size of the final
estimation error θ̂(T )− θ. However, a small ∥θ̂(T )− θ∥ can
be guaranteed under a persistent excitation (PE) condition.

Assumption 3 (PE). The gain matrix defined by (10), written
as K(t) := K(r(t), a(t), θ̂(t)) for brevity, satisfies∫ t+τ0

t

K(s)⊤K(s) ds− α0I ≥ 0 ∀ t ≥ 0 (22)

for some constants τ0, α0 > 0 (i.e., the matrix on the left-hand
side of the first inequality in (22) is positive semidefinite).

Theorem 2. Under Assumptions 1–3, given an arbitrary εθ >
0, if εobs and ε′obs in (12) are selected so that

εθ
√
α0/τ0 ≥ εobs > ε′obs > 0, (23)

then the estimation and optimization dynamics (11) and (15)
ensure that the following properties hold:

1) There is a time T ≥ 0 after which the parameter estimate
θ̂ and the observation error eobs satisfy (16) and

∥θ̂(T )− θ∥ < εθ. (24)

2) The asymptotic FONC for optimality (17) holds for the
estimated leader’s cost Ĵ(θ̂, r).

Proof. The properties (16) and (17) follow from Theorem 1.
To prove (24), we note that∫ T+τ0

T

∥eobs(s)∥2 ds < ε2obsτ0 ≤ α0ε
2
θ (25)

following (16) and (23). Meanwhile, (9), (16), and the PE
condition (22) imply that∫ T+τ0

T

∥eobs(s)∥2 ds =
∫ T+τ0

T

∥∥K(s)(θ̂(T )− θ)
∥∥2 ds

= (θ̂(T )− θ)⊤
(∫ T+τ0

T

K(s)⊤K(s) ds

)
(θ̂(T )− θ)

≥ α0∥θ̂(T )− θ∥2,
which, when compared with (25), yields (24).

Remark 1. Following (10), the PE condition (22) holds if∫ t+τ0

t

∇θf̂(r(s))
⊤∇θf̂(r(s)) ds− α0I ≥ 0 ∀ t ≥ 0. (26)

While (26) is more restrictive than (22), the former can be
verified without observing the follower’s action a (or even the
parameter estimate θ̂).

Remark 2. We can see from the proof of Theorem 2 that,
to obtain (24), the PE condition (22) (or (26)) only needs to
hold at the time t = T in (16). Therefore, to ensure (24)
in practice, it suffices to enforce (22) (or (26)) whenever the
switching signal λe in (12) is set to 0, instead of at all times.

V. MISMATCH IN PARAMETERIZATION

The results so far assumed that the unknown follower’s strat-
egy f satisfies the matching condition (3) for some unknown
value θ in the parameter set Θ. In this section we show that,
in the scenario without such perfect matching, the estimation
and optimization dynamics introduced in Section III can still
ensure an error bound in proportion to the size of the mismatch
between f(r) and f̂(θ, r).

Assumption 4 (Mismatch). The follower’s strategy f is con-
tinuous, and there is a parameter value θ ∈ Θ and a constant
εf ≥ 0 such that

∥f̂(θ, r)− f(r)∥ ≤ εf ∀ r ∈ R. (27)

The upper bound εf is known to the leader, but the parameter
value θ is unknown.

The following lemma establishes a bound for the portion of
observation error due to mismatch in parameterization

efobs := eobs −K(r, a, θ̂)(θ̂ − θ), (28)

where a = f(r), â = f̂(θ̂, r), and the gain matrix K(r, a, θ̂)
is defined by (10).

Lemma 4. For every r ∈ R, θ ∈ Θ such that (27) holds, and
θ̂ ∈ Θ, we have

∥efobs∥ ≤ εfobs := εf
√

1 + κ2, (29)

where

κ := max
ā∈co Â

∥∇aJ(r, ā)∥, Â :=
⋃

θ∈Θ, r∈R

εfB(f̂(θ, r)).

Proof. Using similar arguments to those in the proof of
Lemma 1, we can show that

eobs =

[∫ 1

0
∇aJ(r, ρâ+ (1− ρ)a) dρ

I

]
(â− a),

and thus

efobs =

[∫ 1

0
∇aJ(r, ρâ+ (1− ρ)a) dρ

I

]
(f̂(θ, r)− a).

As â ∈ Â and (27) implies that a = f(r) ∈ Â, we have
ρâ+ (1− ρ)a ∈ co Â and thus ∥∇aJ(r, ρâ+ (1− ρ)a)∥ ≤ κ.
Then (29) follows from (27) and the definition of the matrix
norm induced by the Euclidean norm.

We now generalize Theorems 1 and 2 to the current scenario
without perfect matching between f(r) and f̂(θ, r) for some
θ ∈ Θ.

Theorem 3. Under Assumptions 1, 2 and 4, if εobs and ε′obs
in (12) are selected so that

εobs > ε′obs > εfobs, (30)
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∥eobs(s)∥2 = ∥K(s)(θ̂(T )− θ) + efobs(s)∥
2 ≥

(
1−

εfobs
√
τ0

εθ
√
α0

)
∥K(s)(θ̂(T )− θ)∥2 +

(
1−

εθ
√
α0

εfobs
√
τ0

)
∥efobs(s)∥

2

= (εθ
√
α0 − εfobs

√
τ0)

(
∥K(s)(θ̂(T )− θ)∥2

εθ
√
α0

−
∥efobs(s)∥2

εfobs
√
τ0

)
.

(31)

∫ T+τ0

T

∥eobs(s)∥2 ds ≥ (εθ
√
α0 − εfobs

√
τ0)

(∫ T+τ0

T

∥K(s)(θ̂(T )− θ)∥2

εθ
√
α0

ds−
∫ T+τ0

T

∥efobs(s)∥2

εfobs
√
τ0

ds

)
≥ (εθ

√
α0 − εfobs

√
τ0)

(
(θ̂(T )− θ)⊤

(∫ T+τ0

T

K(s)⊤K(s)

εθ
√
α0

ds

)
(θ̂(T )− θ)−

∫ T+τ0

T

εfobs√
τ0

ds

)
≥ (εθ

√
α0 − εfobs

√
τ0)

(√
α0

εθ
∥θ̂(T )− θ∥2 − εfobs

√
τ0

)
.

(32)

then the estimation and optimization dynamics (11) and (15)
ensure that the following properties hold:

1) There is a time T ≥ 0 after which the parameter estimate
θ̂ and the observation error eobs satisfy (16).

2) The asymptotic FONC for optimality (17) holds for the
estimated leader’s cost Ĵ(θ̂, r).

Proof. First, Lemma 3 still holds as the function f is contin-
uous, and item 2) here is the same as item 2) of Theorem 1
because the optimization dynamics are the same after the
adaptation of θ̂ stops. Then it remains to prove item 1)
here, which will be done using similar arguments to those in
Section III-A and the proof of item 1) of Theorem 1. Under
the estimation dynamics (11) with (30) in (12), the estimation
error θ̂ − θ now satisfies

d∥θ̂ − θ∥2

dt
= 2(θ̂ − θ)⊤

[
−λeK(r, a, θ̂)⊤eobs

]
TΘ(θ̂)

≤ 2(θ̂ − θ)⊤
(
−λeK(r, a, θ̂)⊤eobs

)
= −2λe(eobs − efobs)

⊤eobs

≤ −2λe(∥eobs∥ − ∥efobs∥)∥eobs∥,

where the first inequality follows from the fact that θ − θ̂ ∈
TΘ(θ̂) and the first properties in (6) and (7), and the last
equality follows from the definition of efobs in (28). Note that
if λe = 0 then d∥θ̂−θ∥2/ dt = 0. Otherwise (12) implies that
λe = λθ; hence

∥eobs∥ > ε′obs > εfobs ≥ ∥efobs∥ (33)

following also (29) and (30). Consequently, we have

d∥θ̂ − θ∥2

dt
≤ −2λθ(∥eobs∥ − ∥efobs∥)∥eobs∥ < 0.

Hence we conclude that the estimation dynamics (11) now
ensures that

d∥θ̂ − θ∥2

dt
≤ −2λe(∥eobs∥ − ∥efobs∥)∥eobs∥ ≤ 0, (34)

and the equality in the last inequality holds if and only if
λe = 0. Therefore, ∥θ̂ − θ∥ decreases monotonically, and the
definition of λe in (12) implies that ∥θ̂ − θ∥ does not stop
approaching 0 as long as ∥eobs∥ ≥ εobs. As ∥θ̂−θ∥ is bounded

from below by 0, the limit limt→∞ ∥θ̂(t) − θ∥ exists and is
finite; hence

lim
t→∞

∫ t

0

λe(s)(∥eobs(s)∥ − ∥efobs(s)∥)∥eobs(s)∥ ds (35)

exists and is finite. Meanwhile, (11) and (12) imply that (16)
holds if there is a time T ≥ 0 for which (20) in the proof
of Theorem 1 holds, which we will prove by contradiction.
Assume that (20) does not hold for any T ≥ 0. Then the
arguments in the second step of the proof of Theorem 1 show
that there is an unbounded time sequence (sk)k∈Z+ such that
(21) holds for all k ∈ Z+. Consequently, (33) implies that∫ sk+δ

sk

λe(s)(∥eobs(s)∥ − ∥efobs(s)∥)∥eobs(s)∥ ds

> λθ(ε
′
obs − εfobs) ε

′
obsδ > 0 ∀ k ∈ Z+,

which, together with (34), contradicts the property that (35)
exists and is finite. Hence there is a time T ≥ 0 for which
(20), and therefore (16), are both satisfied.

Theorem 4. Under Assumptions 1–4, given an arbitrary εθ >
2εfobs

√
τ0/α0, if εobs and ε′obs in (12) are selected so that

εθ
√
α0/τ0 − εfobs ≥ εobs > ε′obs > εfobs, (36)

then the estimation and optimization dynamics (11) and (15)
ensure that the following properties hold:

1) There is a time T ≥ 0 after which the parameter estimate
θ̂ and the observation error eobs satisfy (16) and (24).

2) The asymptotic FONC for optimality (17) holds for the
estimated leader’s cost Ĵ(θ̂, r).

Proof. The properties (16) and (17) follow from Theorem 3.
To prove (24), we note that∫ T+τ0

T

∥eobs(s)∥2 ds < ε2obsτ0 ≤ (εθ
√
α0 − εfobs

√
τ0)

2 (37)

following (16) and (36), in which εθ
√
α0 − εfobs

√
τ0 > 0

as εθ > 2εfobs
√

τ0/α0. Meanwhile, (16), (28), and Young’s
inequality imply that (31) above holds for all s ≥ T , which,
combined with the PE condition (22) and (29), yields (32)
above. Comparing (32) with (37), we see that (24) holds.
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Note that the matching condition (3) is a special case of
the condition (27) with εf = 0. Therefore, Theorems 3 and 4
generalize Theorems 1 and 2 to the scenario where εf is not
necessarily 0, respectively.

VI. UNOBSERVABLE FOLLOWER’S ACTIONS

In this section, we consider the case where the follower’s
actions cannot be observed. By making a few adjustments to
the proposed adaptive learning approach, we are able to ensure
similar convergence properties to those in Section IV and V,
using only past observations of leader’s cost.

We start by assuming that the leader’s cost given the
follower’s strategy, which is an unknown function J(r, f(r))
of only its own action r ∈ R, belongs to a known parametric
family of functions {r 7→ Ĵ(θ, r) : θ ∈ Θ ⊂ Rnθ}, namely,
there is an unknown parameter value θ ∈ Θ such that

J(r, f(r)) = Ĵ(θ, r) ∀ r ∈ R. (38)

The regularity and affinity conditions in Assumptions 1 and 2
are assumed to hold with Ĵ in place of f̂ .

The observation error is now

eobs := Ĵ(θ̂, r)− J(r, a) (39)

and satisfies

eobs = ∇θĴ(r)(θ̂ − θ) ∀ r ∈ R, θ, θ̂ ∈ Θ,

where ∇θĴ(r) is the Jacobian matrix of Ĵ(θ, r) with respect
to θ which is independent of θ. Consequently, the estimation
dynamics are adjusted to

˙̂
θ =

[
−λe∇θĴ(r)

⊤eobs
]
TΘ(θ̂)

(40)

with the same switching signal λe defined by (12). Using
similar arguments to those in Section III-A and the proofs of
Theorems 1 and 2, we obtain the convergence results below.

Theorem 5. Under Assumptions 1 and 2 with Ĵ in place of
f̂ , given arbitrary εobs > ε′obs > 0 in (12), the estimation and
optimization dynamics (40) and (15) ensure that the following
properties hold:

1) There is a time T ≥ 0 after which the parameter estimate
θ̂ and the observation error eobs in (39) satisfy (16).

2) The asymptotic FONC for optimality (17) holds for the
estimated leader’s cost Ĵ(θ̂, r).

3) Suppose that∫ t+τ0

t

∇θĴ(r(s))
⊤∇θĴ(r(s)) ds−α0I ≥ 0 ∀ t ≥ 0

(41)
for some constants τ0, α0 > 0. Given an arbitrary εθ > 0,
if εobs and ε′obs in (12) are selected so that (23) holds,
then the parameter estimate θ̂ in (39) also satisfies (24).

In the scenario without the perfect matching (38) between
J(r, f(r)) and Ĵ(θ, r) for some θ ∈ Θ, the adjusted approach
can still ensure an error bound in proportion to the size of the
mismatch between the two functions.

Assumption 5 (Mismatch in cost parameterization). The
follower’s strategy f is continuous, and there is a parameter
value θ ∈ Θ and a constant εJ ≥ 0 such that

∥Ĵ(θ, r)− J(r, f(r))∥ ≤ εJ ∀ r ∈ R. (42)

The upper bound εJ is known to the leader, but the parameter
value θ is unknown.

The portion of observation error due to mismatch in param-
eterization is now

eJobs := eobs −∇θĴ(r)(θ̂ − θ)

and satisfies

∥eJobs∥ = ∥Ĵ(θ, r)− J(r, f(r))∥ ≤ εJ

for every r ∈ R, θ ∈ Θ such that (42) holds, and θ̂ ∈ Θ.
Using similar arguments to those in the proofs of Theorems 3
and 4, we obtain the following generalization of Theorem 5
to the scenario where εJ is not necessarily 0.

Theorem 6. Under Assumptions 1, 2, and 5 with Ĵ in place
of f̂ , if εobs and ε′obs in (12) are selected so that

εobs > ε′obs > εJ ,

then the estimation and optimization dynamics (40) and (15)
ensure that the following properties hold:

1) There is a time T ≥ 0 after which the parameter estimate
θ̂ and the observation error eobs in (39) satisfy (16).

2) The asymptotic FONC for optimality (17) holds for the
estimated leader’s cost Ĵ(θ̂, r).

3) Suppose that (41) holds for some constants τ0, α0 > 0.
Given an arbitrary εθ > 2εJ

√
τ0/α0, if εobs and ε′obs in

(12) are selected so that

εθ
√

α0/τ0 − εJ ≥ εobs > ε′obs > εJ ,

then the parameter estimate θ̂ in (39) also satisfies (24).

Note that, while the convergence properties in Theorems 5
and 6 are similar to those in Theorems 1–4, it usually takes a
considerably longer time for the adaptation of θ̂ to terminate in
the current case, due to the low dimension of the observable.

VII. SIMULATION EXAMPLES

In this section, we illustrate the proposed approach and
convergence results through simulation examples motivated by
link-flooding DDoS attacks such as the Crossfire attack [6].

Consider a communication network consisting of L parallel
links connecting a source to a destination. The set of links
is denoted by L := {1, . . . , L}. Suppose that a router (the
leader) distributes a total of R units of legitimate traffic
among the parallel links, and an attacker (the follower) disrupts
communication by injecting superfluous traffic with a budget
of A units. The router’s action is represented by an L-vector
r ∈ R := {r ∈ RL

+ :
∑

l∈L rl = R} of the desired legitimate
traffic on each link, and the attacker’s action is represented by
an L-vector a ∈ A := {a ∈ RL

+ :
∑

l∈L al = A} of the attack
traffic. Each link l ∈ L is characterized by a fixed capacity
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c0 > 0 that limits the total traffic on l. When rl + al > c0,
the actual legitimate traffic on l is decreased to

ul := min{rl, max{c0 − al, 0}}

to meet the capacity. The router aims to maximize the total
actual legitimate traffic; hence its cost is defined by

J(r, a) := −
∑
l∈L

ul.

We start by considering the case where the attacker aims to
minimize the total actual legitimate traffic; hence its cost is
defined by

H(r, a) :=
∑
l∈L

ul = −J(r, a). (43)

Clearly, neither the router nor the attacker has an incentive to
assign more traffic on a link than the capacity c0. Hence we
assume that rl, al ≤ c0 for all l ∈ L. More details about the
network and attack models can be found in [31]. For most
nontrivial cases, the game defined by (R,A, J,H) has no
(pure) Nash equilibrium. On the other hand, in [31, Cor. 15.2]
it was shown that there is a Stackelberg equilibrium action r∗

for the router defined by r∗l := R/L for all l ∈ L.
If the router knew that the attacker’s cost function was

indeed given by (43), it could play the Stackelberg equi-
librium action r∗. However, we are interested in the more
challenging scenario where it does not, and instead adopts the
proposed adaptive learning approach to optimize its action. We
could use any sufficiently rich parametric family of functions
{r 7→ f̂(θ, r) : θ ∈ Θ}, but the structure of the problem (and
the results in [31]) enables us to select a parameterization
that is accurate for a reasonably small number of parameters:
Following [31, Cor. 15.1], the attacker’s action a = f(r)
depends on the order of the desired legitimate traffic rl on
each link l ∈ L, which can be seen as a function of the
ratio rl1/rl2 of desired legitimate traffic on each pair of links
(l1, l2) ∈ L×L. Therefore, we partition the router’s action set
R according to these ratios. Specially, we take n̄θ partition
cells for each of the L̄ :=

(
L
2

)
pairs of links, and the indicator

function for each partition cell is defined by

bj1,...,jL̄(r) :=


1 if ∀ i ∈ {1, . . . , L̄}, either⌈

n̄θ arctan(rli1/rli2 )

π/2

⌉
= ji,

or rli1 = 0, rli2 ̸= 0, and ji = 1;

0 otherwise

for j1, . . . , jL̄ ∈ {1, . . . , n̄θ}, where (li1, li2) ∈ L × L
is the i-th pair of links, and the arctangent function and
division by π/2 are used to normalize the ratios to the unit
interval [0, 1]. For L = 2 and L = 3, this partition with
n̄θ = 10 is illustrated by dashed lines in Fig. 3(a), 3(b), 5(a),
and 5(b) below. Using this partition, we estimate the attacker’s
strategy f = (f1, . . . , fL) using the parametric function
f̂ = (f̂1, . . . , f̂L) defined by

f̂l(θ, r) :=

n̄θ∑
j1=1

· · ·
n̄θ∑

jL̄=1

θl,j1,...,jL̄bj1,...,jL̄(r), l ∈ L. (44)

Fig. 1. A network with one source S, one destination D, and two parallel
links (assuming that a1, a2 ≤ c0).

Then the dimension of parameter vector is given by nθ = Ln̄L̄
θ .

For large networks, one can adopt clustering techniques [32,
Sec. 16] to reduce the number of partition cells and thus nθ,
or estimate the attacker’s strategy using neural networks; see
[31] for some preliminary results based on the latter approach.
Remark 3. In this model, the functions J and f and the map
r 7→ f̂(θ, r) actually violate the smoothness conditions in
Assumptions 1 and 4, as they are only piecewise continuously
differentiable and the last two are only piecewise continuous.
However, these conditions are only needed to ensure that
the estimation and optimization dynamics (11) and (15) are
well-defined and continuous everywhere. In practice, the set
of non-differentiable points has measure zero and does not
affect the simulation. The set of discontinuous points also has
measure zero but can lead to situations where, near this set, the
optimization cost does not decrease along the steepest descent
direction even for small step sizes. In that case, we project
the gradient descent direction along the hyperplanes defining
the boundary of the current partition cell; from a theoretical
viewpoint, this means following a Filippov solution [37] to
the optimization dynamics (15).

In the following, we simulate the estimation and optimiza-
tion dynamics (11) and (15) for networks with L = 2 and
L = 3 parallel links. In these examples, we set εobs = 0.02,
ε′obs = 0.01, λθ = 0.2, and λr = 0.1, and use randomly
generated initial values of the parameter estimate θ̂ and the
routers’ action r.

A. A network with two parallel links

Consider the network with L = 2 parallel links in Fig. 1,
link capacity c0 = 1, total desired legitimated traffic R =
Lc0/2 = 1, and attack budget A = ⌈Lc0/2⌉ = 1. We set
n̄θ = 10 in (44); hence the dimension of parameter vector is
given by nθ = 20. Following [31, Cor. 15.1], the attacker’s
best response to a router’s action r is to set al = 1 on the link
l with the larger rl. Hence the actual parameter value θ in (3),
written in the tensor form in (44), is given by

θ =

[
0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0

]
.

As established in [31, Cor. 15.2], the Stackelberg equilibrium
action for the router is given by r∗ = (1/2, 1/2). The
simulation results are plotted in Fig. 2 and 3 below, with their
main properties summarized as follows:

First, in Fig. 2(a)–2(d), the PE condition is not enforced.
In the first half of the simulation, the observation error eobs
converges to 0 and the router’s action r converges to the
Stackelberg equilibrium action r∗, despite the fact that the
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Fig. 2. Simulation results for L = 2 (horizontal axis: number of iterations).
(a)–(d): The case w/o PE. (e)–(h): The case w/ PE. For both cases, in the first
half of the simulation, the observation error eobs converges to 0, the router’s
action r converges to the Stackelberg equilibrium action r∗ = (1/2, 1/2),
the actual and estimated router’s costs J and Ĵ converge to −1/2, and the
attacker’s cost H converges to 1/2; in the second half of the simulation,
the attacker switches to the new cost function H̄ , the observation error eobs
converges again to 0, the router’s action r converges to an ε Stackelberg
action near r̄∗ = (1/3, 2/3), the actual and estimated router’s costs J and
Ĵ converge to −2/3, while the attacker’s cost H converges to 1/3.

parameter estimate θ̂ does not converge to the actual value θ
as shown by Fig. 3(a). These results illustrate Theorem 1.

Second, in Fig. 2(e)–2(h), we enforce the PE condition by
monitoring the observation error eobs (see also Remark 2).
Whenever ∥eobs∥ has been continuously smaller than a thresh-
old 0.05 for 200 iterations, we set the router’s action r for each
of the next 50 iterations to a randomly generated L-vector
of sum R. In the first half of the simulation, in addition to
the convergence of eobs and r, the parameter estimate θ̂ also
converges to the actual value θ as shown by Fig. 3(c). These
results illustrate Theorem 2.

Finally, we also consider the scenario where, after half of
the simulation, the attacker starts to focus more on disrupting
link 1 by switching to a new cost function defined by

H̄(r, a) := u1 + u2/2.

Following [31, Cor. 15.1], the attacker’s best response to a
router’s action r is then to set al = 1 on the link l ∈ {1, 2} that
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Fig. 3. Actual and estimated router’s cost functions r1 7→ J(r, f(r)) and
r1 7→ Ĵ(θ̂(T ), r) for L = 2. (a) and (b): W/o PE, the estimation is only
accurate near the asymptotic router’s action. (c) and (d): W/ PE, the estimation
is accurate everywhere.

corresponds to the larger one in {r1, r2/2}. In this scenario,
the parametric function f̂ defined by (44) cannot match the
attacker’s strategy f perfectly. Nevertheless, their mismatch is
bounded by (27) with the parameter value

θ =

[
0 0 0 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0

]
and the constant εf = 1. The results in [31, Th. 15.3] allow
us to conclude that there is no Stackelberg equilibrium action
for the router as defined by Definition 1 for the non-zero-sum
game (R,A, J, H̄); however, there are ε Stackelberg actions
for the router near r̄∗ := (1/3, 2/3) for a sufficiently small
ε > 0. The simulation results in Fig. 2 show that the proposed
approach is able to identify this switch in the attack, as the
observation error eobs converges again to 0 and the router’s
action r converges to an ε Stackelberg action near r̄∗ for
both cases with and without enforcing the PE condition; when
the PE condition is enforced, the parameter estimate θ̂ also
converges to the new parameter value θ as shown by Fig. 3(d).
These results illustrate Theorems 3 and 4.

B. A network with three parallel links

Consider a network with L = 3 parallel links, link capacity
c0 = 1, total desired legitimated traffic R = Lc0/2 = 1.5,
and attack budget A = ⌈Lc0/2⌉ = 2. We set n̄θ = 10 in (44);
hence the dimension of parameter vector is given by nθ =
3000. Following [31, Cor. 15.1], the attacker’s best response
to a router action r is to set al1 = al2 = 1 on the two links l1
and l2 with the two largest rl (see also Fig. 5(a)). Hence the
actual parameter value θ in (3), written in the tensor form in
(44), is given by

θ1,j1,j2,j3 = 1 if j1 ≥ 6 or j2 ≥ 6,

θ2,j1,j2,j3 = 1 if j1 ≤ 5 or j3 ≥ 6,

θ3,j1,j2,j3 = 1 if j2 ≤ 5 or j3 ≤ 5,

θl,j1,j2,j3 = 0 otherwise.
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Fig. 4. Simulation results for L = 3 (horizontal axis: number of iterations).
(a)–(d): The case w/o PE. (e)–(h): The case w/ PE. For both cases, in
the first half of the simulation, the observation error eobs converges to
0, the router’s action r converges to the Stackelberg equilibrium action
r∗ = (1/2, 1/2, 1/2), the actual and estimated router’s costs J and Ĵ
converge to −1/2, and the attacker’s cost H converges to 1/2; in the
second half of the simulation, the attacker switches to the new cost function
H̄ , the observation error eobs converges again to 0, the router’s action r
converges to an ε Stackelberg action near r̄∗ = (3/8, 3/4, 3/8), the actual
and estimated router’s costs J and Ĵ converge to −3/4, while the attacker’s
cost H converges to 3/8.

As established in [31, Cor. 15.2], the Stackelberg equilibrium
action for the router is given by r∗ = (1/2, 1/2, 1/2). The
simulation results are plotted in Fig. 4 and 5, with their main
properties summarized as follows:

First, similar to the previous example with L = 2, in the
first half of the simulation results in Fig. 4, the observation
error eobs converges to 0 and the router’s action r converges
to the Stackelberg equilibrium action r∗ for both cases with
and without enforcing the PE condition, despite the fact that
the parameter estimation is only quite accurate when the PE
condition is enforced as shown by Fig. 5(e) and 5(g). These
results illustrate Theorems 1 and 2.

Second, we also consider the scenario where, after half of
the simulation, the attacker starts to focus more on disrupting
links 1 and 3 by switching to a new cost function defined by

H̄(r, a) := u1 + u2/2 + u3.

Following [31, Cor. 15.1], the attacker’s best response to a
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in the first half of the simulation
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w/o PE, after 2e2 iterations
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w/o PE, after 4e2 iterations
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(g) Estimated router’s cost function,
w/ PE, after 2e4 iterations
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(h) Estimated router’s cost function,
w/ PE, after 4e4 iterations

Fig. 5. Attacker’s strategy (r1, r2) 7→ f1(r) and actual and estimated
router’s cost functions (r1, r2) 7→ J(r, f(r)) and (r1, r2) 7→ Ĵ(θ̂(T ), r)
for L = 3. (e) and (f): W/o PE, the estimation is only accurate near the
asymptotic router’s action. (g) and (h): W/ PE, the estimation is accurate
nearly everywhere.

router’s action r is then to set al1 = al2 = 1 on the two
link l1, l2 ∈ {1, 2, 3} that correspond to the two largest ones
in {r1, r2/2, r3}. In this scenario, the parametric function
f̂ defined by (44) cannot match the attacker’s strategy f
perfectly. Nevertheless, their mismatch is bounded by (27)
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with the parameter value θ given by
θ1,j1,j2,j3 = 1 if j1 ≥ 4 or j2 ≥ 6,

θ2,j1,j2,j3 = 1 if j1 ≤ 3 or j3 ≥ 8,

θ3,j1,j2,j3 = 1 if j2 ≤ 5 or j3 ≤ 7,

θl,j1,j2,j3 = 0 otherwise.

and the constant εf = 1. The results in [31, Th. 15.3] allow
us to conclude that there is no Stackelberg equilibrium action
for the router as defined by Definition 1 for the non-zero-sum
game (R,A, J, H̄); however, there are ε Stackelberg actions
for the router near r̄∗ := (3/8, 3/4, 3/8) for a sufficiently
small ε > 0. The simulation results in Fig. 4 show that the
proposed approach is able to identify this switch in the attack,
as the observation error eobs converges again to 0 and the
router’s action r converges to an ε Stackelberg action near r̄∗

for both cases with and without enforcing the PE condition;
when the PE condition is enforced, the parameter estimation
is also quite accurate as shown by Fig. 5(h). These results
illustrate Theorems 3 and 4.

Note that, in the second half of all examples, the mismatch
between f(r) and f̂(θ, r) is bounded by (27) with the constant
εf = 1. Hence the lower bound in (30) and (36) are given by
εfobs =

√
3 for L = 2 and εfobs = 2 for L = 3. However, in the

simulation results, the convergence properties in Theorems 3
and 4 are achieved with the constant εobs in (11) set to a much
smaller value 0.02, which indicates that the theoretical results
are fairly conservative.

VIII. CONCLUSION

This paper studied the problem of solving two-player Stack-
elberg games with incomplete information about the follower.
An adaptive learning approach was proposed for estimating
the follower’s strategy using a parametric family of functions
based on past observations of follower’s action and leader’s
cost, and simultaneously optimizing the leader’s action for
its estimated cost. Our approach ensured that a preselected,
arbitrarily small error bound could be achieved in finite time
for the estimation error of observables (and the parameter
estimation error as well if a PE condition was enforced),
and the FONC for optimality held asymptotically in time
for the estimated leader’s cost. Moreover, it was shown that
these convergence properties were robust with respect to a
bounded mismatch between the actual follower’s strategy and
the parametric family of follower’s strategies assumed by
the leader. The approach and convergence results were also
extended to a scenario with unobservable follower’s action,
and were illustrated through simulation examples motivated
by link-flooding DDoS attacks.

We focused on Stackelberg games with one leader and one
follower in this paper, but plan to extend the proposed adaptive
learning approach to games with multiple leaders and follow-
ers in future research. Such results will be useful for under-
standing and developing systems with information asymmetry
among decentralized agents, for example, designing mitigation
measures against DDoS attacks on communication networks
with decentralized routers. Other future research directions in-
clude adopting neural networks for efficient estimation in high

dimensional problems (some preliminary results can be found
in [31]), and incorporating more sophisticated optimization
methods such as simulated annealing [32, Sec. 10] to ensure
a globally optimal leader’s action. On applications to network
security, we plan to adapt the proposed approach for networks
with more complex topology and time-varying topology.

APPENDIX A
PROJECTED DYNAMICAL SYSTEMS

Here we provide some preliminaries on existence, bounded-
ness, and convergence of solutions for the projected dynamical
system

ẋ = [g(x)]TS(x) (45)

defined by a continuous function g : S → Rn on a compact
convex set S ⊂ Rn. Analyzing solutions to (45) is difficult as
its right-hand side is only defined over the compact set S and
may be discontinuous in the boundary ∂S due to projection.
Therefore, we consider the notion of viable Carathéodory
solution [34] to (45) over a time interval L ⊂ R+, which
is an absolutely continuous function x : L → S such that
(45) holds almost everywhere in L; in particular, it requires
that x(t) ∈ S for all t ∈ L. The following lemma establishes
existence of such solutions for projected dynamical systems:

Lemma 5. For each x0 ∈ S, there exists a solution x to (45)
over R+ with x(0) = x0.

Proof. On the compact set S , the continuous function g is
bounded and thus a Marchaud map [34, Def. 2.2.4, p. 62].
Then Lemma 5 follows from [34, Th. 10.1.1, p. 354].

Next, we establish an invariance theorem for (45) when the
function g is defined by gradient descent.

Proposition 1. If the function g in (45) satisfies

g(x) = −∇V (x)⊤ ∀x ∈ S (46)

for some function V : S → R, then every solution x to (45)
satisfies

lim
t→∞

[g(x(t))]TS(x(t)) = 0. (47)

To establish Proposition 1, we extend the projected differ-
ential equation (45) to the differential inclusion

ẋ ∈ G(x), (48)

where G : S ⇒ Rn is a set-valued map defined by

G(x) := {g(x)− v : v ∈ NS(x)}
∩
∥∥g(x)− [g(x)]TS(x)

∥∥B(g(x)).
(49)

This extension is inspired by similar ones from [38] and [34,
p. 354], but is specifically designed to simplified the proof of
Proposition 1. As [g(x)]TS(x) ∈ G(x) for all x ∈ S, a solution
to (45) is also a solution to (48). We prove Proposition 1 by
applying an invariance theorem for differential inclusions to
(48), which requires the following continuity property.

Lemma 6. The set-valued map G defined by (49) is upper
semicontinuous on S.
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Proof. The set-valued map x 7→ TS(x) is lower semicontinu-
ous on the compact convex set S [34, Th. 5.1.7, p. 162]. Also,
as g is continuous on S, the map (x, v) 7→ ∥g(x) − v∥ is
continuous on S×Rn. Hence the map x 7→ infv∈TS(x) ∥g(x)−
v∥ = ∥g(x)− [g(x)]TS(x)∥ is upper semicontinuous on S [34,
Th. 2.1.6, p. 59]. Moreover, the map x 7→ {g(x) − v : v ∈
NS(x)} is closed. Hence the map G is upper semicontinuous
on S [34, Cor. 2.2.3, p. 61].

Proof of Proposition 1. Suppose that

g(x)⊤z ≥
∥∥[g(x)]TS(x)

∥∥2 ∀x ∈ S, z ∈ G(x). (50)

Then the function V satisfies

∇V (x) z ≤ −
∥∥[g(x)]TS(x)

∥∥2 ∀x ∈ S, z ∈ G(z).

Note that the set-valued maps G is upper semicontinuous,
and for each x ∈ S , the set G(x) is nonempty, compact,
and convex. Hence the invariance theorem [39, Th. 2.11]
implies that every solution to (48), including every solution
to (45), converges to the largest invariant subset of

{
x ∈ S :∥∥[g(x)]TS(x)

∥∥ = 0
}

. Then (47) holds as g is continuous on
the compact set S.

It remains to show that (50) holds. Consider arbitrary x ∈ S
and z ∈ G(z). First, we have∥∥[g(x)]TS(x)

∥∥2 − [g(x)]⊤TS(x)z = [g(x)]⊤TS(x)(g(x)− z) ≤ 0,

where the equality follows from the second property in (6),
and the inequality follows from the fact that g(x)−z ∈ NS(x)
and the first property in (7). Hence

∥z∥2 ≥ ∥z∥2 − 2[g(x)]⊤TS(x)z + 2
∥∥[g(x)]TS(x)

∥∥2
=

∥∥z − [g(x)]TS(x)

∥∥2 + ∥∥[g(x)]TS(x)

∥∥2
≥

∥∥[g(x)]TS(x)

∥∥2.
Next, we have

∥z − g(x)∥2 ≤
∥∥g(x)− [g(x)]TS(x)

∥∥2
= ∥g(x)∥2 − 2[g(x)]⊤TS(x)g(x) +

∥∥[g(x)]TS(x)

∥∥2
= ∥g(x)∥2 −

∥∥[g(x)]TS(x)

∥∥2,
where the inequality follows from the fact that z ∈ ∥g(x) −
[g(x)]TS(x)∥B(g(x)), and the last equality follows from the
second property in (6). Hence

2g(x)⊤z = ∥z∥2 + ∥g(x)∥2 − ∥z − g(x)∥2

≥ ∥z∥2 +
∥∥[g(x)]TS(x)

∥∥2 ≥ 2
∥∥[g(x)]TS(x)

∥∥2,
that is, (50) holds.

APPENDIX B
PROOF OF LEMMA 3

Given an initial value (θ̂0, r0) ∈ Θ × R, we construct a
solution to (11) and (15) over R+ recursively. Our procedure
assumes that ∥eobs(0)∥ > ε′obs; hence λe(0) = λθ due to (12).
If ∥eobs(0)∥ ≤ ε′obs, a solution can be constructed using the
same procedure while starting with Step 2.

Step 1: Consider (11) and (15) with λe ≡ λθ, namely,

˙̂
θ =

[
−λθK(r, f(r), θ̂)⊤K(r, f(r), θ̂)(θ̂ − θ)

]
TΘ(θ̂)

,

ṙ =
[
−λr∇rĴ(θ̂, r)

⊤]
TR(r)

,
(51)

which can be modeled as a projected dynamical system
(45) in Appendix A with the state x := (θ̂, r) and the set
S := Θ×R; in particular, the resulting function g in (45) is
continuous following (3) and Assumption 1. Then Lemma 5
ensures that there exists a solution (θ̂1, r1) to (51) over R+

with (θ̂1(0), r1(0)) = (θ̂0, r0). Consider the corresponding
observation error eobs,1 and switching signal λe,1 defined by
(8) and (12), respectively, and let

t1 := inf{t > 0 : ∥eobs,1(t)∥ ≤ ε′obs}.

Then (θ̂1, r1) is a solution to (11) and (15) over [0, t1) with
(θ̂1(0), r1(0)) = (θ̂0, r0). The proof is complete if t1 = ∞.
Otherwise eobs,1(t1) = ε′obs; hence λe,1(t1) = 0 due to (12),
and we proceed with Step 2 below.

Step 2: Consider (11) and (15) with λe ≡ 0, namely,

˙̂
θ = 0,

ṙ =
[
−λr∇rĴ(θ̂, r)

⊤]
TR(r)

,
(52)

which can also be modeled as a projected dynamical system
(45) with the state x := (θ̂, r) and the set S := Θ×R. Again,
Lemma 5 ensures that there exists a solution (θ̂2, r2) to (52)
over [t1,∞) with (θ̂2(t1), r2(t1)) = (θ̂1(t1), r1(t1)). Consider
the corresponding observation error eobs,2 and switching signal
λe,2 defined by (8) and (12), respectively, and let

t2 := inf{t > t1 : ∥eobs,2(t)∥ ≥ εobs}.

Then (θ̂2, r2) is a solution to (11) and (15) over [t1, t2) with
(θ̂2(t1), r2(t1)) = (θ̂1(t1), r1(t1)). The proof is complete if
t2 = ∞. Otherwise eobs,2(t2) = εobs; hence λe,2(t2) = λθ

due to (12), and we proceed with Step 1 above.
By switching between these two steps, we obtain an in-

creasing time sequence (tk)k∈Z+
and a corresponding se-

quence (θ̂k, rk)k≥1 of absolutely continuous functions θ̂k :
[tk−1,∞) → Θ and rk : [tk−1,∞) → R. Since all θ̂k and
rk evolve within the compact sets Θ and R, respectively, the
definition of eobs in (8) and Assumption 1 imply that

sup
k≥1

ess sup
t≥tk−1

∥ėobs,k(t)∥ ≤ M

for some finite constant M ≥ 0. Then tk − tk−1 ≥ (εobs −
ε′obs)/M for all k ≥ 2; hence limk→∞ tk = ∞ (i.e., the so-
called Zeno behavior [40, Sec. 1.2.2] cannot occur). Therefore,
the absolutely continuous functions θ̂ : R+ → Θ and r :
R+ → R defined by

θ̂(t) := θ̂k(t), r(t) := rk(t), k ≥ 1, t ∈ [tk−1, tk)

form a solution to (11) and (15) over R+ with (θ̂(0), r(0)) =
(θ̂0, r0). Since θ and r evolve within the compact sets Θ and
R, respectively, the definition of eobs in (8) and Assumption 1
imply that θ̂, r, eobs, and their time derivatives are essentially
bounded over R+.
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for power control and channel allocation in cognitive
radio networks,” in 2nd International Conference on
Performance Evaluation Methodologies and Tools, 2007,
9 pages.

[12] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus,
“Deployed ARMOR protection: The application of a
game-theoretic model for security at the Los Angeles
International Airport,” in 7th International Conference
on Autonomous Agents and Multiagent Systems, 2008,
pp. 125–132.

[13] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and
M. Tambe, “IRIS - A tool for strategic security allocation
in transportation networks,” in 8th International Con-
ference on Autonomous Agents and Multiagent Systems,
2009, pp. 37–44.

[14] G. G. Brown, W. M. Carlyle, J. Salmerón, and K. Wood,
“Analyzing the vulnerability of critical infrastructure
to attack and planning defenses,” in Emerging Theory,
Methods, and Applications, J. C. Smith, Ed. INFORMS,
Sep. 2005, pp. 102–123.

[15] G. G. Brown, M. Carlyle, J. Salmerón, and K. Wood,
“Defending critical infrastructure,” Interfaces, vol. 36,
no. 6, pp. 530–544, Dec. 2006.

[16] D. Sahabandu, J. Allen, S. Moothedath, L. Bushnell,
W. Lee, and R. Poovendran, “Quickest detection of
advanced persistent threats: A semi-Markov game ap-

proach,” in 11th ACM/IEEE International Conference on
Cyber-Physical Systems, 2020, pp. 9–19.

[17] G. W. Brown, “Iterative solution of games by fictitious
play,” in Activity Analysis of Production and Allocation,
T. C. Koopmans, Ed. John Wiley & Sons, 1951, pp.
374–376.

[18] J. Robinson, “An iterative method of solving a game,”
The Annals of Mathematics, vol. 54, no. 2, pp. 296–301,
Sep. 1951.

[19] G. W. Brown and J. von Neumann, “Solutions of games
by differential equations,” in Contributions to the Theory
of Games, H. W. Kuhn and A. W. Tucker, Eds. Princeton
University Press, 1952, vol. I, ch. 6, pp. 73–80.

[20] J. B. Rosen, “Existence and uniqueness of equilib-
rium points for concave n-person games,” Econometrica,
vol. 33, no. 3, pp. 520–534, Jul. 1965.

[21] J. S. Shamma and G. Arslan, “Dynamic fictitious play,
dynamic gradient play, and distributed convergence to
Nash equilibria,” IEEE Transactions on Automatic Con-
trol, vol. 50, no. 3, pp. 312–327, Mar. 2005.

[22] S. Hart, “Adaptive heuristics,” Econometrica, vol. 73,
no. 5, pp. 1401–1430, Sep. 2005.
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