
ADVANCED UNDERGRADUATE TOPICS IN

CONTROL SYSTEMS DESIGN

João P. Hespanha

March 26, 2024

Disclaimer: This is a draft and probably contains several typos.

Comments and information about typos are welcome.
Please contact the author at hespanha@ece.ucsb.edu.

© Copyright to João Hespanha. Please do not distribute this document without the author’s consent.

hespanha@ece.ucsb.edu

Contents

I System Identification 1

1 Computer-Controlled Systems 5
1.1 Computer Control . 5
1.2 Continuous-time Systems . 6
1.3 Discrete-time Systems . 8
1.4 Discrete-time vs. Continuous-time Transfer Functions 12
1.5 MATLAB® Hints . 13
1.6 To Probe Further . 15
1.7 Exercise . 16

2 Non-parametric Identification 17
2.1 Non-parametric Methods . 17
2.2 Continuous-time Time-domain Identification . 18
2.3 Discrete-time Time-domain Identification . 20
2.4 Continuous-time Frequency Response Identification 22
2.5 Discrete-time Frequency Response Identification 25
2.6 MATLAB® Hints . 27
2.7 To Probe Further . 28
2.8 Exercises . 29

3 Parametric Identification using Least-Squares 33
3.1 Parametric Identification . 33
3.2 Least-Squares Line Fitting . 34
3.3 Vector Least-Squares . 35
3.4 To Probe Further . 37
3.5 Exercises . 39

4 Parametric Identification of a Continuous-Time ARX Model 41
4.1 CARX Model . 41
4.2 Identification of a CARX Model . 42
4.3 CARX Model with Filtered Data . 43
4.4 Identification of a CARX Model with Filtered Signals 44
4.5 Dealing with Known Parameters . 45
4.6 MATLAB® Hints . 46
4.7 To Probe Further . 48
4.8 Exercises . 48

5 Practical Considerations in Identification of Continuous-time CARX Models 51
5.1 Choice of Inputs . 51
5.2 Signal Scaling . 54
5.3 Choice of Model Order . 57
5.4 Combination of Multiple Experiments . 60
5.5 Closed-loop Identification . 65

i

ii João P. Hespanha

5.6 Exercises . 65

6 Parametric Identification of a Discrete-Time ARX Model 69
6.1 ARX Model . 69
6.2 Identification of an ARX Model . 70
6.3 Dealing with Known Parameters . 71
6.4 MATLAB® Hints . 72
6.5 To Probe Further . 73
6.6 Exercises . 74

7 Practical Considerations in Identification of Discrete-time ARX Models 75
7.1 Choice of Inputs . 75
7.2 Signal Scaling . 79
7.3 Choice of Sampling Frequency . 82
7.4 Choice of Model Order . 83
7.5 Combination of Multiple Experiments . 86
7.6 Closed-loop Identification . 88
7.7 MATLAB® Hints . 90
7.8 Exercises . 90

II Robust Control 93

8 Robust stability 97
8.1 Model Uncertainty . 97
8.2 Nyquist Stability Criterion . 100
8.3 Small Gain Condition . 102
8.4 MATLAB® Hints . 105
8.5 Exercises . 105

9 Control design by loop shaping 107
9.1 The Loop-shaping Design Method . 107
9.2 Open-loop vs. closed-loop specifications . 107
9.3 Open-loop Gain Shaping . 112
9.4 Exercises . 113

III LQG/LQR Controller Design 115

10 Review of State-space models 119
10.1 State-space Models . 119
10.2 Input-output Relations . 120
10.3 Realizations . 121
10.4 Controllability and Observability . 121
10.5 Stability . 122
10.6 MATLAB® Hints . 122

11 Linear Quadratic Regulation (LQR) 125
11.1 Feedback Configuration . 125
11.2 Optimal Regulation . 126
11.3 State-Feedback LQR . 127
11.4 Stability and Robustness . 128
11.5 Loop-shaping Control using LQR . 130
11.6 MATLAB® Hints . 133
11.7 To Probe Further . 134

Control Systems Design iii

11.8 Exercises . 135

12 LQG/LQR Output Feedback 137
12.1 Output Feedback . 137
12.2 Full-order Observers . 137
12.3 LQG Estimation . 138
12.4 LQG/LQR Output Feedback . 139
12.5 Separation Principle . 140
12.6 Loop-gain Recovery . 140
12.7 Loop Shaping using LQR/LQG . 141
12.8 MATLAB® Hints . 142
12.9 Exercises . 142

13 Set-Point Control 143
13.1 Nonzero Equilibrium State and Input . 143
13.2 State feedback . 144
13.3 Output feedback . 145
13.4 MATLAB® Hints . 146
13.5 Exercises . 147

IV Nonlinear Control 149

14 Feedback linearization controllers 153
14.1 Feedback Linearization . 153
14.2 Generalized Model for Mechanical Systems . 154
14.3 Feedback Linearization of Mechanical Systems 156
14.4 Exercises . 157

15 Lyapunov Stability 159
15.1 Lyapunov Stability . 159
15.2 Lyapunov Stability Theorem . 161
15.3 Exercise . 162
15.4 LaSalle’s Invariance Principle . 162
15.5 Liénard Equation and Generalizations . 163
15.6 To Probe Further . 165
15.7 Exercises . 165

16 Lyapunov-based Designs 167
16.1 Lyapunov-based Controllers . 167
16.2 Application to Mechanical Systems . 168
16.3 Exercises . 170

Attention! When a marginal note finishes with “� p. XXX,” more information about that topic can
be found on page XXX.

iv João P. Hespanha

Part I

System Identification

1

Introduction to System Identification

The goal of system identification is to utilize input/output experimental data to determine a system’s
model. For example, one may apply to the system a specific input u, measure the output y an try to
determine the system’s transfer function (cf. Figure 1).

u y
?

Figure 1. System identification from input/output experimental data

Pre-requisites

1. Laplace transform, continuous-time transfer functions, impulse response, frequency response,
and stability (required, briefly reviewed here).

2. z-transform, discrete-time transfer functions, impulse response, frequency response, and sta-
bility (recommended, briefly reviewed here).

3. Computer-control system design (briefly reviewed here).

4. Familiarity with basic vector and matrix operations.

5. Knowledge of MATLAB®/Simulink.

Further reading A more extensive coverage of system identification can be found, e.g., in [10].

3

4 João P. Hespanha

Lecture 1

Computer-Controlled Systems

This lecture reviews basic concepts in computer-controlled systems:

Contents
1.1 Computer Control . 5
1.2 Continuous-time Systems . 6
1.3 Discrete-time Systems . 8
1.4 Discrete-time vs. Continuous-time Transfer Functions 12
1.5 MATLAB® Hints . 13
1.6 To Probe Further . 15
1.7 Exercise . 16

1.1 Computer Control

computer process

sample

hold

rptq ucptq ycptqudpkq

ydpkq

Figure 1.1. Computer control architecture. The components in the dashed boxed can be regarded as
a discrete-time process to be controlled.

Figure 1.1 show the typical block diagram of a control system implemented using a digital
computer. Although the output ycptq of most physical systems vary continuously as a function of
time, it can only be measured at discrete time instants. Typically, it is sampled periodically as shown
in the left plot of Figure 1.2. Moreover, the control signal ucptq cannot be changed continuously and
typically is held constant between sampling times as shown in the right plot of Figure 1.2:

ucptq “ udpkq, @t P rkTs,pk ` 1qTsq.

5

6 João P. Hespanha

Ts

Ts 2Ts 3Ts

ydp1q

ydp2q ydp3q
ycptq

. . .

Ts

Ts 2Ts 3Ts

udp1q

udp2q udp3q

ucptq

. . .

Figure 1.2. Sampling (left) and holding (right)

It is therefore sometimes convenient to regard the process to be controlled as a discrete-time system
whose inputs and outputs are the discrete-time signals

Note 1. Many dynamical systems
are inherently discrete and do not
arise from sampling an
underlying continuous
process. � p. 6

ydpkq “ ycpkTsq, udpkq “ ucpkTsq, k P t0,1,2, . . .u.

The identification techniques that we will study allow us to take either of the following approaches:

1. Estimate directly the transfer function from ucptq to ycptq of the original continuous-time
process.

Identifying the continuous-time transfer function will generally lead to better results when the
sampling frequency is high and the underlying process is naturally modeled by a differential
equation.

2. Estimate the transfer function from udpkq to ydpkq of the discrete-time system and, if desired,
recover the underlying continuous-time transfer function.Note. See Section 1.4 on how to

(approximately) recover the
underlying continuous-time
transfer function from the
discrete-time transfer function of
a sampled system. � p. 12

When the sampling frequency is low (when compared to the natural frequency of the system)
or the time variable is inherently discrete, one should do the identification directly in discrete-
time.

Note 1 (Inherently discrete systems). Many dynamical systems are inherently discrete and do not
arise from sampling an underlying continuous process. Examples of processes whose time variables
are inherently discrete include population dynamics for which k refers of the number of generations
or a stock daily minimum/maximum price for which k refers to a day. 2

1.2 Continuous-time Systems

ucptq ycptq

Hcpsq “?

Figure 1.3. Continuous-time system

Consider the continuous-time system in Figure 1.3 and assume that the input and output signals
satisfy the following differential equation:

Notation 1. We denote by 9ycptq
and :ycptq the first and second
time derivatives of the signal
ycptq. Higher-order derivatives of
order k ě 3 are denoted by
denote by ypkqptq.

ypnq
c ` βn´1ypn´1q

c ` ¨¨ ¨ ` β2:yc ` β1 9yc ` β0yc

“ αmupmq
c ` αm´1upm´1q

c ` ¨¨ ¨ ` α2 :uc ` α1 9uc ` α0uc. (1.1)

Computer-Controlled Systems 7

We recall that, given a signal xptq with Laplace transform Xpsq, the Laplace transform of the ℓth
Note 2. The (unilateral) Laplace
transform of a signal xptq is given
by

Xpsq –

ż 8

0
e´st xptqdt.

See [5, Appendix A] for a review
of Laplace transforms.

derivative of xptq is given by

sℓXpsq ´ sℓ´1xp0q ´ sℓ´2 9xp0q ´ ¨ ¨ ¨ ´ xpℓ´1qp0q.

In particular, when x and all its derivatives are zero at time t “ 0, the Laplace transform of the ℓth
derivative xpℓqptq simplifies to

sℓXpsq.

Taking Laplace transforms to both sides of (1.1) and assuming that both y and u are zero at time zero
(as well as all their derivatives), we obtain

snYcpsq ` βn´1sn´1Ycpsq ` ¨ ¨ ¨ ` β2s2Ycpsq ` β1sYcpsq ` β0Ycpsq

“ αmsmUcpsq ` αm´1sm´1Ucpsq ` ¨ ¨ ¨ ` α2s2Ucpsq ` α1sUcpsq ` α0Ucpsq.

This leads to
MATLAB® Hint 1.
tf(num,den) creates a
continuous-time transfer function
with numerator and denominator
specified by num, den. � p. 13

MATLAB® Hint 2.
zpk(z,p,k) creates a
continuous-time transfer function
with zeros, poles, and gain
specified by z, p, k. � p. 13

Ycpsq “ HcpsqUcpsq,

where

Hcpsq –
αmsm ` αm´1sm´1 ` ¨¨ ¨ ` α1s ` α0

sn ` βn´1sn´1 ` ¨¨ ¨ ` β1s ` β0
, (1.2)

the (continuous-time) transfer function of the system. The roots of the denominator are called the
poles of the system and the roots of the numerator are called the zeros of the system.

The system is (BIBO) stable if all poles have negative real part. In this case, for every input Note. Since there are other
notions of stability, one should
use the term BIBO stable to
clarify that it refers to the
property that Bounded-Inputs
lead to Bounded-Outputs.

bounded signal ucptq, the output ycptq remains bounded.

1.2.1 Steady-state Response to Sine Waves
Suppose that we apply a sinusoidal input with amplitude A and angular frequency ω , given by

Note. The angular frequency ω is
measured in radian per second,
and is related to the (regular)
frequency f by the formula
ω “ 2π f , where f is given in
Hertz or cycles per second.

ucptq “ Acospωtq, @t ě 0,

to the system (1.1) with transfer function (1.2). Assuming that the system is BIBO stable, the
corresponding output is of the form

ycptq “ gAcospωt ` φq
looooooomooooooon

steady-state

` εptq
loomoon

transient

, @t ě 0, (1.3)

where the gain g and the phase φ are given by the following formulas

g – |Hcp jωq|, φ – =Hcp jωq, (1.4)

and εptq is a transient signal that decays to zero at t Ñ 8 (cf. Figure 1.4).

The Bode plot of a transfer function Hcpsq depicts
MATLAB® Hint 3.
bode(sys) draws the Bode plot
of the system sys. � p. 14

1. the norm of Hcp jωq in decibels [dB], which is given by 20log10
ˇ

ˇHcp jωq
ˇ

ˇ; and

2. the phase of Hcp jωq

both as a function of the angular frequency ω (in a logarithmic scale). In view of (1.3)–(1.4), the
Bode plot provides information about how much a sinusoidal signal is amplified and by how much
its phase is changed.

8 João P. Hespanha

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

t (sec)

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.1

0

0.1

0.2

t (sec)

y

Figure 1.4. Response of a system with transfer function Hcpsq “ 1
s`1 to a sinusoidal input with

frequency f “ 1Hz, corresponding to ω “ 2π rad/sec. The Bode plot of the system is shown in
Figure 1.5.

1.2.2 Impulse and Step Responses
The impulse response of the system (1.1) is defined as the inverse Laplace transform of its transfer
function (1.2):

hcptq “ L ´1“Hcpsq
‰

–
αmsm ` αm´1sm´1 ` ¨¨ ¨ ` α1s ` α0

sn ` βn´1sn´1 ` ¨¨ ¨ ` β1s ` β0
,

and can be viewed as the system’s response to a δ -Dirac impulse.

A δ -Dirac impulse is a signal that is zero everywhere except for t “ 0 but integrates to one. Such
signals are mathematical abstractions that cannot really be applied to real systems. However, one
can apply a very narrow pulse, with a small duration ε ą 0 and magnitude 1{ε that integrates to 1, as
shown in Figure 1.6. Such input can produce an output that is a good approximation to the impulse
response.Note. We will find in

Section 2.2.1 that there are better
ways to obtain the impulse
response of a system. � p. 18

A δ -Dirac impulse can also be viewed as the derivative of a step

ustepptq –

#

0 t ă 0
1 t ě 0,

or conversely, the step is the integral of a δ -Dirac. Because of linearity, this means that the system’s
response to a step input will be the integral of the impulse response, or conversely, the impulse
response is equal to the derivative of the step response (cf. Figure 1.7).

1.3 Discrete-time Systems
Consider now the discrete-time system in Figure 1.8. It turns out that the discrete-time inputs and
outputs can be related by an equation of the following form that mimics (1.1):

ydpk ` nq ` βn´1ydpk ` n ´ 1q ` ¨ ¨ ¨ ` β2ydpk ` 2q ` β1ydpk ` 1q ` β0ydpkq

Computer-Controlled Systems 9

−40

−30

−20

−10

0
From: u To: y

M
a
g
n
it
u
d
e
 (

d
B

)

10
−2

10
−1

10
0

10
1

10
2

−90

−45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/sec)

Figure 1.5. Bode plot of a system with transfer function Hcpsq “ 1
s`1 .

δ ptq
ż 8

0

δ ptqdt “ 1

0 t

(a) δ -Dirac impulse

ε

1
ε

δε ptq
ż 8

0

δε ptqdt “ 11

0 ε t

(b) finite pulse

Figure 1.6. Practical approximation to a continuous-time δ -Dirac impulse. .

“ αmudpk ` mq ` αm´1udpk ` m ´ 1q ` ¨ ¨ ¨ ` α2udpk ` 2q ` α1udpk ` 1q ` α0udpkq. (1.5)

This equation shows that the discrete-time output can be computed recursively by the following
equation: Note. Since the output cannot

depend on future inputs, we must
have n ě m for (1.6) to be
physically realizable.

ydpk ` nq “ ´βn´1ydpk ` n ´ 1q ´ ¨ ¨ ¨ ´ β2ydpk ` 2q ´ β1ydpk ` 1q ´ β0ydpkq

` αmudpk ` mq ` αm´1udpk ` m ´ 1q ` ¨ ¨ ¨ ` α2udpk ` 2q ` α1udpk ` 1q ` α0udpkq. (1.6)

We recall that, given a signal xpkq with z-transform Xpzq, the z-transform of xpk ` ℓq is given by
Note 3. The (unilateral)
z-transform of a signal xpkq is
given by

Xpzq –

8
ÿ

k“0

z´kxpkq.

See [5, Section 8.2] for a review
of Laplace z-transforms.

zℓXpzq ´ zℓxp0q ´ zℓ´1xp1q ´ ¨ ¨ ¨ ´ zxpℓ´ 1q.

In particular, when x is equal to zero before time k “ ℓ, the z-transform of xpk ` ℓq simplifies to

zℓXpzq.

Taking z-transforms to both sides of (1.5) and assuming that both yd and ud are zero before time
n ě m, we obtain

MATLAB® Hint 4.
tf(num,den,Ts) creates a
discrete-time transfer function
with sampling time Ts and
numerator and denominator
specified by num, den. � p. 13

MATLAB® Hint 5.
zpk(z,p,k,Ts) creates a
transfer function with sampling
time Ts zeros, poles, and gain
specified by z, p, k. � p. 13

znYdpzq ` βn´1zn´1Ydpzq ` ¨ ¨ ¨ ` β2z2Ydpzq ` β1zYdpzq ` β0Ydpzq

“ αmzmUdpzq ` αm´1zm´1Udpzq ` ¨ ¨ ¨ ` α2z2Udpzq ` α1zUdpzq ` α0Udpzq.

This leads to

Ydpzq “ HdpzqUdpzq,

10 João P. Hespanha

ustepptq ystepptq
Hcpsq

(a) step response

δ ptq “
dustepptq

dt hptq “
dustepptq

dt
Hcpsq

(b) impulse response

Figure 1.7. Impulse versus step responses

process SH
ucptq ycptq

udpkq “ ucpkTsq ydpkq “ ycpkTsq

Hcpsq

Hdpzq

Figure 1.8. Discrete-time system

where

Hdpzq –
αmzm ` αm´1zm´1 ` ¨¨ ¨ ` α1z ` α0

zn ` βn´1zn´1 ` ¨¨ ¨ ` β1z ` β0
, (1.7)

is called the (discrete-time) transfer function of the system. The roots of the denominator are called
the poles of the system and the roots of the numerator are called the zeros of the system.

The system is (BIBO) stable if all poles have magnitude strictly smaller than one. In this case,Note. Since there are other
notions of stability, one should
use the term BIBO stable to
clarify that it refers to the
property that Bounded-Inputs
lead to Bounded-Outputs.

for every input bounded signal upkq, the output ypkq remains bounded.

1.3.1 Steady-state Response to Sine Waves
Suppose that we apply a sinusoidal input with amplitude A and discrete-time angular frequency
Ω P r0,πs, given by

Note 4. Discrete-time angular
frequencies take values from 0 to
π . In particular, Ω “ π

corresponds to the “fastest”
discrete-time signal
udpkq “ Acospπkq “ Ap´1qk ,
which corresponds to a
continuous-time frequency
f “ 1

2Ts
Hz equal to half the

sampling rate, or ω “ π

Ts
rad/sec ,

also known as the Nyquist
frequency. � p. 15

udpkq “ AcospΩkq, @k P t0,1,2 . . .u,

to the system (1.1) with transfer function (1.2). Assuming that the system is BIBO stable, the
corresponding output is of the form

ydpkq “ gAcospΩk ` φq
looooooomooooooon

steady-state

` εpkq
loomoon

transient

, @k P t0,1,2 . . .u, (1.8)

where the gain g and phase φ are given by

Attention! For discrete-time
systems the argument to H is e jΩ

and not just jΩ, as in
continuous-time systems. This
means that Hpzq will be evaluated
over the unit circle, instead of the
imaginary axis.

g – |Hdpe jΩq|, φ – =Hdpe jΩq, (1.9)

and εptq is a transient signal that decays to zero at k Ñ 8 (cf. Figure 1.4).

The Bode plot of a transfer function Hdpzq depicts

MATLAB® Hint 6.
bode(sys) draws the Bode plot
of the system sys. � p. 14

1. the norm of Hdpe jΩq in decibels [dB], which is given by 20log10
ˇ

ˇHdpe jΩq
ˇ

ˇ; and

2. the phase of Hdpe jΩq

as a function of the angular frequency Ω (in a logarithmic scale). In view of (1.8)–(1.9), the Bode
plot provides information about how much a sinusoidal signal is amplified (magnitude) and by how
much its phase is changed.

Computer-Controlled Systems 11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

t (sec)

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

t (sec)

y

Figure 1.9. Response a system with transfer function Hdpzq “ 0.05
z´0.95 to a sinusoidal input with fre-

quency f “ 1Hz, ω “ 2π rad/sec sampled with a period equal to Ts “ .01 sec. The corresponding
discrete-time frequency is given by Ω “ .02π and the Bode plot of the system is shown in Fig-
ure 1.10.

1.3.2 Impulse and Step Responses

Suppose that we apply a discrete-time impulse, given by Note. In contrast to
continuous-time δ -Dirac
impulses, discrete-time steps can
be applied to the input of a
system.

upkq “ δ pkq –

#

1 k “ 0
0 k ‰ 0

to the system (1.1) with transfer function (1.2). The corresponding output hpkq is called the impulse
response and its z-transform is precisely the system’s transfer function:

Hdpzq “

8
ÿ

k“0

z´khpkq.

Consider now an input equal to a discrete-time step

upkq “ spkq –

#

0 k ă 0
1 k ě 0,

and let ysteppkq be the corresponding output, which is called the step response. Since the impulse
δ pkq can be obtained from the step spkq by

δ pkq “ spkq ´ spk ´ 1q, @k P t0,1,2 . . .u,

the impulse response hpkq (which is the output to δ pkq) can be obtained from the output ysteppkq to
spkq by

hpkq “ ysteppkq ´ ysteppk ´ 1q, @k P t0,1,2 . . .u.

This is a consequence of linearity (cf. Figure 1.11).

12 João P. Hespanha

−40

−30

−20

−10

0
From: u To: y

M
a
g
n
it
u
d
e
 (

d
B

)

10
−2

10
−1

10
0

10
1

10
2

−90

−45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/sec)

Figure 1.10. Bode plot of a system with transfer function Hdpsq “ .05
z´.95

sptq ystepptq
Hdpzq

(a) step response

δ pkq “ spkq ´ spk ´ 1q hpkq “ ysteppkq ´ ysteppk ´ 1q
Hdpzq

(b) impulse response

Figure 1.11. Impulse versus step responses

1.4 Discrete-time vs. Continuous-time Transfer Functions
When the sampling time Ts is small, one can easily go from continuous- to discrete-time transfer
functions shown in Figure 1.12. To understand how this can be done, consider a continuous-time
integrator

9yc “ uc (1.10)

with transfer function

Hcpsq “
Ycpsq

Ucpsq
“

1
s
. (1.11)

Suppose that the signals y and u are sampled every Ts time units as shown in Figure 1.2 and that we
define the discrete-time signals

ydpkq “ ycpkTsq, udpkq “ ucpkTsq, k P t0,1,2, . . .u.

Assuming that ucptq is approximately constant over an interval of length Ts, we can take a finite
differences approximation to the derivative in (1.10), which leads to

ycpt ` Tsq ´ ycptq
Ts

“ ucptq.

In particular, for t “ kTs we obtain
Note 5. Equation (1.12) is exact
when ucptq remains constant
throughout the whole sample
time rt, t ` Tss, which is case
when ucptq is the output of a hold
block.

ydpk ` 1q ´ ydpkq

Ts
“ udpkq. (1.12)

Computer-Controlled Systems 13

process SH
ucptq ycptq

udpkq ydpkq

Hcpsq

Hdpzq

Figure 1.12. Discrete vs. continuous-time transfer functions

Taking the z-transform we conclude that Note. In discrete-time, an
integrator has a pole at z “ 1,
whereas in continuous-time the
pole is at s “ 0.

zYdpzq ´Ydpzq

Ts
“ Udpzq ô Hdpzq “

Ydpzq

Udpzq
“

1
z´1
Ts

. (1.13)

Comparing (1.11) with (1.13), we observe that we can go directly from a continuous-time transfer
function to the discrete-time one using the so called Euler transformations:

MATLAB® Hint 7. c2d and
d2c convert transfer functions
from continuous- to discrete-time
and vice-versa. � p. 14

s ÞÑ
z ´ 1

Ts
ô z ÞÑ 1 ` sTs.

In general, a somewhat better approximation is obtained by taking the right-hand-side of (1.12) to
be the average of udpkq and udpk ` 1q. This leads to the so called Tustin or bilinear transformation:

Note 6. Why? � p. 15

Note 7. The Euler transformation
preserves the number of poles
and the number of zeros since it
replaces a polynomial of degree n
in s by a polynomial of the same
degree in z and vice-versa.
However, the Tustin
transformation only preserves the
number of poles and can make
discrete-time zeros appear, for
systems that did not have
continuous-time zeros. � p. 16

s ÞÑ
2pz ´ 1q

Tspz ` 1q
ô z ÞÑ

2 ` sTs

2 ´ sTs
.

1.5 MATLAB® Hints
MATLAB® Hint 1, 4 (tf). The command sys_tf=tf(num,den) assigns to sys_tf a MATLAB®

continuous-time transfer function. num is a vector with the coefficients of the numerator of the sys-
tem’s transfer function and den a vector with the coefficients of the denominator. The last coefficient
must always be the zero-order one. E.g., to get 2s

s2`3 one should use num=[2 0];den=[1 0 3];

The command sys_tf=tf(num,den,Ts) assigns to sys_tf a MATLAB® discrete-time transfer func-
tion, with sampling time equal to Ts.

For transfer matrices, num and den are cell arrays. Type help tf for examples.

Optionally, one can specify the names of the inputs, outputs, and state to be used in subsequent plots
as follows:

sys_tf=tf(num ,den ,’InputName ’,{’input1 ’,’input2 ’ ,...} ,...

’OutputName ’,{’output1 ’,’output2 ’ ,...} ,...

’StateName ’,{’input1 ’,’input2 ’ ,...})

The number of elements in the bracketed lists must match the number of inputs,outputs, and state
variables. 2

MATLAB® Hint 2, 5 (zpk). The command sys_tf=zpk(z,p,k) assigns to sys_tf a MATLAB®

continuous-time transfer function. z is a vector with the zeros of the system, p a vector with its
poles, and k the gain. E.g., to get 2s

ps`1qps`3q
one should use z=0;p=[1,3];k=2;

14 João P. Hespanha

The command sys_tf=zpk(z,p,k,Ts) assigns to sys_tf a MATLAB® discrete-time transfer func-
tion, with sampling time equal to Ts.

For transfer matrices, z and p are cell arrays and k a regular array. Type help zpk for examples.

Optionally, one can specify the names of the inputs, outputs, and state to be used in subsequent plots
as follows:

sys_tf=zpk(z,p,k,’InputName ’,{’input1 ’,’input2 ’ ,...} ,...\\

’OutputName ’,{’output1 ’,’output2 ’ ,...} ,...\\

’StateName ’,{’input1 ’,’input2 ’ ,...})}

The number of elements in the bracketed lists must match the number of inputs,outputs, and state
variables. 2

MATLAB® Hint 3, 6, 32 (bode). The command bode(sys) draws the Bode plot of the system sys.
To specify the system one can use:

1. sys=tf(num,den), where num is a vector with the coefficients of the numerator of the system’s
transfer function and den a vector with the coefficients of the denominator. The last coefficient
must always be the zero-order one. E.g., to get 2s

s2`3 one should use num=[2 0];den=[1 0 3];

2. sys=zpk(z,p,k), where z is a vector with the zeros of the system, p a vector with its poles,
and k the gain. E.g., to get 2s

ps`1qps`3q
one should use z=0;p=[1,3];k=2;

3. sys=ss(A,B,C,D), where A,B,C,D are a realization of the system. 2

MATLAB® Hint 7 (c2d and d2c). The command c2d(sysc,Ts,’tustin’) converts the continuous-
time LTI model sysc to a discrete-time model with sampling time Ts using the Tustin transformation.
To specify the continuous-time system sysc one can use:

1. sysc=tf(num,den), where num is a vector with the coefficients of the numerator of the system’s
transfer function and den a vector with the coefficients of the denominator. The last coefficient
must always be the zero-order one. E.g., to get 2s

s2`3 one should use num=[2 0];den=[1 0 3];

2. sysc=zpk(z,p,k), where z is a vector with the zeros of the system, p a vector with its poles,
and k the gain. E.g., to get 2s

ps`1qps`3q
one should use z=0;p=[1,3];k=2;

3. sysc=ss(A,B,C,D), where A,B,C,D are a realization of the system.

The command d2c(sysd,’tustin’) converts the discrete-time LTI model sysd to a continuous-time
model, using the Tustin transformation. To specify the discrete-time system sysd one can use:

1. sysd=tf(num,den,Ts), where Ts is the sampling time, num is a vector with the coefficients of
the numerator of the system’s transfer function and den a vector with the coefficients of the
denominator. The last coefficient must always be the zero-order one. E.g., to get 2s

s2`3 one
should use num=[2 0];den=[1 0 3];

2. sysd=zpk(z,p,k,Ts), where Ts is the sampling time, z is a vector with the zeros of the
system, p a vector with its poles, and k the gain. E.g., to get 2s

ps`1qps`3q
one should use

z=0;p=[1,3];k=2;

3. sysd=ss(A,B,C,D,Ts), where Ts is the sampling time, A,B,C,D are a realization of the system.
2

Computer-Controlled Systems 15

1.6 To Probe Further
Note 4 (Discrete-time vs. continuous-time frequencies). When operating with a sample period Ts, to
generate a discrete-time signal udpkq that corresponds to the sampled version of the continuous-time
signal

ucptq “ Acospωtq, @t ě 0

we must have

udpkq “ ucpkTsq “ AcospωkTsq “ AcospΩkq,

where the last equality holds as long as we select Ω “ ωTs “ 2π f Ts.

Discrete-time angular frequencies take values from 0 to π . In particular, Ω “ π results in the “fastest”
discrete-time signal:

udpkq “ Acospπkq “ Ap´1qk,

which corresponds to a continuous-time frequency f “ 1
2T s equal to half the sampling rate, also

known as the Nyquist frequency, as shown in Figure 1.13. 2

Ts

2Ts

2Ts

3Ts

4Ts

Figure 1.13. Discrete-time sinusoid at the Nyquist frequency udpkq “ cospπkq “ p´1qk, which
corresponds to Ω “ π . This signal would be obtained by sampling a continuous time sinusoid
ucptq “ cos

`

π

Ts
t
˘

, with frequency f “ 1
2Ts

Hz or ω “ π

Ts
rad/sec.

Note 6 (Tustin transformation). Consider a continuous-time integrator in (1.10) and assume that
uptq is approximately linear on the interval rkTs,pk ` 1qTss, i.e.,

uptq “
pk ` 1qTs ´ t

Ts
udpkq `

t ´ kTs

Ts
udpk ` 1q, @t P rkTs,pk ` 1qTss.

(see Figure 1.14b). Then, for ydpk`1q to be exactly equal to the integral of uptq at time t “ pk`1qTs,
we need to have

ydpk ` 1q “ ydpkq `

ż pk`1qTs

kTs

´

pk ` 1qTs ´ t
Ts

udpkq `
t ´ kTs

Ts
udpk ` 1q

¯

dt

“ ydpkq `
Ts

2
udpkq `

Ts

2
udpk ` 1q.

Taking the z-transform we conclude that

zYdpzq ´Ydpzq

Ts
“

Udpzq ` zUdpzq

2
ô Hdpzq “

Ydpzq

Udpzq
“

Tsp1 ` zq

2pz ´ 1q
.

Comparing this with (1.11), we observe that we can go directly from a continuous-time transfer
function to the discrete-time one using the so called Tustin or bilinear transformation:

s ÞÑ
2pz ´ 1q

Tspz ` 1q
ô z ÞÑ

2 ` sTs

2 ´ sTs
. 2

Figure 1.14 compares the use of this transformation versus the Euler transformation in Section 1.4,
to approximate a continuous-time integrator.

16 João P. Hespanha

t
(a) A discrete-time integrator obtained using the
Euler transformation approximates the integral
by the sum of piecewise constant blocks: ydpk `

1q “ ydpkq ` Tsudpkq.

t
(b) A discrete-time integrator obtained using the
Tustin transformation approximates the integral
by the sum of piecewise linear blocks: ydpk `

1q “ ydpkq ` Ts
ud pk`1q`ud pkq

2 .

Figure 1.14. Converting a continuous-time integrator with transfer function Hcpsq “ 1
s to discrete

time using the Euler (a) or the Tustin (b) approximation results in discrete-time systems with trans-
fer functions Hdpzq “

Ts
z´1 and Hdpzq “

Tspz`1q

z´1 , respectively, that approximate the integrator with
different levels of accuracy.

Note 7 (Number of poles and zeros). The Euler transformation preserves the number of poles and
the number of zeros since the rule

s ÞÑ
z ´ 1

Ts

replaces a polynomial of degree n in s by a polynomial of the same degree in z and vice-versa.
However, the Tustin transformation

s ÞÑ
2pz ´ 1q

Tspz ` 1q

replaces a polynomial of degree n in s by a ratio of polynomials of the same degree in z. This means
that it preserves the number of poles, but it can make discrete-time zeros appear, for systems that
did not have continuous-time zeros. E.g., the integrator system 1

s becomes

Tspz ` 1q

2pz ´ 1q
,

which has a pole at z “ 1 (as expected), but also a zero at z “ ´1. 2

1.7 Exercise
1.1. Suppose that you sample at 1KHz a unit-amplitude continuous-time sinusoid ucptq with fre-
quency 10Hz. Write the expression for the corresponding discrete-time sinusoid udpkq. 2

Lecture 2

Non-parametric Identification

This lecture presents basic techniques for non-parametric identification. Note. The terminology
“non-parametric identification”
will become clear in Lecture 3,
when we introduce “parametric
identification.”

Contents
2.1 Non-parametric Methods . 17
2.2 Continuous-time Time-domain Identification . 18
2.3 Discrete-time Time-domain Identification . 20
2.4 Continuous-time Frequency Response Identification 22
2.5 Discrete-time Frequency Response Identification 25
2.6 MATLAB® Hints . 27
2.7 To Probe Further . 28
2.8 Exercises . 29

2.1 Non-parametric Methods
Non-parametric identification attempts to directly determine the model of a system, without as-
suming that its transfer function is rational and that we known the number of poles or zeros. The
following are typical problems in this class:

Problem 2.1 (Nonparametric continuous-time frequency response identification). Determine the
frequency response Hcp jωq over a range of frequencies ω P rωmin,ωmaxs.

Problem 2.2 (Nonparametric discrete-time frequency response identification). Determine the fre-
quency response Hdpe jΩq over a range of frequencies Ω P rΩmin,Ωmaxs.

Problem 2.3 (Nonparametric continuous-time impulse response identification). Determine the im-
pulse response hcptq “ L ´1rHcpsqs from time t “ 0 to t “ T of a continuous-time system .

Problem 2.4 (Nonparametric discrete-time impulse response identification). Determine the impulse
response hdpkq “ Z ´1rHdpzqs from time k “ 0 to k “ N of a discrete-time system .

17

18 João P. Hespanha

Problems 2.1 and 2.2 are useful for frequency-domain controller design methods like loop-
shaping or the Nyquist criterion, whereas Problems 2.3 and 2.4 are useful for time-domain controller
design methods like the Ziegler-Nichols rules to tune PID controllers [5]. However, one can also
recover the transfer function from the impulse response by taking the Laplace or the z-transform:

MATLAB® Hint 8. fft(h)
computes the values of Hpzq for
z “ e jΩ. � p. 27 Hcpsq –

ż 8

0
e´sthcptqdt «

ż T

0
e´sthcptqdt,

Hdpzq – Z rhdpkqs “

8
ÿ

k“0

hdpkqz´k «

N
ÿ

k“0

hdpkqz´k,

assuming that T is sufficiently large to that hcptq « 0, @t ą T (in continuous time) or that N is large
enough so that hdpkq « 0, @k ą N (in discrete time). Therefore, impulse response identification can
also be used for frequency-domain controller design methods.

Throughout this chapter we will assume that the system is BIBO stable, i.e., thatAttention! Systems with an
integrator (i.e., a continuous-time
pole at s “ 0 or a discrete-time
pole at z “ 1) are not BIBO
stable. However, if all other
discrete-time poles have
magnitude strictly smaller than
one, this difficulty can be
overcome using a technique that
will be discussed in Sections 4.5
and 6.3. � p. 45

1. all poles of the continuous-time transfer function Hcpsq have real-part smaller than zero or
equivalently that hcptq converges to zero exponentially fast; and

2. all poles of the discrete-time transfer function Hdpzq have magnitude smaller than one or
equivalently that hdpkq converges to zero exponentially fast.

A detailed treatment of this subject can be found, e.g., in [10, Chapter 7].

2.2 Continuous-time Time-domain Identification
We start by discussing a few methods that can be used to solve the continuous-time impulse response
identification Problem 2.3.

2.2.1 Impulse Response Method

δ ptq

or

δε ptq

nptq

yptq
Hpsq “?

(a) experiment

δ ptq

0 t

(b) δ -Dirac impulse

ε

1
ε

δε ptq

1

0 ε t

(c) finite pulse

Figure 2.1. Impulse response method

If we were able to apply a δ -Dirac impulse to the input of a system, the measured output would
be precisely the impulse response, possibly corrupted by some measurement noise nptq:

yptq “ hptq ` nptq.

Hopefully, the noise term nptq is small when compared to hptq and one could take the measured
output as an estimate for the impulse response:

ĥptq “ yptq, @t ě 0.

Non-parametric Identification 19

While the perfect δ -Dirac impulse cannot be applied, one could apply a finite pulse with unit area, as
shown in Figure 2.1, which would provide a good approximation to the δ -Dirac impulse. However, Note. In computer control

systems with sample and hold,
impulses are held for a sample
period Ts (recall discussion in
Lecture 1). This means that the
pulse duration will always be a
multiple of the sample time, so
we need to choose the pulse
duration ε “ kTs and the pulse
magnitude 1{ε “ 1{pkTsq, for
some integer k ě 1.

such impulses are rarely representative of the typical inputs that appear in closed-loop so, especially
for nonlinear systems, we estimate a regimen that may be far from the dynamics that will appear in
closed loop.

2.2.2 Step Response

u1

nptq

yptq
Hpsq “?

Figure 2.2. Step response method

While applying a δ -Dirac impulse to the input of a system is not possible, applying a scaled step
is generally possible: Note. In general, steps are more

representative than impulses in
feedback loops so, in that respect,
the step response is a better
method than the impulse
response.

uptq “

#

0 t ă 0
α t ě 0

ñ L
“

uptq
‰

“ Upsq “
α

s
,

as in Figure 2.2. In this case, the Laplace transform of the output will be given by

Y psq “ HpsqUpsq ` Npsq “ Hpsq
α

s
` Npsq,

where Npsq denotes the Laplace transform of measurement noise. Solving for Hpsq we obtain:

Hpsq “
sY psq

α
´

sNpsq

α

Taking inverse Laplace transforms, we conclude that

hptq “
1
α

dyptq
dt

´
1
α

dnptq
dt

.

Hopefully, the noise term 1
α

dnptq
dt is small when compared to hptq, and we can use following estimate

for the impulse response:

ĥptq “
1
α

dyptq
dt

, @t ě 0.

Attention! The choice of α is generally critical to obtain a good estimate for the impulse response:

(i) |α| should be large to make sure that 1
α

dnptq
dt is indeed negligible when compared to hptq; Note. Note that the estimate ĥptq

differs from the true value hptq,
precisely by:

ĥptq “ hptq `
1
α

dnptq
dt

.

(ii) |α| should be small to make sure that the process does not leave the region where a linear model
is valid and where it is safe to operate it open-loop.
As one increases α , a simple practical test to check if one is leaving the linear region of opera-
tion is to do identification both with some α ą 0 and α{2: in the linear region of operation, the
identified impulse-response should not change.

As shown in Figure 2.3, there is usually an “optimal” input level that needs to be determined by
trial-and-error. See also the discussion in Section 5.1. 2

Attention! The main weakness of the step-response method is that it can amplify noise because
1
α

dnptq
dt can be much larger that nptq if the noise has small magnitude but with a strong high-frequency

components, which is quite common. 2

20 João P. Hespanha

noise

dominates

optimal

nonlinear

behavior

estimation error

α

Figure 2.3. Optimal choice of input magnitude

2.2.3 Other Inputs

u1

nptq

yptq
Hpsq “?

Figure 2.4. Impulse response from the response to a generic input

One can determine the impulse response of a system using any input and not just a pulse- or
step-input, as shown in Figure 2.4. Take an arbitrary input uptq, with Laplace transform Upsq. The
Laplace transform of the output will be given by

Y psq “ HpsqUpsq ` Npsq,

where Npsq denotes the Laplace transform of measurement noise. Solving for Hpsq we obtain:

Hpsq “
Y psq

Upsq
´

Npsq

Upsq

Taking inverse Laplace transforms, we conclude that

hptq “ L ´1
”Y psq

Upsq

ı

´L ´1
”Npsq

Upsq

ı

.

Hopefully, the noise term is small when compared to hpkq, and we can use following estimate for
MATLAB® Hint 9. The
identification toolbox command
impulseest performs impulse
response estimation for arbitrary
inputs. � p. 27

the impulse response:

ĥptq “ L ´1
”Y psq

Upsq

ı

, @t ě 0.

The error for this estimate is given by

eptq – ĥptq ´ hptq “ L ´1
”Npsq

Upsq

ı

,

showing that, in general, we want Upsq to be much larger than Npsq, over the range of frequencies
for which we care to get a good estimate of hptq.

2.3 Discrete-time Time-domain Identification

We now discuss methods to solve the discrete-time impulse response identification Problem 2.4.

Non-parametric Identification 21

2.3.1 Impulse Response Method
Note. The main weakness of the
impulse-response method is that
impulses are rarely representative
of typical inputs that appear in
closed loop so, especially for
nonlinear systems, we estimate a
regimen that may be far from the
dynamics that will appear in
closed loop.

The impulse response of a system can be determines directly by starting with the system at rest and
applying an impulse at the input:

upkq “

#

α k “ 0
0 k “ 0.

The output will be a (scaled) version of the impulse response, possibly corrupted by some measure-
ment noise npkq:

ypkq “ αhpkq ` npkq.

Therefore

hpkq “
ypkq

α
´

npkq

α

Hopefully, the noise term npkq{α is small when compared to hpkq and one can use the following
estimate for the impulse response:

ĥpkq “
ypkq

α
, k P t0,1, . . . ,Nu.

Attention! The choice of α is generally critical to obtain a good estimate for the impulse response:

(i) |α| should be large to make sure that npkq{α is indeed negligible when compared to hpkq; Note. Note that the estimate ĥpkq

differs from the true value hpkq,
precisely by:

ĥpkq “ hpkq `
npkq

α
.

(ii) |α| should be small to make sure that the process does not leave the region where a linear model
is valid and where it is safe to operate it open-loop.

As one increases α , a simple practical test to check if one is leaving the linear region of operation is
to do identification both with some α ą 0 and ´α ă 0. In the linear region of operation, the identified
impulse-response does not change. As shown in Figure 2.5, there is usually an “optimal” input level
that needs to be determined by trial-and-error. See also the discussion in Section 5.1. 2

noise

dominates

optimal

nonlinear

behavior

estimation error

α

Figure 2.5. Optimal choice of input magnitude

2.3.2 Step Response
Note. In general, steps are more
representative than pulses in
feedback loops so, in that respect,
the step response is a better
method than the impulse
response.

The impulse response of a system can also be determined by starting with the system at rest and
applying an step at the input:

upkq “

#

α k ě 0
0 k ă 0

ñ Z
“

upkq
‰

“ Upzq “
α

1 ´ z´1 .

In this case, the z-transform of the output will be given by

Y pzq “ HpzqUpzq ` Npzq “ Hpzq
α

1 ´ z´1 ` Npzq,

22 João P. Hespanha

where Npzq denotes the z-transform of measurement noise. Solving for Hpzq we obtain:

Hpzq “
Y pzq ´ z´1Y pzq

α
´

Npzq ´ z´1Npzq

α

Taking inverse z-transforms, we conclude that

hpkq “
ypkq ´ ypk ´ 1q

α
´

npkq ´ npk ´ 1q

α
.

Hopefully, the noise term npkq´npk´1q

α
is small when compared to hpkq, and we can use following

estimate for the impulse response:

ĥpkq “
ypkq ´ ypk ´ 1q

α
, k P t0,1, . . . ,Nu.

Attention! The main weakness of the step-response method is that it can amplify noise because in
the worst case npkq´npk´1q

α
can be twice as large as npkq

α
(when npk ´1q “ ´npkq). Although this may

seem unlikely, it is not unlikely to have all the npkq independent and identically distributed with zero
mean and standard deviation σ . In this case,

Note 8. Why? � p. 28

StdDev
”npkq

α

ı

“
σ

α
, StdDev

”npkq ´ npk ´ 1q

α

ı

“
1.41σ

α
,

which means that the noise is amplified by approximately 41%. 2

2.3.3 Other Inputs

One can determine the impulse response of a system using any input and not just a pulse- or step-
input. Take an arbitrary input upkq, with z-transform Upzq. The z-transform of the output will be
given by

Y pzq “ HpzqUpzq ` Npzq,

where Npzq denotes the z-transform of measurement noise. Solving for Hpzq we obtain:

Hpzq “
Y pzq

Upzq
´

Npzq

Upzq

Taking inverse z-transforms, we conclude that

hpkq “ Z ´1
”Y pzq

Upzq

ı

´Z ´1
”Npzq

Upzq

‰

.

Hopefully, the noise term is small when compared to hpkq, and we can use following estimate for
MATLAB® Hint 9. The
identification toolbox command
impulseest performs impulse
response estimation for arbitrary
inputs. � p. 27

the impulse response:

ĥpkq “ Z ´1
”Y pzq

Upzq

ı

, k P t0,1, . . . ,Nu.

2.4 Continuous-time Frequency Response Identification

We now consider methods to solve the continuous-time frequency response identification Prob-
lem 2.1.

Non-parametric Identification 23

uptq

nptq

yptq
Hpsq “?

Figure 2.6. Sine wave testing

2.4.1 Sine-wave Testing
Suppose that one applies an sinusoidal input of the form

uptq “ α cospωtq, @t P r0,T s, (2.1)

as in Figure 2.6. Since we are assuming that Hpsq is BIBO stable, the measured output is given by

yptq “ α Aω cos
`

ωt ` φω

˘

` εptq ` nptq, (2.2)

where

1. Aω – |Hp jωq| and φω – =Hp jωq are the magnitude and phase of the transfer function Hpsq

at s “ jω;

2. εptq is a transient signal that converges to zero as fast as ce´λ t , where λ is the absolute value
of the real past of the pole of Hpsq with largest (least negative) real part and c some constant;
and

3. nptq corresponds to measurement noise.
Note. To minimize the errors
caused by noise, the amplitude α

should be large. However, it
should still be sufficiently small
so that the process does not leave
the linear regime. A similar
trade-off was discussed in
Section 2.2.2, regarding the
selection of the step
magnitude. � p. 19

When nptq is much smaller than αAω and for t sufficiently large so that εptq is negligible, we have

yptq « αAω cos
`

ωt ` φω

˘

.

This allows us to recover both Aω – |Hp jωq| and φω – =Hp jωq from the magnitude and phase of
yptq. Repeating this experiment for several inputs of the form (2.1) with distinct frequencies ω , one
obtains several points in the Bode plot of Hpsq and, eventually, one estimates the frequency response
Hp jωq over the range of frequencies of interest.

2.4.2 Correlation Method
Especially when there is noise, it may be difficult to determine the amplitude and phase of yptq
by inspection. The correlation method aims at solving this task, thus improving the accuracy of
frequency response identification with sine-wave testing.

Suppose that the input uptq in (2.1) was applied, resulting in the measured output yptq given
by (2.2), which was measured at the K sampling times 0,Ts,2Ts, . . . ,pK ´ 1qTs. In the correlation
method we compute Note. The expression for Yω very

much resembles the definition of
the Laplace transform, with the
integral replaced by a finite
summation. In essence, we are
trying to estimate the Laplace
transform of the output, from
which we will get the amplitude
and phase of the transfer
function.

Yω –
1
K

K´1
ÿ

k“0

e´ jωTskypTskq “
1
K

K´1
ÿ

k“0

´

cospωTskq ´ j sinpωTskq

¯

ypTskq.

Using the expression for yptq in (2.5), we conclude after fairly straightforward algebraic manipula-
tions that

Note 9. Why? � p. 28Yω “
α

2
Hp jωq `

α

2K
H˚p jωq

1 ´ e´2 jωTsK

1 ´ e´2 jωTs
`

1
TsK

K´1
ÿ

k“0

Tse´ jωTsk`
εpTskq ` npTskq

˘

.

24 João P. Hespanha

As K Ñ 8, the second term converges to zero and the summation at the end converges to the Laplace
Note 10. Since the process is
BIBO stable, εptq converges to
zero and therefore it has no pure
sinusoids. However, a periodic
noise term with frequency exactly
equal to ω would lead to
trouble. � p. 24

transform of εptq ` nptq at the point s “ jω . We thus conclude that

Yω Ñ
α

2
Hp jωq ` lim

KÑ8

1
TsK

`

Ep jωq ` Np jωq
˘

,

where Epsq and Npsq denote the Laplace transforms of εptq and nptq, respectively. As long as nptq
and εptq do not contain pure sinusoidal terms at the frequency ω , the Laplace transforms are finite
and therefore the limit is equal to zero. This leads to the following estimate for Hp jωq

Note 11. Yω is a complex number
so we get estimates for the
amplitude and phase of
Hp jωq. � p. 24

{Hp jωq “
2
α

Yω , (2.3)

which is accurate for large K.

Note 10 (Minimizing the impact of initial conditions and noise). For a For a BIBO stable process,
εptq converges to zero and therefore it has no pure sinusoids. However, it is still a good idea to start
collecting data only after the time at which yptq appears to have stabilized into a pure sinusoid. To
make sure that the input is still of the form (2.1), we need to skip a number of full periods of the
input signal.

The correlation method, relies heavily on the noise not having pure sinusoidal terms of the frequency
ω . In case the noise does have pure sinusoidal terms, one should avoid estimating the transfer
function at those frequencies and, if needed, rely on extrapolation from nearby frequencies. A
common source of noise with pure sinusoids are analog-to-digital converters that try to “interpolate”
between consecutive quantization values, by switching rapidly between those values. As illustrated
in Figure 2.7, this results in large noise near the Nyquist frequency of f “ 1

2Ts
. This means that

one generally cannot trust results from the correlation method at frequencies close to the Nyquist
frequency. 2

t

yaptq
ydptq

Figure 2.7. High-frequency noise caused by analog-to-digital conversion (ADC): the solid thick line
shows the original analog signal yaptq and the solid thin line the same signal after its conversion to
digital values ydptq. The dotted lines show the quantization levels of the conversion to digital values.

Note 11 (Recovering amplitude and phase of a transfer function). The correlation method provides
estimates of Hp jωq as a complex number, from which the amplitude and phase of the transfer
function needs to be extracted. Estimating the amplitude is straightforward, but the phase comes
with an ambiguity of 2π as it is not possible to distinguish between the angles φ and 2π ` φ for a
complex number.

Determining the “initial phase” as ω Ñ 0 can be discovered by looking at the magnitude plot.
Specifically, as ω Ñ 0 we will always have something likeNote. The relative degree of a

SISO transfer function is equal to
the number of poles (or the
degree of the denominator
polynomial) minus the number of
zeros (or the degree of the
numerator polynomial).

lim
ωÑ0

Hp jωq “ lim
ωÑ0

k
jrωr

for some integer r ě 0, which is equal to relative degree. This means that we basically only have a
few options:

1. If |Hp jωq| converges to a finite constant as ω Ñ 0, we must have r “ 0 and the initial phase
must be:

r “ 0 ñ

#

=Hp jωqω“0 “ 0 k ą 0
=Hp jωqω“0 “ π k ă 0

Non-parametric Identification 25

2. If |Hp jωq| converges to infinite as ω Ñ 0, we must have r ą 0 the rate of increase determines
the value of r:

20 dB/decade ñ r “ 1 ñ

#

=Hp jωqωÑ0 “ ´ π

2 k ą 0
=Hp jωqωÑ0 “ ´ 3π

2 k ă 0

40 dB/decade ñ r “ 2 ñ

#

=Hp jωqωÑ0 “ ´ 5π

2 k ą 0
=Hp jωqωÑ0 “ ´ 7π

2 k ă 0

...

Resolving the phase ambiguity for frequencies ω ą 0, can then be done by using the fact that the
MATLAB® Hint 10.
phaseOut=unwrap(phaseIn)
takes an array of phases and
adds/subtracts multiples of 2π to
each element of the array to make
the array “as smooth as
possibles.” The unwrap
command does not take into
account the transfer function
magnitude so the initial phase
still need to be “fixed” by using
the approach outlined in the
Note 11. � p. 28

phase of a transfer function Hp jωq should be continuous with respect to ω . 2

Attention! The main weaknesses of the frequency response methods are:

(i) To estimate Hp jωq at a single frequency, one still needs a long input (i.e., K large). In prac-
tice, this leads to a long experimentation period to obtain the Bode plot over a wide range of
frequencies.

(ii) It requires that we apply very specific inputs (sinusoids) to the process. This may not be possible
(or safe) in certain applications. Especially for processes that are open-loop unstable.

(iii) We do not get a parametric form of the transfer function; and, instead, we get the Bode plot
directly. This may prevent the use of control design methods that are not directly based on the
process’ Bode plot. Note. For simple systems, it may

be possible to estimate the
locations of poles and zeros,
directly from the Bode plot. This
permits the use of many other
control design methods.

Its key strengths are

(i) It is typically very robust with respect to measurement noise since it uses a large amount of data
to estimate a single point in the Bode plot.

(ii) It requires very few assumptions on the transfer function, which may not even by rational.
2

2.5 Discrete-time Frequency Response Identification
We now consider methods to solve the discrete-time frequency response identification Problem 2.2.

2.5.1 Sine-wave Testing
Suppose that one applies an sinusoidal input of the form

Note 4. Discrete-time angular
frequencies Ω take values from 0
to π . When operating with a
sample period Ts, to generate a
discrete-time signal udpkq that
corresponds to the sampled
version of the continuous-time
signal ucptq “ Acospωtq, @t ě 0,
we should select
Ω “ ωTs “ 2π f Ts. � p. 15

upkq “ α cospΩkq, @k P t1,2, . . . ,Ku. (2.4)

Since we are assuming that Hpzq is BIBO stable, the measured output is given by

ypkq “ α AΩ cos
`

Ωk ` φΩ

˘

` εpkq ` npkq, (2.5)

where

1. AΩ – |Hpe jΩq| and φΩ – =Hpe jΩq are the magnitude and phase of the transfer function Hpzq

at z “ e jΩ;

2. εpkq is a transient signal that converges to zero as fast as cγk, where γ is the magnitude of the
pole of Hpzq with largest magnitude and c some constant; and

3. npkq corresponds to measurement noise.

26 João P. Hespanha

Note. To minimize the errors
caused by noise, the amplitude α

should be large. However, it
should still be sufficiently small
so that the process does not leave
the linear regime.

When npkq is much smaller than αAΩ and for k sufficiently large so that εpkq is negligible, we have

ypkq « αAΩ cos
`

Ωk ` φΩ

˘

.

This allows us to recover both AΩ – |Hpe jΩ| and φΩ – =Hpe jΩq from the magnitude and phase
of ypkq. Repeating this experiment for several inputs (2.4) with distinct frequencies Ω, one obtains
several points in the Bode plot of Hpzq and, eventually, one estimates the frequency response Hpe jΩq

over the range of frequencies of interest.

2.5.2 Correlation Method
Especially when there is noise, it may be difficult to determine the amplitude and phase of ypkq

by inspection. The correlation method aims at solving this task, thus improving the accuracy of
frequency response identification with sine-wave testing.

Suppose that the input upkq in (2.4) was applied, resulting in the measured output ypkq given by
(2.5) was measured at K times k P t0,1, . . . ,K ´ 1u. In the correlation method we compute

YΩ –
1
K

K´1
ÿ

k“0

e´ jΩkypkq “
1
K

K´1
ÿ

k“0

´

cospΩkq ´ j sinpΩkq

¯

ypkq.

Using the expression for ypkq in (2.5), we conclude after fairly straightforward algebraic manipula-
tions that

Note 12. Why? � p. 28

YΩ “
α

2
Hpe jΩq `

α

2K
H˚pe jΩq

1 ´ e´2 jΩK

1 ´ e´2 jΩ `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpkq ` npkq

˘

.

As K Ñ 8, the second term converges to zero and the summation at the end converges to the z-Note. Since the process is stable,
εpkq converges to zero and
therefore it has no pure sinusoids.
However, a periodic noise term
with frequency exactly equal to Ω

would lead to trouble. � p. 24

transform of εpkq ` npkq at the point z “ e jΩ. We thus conclude that

YΩ Ñ
α

2
Hpe jΩq ` lim

KÑ8

1
K

`

Epe´ jΩq ` Npe´ jΩq
˘

,

where Epzq and Npzq denote the z-transforms of εpkq and npkq, respectively. As long as npkq and
εpkq do not contain pure sinusoidal terms of frequency Ω, the z-transforms are finite and therefore
the limit is equal to zero. This leads to the following estimate for Hpe jΩqNote. YΩ is a complex number so

we get estimates for the
amplitude and phase of
Hpe jΩq. � p. 24

{Hpe jΩq “
2
α

YΩ,

which is accurate for large K.

Attention! The main weaknesses of the frequency response methods are:

(i) To estimate Hpe jΩq at a single frequency, one still needs a long input (i.e., K large). In prac-
tice, this leads to a long experimentation period to obtain the Bode plot over a wide range of
frequencies.

(ii) It requires that we apply very specific inputs (sinusoids) to the process. This may not be possible
(or safe) in certain applications. Especially for processes that are open-loop unstable.

(iii) We do not get a parametric form of the transfer function; and, instead, we get the Bode plot
directly. This prevent the use of control design methods that are not directly based on the
process’ Bode plot.Note. For simple systems, it may

be possible to estimate the
locations of poles and zeros,
directly from the Bode plot. This
permits the use of many other
control design methods.

Its key strengths are

(i) It is typically very robust with respect to measurement noise since it uses a large amount of data
to estimate a single point in the Bode plot.

(ii) It requires very few assumptions on the transfer function, which may not even by rational. 2

Non-parametric Identification 27

2.6 MATLAB® Hints
MATLAB® Hint 8 (fft). The command fft(h) computes the fast-Fourier-transform (FFT) of the
signal hpkq, k P t1,2, . . . ,Ku, which provides the values of Hpe jΩq for equally spaced frequencies
Ω “ 2πk

K , k P t0,1, . . . ,K ´1u. However, since we only care for values of Ω in the interval r0,πs, we
should discard the second half of fft’s output. 2

MATLAB® Hint 9 (impulseest). The command impulseest from the identification toolbox per-
forms impulse response estimation from data collected with arbitrary inputs. To use this command
one must

1. Create a data object that encapsulates the input/output data using:

data=iddata(y,u,Ts);

where u and y are vectors with the input and output data, respectively, and Ts is the sampling
interval.

Data from multiple experiments can be combined using the command merge as follows:

dat1=iddata(y1,u1,Ts);

dat2=iddata(y2,u2,Ts);

data=merge(dat1 ,dat2);

2. Compute the estimated discrete-time impulse response using
MATLAB® Hint 11. As of
MATLAB® version R2018b,
there is no command to directly
estimate the continuous-time
impulse response, but one can
obtain the discrete-time response
and subsequently convert it to
continuous time.

model=impulseest(data ,N);

where N is the length of the impulse response and model is a MATLAB® object with the result
of the identification.

The impulse response is given by

impulse(model)

and the estimated discrete-time transfer function can be recovered using

sysd=tf(model);

Additional information about the result of the system identification can be obtained in the
structure model.report. Some of the most useful items in this structure include

MATLAB® Hint 12.
MATLAB® is an object oriented
language and model.report is
the property report of the
object model.

• model.report.Parameters.ParVector is a vector with all the parameters that have been
estimated.

• model.report.Parameters.FreeParCovariance is the error covariance matrix for the
estimated parameters. The diagonal elements of this matrix are the variances of the
estimation errors of the parameters and their square roots are the corresponding standard
deviations.
One should compare the value of each parameter with its standard deviation. A large
value in one or more of the standard deviations points to little confidence on the esti-
mated value of that parameter.

• model.report.Fit.MSE is the mean-square estimation error, which measure of how well
the response of the estimated model fits the estimation data. 2

28 João P. Hespanha

MATLAB® Hint 10 (unwrap). The command phaseOut=unwrap(phaseIn) takes an array of phasesNote. The unwrap command
does not take into account the
transfer function magnitude so
the initial phase still need to be
“fixed” by using the approach
outlined in the Note 11. � p. 24

and adds/subtracts multiples of 2π to each element of the array to minimize the difference between
consecutive phases in the array, i.e., to make the array “as smooth as possibles.” 2

2.7 To Probe Further
Note 8 (Noise in step-response method). When npkq and npk ´ 1q are independent, we have

Varrnpkq ´ npk ´ 1qs “ Varrnpkqs ` Varrnpk ´ 1qs.

Therefore

StdDev
”npkq ´ npk ´ 1q

α

ı

“

c

Var
”npkq ´ npk ´ 1q

α

ı

“

c

Varrnpkqs ` Varrnpk ´ 1qs

α2

When, both variables have the same standard deviation σ , we obtain

StdDev
”npkq ´ npk ´ 1q

α

ı

“

c

2σ2

α2 “

?
2σ

α
. 2

Note 9 (Continuous-time correlation method). In the continuous-time correlation method one com-
putes

Yω –
1
K

K´1
ÿ

k“0

e´ jΩkypTskq “
1
K

K´1
ÿ

k“0

`

cospΩkq ´ j sinpΩkq
˘

ypTskq, Ω – ωTs.

Using the expression for ypTskq in (2.2), we conclude that

Yω “
αAω

K

K´1
ÿ

k“0

´

cospΩkqcospΩk ` φω q ´ j sinpΩkqcospΩk ` φω q

¯

`
1
K

K´1
ÿ

k“0

e´ jΩk`
εpTskq ` npTskq

˘

.

Applying the trigonometric formulas cosacosb “ 1
2 pcospa´bq`cospa`bqq and sinacosb “ 1

2 psinpa´

bq ` sinpa ` bqq, we further conclude that

Yω “
αAω

2K

K´1
ÿ

k“0

´

cosφω ` cos
`

2Ωk ` φω

˘

` j sinφω ´ j sin
`

2Ωk ` φω

˘

¯

`
1
K

K´1
ÿ

k“0

e jΩk`
εpTskq ` npTskq

˘

“
αAω

2K

K´1
ÿ

k“0

e jφω `
αAω

2K

K´1
ÿ

k“0

e´2 jΩk´ jφω `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpTskq ` npTskq

˘

“
α

2
Hp jωq `

α

2K
H˚p jωq

K´1
ÿ

k“0

e´2 jΩk `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpTskq ` npTskq

˘

,

where we used the fact that Aω e jφω is equal to the value Hp jωq of the transfer function at s “ jω
and Aω e´ jφω is equal to its complex conjugate H˚p jωq. By noticing that the second term is the
summation of a geometric series, we can simplify this expression toNote. Recall that the sum of a

geometric series is given by

K´1
ÿ

k“0

rk “
1 ´ rK

1 ´ r

.

Yω “
α

2
Hp jωq `

α

2K
H˚p jωq

1 ´ e´2 jΩK

1 ´ e´2 jΩ `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpTskq ` npTskq

˘

2

Note 12 (Discrete-time correlation method). In the discrete-time correlation method one computes

YΩ –
1
K

K´1
ÿ

k“0

e´ jΩkypkq “
1
K

K´1
ÿ

k“0

`

cospΩkq ´ j sinpΩkq
˘

ypkq

Non-parametric Identification 29

Using the expression for ypkq in (2.5), we conclude that

YΩ “
αAΩ

K

K´1
ÿ

k“0

´

cospΩkqcospΩk ` φΩq ´ j sinpΩkqcospΩk ` φΩq

¯

`
1
K

K´1
ÿ

k“0

e´ jΩk`
εpkq ` npkq

˘

.

Applying the trigonometric formulas cosacosb “ 1
2 pcospa´bq`cospa`bqq and sinacosb “ 1

2 psinpa´

bq ` sinpa ` bqq, we further conclude that

YΩ “
αAΩ

2K

K´1
ÿ

k“0

´

cosφΩ ` cos
`

2Ωk ` φΩ

˘

` j sinφΩ ´ j sin
`

2Ωk ` φΩ

˘

¯

`
1
K

K´1
ÿ

k“0

e jΩk`
εpkq ` npkq

˘

“
αAΩ

2K

K´1
ÿ

k“0

e jφΩ `
αAΩ

2K

K´1
ÿ

k“0

e´2 jΩk´ jφΩ `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpkq ` npkq

˘

“
α

2
Hpe jΩq `

α

2K
H˚pe jΩq

K´1
ÿ

k“0

e´2 jΩk `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpkq ` npkq

˘

,

where we used the fact that AΩe jφΩ is equal to the value Hpe jΩq of the transfer function at z “ e jΩ

and AΩe´ jφΩ is equal to its complex conjugate H˚pe jΩq. By noticing that the second term is the
summation of a geometric series, we can simplify this expression to Note. Recall that the sum of a

geometric series is given by

K´1
ÿ

k“0

rk “
1 ´ rK

1 ´ r

.

YΩ “
α

2
Hpe jΩq `

α

2K
H˚pe jΩq

1 ´ e´2 jΩK

1 ´ e´2 jΩ `
1
K

K´1
ÿ

k“0

e´ jΩk`
εpkq ` npkq

˘

2

2.8 Exercises
2.1 (Impulse response). A Simulink block that models a pendulum with viscous friction is provided.
This Simulink model expects some variables to be defined. Please use:

Ts = 0.01;

tfinal = 300;

noise = 1e-5;

noiseOn = 0;

For part 2 of this problem, you must set noiseOn = 1 to turn on the noise.

You will also need to define values for the height of the impulse and the height of the step through
the variables:

alpha_step

alpha_impulse

For these variable, you select the appropriate values.

Once all these variables have been set, you can run a simulation using

sim(’pendulum ’,tfinal)

after which the variables t, u, and y are created with time, the control input, and the measured output.

1. Use the Simulink block (without noise, i.e., with noiseOn = 0) to estimate the system’s im-
pulse response ĥpkq using the impulse response method in Section 2.3.1 and the step response
method in Section 2.3.2.

What is the largest value α of the input magnitude for which the system still remains within
the approximately linear region of operation?

Hint: To make sure that the estimate is good you can compare the impulses responses that
you obtain from the two methods.

This system has a very long time response, which impulseest does not handle very well so
you should probably use directly the formulas in Sections 2.3.1 and 2.3.2.

30 João P. Hespanha

2. Turn on the noise in the Simulink block (with noiseOn = 1) and repeat the identification
procedure above for a range of values for α . For both methods, plot the error

ř

k }ĥα pkq ´

hpkq} vs. α , where ĥα pkq denotes the estimate obtained for an input with magnitude α and
hpkq the actual impulse response. What is your conclusion?

Take the estimate ĥpkq determined in 1 for the noise-free case as the ground truth hpkq. 2

2.2 (Correlation method in continuous time). Modify the Simulink block provided for Exercise 2.1
to accept a sinusoidal input and use the following parameters:

Ts = 0.01;

tfinal = 300;

noise = 1e-4;

noiseOn = 0;

Note the noise level larger than that used in Exercise 2.1.

1. Estimate the system’s frequency response {Hp jωq at a representative set of (log-spaced) fre-
quencies ωi using the correlation method in Section 2.4.2.

Select an input amplitude α for which the system remains within the approximately linear
region of operation.

Important: Write MATLAB® scripts to automate the procedure of taking as inputs the sim-
ulation data uptq, yptq (from a set of .mat files in a given folder) and producing the Bode plot
of the system.

2. Turn on the noise in the Simulink block and repeat the identification procedure above for a
range of values for α . Plot the error

ř

i } {Hα p jωiq ´ Hp jωiq} vs. α , where {Hα p jωiq denotes
the estimate obtained for an input with magnitude α . What is your conclusion?

Take the estimate {Hp jωq determined in 1 for the noise-free case as the ground truth Hp jωq.

3. Compare your best frequency response estimate {Hp jωq, with the frequency responses that
you would obtain by taking the Fourier transform of the best impulse response ĥpkq that you
obtained in Exercise 2.1.

Hint: Use the MATLAB® command fft to compute the Fourier transform. This commandNote. See Note 4 on how to
translate discrete-time to
continuous-time
frequencies. . . � p. 15

gives you Hpe jΩq from Ω “ 0 to Ω “ 2π so you should discard the second half of the Fourier
transform (corresponding to Ω ą π). 2

2.3 (Correlation method in discrete-time). Modify the Simulink block provided for Exercise 2.1 to
accept a sinusoidal input.

1. Estimate the system’s frequency response {Hpe jΩq at a representative set of (log-spaced) fre-
quencies Ωi using the correlation method.

Select an input amplitude α for which the system remains within the approximately linear
region of operation.

Important: Write MATLAB® scripts to automate the procedure of taking as inputs the sim-
ulation data upkq, ypkq (from a set of .mat files in a given folder) and producing the Bode plot
of the system.

2. Turn on the noise in the Simulink block and repeat the identification procedure above for a
range of values for α . Plot the error

ř

i } {Hα pe jΩiq ´ Hpe jΩiq} vs. α , where {Hα pe jΩiq denotes
the estimate obtained for an input with magnitude α . What is your conclusion?

Take the estimate {Hpe jΩq determined in 1 for the noise-free case as the ground truth Hpe jΩq.

Non-parametric Identification 31

3. Compare your best frequency response estimate {Hpe jΩq, with the frequency responses that
you would obtain by taking the Fourier transform of the best impulse response ĥpkq that you
obtained in Exercise 2.1.

Hint: Use the MATLAB® command fft to compute the Fourier transform. This command Note. See Note 4 on how to
translate discrete-time to
continuous-time
frequencies. . . � p. 15

gives you Hpe jΩq from Ω “ 0 to Ω “ 2π so you should discard the second half of the Fourier
transform (corresponding to Ω ą π).

32 João P. Hespanha

Lecture 3

Parametric Identification using
Least-Squares

This lecture presents the basic tools needed for parametric identification using the method of least-
squares:

Contents
3.1 Parametric Identification . 33
3.2 Least-Squares Line Fitting . 34
3.3 Vector Least-Squares . 35
3.4 To Probe Further . 37
3.5 Exercises . 39

3.1 Parametric Identification
In parametric identification one attempts to determine a finite number of unknown parameters that
characterize the model of the system. The following are typical problems in this class:

Problem 3.1 (Parametric continuous-time transfer function identification). Determine the coeffi-
cients αi and βi of the system’s rational continuous-time transfer function

Hpsq “
αmsm ` αm´1sm´1 ` ¨¨ ¨ ` α1s ` α0

sn ` βn´1sn´1 ` ¨¨ ¨ ` β1s ` β0
.

The number of poles n and the number of zeros m are assumed known. Note. The number of poles and
zeros is often not know, which
will be addressed in
Section 5.3. � p. 57

Problem 3.2 (Parametric discrete-time transfer function identification). Determine the coefficients
αi and βi of the system’s rational discrete-time transfer function

Hpzq “
αmzm ` αm´1zm´1 ` ¨¨ ¨ ` α1z ` α0

zn ` βn´1zn´1 ` ¨¨ ¨ ` β1z ` β0
.

The number of poles n and the number of zeros m are assumed known. Note. The number of poles and
zeros is often not know, which
will be addressed in
Section 7.4. � p. 83

This can be done using the method of least-squares, which we introduce next, starting from a
simple line fitting problem and eventually building up to the Problems 3.1 and 3.2 in Lectures 4 and
6, respectively.

The methods of least-squares is generally attributed to Gauss [6] but the American mathemati-
cian Adrain [1] seems to have arrived at the same results independently [7]. A detailed treatment of
least-squares estimation can be found, e.g., in [10, Chapter 7].

33

34 João P. Hespanha

3.2 Least-Squares Line Fitting

Suppose that we have reasons to believe that two physical scalar variables x and y are approximately
related by a linear equation of the form

y “ ax ` b, (3.1)

but we do not know the value of the constants a and b. The variables y and x could be, e.g., a voltage
and a current in a simple electric circuit, or the height of a fluid in a tank and the pressure at the
bottom of the tank (cf. Figure 3.1).

y “ voltage

x “ current

R

(a) Voltage vs. current

y “ pressure

x “ height

(b) Pressure vs. height

Figure 3.1. Linear models

Numerical values for a and b can be determined by conducting several experiments and mea-
suring the values obtained for x and y. We will denote by pxi,yiq the measurements obtained on the
ith experiment of a total of N experiments. As illustrated in Figure 3.2, it is unlikely that we have
exactly

yi “ axi ` b, @i P t1,2, . . . ,Nu, (3.2)

because of measurement errors and also because often the model (3.1) is only approximate.

x

y

y “ ax ` b

pxi,yiq

(a) Measurement noise

x

y

y “ ax ` b

pxi,yiq

(b) Nonlinearity

Figure 3.2. Main causes for discrepancy between experimental data and linear model

Least-squares identification attempts to find values for a and b for which the left- and the right-
hand-sides of (3.2) differ by the smallest possible error. More precisely, the values of a and b leading
to the smallest possible sum of squares for the errors over the N experiments. This motivates the
following problem:

Problem 3.3 (Basic Least-Squares). Find values for a and b that minimize the following Mean-
Square Error (MSE):

MSE –
1
N

N
ÿ

i“1

paxi ` b ´ yiq
2.

Parametric Identification using Least-Squares 35

Solution to Problem 3.3. This problem can be solved using standard calculus. All we need to do is
solve

$

’

’

’

’

&

’

’

’

’

%

BMSE
Ba

“
1
N

N
ÿ

i“1

2xipaxi ` b ´ yiq “ 0

BMSE
Bb

“
1
N

N
ÿ

i“1

2paxi ` b ´ yiq “ 0

for the unknowns a and b. This is a simple task because it amounts to solving a system of linear
equations:

$

’

’

’

’

&

’

’

’

’

%

2
`

N
ÿ

i“1

x2
i
˘

a ` 2
`

N
ÿ

i“1

xi
˘

b “ 2
N
ÿ

i“1

xiyi

2
`

N
ÿ

i“1

xi
˘

a ` 2Nb “ 2
N
ÿ

i“1

yi

ô

$

’

’

’

&

’

’

’

%

â “
Np

ř

i xiyiq ´ p
ř

i xiqp
ř

i yiq

Np
ř

i x2
i q ´ p

ř

i xiq2

b̂ “
p
ř

i x2
i qp

ř

i yiq ´ p
ř

i xiyiqp
ř

i xiq

Np
ř

i x2
i q ´ p

ř

i xiq2

In the above expressions, we used â and b̂ to denote the solution to the least-squares minimization.
These are called the least-squares estimates of a and b, respectively. 2

Note 13. Statistical interpretation
of least-squares. � p. 38Attention! The above estimates for a and b are not valid when

Np
ÿ

i

x2
i q ´ p

ÿ

i

xiq
2 “ 0, (3.3)

because this would lead to a division by zero. It turns out that (3.3) only holds when the xi obtained
Note 14. Why does (3.3) only
hold when all the xi are equal to
each other? � p. 38

in all experiments are exactly the same, as shown in Figure 3.3. Such set of measurements does not
provide enough information to estimate the parameter a and b that characterize the line defined by
(3.1). 2

x

y

iq

Figure 3.3. Singularity in least-squares line fitting due to poor data.

3.3 Vector Least-Squares
The least-square problem defined in Section 3.2 can be extended to a more general linear model,
where y is a scalar, z –

“

z1 z2 ¨ ¨ ¨ zm
‰

an m-vector, and these variables are related by a linear
equation of the form

Notation 2. a ¨ b denotes the
inner product of a and b. � p. 37

Note. The line fitting problem is
a special case of this one for
z “ rx 1s and θ “ ra bs.

y “

m
ÿ

j“1

z jθ j “ z ¨ θ , (3.4)

where θ –
“

θ1 θ2 ¨ ¨ ¨ θm
‰

is an m-vector with parameters whose values we would like to de-
termine.

36 João P. Hespanha

To determine the parameter vector θ , we conduct N experiments from which we obtain mea-Attention! We are now using piq
to denote the ith experiment since
the subscript in z j is needed to
denotes the jth entry of the vector
z.

surements
`

zpiq,ypiq
˘

, i P t1,2, . . . ,Nu, where each zpiq denotes one m-vector and each ypiq a scalar.
The least-squares problem is now formulated as follows:

Problem 3.4 (Vector Least-Squares). Find values for θ –
“

θ1 θ2 ¨ ¨ ¨ θm
‰

that minimize the
following Mean-Square Error (MSE):

MSE –
1
N

N
ÿ

i“1

`

zpiq ¨ θ ´ ypiq
˘2
.

Solution to Problem 3.4. This problem can also be solved using standard calculus. Essentially we
have to solve

BMSE
Bθ1

“
BMSE

Bθ2
“ ¨¨ ¨ “

BMSE
Bθm

“ 0,

for the unknown θi. The equation above can also be re-written as
Notation 3. ∇x f pxq denotes the
gradient of f pxq. � p. 37

∇θ MSE “

”

BMSE
Bθ1

BMSE
Bθ2

¨ ¨ ¨ BMSE
Bθm

ı

“ 0.

However, to simplify the computation it is convenient to write the MSE in vector notation. DefiningNote. Vector notation is
convenient both for algebraic
manipulations and for efficient
MATLAB® computations.

E to be an N-vector obtained by stacking all the errors zpiq ¨ θ ´ ypiq on top of each other, i.e.,

E –

»

—

—

—

–

zp1q ¨ θ ´ yp1q

zp2q ¨ θ ´ yp2q

...
zpNq ¨ θ ´ ypNq

fi

ffi

ffi

ffi

fl

Nˆ1

,

we can write
Notation 4. Given a matrix M,
we denote the transpose of M by
M1. MSE “

1
N

}E}2 “
1
N

E 1E.

Moreover, by viewing θ as a column vector, we can write

E “ Zθ ´Y,

where Z denotes a N ˆ m matrix obtained by stacking all the row vectors zpiq on top of each other,
and Y an m-vector obtained by stacking all the ypiq on top of each other, i.e.,

Z “

»

—

—

—

–

zp1q

zp2q

...
zpNq

fi

ffi

ffi

ffi

fl

Nˆm

, Y “

»

—

—

—

–

yp1q

yp2q

...
ypNq

fi

ffi

ffi

ffi

fl

Nˆ1

.

Therefore

MSE “
1
N

pθ
1Z1 ´Y 1qpZθ ´Y q “

1
N

`

θ
1Z1Zθ ´ 2Y 1Zθ `Y 1Y

˘

. (3.5)

Parametric Identification using Least-Squares 37

It is now straightforward to compute the gradient of the MSE and find the solution to ∇θ MSE “ 0:
Note 15. The gradient of a
quadratic function
f pxq “ x1Qx ` cx ` d, is given by
∇x f pxq “ x1pQ`Q1q`c. � p. 39

MATLAB® Hint 13. Z\Y
computes directly pZ1Zq´1Z1Y in
a very efficient way, which avoids
inverting Z1Z by solving directly
the linear system of equations in
(3.6). This is desirable, because
this operation is often
ill-conditioned.

∇θ MSE “
1
N

`

2θ
1Z1Z ´ 2Y 1Z

˘

“ 0 ô θ
1 “ Y 1ZpZ1Zq´1, (3.6)

which yields the following least-squares estimate for θ :

θ̂ “ pZ1Zq´1Z1Y. (3.7)

Since Z1Z “
ř

i zpiq1zpiq and Z1Y “
ř

i zpiq1ypiq, we can re-write the above formula as

θ̂ “ R´1 f , R –

N
ÿ

i“1

zpiq1zpiq, f –

N
ÿ

i“1

zpiq1ypiq.

Quality of Fit: One should check the quality of fit by computing the Mean-Square Error MSE
achieved by the estimate (i.e., the minimum achievable squared-error), normalized by the Mean-
Square Output MSO. Replacing the estimate (3.7) in (3.5) we obtain

MSE
MSO

“

1
N }Zθ̂ ´Y }2

1
N }Y }2

(3.8)

When this error-to-signal ratio is much smaller than one, the mismatch between the left- and right-
hand-sides of (3.4) has been made significantly smaller than the output.

Identifiability: The above estimate for θ is not valid when the m ˆ m matrix R is not invertible.
Singularity of R is a situation similar to (3.3) in line fitting and it means that the zpiq are not suffi-
ciently rich to estimate θ . In practice, even when R is invertible, poor estimates are obtained if R is
close to a singular matrix, in which case we say that the model is not identifiable for the given mea-
surements. One should check identifiability by computing the following estimate for the covariance
of the estimation error: Note. This estimate for the error

covariance will be small if there
is a good fit in the sense that
}Zθ̂ ´Y } is small and the data is
sufficiently “rich” to make
pZ1Zq´1 also small.

Erpθ ´ θ̂qpθ ´ θ̂q1s «
N

N ´ m
MSEpZ1Zq´1 “

1
N ´ m

}Zθ̂ ´Y }2pZ1Zq´1. (3.9)

The diagonal elements of this matrix are the variances of the estimation errors of the parameter and
their square roots are the corresponding standard deviations. A large value for one of these standard
deviations (compared to the value of the parameter) means that the estimate of the parameter is likely
inaccurate. 2

3.4 To Probe Further

Notation 2 (Inner product). Given two m-vectors, a “
“

a1 a2 ¨ ¨ ¨ am
‰

and a “
“

a1 a2 ¨ ¨ ¨ am
‰

,
a ¨ b denotes the inner product of a and b, i.e.,

a ¨ b “

m
ÿ

i“1

aibi.

2

Notation 3 (Gradient). Given a scalar function of n variables f px1, . . . ,xmq, ∇x f denotes the gradient
of f , i.e.,

∇x f px1,x2, . . . ,xmq “

”

B f
Bx1

B f
Bx2

¨ ¨ ¨
B f

Bxm

ı

. 2

38 João P. Hespanha

Note 13 (Statistical interpretation of least-squares). Suppose that the mismatch between left- and
the right-hand sides of (3.2) is due to uncorrelated zero-mean noise. In particular, that

yi “ axi ` b ` ni, @i P t1,2, . . . ,nu,

where all the ni are uncorrelated zero-mean random variables with the same variance σ2, i.e.,

Ernis “ 0, Ern2
i s “ σ

2, Erni n js “ 0,@i, j ‰ i.

The Gauss-Markov Theorem stated below justifies the wide use of least-squares estimation.

Theorem 3.1 (Gauss-Markov). The best linear unbiased estimator (BLUE) for the parameters a
and b is the least-squares estimator.

Some clarification is needed to understand this theorem

1. The Gauss-Markov Theorem 3.1 compares all linear estimators, i.e., all estimators of the form

â “ α1y1 ` ¨¨ ¨ ` αnyn, b̂ “ β1y1 ` ¨¨ ¨ ` βnyn,

where the αi,βi are coefficients that may depend on the xi.

2. It then asks what is the choice for the αi,βi that lead to an estimator that is “best” in the sense
that it is (i) unbiased, i.e., for which

Erâs “ a, Erb̂s “ b,

and (ii) results in the smallest possible variance for the estimation error, i.e., that minimizes

Erpâ ´ aq2 ` pb̂ ´ bq2s.

The conclusion is that the least-squares estimator satisfies these requirements.

Unbiasedness, means that when we repeat the identification procedure many time, although we may
never get â “ a and b̂ “ b, the estimates obtained will be clustered around the true values. Minimum
variance, means that the clusters so obtained will be as “narrow” as possible. 2

Note 14 (Singularity of line fit). The estimates for a and b are not valid when

Np
ÿ

i

x2
i q ´ p

ÿ

i

xiq
2 “ 0.

To understand when this can happen let us compute

N
ÿ

i

pxi ´ µq2 “ N
ÿ

i

x2
i ´ 2Nµ

ÿ

i

xi ` n2
µ

2

but Nµ “
ř

i xi, so

N
ÿ

i

pxi ´ µq2 “ N
ÿ

i

x2
i ´ p

ÿ

i

xiq
2.

This means that we run into trouble when
ÿ

i

pxi ´ µq2 “ 0,

which can only occur when all the xi are the same and equal to µ . 2

Parametric Identification using Least-Squares 39

Note 15 (Gradient of a quadratic function). Given a m ˆ m matrix Q and a m-row vector c, the
gradient of the quadratic function

f pxq “ x1Qx ` cx “

m
ÿ

i“1

m
ÿ

j“1

qi jxix j `

m
ÿ

i“1

cixi.

To determine the gradient of f , we need to compute:

B f pxq

Bxk
“

m
ÿ

i“1

m
ÿ

j“1

qi jxi
Bx j

Bxk
`

m
ÿ

i“1

m
ÿ

j“1

qi jx j
Bxi

Bxk
`

m
ÿ

i“1

ci
Bxi

Bxk
.

However, Bxi
Bxk

and Bx j
Bxk

are zero whenever i ‰ k and j ‰ k, respectively, and 1 otherwise. Therefore,
the summations above can be simplified to

B f pxq

Bxk
“

m
ÿ

i“1

qikxi `

m
ÿ

j“1

qk jx j ` ck “

m
ÿ

i“1

pqik ` qkiqxi ` ck.

Therefore

∇x f pxq “

”

B f pxq

Bx1

B f pxq

Bx2
¨ ¨ ¨

B f pxq

Bxm

ı

“
“
řm

i“1pqi1 ` q1iqxi ` c1 ¨ ¨ ¨
řm

i“1pqim ` qmiqxi ` cm
‰

“ x1pQ ` Q1q ` c. 2

3.5 Exercises
3.1 (Electrical circuit). Consider the electrical circuit in Figure 3.4, where the voltage U across the
source and the resistor R are unknown. To determine the values of U and R you place several test

+

−
U

R
A

B

ri

Ii

Vi

Figure 3.4. Electrical circuit

resistors ri between the terminals A, B and measure the voltages Vi and currents Ii across them.

1. Write a MATLAB® script to compute the voltages Vi and currents Ii that would be obtained
when U “ 10V , R “ 1kΩ, and the ri are equally spaced in the interval r100Ω,10kΩs. Add to
the “correct” voltage and current values measurement noise. Use for the currents and for the
voltages Gaussian distributed noise with zero mean and standard deviation .1mA and 10mV ,
respectively.

The script should take as input the number N of test resistors.

2. Use least-squares to determine the values of R and U from the measurements for N P t5,10,50,100,1000u.
Repeat each procedure 5 times and plot the average error that you obtained in your estimates
versus N. Use a logarithmic scale. What do you conclude? 2

3.2 (Nonlinear spring). Consider a nonlinear spring with restoring force

F “ ´px ` x3q,

40 João P. Hespanha

where x denotes the spring displacement. Use least-squares to determine linear models for the spring
of the form

F “ ax ` b.

Compute values for the parameters a and b for

1. forces evenly distributed in the interval r´.1, .1s,

2. forces evenly distributed in the interval r´.5, .5s, and

3. forces evenly distributed in the interval r´1,1s.

For each case

1. calculate the SSE,

2. plot the actual and estimated forces vs. x, and

3. plot the estimation error vs. x. 2

Lecture 4

Parametric Identification of a
Continuous-Time ARX Model

This lecture explains how the methods of least-squares can be used to identify the transfer function
of a continuous-time system.

Contents
4.1 CARX Model . 41
4.2 Identification of a CARX Model . 42
4.3 CARX Model with Filtered Data . 43
4.4 Identification of a CARX Model with Filtered Signals 44
4.5 Dealing with Known Parameters . 45
4.6 MATLAB® Hints . 46
4.7 To Probe Further . 48
4.8 Exercises . 48

4.1 CARX Model
Suppose that we want to determine the transfer function Hpsq of the SISO continuous-time system
in Figure 6.1. In least-squares identification, one converts the problem of estimating Hpsq into the

uptq yptq
Hpsq “?

Figure 4.1. System identification from input/output experimental data

vector least-squares problem considered in Section 3.3. This is done using the CARX model that
will be constructed below.

The Laplace transforms of the input and output of the system in Figure 6.1 are related by

Y psq

Upsq
“ Hpsq “

αpsq

β psq
“

αmsm ` αm´1sm´1 ` ¨¨ ¨ ` α1s ` α0

sn ` βn´1sn´1 ` ¨¨ ¨ ` β1s ` β0
, (4.1)

where

αpsq – αmsm ` αm´1sm´1 ` ¨¨ ¨ ` α1s ` α0, β psq – sn ` βn´1sn´1 ` ¨¨ ¨ ` β1s ` β0,

denote the numerator and denominator polynomials of the system’s transfer function. The relation-
ship between Y psq and Upsq in (4.1) can be equivalently expressed as

41

42 João P. Hespanha

β psqY psq “ αpsqUpsq ô

snY psq ` βn´1sn´1Y psq ` ¨ ¨ ¨ ` β1sY psq ` β0Y psq “

αmsmUpsq ` αm´1sm´1Upsq ` ¨ ¨ ¨ ` α1sUpsq ` α0Upsq. (4.2)

Taking inverse Laplace transforms we obtain the so-called Continuous-time Auto-Regression model
with eXogeneous inputs (CARX) model:

Note 16. Equation (4.3) can be
conveniently written using the
notation

β

´ d
dt

¯

y “ α

´ d
dt

¯

u,

where αpsq and βpsq are the
numerator and denominator
polynomials of the transfer
function.

dnyptq
dtn ` βn´1

dn´1yptq
dtn´1 ` ¨¨ ¨ ` β1

dyptq
dt

` β0yptq “

αm
dmuptq

dtm ` αm´1
dm´1uptq

dtm´1 ` ¨¨ ¨ ` α1
duptq

dt
` α0uptq, @t ě 0. (4.3)

This can be re-written compactly as

dnyptq
dtn “ ϕptq ¨ θ , @t ě 0. (4.4)

where the pn ` m ` 1q-vector θ contains the coefficient of the transfer function and the vector ϕptq
is called the regression vector and includes the derivatives of the inputs and outputs, i.e.,

θ –
“

αm αm´1 ¨ ¨ ¨ α1 α0 βn´1 ¨ ¨ ¨ β1 β0
‰

ϕptq –

”

dmuptq
dtm

dm´1uptq
dtm´1 ¨ ¨ ¨ uptq ´

dn´1yptq
dtn´1 ´

dn´2yptq
dtn´2 ¨ ¨ ¨ ´yptq

ı

.

4.2 Identification of a CARX Model
We are now ready to propose a tentative solution for the system identification Problem 3.1 introduced
in Lecture 3, by applying the least-squares method to the CARX model:

Solution to Problem 3.1 (tentative).

1. Apply a probe input signal uptq, t P r0,T s to the system.

2. Measure the corresponding output yptq at a set of times t0, t1, . . . , tN P r0,T s.

3. Compute the first m derivatives of uptq and the first n derivatives of yptq at the times t0, t1, . . . , tN P

r0,T s.

4. Determine the values for the parameter θ that minimize the discrepancy between the left- and
the right-hand-sides of (4.4) in a least-squares sense at the times t0, t1, . . . , tN P r0,T s.

According to Section 3.3, the least-squares estimate of θ is given by
MATLAB® Hint 14. PHI\Y
computes θ̂ directly, from the
matrix PHI“ Φ and the vector
Y“ Y .

θ̂ “ pΦ
1
Φq´1

Φ
1Y,

where

Φ –

»

—

—

—

–

ϕpt0q

ϕpt1q

...
ϕptNq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

dmupt0q

dtm ¨¨¨ upt0q ´
dn´1ypt0q

dtn´1 ¨¨¨ ´ypt0q

dmupt1q

dtm ¨¨¨ upt1q ´
dn´1ypt1q

dtn´1 ¨¨¨ ´ypt1q

...
...

...
...

dmuptN q

dtm ¨¨¨ uptN q ´
dn´1yptN q

dtn´1 ¨¨¨ ´yptN q

fi

ffi

ffi

ffi

ffi

fl

, Y –

»

—

—

—

—

–

dnypt0q

dtn
dnypt1q

dtn

...
dnyptN q

dtn

fi

ffi

ffi

ffi

ffi

fl

.

2

The problem with this approach is that very often the measurements of yptq have high frequency
noise which will be greatly amplified by taking the n derivatives required to compute Y and the n´1
derivatives needed for Φ.

Parametric Identification of a Continuous-Time ARX Model 43

4.3 CARX Model with Filtered Data
Consider a polynomial

ωpsq – sℓ ` ωℓ´1sℓ´1 ` ¨¨ ¨ ` ω1s ` ω0

of order ℓ larger than or equal to the order n of the denominator of the transfer function in (4.1) that
is “asymptotically stable” in the sense that all its roots have strictly negative real part and suppose
that construct the “filtered” versions u f and y f of the input u and output y, respectively, using the Note. Since all ωpsq roots of

ωpsq have strictly negative real
part the transfer function 1

ωpsq
is

asymptotically stable and
therefore the effect of initial
conditions will converge to zero.

transfer function 1{ωpsq:

Yf psq “
1

ωpsq
Y psq, U f psq “

1
ωpsq

Upsq. (4.5)

In view of these equations, we have that

Y psq “ ωpsqYf psq, Upsq “ ωpsqU f psq,

which can be combined with (4.2) to conclude that

β psqωpsqYf psq “ αpsqωpsqU f psq ô ωpsq

´

β psqYf psq ´ αpsqU f psq

¯

“ 0.

Taking inverse Laplace transforms we now obtain Note. To keep the formulas short,
here we are using the notation
introduced in Note 16. � p. 42

ω

´ d
dt

¯´

β

´ d
dt

¯

y f ptq ´ α

´ d
dt

¯

u f ptq
¯

“ 0.

Defining

eptq – β

´ d
dt

¯

y f ptq ´ α

´ d
dt

¯

u f ptq,

the above equation tell us that the “error” eptq is a solution to the differential equation

ω

´ d
dt

¯

eptq “ 0.

Moreover, since all roots of ωpsq have strictly negative real part, eptq « 0 for sufficiently large t and
therefore

β

´ d
dt

¯

y f ptq ´ α

´ d
dt

¯

u f ptq « 0, @t ě Tf , (4.6)

where Tf should be chosen sufficiently large so that the impulse response of 1{ωpsq is negligible for
t ě Tf .

At this point, we got to an equation (4.6) that very much resembles the CARX model (4.3),
except that it involves y f and u f instead of y and u and is only valid for t ě Tf . As before, we can
re-write (4.6) compactly as

dny f ptq
dtn “ ϕ f ptq ¨ θ @t ě Tf , (4.7)

where the pn ` m ` 1q-vector θ contains the coefficient of the transfer function and the regressor
vector ϕ f ptq includes the derivatives of the inputs and outputs, i.e.,

θ –
“

αm αm´1 ¨ ¨ ¨ α1 α0 βn´1 ¨ ¨ ¨ β1 β0
‰

(4.8)

ϕ f ptq –

”

dmu f ptq
dtm

dm´1u f ptq
dtm´1 ¨ ¨ ¨ u f ptq ´

dn´1y f ptq
dtn´1 ´

dn´2y f ptq
dtn´2 ¨ ¨ ¨ ´y f ptq

ı

. (4.9)

44 João P. Hespanha

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-1

10
0

10
1

-270

-180

-90

0

90

180

270
P

h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/s)

Figure 4.2. typical filter transfer functions used to generate dny f ptq
dtn and the signals that appear in

ϕ f in the CARX Model with filtered signals in (4.7). In this figure we used ωpsq – ps ` 1qℓ and
ℓ “ n “ 3.

The key advantage of (4.7)–(4.6) over (4.4)–(4.3) and is that the latter does not require taking deriva-
tives of y as it involves instead derivatives of y f . In particular, computing the kth derivative of y f ,
corresponds to filtering y with the following transfer function

L
”dky f ptq

dtk

ı

“ skYf psq “
sk

ωpsq
Y psq

which will not amplify high-frequency components of y as long as k is smaller than or equal to the
order ℓ of ω , which explains why we selected ℓ ě n. Figure 4.2 shows typical transfer functions
used to generate dny f ptq

dtn and the signals that appear in ϕ f in (4.7).

4.4 Identification of a CARX Model with Filtered Signals
We are now ready to propose a good solution for the system identification Problem 3.1 introduced
in Lecture 3, by applying the least-squares method to the CARX model with filtered data:

Solution to Problem 3.1.

1. Apply a probe input signal uptq, t P r0,T s to the system.

2. Measure the corresponding output yptq at a set of times t0, t1, . . . , tN P r0,T s.

3. Compute the first m derivatives of u f ptq and the first n derivatives of y f ptq at the times
t0, t1, . . . , tN P r0,T s, using the fact that

dky f ptq
dtk “ L ´1

” sk

ωpsq
Y psq

ı

,
dku f ptq

dtk “ L ´1
” sk

ωpsq
Upsq

ı

.

4. Determine the values for the parameter θ that minimize the discrepancy between the left- and
the right-hand-sides of (4.7) in a least-squares sense for those times tko , tk0`1, . . . , tN that fall
in rTf ,T s.

Parametric Identification of a Continuous-Time ARX Model 45

According to Section 3.3, the least-squares estimate of θ is given by
MATLAB® Hint 15. PHI\Y
computes θ̂ directly, from the
matrix PHI“ Φ and the vector
Y“ Y .

θ̂ “ pΦ
1
Φq´1

Φ
1Y, (4.10)

where Attention! Remember to through
away the initial times that fall
before Tf .

Φ –

»

—

—

—

–

ϕ f ptk0q

ϕ f ptk0`1q

...
ϕ f ptNq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

dmu f ptk0 q

dtm ¨ ¨ ¨ u f ptk0q ´
dn´1y f ptk0 q

dtn´1 ¨ ¨ ¨ ´y f ptk0q

dmu f ptk0`1q

dtm ¨ ¨ ¨ u f ptk0`1q ´
dn´1y f ptk0`1q

dtn´1 ¨ ¨ ¨ ´y f ptk0`1q

...
...

...
...

dmu f ptN q

dtm ¨ ¨ ¨ u f ptNq ´
dn´1y f ptN q

dtn´1 ¨ ¨ ¨ ´y f ptNq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

YF –

»

—

—

—

—

–

dny f ptk0 q

dtn
dny f ptk0`1q

dtn

...
dny f ptN q

dtn

fi

ffi

ffi

ffi

ffi

fl

,

or equivalently
MATLAB® Hint 16. tfest is
convenient to perform CARX
models identification because it
does not require the construction
of the matrix Φ and the vector
Y . � p. 46

MATLAB® Hint 17. compare
is useful to determine the quality
of fit. � p. 48

θ̂ “ R´1 f , R – Φ
1
Φ “

N
ÿ

k“k0

ϕ f ptkq1
ϕ f ptkq, f – Φ

1Y “

N
ÿ

k“k0

ϕ f ptkq1 dny f ptkq

dtn

The quality of the fit can be assessed by computing the error-to-signal ratio

MSE
MSO

“

1
N }Φθ̂ ´Y }2

1
N }Y }2

(4.11)

When this quantity is much smaller than one, the mismatch between the left- and right-hand-sides
of (4.7) has been made significantly smaller than the output. The covariance of the estimation error
can be computed using Note. Why? In (4.12) we simply

used (3.9), taking into account
that the number of rows of Φ is
N ´ k0 ` 1 and the number of
parameters to estimate in θ is
n ` m ` 1. � p. 37

Erpθ ´ θ̂qpθ ´ θ̂q1s «
1

pN ´ k0 ` 1q ´ pn ` m ` 1q
}Φθ̂ ´Y }2pΦ

1
Φq´1. (4.12)

When the square roots of the diagonal elements of this matrix are much smaller than the correspond-
ing entries of θ̂ , one can have confidence in the values θ̂ .

4.5 Dealing with Known Parameters
Due to physical considerations, one often knows one or more poles/zeros of the process. For exam-
ple:

1. one may know that the process has an integrator, which corresponds to a continuous-time pole
at s “ 0; or

2. that the process has a differentiator, which corresponds to a continuous-time zero at s “ 0.

In this case, it suffices to identify the remaining poles/zeros.

4.5.1 Known Pole
Suppose that it is known that the transfer function Hpsq has a pole at s “ λ , i.e.,

Hpsq “
1

s ´ λ
H̄psq,

46 João P. Hespanha

where H̄psq corresponds to the unknown portion of the transfer function. In this case, the LaplaceNote. The transfer function H̄psq

is proper only if Hpsq is strictly
proper. However, even if H̄psq

happens not to be proper, this
introduces no difficulties for this
method of system identification.

transforms of the input and output of the system are related by

Y psq

Upsq
“

1
s ´ λ

H̄psq ô
ps ´ λ qY psq

Upsq
“ H̄psq

and therefore

Ȳ psq

Upsq
“ H̄psq,

where

Ȳ psq – ps ´ λ qY psq ñ ȳptq “
dyptq

dt
´ λyptq. (4.13)

This means that we can directly estimate H̄psq by computing ȳptq prior to identification and thenNote. To compute the new output
ȳptq we need to differentiate yptq,
but in practice we do this in the
filtered output y f so we simply
need to increase the order of ωpsq

to make sure that we do not
amplify high frequency noise.

MATLAB® Hint 18. One must
be careful in constructing the
vector ȳ in (4.13) to be used by
the function tfest. � p. 48

regarding this variable as the output, instead of yptq.

Attention! To obtain the original transfer function Hpsq, one needs to multiply the identified func-
tion H̄psq by the term 1

s´λ
. 2

4.5.2 Known Zero
Suppose now that it is known that the transfer function Hpsq has a zero at s “ λ , i.e.,

Hpsq “ ps ´ λ qH̄psq,

where H̄psq corresponds to the unknown portion of the transfer function. In this case, the Laplace
transforms of the input and output of the system are related by

Y psq

Upsq
“ ps ´ λ qH̄psq ô

Y psq

ps ´ λ qUpsq
“ H̄psq

and therefore

Y psq

Ūpsq
“ H̄psq,

where

Ūpsq – ps ´ λ qUpsq ñ ūptq “
duptq

dt
´ λuptq. (4.14)

This means that we can directly estimate H̄psq by computing ūptq prior to identification and then
MATLAB® Hint 18. One must
be careful in constructing the
vector ū in (4.14) to be used by
the function tfest. � p. 48

regarding this variable as the input, instead of uptq.

Attention! To obtain the original transfer function Hpsq, one needs to multiply the identified func-
tion H̄psq by the term ps ´ λ q. 2

4.6 MATLAB® Hints
MATLAB® Hint 16 (tfest). The command tfest from the identification toolbox performs least-
squares identification of CARX models. To use this command one must

1. Create a data object that encapsulates the input/output data using:

data=iddata(y,u,Ts);

Parametric Identification of a Continuous-Time ARX Model 47

where u and y are vectors with the input and output data, respectively, and Ts is the sampling
interval.

Data from multiple experiments can be combined using the command merge as follows:

data1=iddata(y1 ,u1 ,Ts);

data2=iddata(y2 ,u2 ,Ts);

data=merge(data1 ,data2);

2. Compute the estimated model using:

model=tfest(data ,np ,nz);

where data is the object with input/output data, np is the number of poles for the transfer
function (i.e., the degree of the denominator), nz is the number of zeros (i.e., the degree of the
numerator), and model a MATLAB® object with the result of the identification.

The estimated continuous-time transfer function can be recovered using the MATLAB® command

sysc=tf(model);

Additional information about the result of the system identification can be obtained in the structure
model.report. Some of the most useful items in this structure include

• model.report.Parameters.ParVector is a vector θ̂all with all the parameters in the transfer Note. There is a mismatch
between ParVector and
FreeParCovariance in that
the former includes all
parameters of the transfer
function, whereas the latter only
includes parameters that need to
be estimated. The mismatch
arises because the leading
coefficient of the denominator is
always the number 1 and does not
need to be estimated. So, e.g., in
a SISO system, ParVector
includes one parameter that is not
included in
FreeParCovariance.

function, starting with the numerator coefficients and followed by the denominator coeffi-
cients, as in (4.8). These coefficients also appear in the transfer function tf(model).

• model.report.Parameters.FreeParCovariance is the error covariance matrix

Erpθest ´ θ̂estqpθest ´ θ̂estq
1s

for the estimated parameters. The diagonal elements of this matrix are the variances of the
estimation errors of the parameter and their square roots are the corresponding standard devi-
ations

b

Erpθi ´ θ̂iq2s,

which can be obtained using

StdDev=sqrt(diag(model.report.parameters.FreeParCovariance));

Note 17. Obtaining a standard
deviation for one parameter that
is comparable or larger than its
estimated value typically arises in
one of three situations. � p. 48

One should compare the value of each parameter with its standard deviation. A large value in
one or more of the standard deviations indicates that the matrix R – Φ1Φ is close to singular
and points to little confidence on the estimated value of that parameter.

• model.report.Fit.MSE is the mean-square estimation error (MSE), as in the numerator of
(4.11), which measure of how well the response of the estimated model fits the estimation
data. The MSE should be normalized by the Mean-Square Output

MSO=y’*y

when one want to compare the fit across different inputs/outputs.

The MATLAB® command tfest uses a more sophisticated algorithm than the one described in
these notes so the results obtained using tfest may not match exactly the ones obtained using the
formula (4.10). In particular, it automatically tries to adjust the polynomial ωpsq used to obtain the
filtered input and output signals in (4.5). While this typically improves the quality of the estimate, it
occasionally leads to poor results so one needs to exercise caution in evaluating the output of tfest.

2

48 João P. Hespanha

MATLAB® Hint 17 (compare). The command compare from the identification toolbox allows one
to compare experimental outputs with simulated values from an estimated model. This is useful to
validate model identification. The command

compare(data ,model);

plots the measured output from the input/output data object data and the predictions obtained from
the estimated model model. See MATLAB® hints 9, 16, 23 for details on these objects. 2

MATLAB® Hint 18 (Dealing with known parameters). Assuming that the output yptq has been
sampled with a sampling interval Ts, a first-order approximation to the vector ȳ in (4.13) can be
obtained with the following MATLAB® command

bary = (y(2: end)-y(1:end -1))/Ts-lambda*y(1:end -1),

where we used finite differences to approximate the derivative. However, this vector bary has one
less element than the original y. Since the function iddata only takes input/output pairs of the same
length, this means that we need to discard the last input data in u:

data=iddata(bary ,u(1:end -1),Ts);

To construct the data object corresponding the case of a known zero in (4.14), we would use instead

baru = (u(2: end)-u(1:end -1))/Ts-lambda*u(1:end -1),

data=iddata(y(1:end -1),baru ,Ts);

2

4.7 To Probe Further
Note 17 (Large standard deviations for the parameter estimates). Obtaining a standard deviation for
one parameter that is comparable or larger than its estimated value typically arises in one of three
situations:

1. The data collected is not sufficiently rich. This issue is discussed in detail in Section 5.1. It can
generally be resolved by choosing a different input signal u for the identification procedure.

2. One has hypothesized an incorrect value for the number of poles or the number of zeros. This
issue is discussed in detail in Section 5.3. It can generally be resolved by decreasing the
number of poles to be estimates (i.e., the order of the denominator polynomial) or the number
of zeros (i.e., the order of the numerator polynomial).

3. One is trying to identify a parameter whose value is actually zero or very small.

When the parameter is one of the leading/trailing coefficients of the numerator/denominator
polynomials, this is can be addressed as discussed in the previous bullet. Otherwise, generally
there is not much one can do about it during system identification. However, since there is
a fair chance that the value of this parameter has a large percentage error (perhaps even the
wrong sign), we must make sure that whatever controller we design for this system is robust
with respect to errors in such parameter. This issue is addressed in Lectures 8–9. 2

4.8 Exercises
4.1 (Known parameters). The data provided was obtained from a system with one zero and two
poles transfer function

Hpsq “
kps ` .5q

ps ` .3qps ´ pq
,

where the gain k and the pole p are unknown.

Parametric Identification of a Continuous-Time ARX Model 49

1. Estimate the system’s transfer function without making use of the fact that you know the
location of the zero and one of the poles.

2. Estimate the system’s transfer function using the fact that you know that the zero is at s “ ´.5
and one of the poles at s “ ´.3.

Hint: To solve this problem you will need to combine the ideas from Sections 4.5.1 and 4.5.2,
by identifying the transfer function from an auxiliar input ū to an auxiliar output ȳ. 2

If all went well, you should have gotten somewhat similar bode plots for the transfer functions
obtained in 1 and 2, but you should have obtained a much better estimate of the poles and zeros in 2.

50 João P. Hespanha

Lecture 5

Practical Considerations in
Identification of Continuous-time
CARX Models

This lecture discusses several practical considerations that are crucial for successful identifications.

Contents
5.1 Choice of Inputs . 51
5.2 Signal Scaling . 54
5.3 Choice of Model Order . 57
5.4 Combination of Multiple Experiments . 60
5.5 Closed-loop Identification . 65
5.6 Exercises . 65

5.1 Choice of Inputs

The quality of least-squares estimates depends significantly on the input uptq used. The choice of
inputs should take into account the following requirements:

1. The input should be sufficiently rich so that the matrix R is nonsingular (and is well condi-
tioned).

(a) Single sinusoids should be avoided because a sinusoid of frequency ω will not allow
us to distinguish between different transfer functions with exactly the same value at the
point s “ jω , as illustrated in Figure 5.1.

(b) Good inputs include:

i. square waves, which includes a base frequency and several high-order harmonics;
ii. a combination of many sinusoids, either summed, one after another, or by merging Note. See Section 5.4 on

combining data from multiple
experiments. � p. 60

multiple experiments;

Note. It is a good idea to
log-space the frequencies of
multiple sinusoids like in a Bode
plot.

iii. a chirp signal (i.e., a signal with time-varying frequency).

Combining multiple sinusoids is typically better than using a chirp signal since one
has better control on the duration of the input signals at the different frequencies.
Ideally one would like each frequency to have multiple periods, but a linear chirp
signal provides equal time for each frequency, rather than the same number of peri-
ods.

51

52 João P. Hespanha

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

0

45

90

135

180

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/s)

Figure 5.1. The transfer functions H1psq “ ´1
s`1 and H2psq “ s´2

s`3 have the same value for s “ j.
Therefore they will lead to the same output yptq when uptq is a sinusoid with frequency ω “ 1
rad/sec. This input will not allow us to distinguish between H1 and H2.

2. The amplitude of the resulting output yptq should be much larger than the measurement noise.
In particular, large inputs are needed when one wants to probe the system at frequencies for
which the noise is large.

However, when the process is nonlinear but is being approximated by a linear model, large
inputs may be problematic because the linearization may not be valid. As shown in Figure 5.2,
there is usually an “optimal” input level that needs to be determined by trial-and-error. 2

noise

dominates

optimal

nonlinear

behavior

MSE
MSO

input magnitude

Figure 5.2. Optimal choice of input magnitude

3. The input should be representative of the class of inputs that are expected to appear in the
feedback loop.

(a) The input should have strong components in the range of frequencies at which the system
will operate.

(b) The magnitude of the input should be representative of the magnitudes that are expected
in the closed loop.

Validation. The choice of input is perhaps the most critical aspect in good system identification.
After any identification procedure the following steps should be followed to make sure that the data
collected is adequate:

Practical Considerations in Identification of Continuous-time CARX Models 53

1. Repeat the identification experiment with the input αuptq with α “ 1, α “ ´1, and α “ .5. If
the process is in the linear region, the measured outputs should roughly by equal to αyptq and
all experiments should approximately result in the same transfer function. When one obtains
larger gains in the experiment with α “ .5, this typically means that the process is saturating
and one needs to decrease the magnitude of the input.

2. Check if the matrix R is far from singular. If not a different “richer” input should be used.
MATLAB® Hint 16. When
using the tfest command, the
singularity of the matrix R can be
inferred from the standard
deviations associated with the
parameter estimates. � p. 46

3. Check the quality of fit by computing MSE
MSO . If this quantity is not small, one of the following

MATLAB® Hint 16. When
using the tfest command, the
quality of fit can be inferred from
model.report.Fit.MSE,
but it should generally be
normalized by the Mean-Square
Output MSO “ 1

N }Y }2. � p. 46

is probably occurring:

(a) There is too much noise and the input magnitude needs to be increased.

(b) The inputs are outside the range for which the process is approximately linear and the
input magnitude needs to be decreased.

(c) The assumed degrees for the numerator and denominator are incorrect (see Section 5.3).

m1 m2

x1 x2

F

Figure 5.3. Two-mass with spring

Example 5.1 (Two-cart with spring). To make these concepts concrete, we will use as a running ex-
ample the identification of the two-carts with spring apparatus shown in Figure 5.3. From Newton’s
law one concludes that

m1:x1 “ kpx2 ´ x1q ` f , m2:x2 “ kpx1 ´ x2q, (5.1)

where x1 and x2 are the positions of both carts, m1 and m2 the masses of the carts, and k the spring
constant. The force f is produced by an electrical motor driven by an applied voltage v according to

f “
KmKg

Rmr

´

v ´
KmKg

r
9x1

¯

, (5.2)

where Km, Kg, Rm, and r are the motor parameters.

For this system, we are interested in taken the control input to be the applied voltage u – v and
the measured output to be the position y – x2 of the second cart. To determine the system’s transfer
function, we replace f from (5.2) into (5.1) and take Laplace transforms to conclude that

#

m1s2X1psq “ k
`

Y psq ´ X1psq
˘

`
KmKg
Rmr

´

Upsq ´
KmKg

r sX1psq

¯

m2 s2Y psq “ k
`

X1psq ´Y psq
˘

ñ

$

&

%

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

X1psq “ kY psq `
KmKg
Rmr Upsq

`

m2 s2 ` k
˘

Y psq “ kX1psq

ñ
`

m2 s2 ` k
˘

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

Y psq “ k2Y psq `
kKmKg

Rmr
Upsq

Y psq

Upsq
“

kKmKg
Rmr

`

m2 s2 ` k
˘

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

´ k2
(5.3)

where the large caps signals denote the Laplace transforms of the corresponding small caps signals.

54 João P. Hespanha

From the first principles model derived above, we expect this continuous-time system to have 4
poles and no zero. Moreover, a close look at the denominator of the transfer function in (5.3) reveals
that there is no term of order zero, since the denominator is equal to

`

m2 s2 ` k
˘

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

´ k2 “ m2 s2
´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

` km1s2 `
kK2

mK2
g

Rmr2 s

and therefore the system should have one pole at zero, i.e., it should contain one pure integrator.

Our goal now is to determine the system’s transfer function (5.3) using system identification
from input/output measurements. The need for this typically stems from the fact that

1. we may not know the values of the system parameters m1, m2, k, km, Kg, Rm, and r; and

2. the first-principles model (5.1)–(5.2) may be ignoring factors that turn out to be important,Note. Friction is especially hard
to model from first principles.
Often one models friction using
viscous friction (i.e., proportional
to the velocity), but this is just an
empirical law so the friction
coefficient needs to be
determined experimentally.

e.g., the mass of the spring itself, friction between the masses and whatever platform is sup-
porting them, the fact that the track where the masses move may not be perfectly horizontal,
etc.

Figure 5.4a shows four sets of input/output data and four continuous-time transfer functions
identified from these data sets.

Key observations. A careful examination of the outputs of the tfest command and the plots in
Figure 5.4 reveals the following:

1. While difficult to see in Figure 5.4a, it turns out that the data collected with similar input
signals (square wave with a period of 2Hz) but 2 different amplitudes (2v and 4v) resulted in
roughly the same shape of the output, but scaled appropriately. However, the fact that this is
difficult to see in Figure 5.4a because of scaling may actually be an indication of trouble.

2. The plots in Figure 5.4b show that the four sets of data input/output data resulted in dramati-
cally different identified transfer functions. 2

5.2 Signal Scaling
For the computation of the least-squares estimate to be numerically well conditioned, it is important
that the numerical values of both the inputs and the outputs have roughly the same order of magni-
tude. Because the units of these variable are generally quite different, this often requires scaling of
these variables. It is good practice to scale both inputs and outputs so that all variable take “normal”
values in the same range, e.g., the interval r´1,1s.

Attention! After identification, one must then adjust the system gain to reflect the scaling performed
on the signals used for identification: Suppose that one takes the original input/output data set u,y
and constructs a new scaled data set ū, ȳ, using

MATLAB® Hint 19. In
MATLAB®, one could do:
data=iddata(a*y,b*u);
model=tfest(data,...);
H=b/a*tf(model);

ūptq “ buptq, ȳptq “ ayptq, @t.

If one then uses ū and ȳ to identify the transfer function

H̄psq “
Ȳ psq

Ūpsq
“

a
b

Y psq

Upsq
,

in order to obtain the original transfer function Hpsq from u to y, one need to reverse the scaling:

Hpsq “
Y psq

Upsq
“

b
a

H̄psq. 2

Example 5.2 (Two-cart with spring (cont.)). We can see in Figure 5.4a, that the input and output
signals used for identification exhibit vastly different scales. In fact, when drawn in the same axis,
the output signals appears to be identically zero.

Figure 5.5a shows the same four sets of input/output data used to estimate the continuous-time
transfer function, but the signal labeled “output” now corresponds to a scaled version of the output.

Practical Considerations in Identification of Continuous-time CARX Models 55

0.5 1 1.5

-2

-1

0

1

2

square_a2_f0.5.mat

input [v]

output [m]

0.5 1 1.5

-2

-1

0

1

2

square_a2_f1.mat

input [v]

output [m]

0.5 1 1.5

-2

-1

0

1

2

square_a2_f2.mat

input [v]

output [m]

0.5 1 1.5

-4

-2

0

2

4

square_a4_f2.mat

input [v]

output [m]

(a) Four sets of input/output data used to estimate the two-mass system in Fig-
ure 5.3. In all experiments the input signal u is a square wave with frequencies
.5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top to bottom. In
the first three plots the square wave switches from -2v to +2v, whereas in the
last plot it switches from -4v to +4v. All signals were sampled at 1KHz.

10
-1

10
0

10
1

10
2

f [Hz]

-250

-200

-150

-100

-50

0

50

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
-1

10
0

10
1

10
2

f [Hz]

-600

-500

-400

-300

-200

-100

0

p
h

a
s
e

 [
d

e
g

]

(b) Four continuous-time transfer functions estimated from the four sets of in-
put/output data in (a), sampled at 1KHz. The transfer functions were obtained
using the MATLAB® command tfest with np=4 and nz=0, which reflects an ex-
pectation of 4 poles and no zeros. The labels in the transfer functions refer to the
titles of the four sets of input/output data in (a).

Figure 5.4. Initial attempt to estimate the continuous-time transfer function for the two-mass system
in Figure 5.3.

56 João P. Hespanha

0.5 1 1.5

-8

-6

-4

-2

0

2

square_a2_f0.5.mat

input [v]

output [m]

0.5 1 1.5

-2

-1

0

1

2

square_a2_f1.mat

input [v]

output [m]

0.5 1 1.5

-2

-1

0

1

2

square_a2_f2.mat

input [v]

output [m]

0.5 1 1.5

-4

-2

0

2

4

square_a4_f2.mat

input [v]

output [m]

(a) Four sets of input/output data used to estimate the two-mass system in Fig-
ure 5.3. In all experiments the input signal u is a square wave with frequencies
.5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top to bottom. In
the first three plots the square wave switches from -2v to +2v, whereas in the
last plot it switches from -4v to +4v. The signal labeled “output” now corre-
sponds to a scaled version of the output y so that it is comparable in magnitude
to the input. All signals were sampled at 1KHz.

10
-1

10
0

10
1

10
2

f [Hz]

-250

-200

-150

-100

-50

0

50

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
-1

10
0

10
1

10
2

f [Hz]

-600

-500

-400

-300

-200

-100

0

p
h

a
s
e

 [
d

e
g

]

(b) Four continuous-time transfer functions estimated from the four sets of in-
put/output data in (a), sampled at 1KHz. The transfer functions were obtained
using the MATLAB® command tfest with np=4 and nz=0, which reflects an ex-
pectation of 4 poles and no zeros. The labels in the transfer functions refer to the
titles of the four sets of input/output data in (a). The transfer functions plotted are
scaled so that they reflect an output in its original units.

Figure 5.5. Attempt to estimate the continuous-time transfer function for the two-mass system in
Figure 5.3, with a properly scaled output.

Practical Considerations in Identification of Continuous-time CARX Models 57

Key observations. A careful examination of the outputs of the tfest command and the plots in
Figure 5.5 reveals the following:

1. The quality of fit does not appear to be very good since for most data sets tfest reports a
value for the report.Fit.MSE only 3-10 times smaller than the average value of y2.

2. The standard deviations associated with several of the numerator and denominator parame-
ters are very large, sometimes much larger than the parameters themselves, which indicate
problems in the estimated transfer functions.

3. The integrator that we were expecting in the transfer functions is not always there.

4. The four sets of data input/output data continue to result in dramatically different identified
transfer functions.

All these items are, of course, of great concern, and a clear indication that we are not getting a good
transfer function.

Fixes. The fact that we are not seeing an integrator in the identified transfer functions is not too
surprising, since our probe input signals are periodic square waves, which has no component at the
zero frequency. The input that has the most zero-frequency component is the square wave with
frequency .5Hz (cf. top-left plot in Figure 5.5a), for which less than a full period of data was applied
to the system. Not surprisingly, that data resulted in the transfer function that is “closer” to an
integrator in the sense that it is the largest at low frequencies, but not necessarily with the expected
phase of ´π{2.

Since we know that the system has a structural pole at s “ 0, we should force it into the model
using the technique seen in Section 4.5. Figure 5.6a shows the same four sets of input/output data
used to estimate the continuous-time transfer function, but the signal labeled “output” now corre-
sponds to the signal ȳ that we encountered in Section 4.5. The new identified transfer functions that
appear in Figure 5.6b are now much more consistent. In addition,

1. The quality of fit is very good, with tfest reporting values for report.Fit.MSE that are 100-
1000 times smaller than the average value of y2.

2. Almost all standard deviations associated with the numerator and denominator parameters are
at least 10 times smaller than the parameters themselves, which gives additional confidence to
the model. 2

5.3 Choice of Model Order
A significant difficulty in parametric identification of CARX models is that to construct the regres-
sion vector ϕ f ptq in (4.7), one needs to know the degrees m and n of the numerator and denominator.
In fact, an incorrect choice for n will generally lead to difficulties.

1. Selecting a value for the number of poles n too small will lead to mismatch between the
measured data and the model and the MSE will be large.

2. Selecting a value for n too large is called over-parameterization and it generally leads to R
being close to singular. To understand why, suppose we have a transfer function

Hpsq “
1

s ` 1
,

but for estimation purposes we assumed that m “ n “ 2 and therefore attempted to determine
constants αi, βi such that

Hpsq “
α2s2 ` α1s ` α0

s2 ` β1s ` β0
.

58 João P. Hespanha

0.5 1 1.5

-2

-1

0

1

2

square_a2_f0.5.mat

input [v]

output [m]

0.5 1 1.5

-2

-1

0

1

2

square_a2_f1.mat

input [v]

output [m]

0.5 1 1.5

-2

-1

0

1

2

square_a2_f2.mat

input [v]

output [m]

0.5 1 1.5

-4

-2

0

2

4

square_a4_f2.mat

input [v]

output [m]

(a) Four sets of input/output data used to estimate the two-mass system in Fig-
ure 5.3. In all experiments the input signal u is a square wave with frequencies
.5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top to bottom.
In the first three plots the square wave switches from -2v to +2v, whereas in
the last plot it switches from -4v to +4v. The signal labeled “output” now cor-
responds to the signal ȳ that we encountered in Section 4.5, scaled so that its
magnitude is comparable to that of the input u. All signals were sampled at
1KHz.

10
-1

10
0

10
1

10
2

f [Hz]

-200

-150

-100

-50

0

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
-1

10
0

10
1

10
2

f [Hz]

-400

-350

-300

-250

-200

-150

-100

p
h

a
s
e

 [
d

e
g

]

(b) Four continuous-time transfer functions estimated from the four sets of in-
put/output data in (a), sampled at 1KHz. The transfer functions were obtained
using the MATLAB® command tfest with np=3 and nz=0, which reflects an ex-
pectation of 3 poles in addition to the one at s “ 0 and no zeros. A pole at s “ 0
was inserted manually into the transfer function returned by tfest. The labels in
the transfer functions refer to the titles of the four sets of input/output data in (a).

Figure 5.6. Attempt to estimate the continuous-time transfer function for the two-mass system in
Figure 5.3, forcing a pole at s “ 0.

Practical Considerations in Identification of Continuous-time CARX Models 59

If the model was perfect, it should be possible to match the data with any αi, βi such that

α2s2 ` α1s ` α0

s2 ` β1s ` β0
“

s ` p
ps ` 1qps ` pq

ô

#

α2 “ 0, α1 “ 1, α0 “ p,
β1 “ p ` 1, β0 “ p,

(5.4)

where p can be any number. This means that the data is not sufficient to determine the values
of the parameters α0,β0,β1, which translates into R being singular.

MATLAB® Hint 16. When
using the tfest command,
singularity of R can be inferred
from standard deviations for the
parameters that are large when
compared with the estimated
parameter values. � p. 46

When there is noise, it will never be possible to perfectly explain the data and the smallest
MSE will always be strictly positive (either with n “ 1 or n “ 2). However, in general, different
values of p will result in different values for MSE. In this case, least-squares estimation will
produce the specific value of p that is better at “explaining the noise,” which is not physically
meaningful.

When one is uncertain about which values to choose for m and n, the following procedure should be
followed:

1. Perform system identification for a range of values for the numbers of poles n and the number
of zeros m. For the different transfer functions identified,

(a) compute the mean square error (MSE) normalized by the sum of squares of the output,

(b) compute the largest parameter standard deviation, normalized by the parameter values, Note. Different parameters may
have very different magnitudes,
so it is important to normalize the
values of the errors by the values
of the parameters.

(c) plot the location of the transfer functions’ poles and zeros in the complex plane.

These two values and plot can be obtained using

data=iddata(y,u);

% compute model estimate

model=tfest(data ,npoles ,nzeros);

% compute n o r m a l i z e d mean - square error

normalizedMSE=report.Fit.MSE/((y’*y)/ length(y));

% extract from report the n u me r at o r and d e n o m i n a t o r c o e f f i c i e n t s

num=report.parameters.ParVector (1:nz+1)’;

den=report.parameters.ParVector(nz+2: end)’;

% extract from report c o r r e s p o n d i n g error standard d e v i a t i o n s

std_num=sqrt(diag (...

report.parameters.FreeParCovariance (1:nz+1,1:nz+1))) ’;

std_den=sqrt(diag (...

report.parameters.FreeParCovariance(nz+2:nz+np+1,nz+np+1: end)))’;

% compute n o r m a l i z e d error standard d e v i a t i o n s

maxStdDev=max([std_num ,std_den]./[num ,den]);

% plot root locus

rlocus(model);

60 João P. Hespanha

2. Reject any choices of n and m for which any one of the following cases arise:

(a) the normalized MSE is large, which means that the number of poles/zeros is not suffi-
ciently large to match the data and likely m or n need to be increased; or

(b) one or more of the parameter standard deviations are large (when compared to the cor-Note. A large parameter standard
deviation may also mean that the
input signal is not sufficiently
rich to estimate the transfer
function.

responding parameter value), which means that the data is not sufficient to estimate all
the parameters accurately and likely m and n need to be decreased; or

(c) the identified transfer function has at least one pole almost as the same location as a zero

Note. Identifying a process
transfer function with a pole-zero
cancellation, like in (5.4), will
make control extremely difficult
since feedback will not be able to
move that “phantom” zero/pole.
This is especially problematic if
the “phantom” pole is unstable or
very slow.

and likely m and n need to be decreased; or

(d) the leading coefficients of the numerator polynomial are very small (or equivalently the
transfer function has very large zeros), which means that likely m should be decreased.

One needs to exercise judgment in deciding when “the normalized MSE is large” or when “the
parameter standard deviations are large.” Physical knowledge about the model should play a
major role in deciding model orders. Moreover, one should always be very concerned about
identifying noise, as opposed to actually identifying the process model.

Example 5.3 (Two-cart with spring (cont.)). Figures 5.7–5.8 show results obtained for the input/out-
put data set shown in the bottom-right plot of Figure 5.6a (corresponding to the 2Hz square wave
that switches between ˘4v). The procedure to estimate the continuous-time transfer functions was
similar to that used to obtain the those in Figure 5.6b, but we let the parameters np and nz that defines
the number of poles and zeros vary.

Key observation. We can see from Figure 5.7 that 4-5 poles lead to a fairly small MSE. However,
for every choice for the number of zeros/poles the worst standard deviation is still above 10% of the
value of the corresponding parameter. This means that the data used is still not sufficiently rich to
achieve a reliable estimate for the transfer function. 2

5.4 Combination of Multiple Experiments
As discussed in Section 5.1, the input used for system identification should be sufficiently rich to
make sure that the matrix R is nonsingular and also somewhat representative of the class of all inputs
that are likely to appear in the feedback loop. To achieve this, one could use a single very long input
signal uptq that contains a large number of frequencies, steps, chirp signals, etc. In practice, this is
often difficult so an easier approach is to conduct multiple identification experiments, each with a
different input signal uiptq. These experiments result in multiple sets of input/output data that can

MATLAB® Hint 16. merge
allows one to combine data for
this type of multi-input
processing. � p. 46

then be combined to identify a single CARX model:

1. Apply L probe input signals u1ptq, u2ptq,. . . , uLptq to the system.

2. Measure the corresponding outputs y1ptq, y2ptq, . . . , yLptq.

3. Compute the first m derivatives of each filtered u f
i ptq and the first n derivatives of each filtered

y f
i ptq, using the fact that

dky f
i ptq

dtk “ L ´1
” sk

ωpsq
Yipsq

ı

,
dku f

i ptq
dtk “ L ´1

” sk

ωpsq
Uipsq

ı

.

4. Determine the values for the parameter θ that minimize the discrepancy between the left- and
the right-hand-sides of (4.7) in a least-squares sense for all signals:

MATLAB® Hint 20. PHI\Y
computes θ̂ directly, from the
matrix PHI“ Φ and the vector
Y“ Y .

θ̂ “ pΦ
1
Φq´1

Φ
1Y,

Practical Considerations in Identification of Continuous-time CARX Models 61

np
=5

,n
z=

1

np
=4

,n
z=

2

np
=4

,n
z=

1

np
=4

,n
z=

0

np
=3

,n
z=

2

np
=3

,n
z=

1

np
=6

,n
z=

1

np
=5

,n
z=

0

np
=3

,n
z=

0

np
=6

,n
z=

0

np
=6

,n
z=

2

np
=5

,n
z=

210-4

10-2

100
M

SE

np
=5

,n
z=

1

np
=4

,n
z=

2

np
=4

,n
z=

1

np
=4

,n
z=

0

np
=3

,n
z=

2

np
=3

,n
z=

1

np
=6

,n
z=

1

np
=5

,n
z=

0

np
=3

,n
z=

0

np
=6

,n
z=

0

np
=6

,n
z=

2

np
=5

,n
z=

2

100

101

m
ax

(s
td

 d
ev

/v
al

ue
)

Figure 5.7. Choice of model order. All results in this figure refer to the estimation of the continuous-
time transfer function for the two-mass system in Figure 5.3, using the set of input/output data shown
in the bottom-right plot of Figure 5.6a, forcing a pole at s “ 0 and with appropriate output scaling.
The y-axis of the top plot shows the MSE and the y-axis of the bottom plot shows the highest (worst)
ratio between a parameter standard deviation and its value, for different choices of the number of
zeros (nz) and the number of poles (np, including the integrator at s “ 0).

where Attention! Remember to through
away the initial times that fall
before Tf .

Φ –

»

—

—

—

–

Φ1
Φ2
...

ΦL

fi

ffi

ffi

ffi

fl

, Φi –

»

—

—

—

—

–

ϕ
f

i ptk0q

ϕ
f

i ptk0`1q

...
ϕ

f
i ptNq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

´
dn´1y f

i ptk0
q

dtn´1 ¨¨¨ ´y f
i ptk0 q

dmu f
i ptk0

q

dtm ¨¨¨ u f
i ptk0 q

´
dn´1y f

i ptk0`1q

dtn´1 ¨¨¨ ´y f
i ptk0`1q

dmu f
i ptk0`1q

dtm ¨¨¨ u f
i ptk0`1q

...
...

...
...

´
dn´1y f

i ptN q

dtn´1 ¨¨¨ ´y f
i ptN q

dmu f
i ptN q

dtm ¨¨¨ u f
i ptN q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Y –

»

—

—

—

–

Y1
Y2
...

YL

fi

ffi

ffi

ffi

fl

, Yi –

»

—

—

—

—

—

—

–

dny f
i ptk0 q

dtn

dny f
i ptk0`1q

dtn

...
dny f

i ptN q

dtn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Example 5.4 (Two-cart with spring (cont.)). As noted before, we can see in Figure 5.7 that for every
choice of the number of poles/zeros, at least one standard deviation is still above 10% of the value
of the corresponding parameter. This is likely caused by the fact that the all the results in this figure
were obtained for the input/output data set shown in the bottom-right plot of Figure 5.6a. This input
data will be excellent to infer the response of the system to square waves of 2Hz, and possibly to
other periodic inputs in this frequency range. However, this data set is relatively poor in providing
information on the system dynamics below and above this frequency.

62 João P. Hespanha

10
-1

10
0

10
1

10
2

f [Hz]

-200

-150

-100

-50

0

m
a

g
n

it
u

d
e

 [
d

B
]

#poles=5, #zeros=1

#poles=4, #zeros=2

#poles=4, #zeros=1

#poles=4, #zeros=0

#poles=3, #zeros=2

#poles=3, #zeros=1

10
-1

10
0

10
1

10
2

f [Hz]

-500

-400

-300

-200

-100

p
h

a
s
e

 [
d

e
g

]

#poles=5, #zeros=1

#poles=4, #zeros=2

#poles=4, #zeros=1

#poles=4, #zeros=0

#poles=3, #zeros=2

#poles=3, #zeros=1

-100 0 100
-100

-50

0

50

100

#poles=5, #zeros=1

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-5000 0 5000

-500

0

500

#poles=4, #zeros=2

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-1000 0 1000
-1000

-500

0

500

1000

#poles=4, #zeros=1

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-100 0 100
-100

-50

0

50

100

#poles=4, #zeros=0

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-50 0 50
-40

-20

0

20

40

#poles=3, #zeros=2

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-100 0 100
-20

-10

0

10

20

#poles=3, #zeros=1

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

Figure 5.8. Bode plots and root locus for the transfer functions corresponding to the identification
experiments in Figure 5.7 with smallest MSE. Each plot is labeled with the corresponding number
of zeros and poles (including the integrator at s “ 0).

Practical Considerations in Identification of Continuous-time CARX Models 63

Fix. By combining the data from the four sets of input/output data shown in Figure 5.6a, we should
be able to decrease the uncertainty regarding the model parameters.

Figures 5.9–5.10 shows results obtained by combining all four sets of input/output data shown
in Figure 5.6a. Aside from this change, the results shown follow from the same procedure used to
construct the plots in Figures 5.7–5.8.

Key Observation. As expected, the standard deviations for the parameter estimates decreased
and for several combinations of the number of poles/zeros the standard deviations are now well be-
low 10% of the values of the corresponding parameter. However, one should still consider combine
more inputs to obtain a high-confidence model. In particular, the inputs considered provide rela-
tively little data on the system dynamics above 2-4Hz since the 2Hz square wave contains very little
energy above its 2nd harmonic. One may also want to use a longer time horizon to get inputs with
more energy at low frequencies.

Regarding the choice of the system order, we are obtaining fairly consistent Bode plots for 4-6
poles (including the integrator at s “ 0), at least up to frequencies around 10Hz. If the system is
expected to operate below this frequency, then one should choose the simplest among the consistent
models. This turns out to be 4 poles (excluding the integrator at s “ 0) and no zeros. However, if one Note. 4 poles and no zeros is

consistent with the physics-based
model in (5.3). However, this
model ignored the dynamics of
the electrical motors and the
spring mass, which may be
important at higher frequencies.

needs to operate the system at higher frequencies, a richer set of input signals is definitely needed
and will hopefully shed further light into the choice of the number of poles. 2

np
=6

,n
z=

2

np
=4

,n
z=

2

np
=5

,n
z=

1

np
=4

,n
z=

1

np
=4

,n
z=

0

np
=3

,n
z=

2

np
=5

,n
z=

2

np
=3

,n
z=

0

np
=3

,n
z=

1

np
=6

,n
z=

1

np
=6

,n
z=

0

np
=5

,n
z=

010-3

10-2

10-1

M
SE

np
=6

,n
z=

2

np
=4

,n
z=

2

np
=5

,n
z=

1

np
=4

,n
z=

1

np
=4

,n
z=

0

np
=3

,n
z=

2

np
=5

,n
z=

2

np
=3

,n
z=

0

np
=3

,n
z=

1

np
=6

,n
z=

1

np
=6

,n
z=

0

np
=5

,n
z=

0

10-1

100

101

m
ax

(s
td

 d
ev

/v
al

ue
)

Figure 5.9. Choice of model order. All results in this figure refer to the estimation of the continuous-
time transfer function for the two-mass system in Figure 5.3, using all four sets of input/output data
shown in Figure 5.6, forcing a pole at s “ 0 and with appropriate output scaling. The y-axis of the
top plot shows the MSE and the y-axis of the bottom plot shows the highest (worst) ratio between a
parameter standard deviation and its value, for different choices of the number of zeros (nz) and the
number of poles (np, including the integrator at s “ 0).

64 João P. Hespanha

10
-1

10
0

10
1

10
2

f [Hz]

-200

-150

-100

-50

0

m
a

g
n

it
u

d
e

 [
d

B
]

#poles=6, #zeros=2

#poles=4, #zeros=2

#poles=5, #zeros=1

#poles=4, #zeros=1

#poles=4, #zeros=0

#poles=3, #zeros=2

10
-1

10
0

10
1

10
2

f [Hz]

-500

-400

-300

-200

-100

p
h

a
s
e

 [
d

e
g

]

#poles=6, #zeros=2

#poles=4, #zeros=2

#poles=5, #zeros=1

#poles=4, #zeros=1

#poles=4, #zeros=0

#poles=3, #zeros=2

-100 0 100
-100

-50

0

50

100

#poles=6, #zeros=2

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

-200 0 200
-40

-20

0

20

40

#poles=4, #zeros=2

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

-100 0 100
-100

-50

0

50

100

#poles=5, #zeros=1

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

-500 0 500

-500

0

500

#poles=4, #zeros=1

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

-100 0 100
-100

-50

0

50

100

#poles=4, #zeros=0

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

-50 0 50
-40

-20

0

20

40

#poles=3, #zeros=2

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.10. Bode plots and root locus of the transfer functions corresponding to the identification
experiments in Figure 5.9 with smallest MSE. Each Bode plot is labeled with the corresponding
number of zeros and poles (including the integrator at s “ 0).

Practical Considerations in Identification of Continuous-time CARX Models 65

5.5 Closed-loop Identification
When the process is unstable, one cannot simply apply input probing signals to the open-loop sys-
tems. In this case, a stabilizing controller C must be available to collect the identification data.
Typically, this is a low performance controller that was designed using only a coarse process model.

yu

d

´

PpsqCpsq

Figure 5.11. Closed-loop system

One effective method commonly used to identify processes that cannot be probed in open-loop
consists of injecting an artificial disturbance d and estimating the closed-loop transfer function from
this disturbance to the control input u and the process output y, as in Figure 5.11.

In this feedback configuration, the transfer functions from d to u and y are, respectively, given
by Note. How did we get (5.5)?

Denoting by U and D the Laplace
transforms of u and d,
respectively, we have that
U “ D ´CPU , and therefore
pI `CPqU “ D, from which one
concludes that
U “ pI `CPq´1D. To obtain the
transfer function to y, one simply
needs to multiply this by P.
These formulas are valid, even if
the signals are vectors and the
transfer functions are matrices.

Attention! There is a direct
feedthrough term from d to u,
which means that the transfer
function Tupsq will have the same
number of poles and zeros.

Tupsq “
`

I `CpsqPpsq
˘´1

, Typsq “ Ppsq
`

I `CpsqPpsq
˘´1

, (5.5)

where I denotes an identity matrix with size equal to the number of inputs. Therefore, we can
recover Ppsq from these two closed-loop transfer functions, by computing

MATLAB® Hint 21. The system
Ppsq in (5.6) can be computed
using Ty*inv(Tu).

Ppsq “ TypsqTupsq´1. (5.6)

This formula can then be used to estimate the process transfer function from estimates of the two
closed-loop transfer functions Typsq and Tupsq.

In closed-loop identification, if the controller is very good the disturbance will be mostly rejected
from the output and Typsq can become very small, leading to numerical errors and poor identification.
For identification purposes a sluggish controller that does not do a good job at disturbance rejection
is desirable.

5.6 Exercises
5.1 (Model order). The data provided was obtained from a continuous-time linear system whose
transfer functions has an unknown number of poles and zeros.

Use tfest to estimate the system’s transfer function for different numbers of poles and zeros
ranging from 1 through 5 poles. For the different transfer functions identified,

1. compute the mean square error (MSE) normalized by the sum of squares of the output,

2. compute the largest value of the parameter standard deviation normalized by the correspond-
ing parameter value,

3. plot the location of the transfer functions’ poles and zeros in the complex plane.

These two values and plot can be obtained using

66 João P. Hespanha

model=tfest(data ,npoles ,nzeros);

% compute n o r m a l i z e d mean - square error

normalizedMSE=sum(report.Fit.MSE)/(y’*y);

% extract from report the n u me r at o r and d e n o m i n a t o r c o e f f i c i e n t s

num=report.parameters.ParVector (1: nzeros +1)’;

den=report.parameters.ParVector(nzeros +2: nzeros+npoles +1)’;

% extract from report c o r r e s p o n d i n g error standard d e v i a t i o n s

std_num=sqrt(diag (...

report.parameters.FreeParCovariance (1: nzeros +1,1: nzeros +1))) ’;

std_den=sqrt(diag (...

report.parameters.FreeParCovariance(nzeros +2: nzeros+npoles +1 ,...

nzeros +2: nzeros+npoles +1))) ’;

% compute n o r m a l i z e d error standard d e v i a t i o n s

maxStdDev=max([std_num ,std_den]./[num ,den]);

% plot root locus

rlocus(model);

Use this information to select the best values for the number of poles and zeros and provide the
corresponding transfer function. Justify your choices.

Important: Write MATLAB® scripts to automate these procedures. You will need them for the lab.
2

5.2 (Input magnitude). A Simulink block that models a nonlinear spring-mass system is provided.
This model expects the following variables to be defined:

Ts = 0.1;

tfinal = 100;

You will also need to define the magnitude of the step input and the measurement noise variance
through the variables

step_mag

noise

Once all these variables have been set, you can run a simulation using

sim(’spring ’,tfinal)

after which the variables t, u, and y are created with time, the control input, and the measured output.

1. Use the Simulink block to generate the system’s response to step inputs with amplitude 0.1
and 2.0 and no measurement noise.

For each of these inputs, use tfest to estimate the system’s transfer function for different
numbers of poles and zeros ranging from 1 through 3 poles.

For the different transfer functions identified,

(a) compute the mean square error (MSE) normalized by the sum of squares of the output,

(b) compute the largest value of the parameter standard deviation normalized by the corre-
sponding parameter value,

(c) plot the transfer functions poles and zeros in the complex plane.

These values can be obtained using

model=tfest(data ,npoles ,nzeros);

% compute n o r m a l i z e d mean - square error

normalizedMSE=sum(report.Fit.MSE)/(y’*y);

% extract from report the n u me r at o r and d e n o m i n a t o r c o e f f i c i e n t s

num=report.parameters.ParVector (1: nzeros +1)’;

den=report.parameters.ParVector(nzeros +2: nzeros+npoles +1)’;

Practical Considerations in Identification of Continuous-time CARX Models 67

% extract from report c o r r e s p o n d i n g error standard d e v i a t i o n s

std_num=sqrt(diag (...

report.parameters.FreeParCovariance (1: nzeros +1,1: nzeros +1))) ’;

std_den=sqrt(diag (...

report.parameters.FreeParCovariance(nzeros +2: nzeros+npoles +1 ,...

nzeros +2: nzeros+npoles +1))) ’;

% compute n o r m a l i z e d error standard d e v i a t i o n s

maxStdDev=max([std_num ,std_den]./[num ,den]);

% plot root locus

rlocus(model);

Use this information to select the best values for the number of poles and zeros and provide
the corresponding transfer function. Justify your choices.

2. Use the Simulink block to generate the system’s response to several step inputs with magni-
tudes in the range [0.1,2.0] and measurement noise with variance 10´3.

For the best values for the number of poles and zeros determined above, plot the normalized
MSE as a function of the magnitude of the step input. Which magnitude leads to the best
model?

Important: Write MATLAB® scripts to automate these procedures. You will need them for the lab.
2

68 João P. Hespanha

Lecture 6

Parametric Identification of a
Discrete-Time ARX Model

This lecture explains how the methods of least-squares can be used to identify ARX models.

Contents
6.1 ARX Model . 69
6.2 Identification of an ARX Model . 70
6.3 Dealing with Known Parameters . 71
6.4 MATLAB® Hints . 72
6.5 To Probe Further . 73
6.6 Exercises . 74

6.1 ARX Model
Suppose that we want to determine the transfer function Hpzq of the SISO discrete-time system in
Figure 6.1. In least-squares identification, one converts the problem of estimating Hpzq into the

upkq ypkq
Hpzq “?

Figure 6.1. System identification from input/output experimental data

vector least-squares problem considered in Section 3.3. This is done using the ARX model that will
be constructed below.

The z-transforms of the input and output of the system in Figure 6.1 are related by

Y pzq

Upzq
“ Hpzq “

αmzm ` αm´1zm´1 ` ¨¨ ¨ ` α1z ` α0

zn ` βn´1zn´1 ` ¨¨ ¨ ` β1z ` β0
, (6.1)

where the αi and the βi denote the coefficients of the numerator and denominator polynomials of
Hpzq. Multiplying the numerator and denominator of Hpzq by z´n, we obtain the transfer function
expressed in negative powers of z:

Y pzq

Upzq
“

αmz´n`m ` αm´1z´n`m´1 ` ¨¨ ¨ ` α1z´n`1 ` α0z´n

1 ` βn´1z´1 ` ¨¨ ¨ ` β1z´n`1 ` β0z´n

“ z´pn´mq αm ` αm´1z´1 ` ¨¨ ¨ ` α1z´m`1 ` α0z´m

1 ` βn´1z´1 ` ¨¨ ¨ ` β1z´n`1 ` β0z´n

69

70 João P. Hespanha

and therefore

Y pzq ` βn´1z´1Y pzq ` ¨ ¨ ¨ ` β1z´n`1Y pzq ` β0z´nY pzq “

αmz´n`mUpzq ` αm´1z´n`m´1Upzq ` ¨ ¨ ¨ ` α1z´n`1Upzq ` α0z´nUpzq.

Taking inverse z-transforms we obtainNote. We can view the difference
n ´ m between the degrees of the
denominator and numerator of
(6.1) as a delay, because the
output ypkq at time k in (6.2) only
depends on the value of the input
u
`

k ´ pn ´ mq
˘

at time
k ´ pn ´ mq and on previous
values of the input.

ypkq ` βn´1ypk ´ 1q ` ¨ ¨ ¨ ` β1ypk ´ n ` 1q ` β0ypk ´ nq “

αmupk ´ n ` mq ` αm´1upk ´ n ` m ´ 1q ` ¨ ¨ ¨ ` α1upk ´ n ` 1q ` α0upk ´ nq. (6.2)

This can be re-written compactly as

ypkq “ ϕpkq ¨ θ (6.3)

where the pn ` m ` 1q-vector θ contains the coefficient of the transfer function and the vector ϕpkq

the past inputs and outputs, i.e.,

θ –
“

αm αm´1 ¨ ¨ ¨ α1 α0 βn´1 ¨ ¨ ¨ β1 β0
‰

(6.4)

ϕpkq –
“

upk ´ n ` mq ¨ ¨ ¨ upk ´ nq ´ypk ´ 1q ¨ ¨ ¨ ´ypk ´ nq
‰

. (6.5)

The vector ϕpkq is called the regression vector and the equation (6.3) is called an ARX model, a short
form of Auto-Regression model with eXogeneous inputs.

6.2 Identification of an ARX Model
We are now ready to solve the system identification Problem 3.2 introduced in Lecture 3, by applying
the least-squares method to the ARX model:

Solution to Problem 3.2.

1. Apply a probe input signal upkq, k P t1,2, . . . ,Nu to the system.

2. Measure the corresponding output ypkq, k P t1,2, . . . ,Nu.

3. Determine the values for the parameter θ that minimize the discrepancy between the left- and
the right-hand-sides of (6.3) in a least-squares sense.

According to Section 3.3, the least-squares estimate of θ is given by
MATLAB® Hint 22. PHI\Y
computes θ̂ directly, from the
matrix PHI“ Φ and the vector
Y“ Y .

θ̂ “ pΦ
1
Φq´1

Φ
1Y, (6.6)

where
Attention! When the system is at
rest before k “ 1,
upkq “ ypkq “ 0 @k ď 0.
Otherwise, if the past inputs are
unknown, one needs to remove
from Φ and Y all rows with
unknown data.

Φ –

»

—

—

—

–

ϕp1q

ϕp2q

...
ϕpNq

fi

ffi

ffi

ffi

fl

“

»

—

–

up1´n`mq ¨¨¨ up1´nq ´yp0q ¨¨¨ ´yp1´nq

up2´n`mq ¨¨¨ up2´nq ´yp1q ¨¨¨ ´yp2´nq

...
...

...
...

upN´n`mq ¨¨¨ upN´nq ´ypN´1q ¨¨¨ ´ypN´nq

fi

ffi

fl

, Y –

»

—

—

—

–

yp1q

yp2q

...
ypNq

fi

ffi

ffi

ffi

fl

,

or equivalently

θ̂ “ R´1 f , R – Φ
1
Φ “

N
ÿ

k“1

ϕpkq1
ϕpkq, f – Φ

1Y “

N
ÿ

k“1

ϕpkq1ypkq.

The quality of the fit can be assessed by computing the error-to-signal ratio

MSE
MSO

“

1
N }Φθ̂ ´Y }2

1
N }Y }2

(6.7)

Parametric Identification of a Discrete-Time ARX Model 71

When this quantity is much smaller than one, the mismatch between the left- and right-hand-sides
of (6.3) has been made significantly smaller than the output. The covariance of the estimation error
can be computed using Note. Why? In (6.8) we simply

used (3.9), taking into account
that the number of rows of Φ is N
and the number of parameters to
estimate in θ is
n ` m ` 1. � p. 37

Erpθ ´ θ̂qpθ ´ θ̂q1s «
1

N ´ pn ` m ` 1q
}Φθ̂ ´Y }2pΦ

1
Φq´1. (6.8)

When the square roots of the diagonal elements of this matrix are much smaller than the correspond-
ing entries of θ̂ , one can have confidence in the values θ̂ .

MATLAB® Hint 23. arx is
convenient to perform ARX
models identification because it
does not require the construction
of the matrix Φ and the vector
Y . � p. 72

MATLAB® Hint 24. compare
is useful to determine the quality
of fit. � p. 73

Attention! Two common causes for errors in least-squares identifications of ARX models are:

1. incorrect construction of the matrix Φ and/or vector Y ;

2. incorrect construction of the identified transfer function from the entries in the least-squares
estimate θ̂ .

Both errors can be avoided using the MATLAB® command arx. 2

6.3 Dealing with Known Parameters
Due to physical considerations, one often knows one or more poles/zeros of the process. For exam-
ple:

1. one may know that the process has an integrator, which corresponds to a continuous-time pole
at s “ 0 and consequently to a discrete-time pole at z “ 1; or

2. that the process has a differentiator, which corresponds to a continuous-time zero at s “ 0 and
consequently to a discrete-time zero at z “ 1.

In this case, it suffices to identify the remaining poles/zeros, which can be done as follows: Suppose
that it is known that the transfer function Hpzq has a pole at z “ λ , i.e.,

Hpzq “
1

z ´ λ
H̄pzq,

where H̄pzq corresponds to the unknown portion of the transfer function. In this case, the z- Note. The transfer function H̄pzq

is proper only if Hpzq is strictly
proper. However, even if H̄pzq

happens not to be proper, this
introduces no difficulties for this
method of system identification.

transforms of the input and output of the system are related by

Y pzq

Upzq
“

1
z ´ λ

H̄pzq,

and therefore Note. The new output ȳpkq is not
a causal function of the original
output ypkq, but this is of no
consequence since we have the
whole ypkq available when we
carry out identification.

MATLAB® Hint 25. One must
be careful in constructing the
vector ȳ in (6.9) to be used by the
function arx. � p. 73

Ȳ pzq

Upzq
“ H̄pzq,

where

Ȳ pzq – pz ´ λ qY pzq ñ ȳpkq “ ypk ` 1q ´ λypkq. (6.9)

This means that we can directly estimate H̄pzq by computing ȳpkq prior to identification and then
regarding this variable as the output, instead of ypkq.

Attention! To obtain the original transfer function Hpzq, one needs to multiply the identified func-
tion H̄pzq by the term 1

z´λ
. 2

72 João P. Hespanha

6.4 MATLAB® Hints
MATLAB® Hint 23 (arx). The command arx from the identification toolbox performs least-
squares identification of ARX models. To use this command one must

1. Create a data object that encapsulates the input/output data using:

data=iddata(y,u,Ts);

where u and y are vectors with the input and output data, respectively, and Ts is the sampling
interval.

Data from multiple experiments can be combined using the command merge as follows:

data1=iddata(y1 ,u1 ,Ts);

data2=iddata(y1 ,u1 ,Ts);

data=merge(data1 ,data2);

2. Compute the estimated model using:

model=arx(data ,[na ,nb ,nk]);

where data is the object with input/output data; na, nb, nk are integers that define the degrees
Note 18. Typically, one chooses
na equal to the (expected)
number of poles, nk equal to the
(expected) input delay, and
nb=na−nk+1, which would be
the corresponding number of
zeros. In this case, ypkq is a
function of
ypk ´ 1q, . . . ,ypk ´ naq and of
upk ´ nkq, . . . ,upk ´ nk ´ nb `

1q. See equations
(6.1)–(6.2). � p. 69

of the numerator and denominator of the transfer function, according to

Y pzq

Upzq
“ z´nk b1 ` b2z´1 ` ¨¨ ¨ ` bnk`nbz´nb`1

a1 ` a2z´1 ` ¨¨ ¨ ` ana`1z´na (6.10a)

“ zna´nk´nb`1 b1znb´1 ` b2znb´2 ` ¨¨ ¨ ` bnk`nb
a1zna ` a2zna´1 ` ¨¨ ¨ ` ana`1

(6.10b)

and model is a MATLAB® object with the result of the identification.

For processes with nu inputs and ny outputs, na should be an ny ˆny square matrix and both nb

and nk should be ny ˆ nu rectangular matrices. In general, all entries of na should be equal to
the number of poles of each transfer function, whereas the entries of nk and nb should reflect
the (possibly different) delays and number of zeros, respectively, for each transfer function.

The estimated discrete-time transfer function can be recovered using the MATLAB® command

sysd=tf(model);

Additional information about the result of the system identification can be obtained in the structure
model.report. Some of the most useful items in this structure include

• model.report.Parameters.ParVector is a vector with all the parameters that have been esti-
mated, starting with the numerator coefficients and followed by the denominator coefficients,
as in (6.4). These coefficients also appear in tf(model).

• model.report.Parameters.FreeParCovariance is the error covariance matrix for the esti-
mated parameters, as in (6.8). The diagonal elements of this matrix are the variances of the
estimation errors of the parameter and their square roots are the corresponding standard devi-
ations, which can be obtained using

StdDev=sqrt(diag(model.report.parameters.FreeParCovariance));

Note 19. Obtaining a standard
deviation for one parameter that
is comparable or larger than its
estimated value typically arises in
one of three situations. � p. 73

One should compare the value of each parameter with its standard deviation. A large value in
one or more of the standard deviations indicates that the matrix R – Φ1Φ is close to singular
and points to little confidence on the estimated value of that parameter.

Parametric Identification of a Discrete-Time ARX Model 73

• model.report.Fit.MSE is the mean-square estimation error (MSE), as in the numerator of
(6.7), which measure of how well the response of the estimated model fits the estimation data.
The MSE should be normalized by the Mean-Square Output

MSO=y’*y

when one want to compare the fit across different inputs/outputs.

The MATLAB® command arx uses a more sophisticated algorithm than the one described in these
notes so the results obtained using arx may not match exactly the ones obtained using the formula
(6.6). While this typically improves the quality of the estimate, it occasionally leads to poor results
so one needs to exercise caution in evaluating the output of arx. 2

MATLAB® Hint 25 (Dealing with known parameters). One must be careful in constructing the
vector ȳ in (6.9) to be used by the function arx. In particular, its first element must be equal to

yp2q ´ λyp1q,

as suggested by (6.9). Moreover, if we had values of ypkq and upkq for k P t1,2, . . . ,Nu, then ȳpkq

will only have values for k P t1,2, . . . ,N ´ 1u, because the last element of ȳpkq that we can construct
is

ȳpN ´ 1q “ ypNq ´ ypN ´ 1q.

Since the function iddata only takes input/output pairs of the same length, this means that we need
to discard the last input data upNq. The following MATLAB® commands could be used construct ȳ
from y and also to discard the last element of u:

bary=y(2: end)-lambda*y(1:end -1); u=u(1:end -1);

2

MATLAB® Hint 24 (compare). The command compare from the identification toolbox allows one
to compare experimental outputs with simulated values from an estimated model. This is useful to
validate model identification. The command

compare(data ,model);

plots the measured output from the input/output data object data and the predictions obtained from
the estimated model model. See MATLAB® hints 23, 9 for details on these objects. 2

6.5 To Probe Further
Note 19 (Large standard deviations for the parameter estimates). Obtaining a standard deviation for
one parameter that is comparable or larger than its estimated value typically arises in one of three
situations:

1. The data collected is not sufficiently rich. This issue is discussed in detail in Section 7.1. It can
generally be resolved by choosing a different input signal u for the identification procedure.

2. One has hypothesized an incorrect value for the number of poles, the number of zeros, or the
system delay. This issue is discussed in detail in Section 7.4. It can generally be resolved by
one of three options:

• When one encounters small estimated value for parameters corresponding to the terms
in the denominator of (6.10) with the most negative powers in z, this may be resolved by
selecting a smaller value for nb;

• When one encounters small estimated value for parameters corresponding to the terms
in the numerator of (6.10) with the most negative powers in z, this may be resolved by
selecting a smaller value for na;

74 João P. Hespanha

• When one encounters small estimated value for parameters corresponding to the terms
in the numerator of (6.10) with the least negative powers in z, this may be resolved by
selecting a large value for nk.

3. One is trying to identify a parameter whose value is actually zero or very small.

When the parameter is one of the leading/trailing coefficients of the numerator/denominator
polynomials, this is can be addressed as discussed in the previous bullet. Otherwise, generally
there is not much one can do about it during system identification. However, since there is
a fair chance that the value of this parameter has a large percentage error (perhaps even the
wrong sign), we must make sure that whatever controller we design for this system is robust
with respect to errors in such parameter. This issue is addressed in Lectures 8–9. 2

6.6 Exercises
6.1 (Known zero). Suppose that the process is known to have a zero at z “ γ , i.e., that

Hpzq “ pz ´ γqH̄pzq,

where H̄pzq corresponds to the unknown portion of the transfer function. How would you estimate
H̄pzq? What if you known that the process has both a zero at γ and a pole at λ? 2

6.2 (Selected parameters). The data provided was obtained from a system with transfer function

Hpzq “
z ´ .5

pz ´ .3qpz ´ pq
,

where p is unknown. Use the least-squares method to determine the value of p. 2

Lecture 7

Practical Considerations in
Identification of Discrete-time ARX
Models

This lecture discusses several practical considerations that are crucial for successful identifications.

Contents
7.1 Choice of Inputs . 75
7.2 Signal Scaling . 79
7.3 Choice of Sampling Frequency . 82
7.4 Choice of Model Order . 83
7.5 Combination of Multiple Experiments . 86
7.6 Closed-loop Identification . 88
7.7 MATLAB® Hints . 90
7.8 Exercises . 90

7.1 Choice of Inputs

The quality of least-squares estimates depends significantly on the input upkq used. The choice of
inputs should take into account the following requirements:

1. The input should be sufficiently rich so that the matrix R is nonsingular (and is well condi-
tioned).

(a) Single sinusoids should be avoided because a sinusoid of frequency Ω will not allow Note. Why? H1pzq “ 1
z´1 and

H2pzq “ z`2
z´3 have the same value

for z “ e jπ{2 “ j. Therefore they
will lead to the same ypkq when
upkq is a sinusoid with frequency
π{2. This input will not allow us
to distinguish between H1 and
H2.

us to distinguish between different transfer functions with exactly the same value at the
point z “ e jΩ.

(b) Good inputs include: square-waves, the sum of many sinusoids, or a chirp signal (i.e., a
signal with time-varying frequency).

Note. Combining multiple
experiments (see Section 7.5),
each using a sinusoid of a
different frequency is typically
better than using a chirp signal
since one has better control of the
duration of the input signals at
the different frequencies.

2. The amplitude of the resulting output ypkq should be much larger than the measurement noise.
In particular, large inputs are needed when one wants to probe the system at frequencies for
which the noise is large.

However, when the process is nonlinear but is being approximated by a linear model, large
inputs may be problematic because the linearization may not be valid. As shown in Figure 7.1,
there is usually an “optimal” input level that needs to be determined by trial-and-error. 2

75

76 João P. Hespanha

noise

dominates

optimal

nonlinear

behavior

MSE
MSO

input magnitude

Figure 7.1. Optimal choice of input magnitude

3. The input should be representative of the class of inputs that are expected to appear in the
feedback loop.

(a) The input should have strong components in the range of frequencies at which the system
will operate.

(b) The magnitude of the input should be representative of the magnitudes that are expected
in the closed loop.

Validation. The choice of input is perhaps the most critical aspect in good system identification.
After any identification procedure the following steps should be followed to make sure that the data
collected is adequate:

1. After an input signal upkq passed the checks above, repeat the identification experiment with
the input αupkq with α “ ´1, α “ .5. If the process is in the linear region, the measured
outputs should roughly by equal to αypkq and the two additional experiments should approx-
imately result in the same transfer function. When one obtains larger gains in the experiment
with α “ .5, this typically means that the process is saturating and one needs to decrease the
magnitude of the input.

2. Check if the matrix R is far from singular. If not a different “richer” input should be used.
MATLAB® Hint 23. When
using the arx command, the
singularity of the matrix R can be
inferred from the standard
deviations associated with the
parameter estimates. � p. 72

3. Check the quality of fit by computing MSE
MSO . If this quantity is not small, one of the following

MATLAB® Hint 23. When
using the arx command, the
quality of fit can be inferred from
the noise field in the estimated
model. � p. 72

is probably occurring:

(a) There is too much noise and the input magnitude needs to be increased.
(b) The inputs are outside the range for which the process is approximately linear and the

input magnitude needs to be decreased.
(c) The assumed degrees for the numerator and denominator are incorrect (see Section 7.4).

Example 7.1 (Two-cart with spring). To make these concepts concrete, we will use as a running ex-
ample the identification of the two-carts with spring apparatus shown in Figure 7.2. From Newton’s

m1 m2

x1 x2

F

Figure 7.2. Two-mass with spring

law one concludes that

m1:x1 “ kpx2 ´ x1q ` f , m2:x2 “ kpx1 ´ x2q, (7.1)

where x1 and x2 are the positions of both carts, m1 and m2 the masses of the carts, and k the spring
constant. The force f is produced by an electrical motor driven by an applied voltage v according to

f “
KmKg

Rmr

´

v ´
KmKg

r
9x1

¯

, (7.2)

Practical Considerations in Identification of Discrete-time ARX Models 77

where Km, Kg, Rm, and r are the motor parameters.

For this system, we are interested in taken the control input to be the applied voltage u – v and
the measured output to be the position y – x2 of the second cart. To determine the system’s transfer
function, we replace f from (7.2) into (7.1) and take Laplace transforms to conclude that

#

m1s2X1psq “ k
`

Y psq ´ X1psq
˘

`
KmKg
Rmr

´

Upsq ´
KmKg

r sX1psq

¯

m2 s2Y psq “ k
`

X1psq ´Y psq
˘

ñ

$

&

%

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

X1psq “ kY psq `
KmKg
Rmr Upsq

`

m2 s2 ` k
˘

Y psq “ kX1psq

ñ
`

m2 s2 ` k
˘

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

Y psq “ k2Y psq `
kKmKg

Rmr
Upsq

Y psq

Upsq
“

kKmKg
Rmr

`

m2 s2 ` k
˘

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

´ k2
(7.3)

where the large caps signals denote the Laplace transforms of the corresponding small caps signals.

From the first principles model derived above, we expect this continuous-time system to have 4 Note. We can make use of the
knowledge that the
continuous-time system has 4
poles, because the corresponding
discrete-time transfer function
will have the same number of
poles. However, the absence of
zeros in the continuous-time
transfer functions tell us little
about the number of zeros in the
corresponding discrete-time
transfer function because the
Tustin transformation does not
preserve the number of zeros
(cf. Note 7). � p. 16

poles and no zero. Moreover, a close look at the denominator of the transfer function in (7.3) reveals
that there is no term of order zero, since the denominator is equal to

`

m2 s2 ` k
˘

´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

´ k2 “ m2 s2
´

m1s2 `
K2

mK2
g

Rmr2 s ` k
¯

` km1s2 `
kK2

mK2
g

Rmr2 s

and therefore the system should have one pole at zero, i.e., it should contain one pure integrator.

Our goal now is to determine the system’s transfer function (7.3) using system identification
from input/output measurements. The need for this typically stems from the fact that

1. we may not know the values of the system parameters m1, m2, k, km, Kg, Rm, and r; and

2. the first-principles model (7.1)–(7.2) may be ignoring factors that turn out to be important,
e.g., the mass of the spring itself, friction between the masses and whatever platform is sup-
porting them, the fact that the track where the masses move may not be perfectly horizontal,
etc.

Figure 5.5a shows four sets of input/output data and four discrete-time transfer functions identi-
fied from these data sets.

Key observations. A careful examination of the outputs of the arx command and the plots in
Figure 7.3 reveals the following:

1. The quality of fit appears to be very good since arx reports a very small value for the noise

parameter (around 10´10). But this value is suspiciously small when compared to the average
value of y2 (around 10´2).

2. While difficult to see in Figure 7.3a, it turns out that the data collected with similar input
signals (square wave with a period of 2Hz) but 2 different amplitudes (2v and 4v) resulted in
roughly the same shape of the output, but scaled appropriately. However, the fact that this is
difficult to see in Figure 7.3a because of scaling is actually an indication of trouble, as we
shall discuss shortly.

3. The standard deviations associated with the denominator parameters are small when compared
to the parameter estimates (ranging from 2 to 100 times smaller than the estimates).

78 João P. Hespanha

0.5 1 1.5

−2

−1

0

1

2

square_a2_f0.5.mat

input [v]

output [m]

0.5 1 1.5

−2

−1

0

1

2

square_a2_f1.mat

input [v]

output [m]

0.5 1 1.5

−2

−1

0

1

2

square_a2_f2.mat

input [v]

output [m]

0.5 1 1.5

−4

−2

0

2

4

square_a4_f2.mat

input [v]

output [m]

(a) Four sets of input/output data used to estimate the two-mass system in
Figure 7.2. In all experiments the input signal u is a square wave with fre-
quencies .5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top
to bottom. In the first three plots the square wave switches from -2v to +2v,
whereas in the last plot it switches from -4v to +4v. All signals were sampled
at 1KHz.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

−20

0

f [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

f [Hz]

p
h

a
s
e

 [
d

e
g

]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

(b) Four discrete-time transfer functions estimated from the four sets of input/out-
put data in (a), sampled at 1KHz. The transfer functions were obtained using the
MATLAB® command arx with na=4, nb=4, and nk=1, which reflects an expec-
tation of 4 poles and a delay of one sampling period. The one period delay from
upkq to ypkq is natural since a signal applied at the sampling time k will not affect
the output at the same sampling time k (See Note 18, p. 72). The labels in the
transfer functions refer to the titles of the four sets of input/output data in (a).

Figure 7.3. Initial attempt to estimate the discrete-time transfer function for the two-mass system in
Figure 7.2.

Practical Considerations in Identification of Discrete-time ARX Models 79

4. The standard deviations associated with the numerator parameters appear to be worse, often
exceeding the estimate, which indicate problems in the estimated transfer functions.

5. The integrator that we were expecting in the transfer functions is not there.

6. The four sets of data input/output data resulted in dramatically different identified transfer
functions.

The last two items are, of course, of great concern, and a clear indication that we are not getting a
good transfer function.

Fixes. The fact that we are not seeing an integrator in the identified transfer functions is not too
surprising, since our probe input signals are periodic square waves, which has no component at the
zero frequency. The input that has the most zero-frequency component is the square wave with
frequency .5Hz (cf. top-left plot in Figure 7.3a), for which less than a full period of data was applied
to the system. Not surprisingly, that data resulted in the transfer function that is closer to an integrator
(i.e., it is larger at low frequencies).

Since we know that the system has a structural pole at z “ 1, we should force it into the model
using the technique seen in Section 6.3. Figure 7.4a shows the same four sets of input/output data
used to estimate the discrete-time transfer function, but the signal labeled “output” now corresponds
to the signal ȳ that we encountered in Section 6.3. The new identified transfer functions that appear
in Figure 7.4b are now much more consistent, mostly exhibiting differences in phase equal to 360
deg. However, the standard deviations associated with the numerator parameters continue to be
large, often exceeding the estimate. 2

7.2 Signal Scaling
For the computation of the least-squares estimate to be numerically well conditioned, it is important
that the numerical values of both the inputs and the outputs have roughly the same order of magni-
tude. Because the units of these variable are generally quite different, this often requires scaling of
these variables. It is good practice to scale both inputs and outputs so that all variable take “normal”
values in the same range, e.g., the interval r´1,1s.

Attention! After identification, one must then adjust the system gain to reflect the scaling performed
on the signals used for identification: Suppose that one takes the original input/output data set u,y
and constructs a new scaled data set ū, ȳ, using

ūpkq “ bupkq, ȳpkq “ aypkq, @k.

If one then uses ū and ȳ to identify the transfer function

H̄pzq “
Ūpzq

Ȳ pzq
“

b
a

Upzq

Y pzq
,

in order to obtain the original transfer function Hpzq from u to y, one need to reverse the scaling:

Hpzq “
Upzq

Y pzq
“

a
b

H̄pzq. 2

Example 7.2 (Two-cart with spring (cont.)). We can see in Figure 7.4a, that the input and output
signals used for identification exhibit vastly different scales. In fact, when drawn in the same axis,
the output signals appears to be identically zero.

Fix. To minimize numerical errors, one can scale the output signal by multiplying it by a suffi-
ciently large number so that it becomes comparable with the input. Figure 7.5a shows the same four
sets of input/output data used to estimate the discrete-time transfer function, but the signal labeled
“output” now corresponds to a scaled version of the signal ȳ that we encountered in Section 6.3.

80 João P. Hespanha

0.5 1 1.5

−2

−1

0

1

2

square_a2_f0.5.mat

input [v]

output [m]

0.5 1 1.5

−2

−1

0

1

2

square_a2_f1.mat

input [v]

output [m]

0.5 1 1.5

−2

−1

0

1

2

square_a2_f2.mat

input [v]

output [m]

0.5 1 1.5

−4

−2

0

2

4

square_a4_f2.mat

input [v]

output [m]

(a) Four sets of input/output data used to estimate the two-mass system in Fig-
ure 7.2. In all experiments the input signal u is a square wave with frequencies
.5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top to bottom.
In the first three plots the square wave switches from -2v to +2v, whereas in
the last plot it switches from -4v to +4v. The signal labeled “output” now
corresponds to the signal ȳ that we encountered in Section 6.3. All signals
were sampled at 1KHz.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−150

−100

−50

0

50

f [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−100

0

100

200

300

f [Hz]

p
h

a
s
e

 [
d

e
g

]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

(b) Four discrete-time transfer functions estimated from the four sets of input/out-
put data in (a), sampled at 1KHz. The transfer functions were obtained using the
MATLAB® command arx with na=3, nb=4, and nk=0, which reflects an expec-
tation of 3 poles in addition to the one at z “ 1 and no delay from u to ȳ. No delay
should now be expected since upkq can affect ypk ` 1q, which appears directly in
ȳpkq (See Note 18, p. 72). A pole at z “ 1 was inserted manually into the transfer
function returned by arx. The labels in the transfer functions refer to the titles of
the four sets of input/output data in (a).

Figure 7.4. Attempt to estimate the discrete-time transfer function for the two-mass system in Fig-
ure 7.2, forcing a pole at z “ 1.

Practical Considerations in Identification of Discrete-time ARX Models 81

0.5 1 1.5

−2

−1

0

1

2

square_a2_f0.5.mat

input [v]

output [m*5000]

0.5 1 1.5

−2

−1

0

1

2

square_a2_f1.mat

input [v]

output [m*5000]

0.5 1 1.5

−2

−1

0

1

2

square_a2_f2.mat

input [v]

output [m*5000]

0.5 1 1.5

−4

−2

0

2

4

square_a4_f2.mat

input [v]

output [m*5000]

(a) Four sets of input/output data used to estimate the two-mass system in
Figure 7.2. In all experiments the input signal u is a square wave with fre-
quencies .5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top
to bottom. In the first three plots the square wave switches from -2v to +2v,
whereas in the last plot it switches from -4v to +4v. The signal labeled “out-
put” now corresponds to a scaled version of the signal ȳ that we encountered
in Section 6.3. All signals were sampled at 1KHz.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−150

−100

−50

0

50

f [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−100

0

100

200

300

f [Hz]

p
h

a
s
e

 [
d

e
g

]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

(b) Four discrete-time transfer functions estimated from the four sets of input/out-
put data in (a), sampled at 1KHz. The transfer functions were obtained using the
MATLAB® command arx with na=3, nb=4, and nk=0, which reflects an expec-
tation of 3 poles in addition to the one at z “ 1 and no delay from u to ȳ. A pole
at z “ 1 was inserted manually into the transfer function returned by arx and the
output scaling was reversed back to the original units. The labels in the transfer
functions refer to the titles of the four sets of input/output data in (a).

Figure 7.5. Attempt to estimate the discrete-time transfer function for the two-mass system in Fig-
ure 7.2, forcing a pole at z “ 1 and with appropriate output scaling.

82 João P. Hespanha

Key observation. While the transfer functions identified do not show a significant improvements
and the standard deviations associated with the numerator parameters continue to be large, Fig-
ure 7.5a now shows a clue to further problems: the output signals exhibits significant quantization
noise. 2

7.3 Choice of Sampling Frequency

For a discrete-time model to accurately capture the process’ continuous-time dynamics, the sam-
pling frequency should be as large as possible. However, this often leads to difficulties in system
identification.

As we have seen before, least-squares ARX identification amounts to finding the values for the
parameters that minimize the sum of squares difference between the two sides of the following
equation:

ypkq “ ´βn´1ypk ´ 1q ´ ¨ ¨ ¨ ´ β1ypk ´ n ` 1q ` β0ypk ´ nq`

` αmupk ´ n ` mq ` αm´1upk ´ n ` m ´ 1q ` ¨ ¨ ¨ ` α1upk ´ n ` 1q ` α0upk ´ nq. (7.4)

In particular, one is looking for values of the parameters that are optimal at predicting ypkq based on
inputs and outputs from time k ´ 1 back to time k ´ n.

When the sampling period is very short, all the output values

ypkq,ypk ´ 1q, . . . ,ypk ´ nq

that appear in (7.4) are very close to each other and often their difference is smaller than one quan-
tization interval of the analogue-to-digital converter (ADC). As shown in Figure 7.6, in this case
the pattern of output values that appear in (7.4) is mostly determined by the dynamics of the ADC
converter and the least-squares ARX model will contain little information about the process transfer
function.

0.96 0.98 1 1.02 1.04

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

square_a2_f0.5.mat

input [v]

output [m*5000]

0.96 0.98 1 1.02 1.04

1

1.2

1.4

1.6

1.8

2

square_a2_f1.mat

input [v]

output [m*5000]

0.96 0.98 1 1.02 1.04

0.8

1

1.2

1.4

1.6

square_a2_f2.mat

input [v]

output [m*5000]

0.96 0.98 1 1.02 1.04

2

2.5

3

3.5

square_a4_f2.mat

input [v]

output [m*5000]

Figure 7.6. Magnified version of the four plots in Figure 7.5a showing the input and output signals
around time t “ 1s. The patterns seen in the output signals are mostly determined by the dynamics
of the ADC converter.

Practical Considerations in Identification of Discrete-time ARX Models 83

As we increase the sampling time, the difference between the consecutive output values increases
and eventually dominates the quantization noise. In practice, one wants to chose a sampling rate that
is large enough so that the Tustin transformation is valid but sufficiently small so that the quantization
noise does not dominate. A good rule of thumb is to sample the system at a frequency 20-40 times
larger than the desired closed-loop bandwidth for the system.

Down-Sampling
It sometimes happens that the hardware used to collect data allow us to sample the system at frequen-
cies much larger than what is needed for identification—oversampling. In this case, one generally
needs to down-sample the signals but this actually provides an opportunity to remove measurement
noise from the signals.

Suppose that ypkq and upkq have been sampled with a period Tlow but one wants to obtain signals
MATLAB® Hint 26. A signal y
can by down-sampled as in (7.5)
using bary=y(1:L:end).
Down-sampling can also be
achieved with the command
bary=downsample(y,L).
This command requires
MATLAB®’s signal processing
toolbox.

ȳpkq and ūpkq sampled with period Thigh – LTlow where L is some integer larger than one.

The simplest method to obtain ȳpkq and ūpkq consists of extracting only one out of each L samples
of the original signals:

ȳpkq “ ypLkq, ūpkq “ upLkq. (7.5)

Instead of discarding all the remaining samples, one can achieve some noise reduction by averaging,

MATLAB® Hint 27. A signal y
can
by down-sampled as in (7.6) using
bary=(y(1:L:end-2) + y(2:L:end-1) + y(3:L:end))/3.

as in

ȳpkq “
ypLk ´ 1q ` ypLkq ` ypLk ` 1q

3
, (7.6)

ūpkq “
upLk ´ 1q ` upLkq ` upLk ` 1q

3
, (7.7)

or even longer averaging. The down-sampled signals obtained in this way exhibit lower noise than
MATLAB® Hint 28.
Down-sampling with more
sophisticated (and longer)
filtering can be achieved with the
command resample, e.g.,
bary=resample(y,1,L,1).
This command requires
MATLAB®’s signal processing
toolbox. � p. 90

the original ones because noise is being “averaged out.”

Example 7.3 (Two-cart with spring (cont.)). We can see, e.g., in Figure 7.4b that the system appears
to have an “interesting” dynamical behavior in the range of frequencies from .1 to 10Hz. “Interest-
ing,” in the sense that the phase varies and the magnitude bode plot is not just a line. Since the
sampling frequency of 1kHz lies far above this range, we have the opportunity to down-sample the
measured signals and remove some of the measurement noise that was evident in Figure 7.4a.

Fix. To remove some noise quantization noise, we down-sampled the input and output signals
by a factor of 10 with the MATLAB® resample command. The new discrete-time frequency is
therefore now sampled only at 100Hz, but this still appears to be sufficiently large. Figure 7.7a
shows the same four sets of input/output data used to estimate the discrete-time transfer function,
down-sampled from the original 1KHz to 100Hz. By comparing this figure with Figure 7.5a, we can
observe a significant reduction in the output noise level.

Key observation. The transfer functions identified show some improvement, especially because
we are now starting to see some resonance, which would be expected in a system like this. More
importantly, now all the standard deviations associated with the numerator and denominator pa-
rameters are reasonably small when compared to the parameter estimates (ranging from 2.5 to 30
times smaller than the estimates). 2

7.4 Choice of Model Order
A significant difficulty in parametric identification of ARX models is that to construct the regression
vector ϕpkq, one needs to know the degree n of the denominator. In fact, an incorrect choice for n
will generally lead to difficulties.

84 João P. Hespanha

0.6 0.8 1 1.2 1.4 1.6
−2

−1

0

1

2

square_a2_f0.5.mat

input [v]

output [m*500]

0.6 0.8 1 1.2 1.4 1.6
−2

−1

0

1

2

square_a2_f1.mat

input [v]

output [m*500]

0.6 0.8 1 1.2 1.4 1.6
−2

−1

0

1

2

square_a2_f2.mat

input [v]

output [m*500]

0.6 0.8 1 1.2 1.4 1.6
−4

−2

0

2

4

square_a4_f2.mat

input [v]

output [m*500]

(a) Four sets of input/output data used to estimate the two-mass system in Fig-
ure 7.2. In all experiments the input signal u is a square wave with frequencies
.5Hz, 1Hz, 2Hz, and 2Hz, respectively, from left to right and top to bottom.
In the first three plots the square wave switches from -2v to +2v, whereas in
the last plot it switches from -4v to +4v. The signal labeled “output” corre-
sponds to a scaled version of the signal ȳ that we encountered in Section 6.3.
All signals were down-sampled from 1 KHz to 100Hz.

10
−2

10
−1

10
0

10
1

10
2

−120

−100

−80

−60

−40

−20

0

20

f [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

200

300

f [Hz]

p
h

a
s
e

 [
d

e
g

]

square_a2_f0.5.mat

square_a2_f1.mat

square_a2_f2.mat

square_a4_f2.mat

(b) Four discrete-time transfer functions estimated from the four sets of input/out-
put data in (a), sampled at 1KHz. The transfer functions were obtained using the
MATLAB® command arx with na=3, nb=4, and nk=0, which reflects an expec-
tation of 3 poles in addition to the one at z “ 1 and no delay from u to ȳ. A pole
at z “ 1 was inserted manually into the transfer function returned by arx and the
output scaling was reversed back to the original units. The labels in the transfer
functions refer to the titles of the four sets of input/output data in (a).

Figure 7.7. Attempt to estimate the discrete-time transfer function for the two-mass system in Fig-
ure 7.2, forcing a pole at z “ 1, with appropriate output scaling, and with the signals down-sampled
to 100Hz.

Practical Considerations in Identification of Discrete-time ARX Models 85

1. Selecting a value for n too small will lead to mismatch between the measured data and the
model and the MSE will be large.

2. Selecting a value for n too large is called over-parameterization and it generally leads to R
being close to singular. To understand why, suppose we have a transfer function

Hpzq “
1

z ´ 1
,

but for estimation purposes we assumed that n “ 2 and therefore attempted to determine con-
stants αi, βi such that

Hpzq “
α2z2 ` α1z ` α0

z2 ` β1z ` β0
.

If the model was perfect, it should be possible to match the data with any αi, βi such that

α2z2 ` α1z ` α0

z2 ` β1z ` β0
“

z ´ p
pz ´ 1qpz ´ pq

ô

#

α2 “ 0, α1 “ 1, α0 “ ´p,
β1 “ ´1 ´ p, β0 “ p,

(7.8)

where p can be any number. This means that the data is not sufficient to determine the values
of the parameters α0,β0,β1, which translates into R being singular.

MATLAB® Hint 29. When
using the arx MATLAB®

command, singularity of R can be
inferred from standard deviations
for the parameters that are large
when compared with the
estimated parameter
values. � p. 73

When there is noise, it will never be possible to perfectly explain the data and the smallest
MSE will always be strictly positive (either with n “ 1 or n “ 2). However, in general, different
values of p will result in different values for MSE. In this case, least-squares estimation will
produce the specific value of p that is better at “explaining the noise,” which is not physically
meaningful.

When one is uncertain about which values to choose for m and n, the following procedure should
be followed:

1. Perform system identification for a range of values for the numbers of poles n and the number
of zeros m. For the different transfer functions identified, Note. If it is known that there is a

delay of at least d, one should
make m “ n ´ d
[cf. equation (6.2)]. � p. 70

(a) compute the mean square error (MSE) normalized by the sum of squares of the output,

(b) compute the largest parameter standard deviation,

(c) plot the location of the transfer functions’ poles and zeros in the complex plane.

2. Reject any choices of n and m for which any one of the following cases arise:

(a) the normalized MSE is large, which means that the number of poles/zeros is not suffi-
ciently large to match the data and likely m or n need to be increased; or

(b) one or more of the parameter standard deviations are large, which means that the data Note. A large parameter standard
deviation may also mean that the
input signal is not sufficiently
rich to estimate the transfer
function.

is not sufficient to estimate all the parameters accurately and likely m and n need to be
decreased; or

(c) the identified transfer function has at least one pole almost as the same location as a zero

Note. Identifying a process
transfer function with a pole-zero
cancellation, like in (5.4), will
make control extremely difficult
since feedback will not be able to
move that “phantom” zero/pole.
This is especially problematic if
the “phantom” pole is unstable or
very slow.

and likely m and n need to be decreased; or

(d) the leading coefficients of the numerator polynomial are very small (or equivalently the
transfer function has very large zeros), which means that likely m should be decreased.

One needs to exercise judgment in deciding when “the normalized MSE is large” or when “the
parameter standard deviations are large.” Physical knowledge about the model should play a
major role in deciding model orders. Moreover, one should always be very concerned about
identifying noise, as opposed to actually identifying the process model.

86 João P. Hespanha

Example 7.4 (Two-cart with spring (cont.)). Figure 7.8 shows results obtained for the input/output
data set shown in the bottom-right plot of Figure 7.7a. The procedure to estimate the discrete-time
transfer functions was similar to that used to obtain the those in Figure 7.7b, but we let the parameter
na=nb−1 that defines the number of poles (excluding the integrator at z “ 1) range from 1 to 12. The
delay parameter nk was kept equal to 0.

As expected, the MSE error decreases as we increase na, but the standard deviation of the co-
efficients generally increases as we increase na, and rapidly becomes unacceptably large. The plot
indicates that for na between 3 and 6 the parameter estimates exhibit relatively low variance. For
larger values of na the decrease in MSE does not appear to be justify the increase in standard devia-
tion.

Key observation. While the results improved dramatically with respect to the original ones, the
standard deviations for the parameter estimates are still relatively high. We can see from Figure 7.8a
that even for na=4, at least one standard deviation is still above 20% of the value of the corresponding
parameter. This means that the data used is still not sufficiently rich to achieve a reliable estimate
for the transfer function. 2

7.5 Combination of Multiple Experiments
As discussed in Section 7.1, the input used for system identification should be sufficiently rich to
make sure that the matrix R is nonsingular and also somewhat representative of the class of all inputs
that are likely to appear in the feedback loop. To achieve this, one could use a single very long input
signal upkq that contains a large number of frequencies, steps, chirp signals, etc. In practice, this is
often difficult so an easier approach is to conduct multiple identification experiments, each with a
different input signal uipkq. These experiments result in multiple sets of input/output data that can

MATLAB® Hint 23. merge
allows one to combine data for
this type of multi-input
processing. � p. 72

then be combined to identify a single ARX model.

Suppose, for example, that one wants to identify the following ARX model with two poles and
two zeros

Y pzq

Upzq
“

α2z2 ` α1z ` α0

z2 ` β1z ` β0
,

and that we want to accomplish this using on an input/output pair
␣`

u1pkq,y1pkq
˘

: k “ 1,2, . . . ,N1
(

of length N1 and another input/output pair
␣`

u2pkq,y2pkq
˘

: k “ 1,2, . . . ,N2
(

of length N2. One would construct

Φ “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

y1p2q y1p1q u1p3q u1p2q u1p1q

y1p3q y1p2q u1p4q u1p3q u1p2q

...
...

...
...

...
y1pN1 ´ 1q y1pN1 ´ 2q u1pN1q u1pN1 ´ 1q u1pN1 ´ 2q

y2p2q y2p1q u2p3q u2p2q u2p1q

y2p3q y2p2q u2p4q u2p3q u2p2q

...
...

...
...

...
y2pN2 ´ 1q y2pN2 ´ 2q u2pN2q u2pN2 ´ 1q u2pN2 ´ 2q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Y “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

y1p3q

y1p4q

...
y1pN1q

y2p3q

y2p4q

...
y2pN1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and, according to Section 6.2, the least-squares estimate of

θ –
“

´β1 ´β0 αm α2 α1 α0
‰

Practical Considerations in Identification of Discrete-time ARX Models 87

0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

m
e
a
n
 S

S
E

 p
e
r

s
a
m

p
le

 p
o
in

t

number of poles (excluding pole at z=1)

0 2 4 6 8 10 12
10

−1

10
0

10
1

10
2

number of poles (excluding pole at z=1)

m
a
x
(s

td
 d

e
v
/e

s
ti
m

a
te

)

(a) The y-axis of the top plot shows the MSE and the y-axis of the bottom plot
shows the highest (worst) ratio between a parameter standard deviation and its
value. Each point in the plots corresponds to the results obtained for a particular
choice of the model order. In particular, to obtain these two plots we varied from
1 to 12 the parameter na=nb (shown in the x-axis) that defines the number of
poles (excluding the integrator at z “ 1). The delay parameter nk was kept the
same equal to 0.

10
−2

10
−1

10
0

10
1

10
2

−120

−100

−80

−60

−40

−20

0

f [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

2

3

4

5

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

200

300

f [Hz]

p
h

a
s
e

 [
d

e
g

]

2

3

4

5

(b) Transfer functions corresponding to the identification experiments in (a).
Each plot is labeled with the corresponding number of poles (excluding the inte-
grator at z “ 1).

Figure 7.8. Choice of model order. All results in this figure refer to the estimation of the discrete-
time transfer function for the two-mass system in Figure 7.2, using the set of input/output data shown
in the bottom-right plot of Figure 7.7a, forcing a pole at z “ 1, with appropriate output scaling, and
with the signals down-sampled to 100Hz.

88 João P. Hespanha

using all the available data is still given by
MATLAB® Hint 30. PHI\Y
computes θ̂ directly, from the
matrix PHI“ Φ and the vector
Y“ Y .

θ̂ “ pΦ
1
Φq´1

Φ
1Y.

Example 7.5 (Two-cart with spring (cont.)). As noted before, we can see in Figure 7.8 that even for
na=4, at least one standard deviation is still above 20% of the value of the corresponding parameter.
This is likely caused by the fact that the all the results in this figure were obtained for the input/output
data set shown in the bottom-right plot of Figure 7.7a. This input data will be excellent to infer
the response of the system to square waves of 2Hz, and possibly to other periodic inputs in this
frequency range. However, this data set is relatively poor in providing information on the system
dynamics below and above this frequency.

Fix. By combining the data from the four sets of input/output data shown in Figure 7.7a, we should
be able to decrease the uncertainty regarding the model parameters.

Figure 7.9 shows results obtained by combining all four sets of input/output data shown in Fig-
ure 7.7a. Aside from this change, the results shown follow from the same procedure used to construct
the plots in Figure 7.8.

Key Observation. As expected, the standard deviations for the parameter estimates decreased
and, for na ď 4, all standard deviations are now below 15% of the values of the corresponding
parameter. However, one still needs to combine more inputs to obtain a high-confidence model. In
particular, the inputs considered provide relatively little data on the system dynamics above 2-4Hz
since the 2Hz square wave contains very little energy above its 2nd harmonic. One may also want
to use a longer time horizon to get inputs with more energy at low frequencies.

Regarding the choice of the system order, we are obtaining fairly consistent Bode plots for 2-5
poles (excluding the integrator at z “ 1), at least up to frequencies around 10Hz. If the system is
expected to operate below this frequency, then one should choose the simplest model, which would
correspond to 2 poles (excluding the integrator at z “ 1). Otherwise richer input signals are definitely
needed and will hopefully shed further light into the choice of the number of poles. 2

7.6 Closed-loop Identification
When the process is unstable, one cannot simply apply input probing signals to the open-loop sys-
tems. In this case, a stabilizing controller C must be available to collect the identification data.
Typically, this is a low performance controller that was designed using only a coarse process model.

One effective method commonly used to identify processes that cannot be probed in open-loop
consists of injecting an artificial disturbance d and estimating the closed-loop transfer function from
this disturbance to the control input u and the process output y, as in Figure 7.10.

In this feedback configuration, the transfer functions from d to u and y are, respectively, given
by

Note 20. The formulas in (7.9)
are valid, even if the signals are
vectors and the transfer functions
are matrices. Why? � p. 90

Attention! There is a direct
feedthrough term from d to u,
which means that the transfer
function Tupsq will have no delay
and therefore it will have the
same number of poles and zeros.

Tupsq “
`

I `CpsqPpsq
˘´1

, Typsq “ Ppsq
`

I `CpsqPpsq
˘´1

. (7.9)

Therefore, we can recover Ppsq from these two closed-loop transfer functions, by computing

MATLAB® Hint 31. The system
Ppsq in (7.10) can be computed
using Ty*inv(Tu).

Ppsq “ TypsqTupsq´1. (7.10)

This formula can then be used to estimate the process transfer function from estimates of the two
closed-loop transfer functions Typsq and Tupsq.

In closed-loop identification, if the controller is very good the disturbance will be mostly rejected
from the output and Typsq can become very small, leading to numerical errors and poor identification.
For identification purposes a sluggish controller that does not do a good job at disturbance rejection
is desirable.

Practical Considerations in Identification of Discrete-time ARX Models 89

0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

m
e
a
n
 S

S
E

 p
e
r

s
a
m

p
le

 p
o
in

t

number of poles (excluding pole at z=1)

0 2 4 6 8 10 12
10

−1

10
0

10
1

10
2

10
3

number of poles (excluding pole at z=1)

m
a
x
(s

td
 d

e
v
/e

s
ti
m

a
te

)

(a) The y-axis of the top plot shows the MSE and the y-axis of the bottom plot
shows the highest (worst) ratio between a parameter standard deviation and its
value. Each point in the plots corresponds to the results obtained for a particular
choice of the model order. In particular, to obtain these two plots we varied from
1 to 12 the parameter na=nb (shown in the x-axis) that defines the number of
poles (excluding the integrator at z “ 1). The delay parameter nk was kept the
same equal to 0.

10
−2

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

f [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

2

3

4

5

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

200

300

f [Hz]

p
h

a
s
e

 [
d

e
g

]

2

3

4

5

(b) Transfer functions corresponding to the identification experiments in (a).
Each plot is labeled with the corresponding number of poles (excluding the inte-
grator at z “ 1).

Figure 7.9. Choice of model order. All results in this figure refer to the estimation of the discrete-
time transfer function for the two-mass system in Figure 7.2, using all four sets of input/output data
shown in Figure 7.7, forcing a pole at z “ 1, with appropriate output scaling, and with the signals
down-sampled to 100Hz.

90 João P. Hespanha

yu

d

´

PpsqCpsq

Figure 7.10. Closed-loop system

Note 20 (MIMO transfer functions). How did we get (7.9)? Denoting by U and D the Laplace
transforms of u and d, respectively, we have that U “ D´CPU , and therefore pI `CPqU “ D, from
which one concludes that U “ pI `CPq´1D. To obtain the transfer function to y, one simply needs
to multiply this by P. These formulas are valid, even if the signals are vectors and the transfer
functions are matrices. 2

7.7 MATLAB® Hints
MATLAB® Hint 28 (resample). The command resample from the signal processing toolbox re-
samples a signal at a different sampling rate and simultaneously performs low-pass filtering to re-
move aliasing and noise. In particular,

bary=resample(y,M,L,F)

produces a signal bary with a sampling period that is L/M times that of y. Therefore, to reduce the
sampling frequency one chooses L>M and the length of the signal ybar will be L/M times smaller than
that of y.

In computing each entry of bary, this function averages the values of F*L/M entries of y forwards
and backwards in time. In particular, selecting

bary=resample(y ,1, L,1)

the signal bary will be a sub-sampled version of y with one sample of ybar for each L samples of
y and each sample of ybar will be computed using a weighted average of the 2L samples of y (L
forwards in time and another L backwards in time). 2

7.8 Exercises
7.1 (Input magnitude). A Simulink block that models a nonlinear spring-mass-damper system is
provided.

1. Use the Simulink block to generate the system’s response to step inputs with amplitude 0.25
and 1.0 and no measurement noise.

2. For each set of data, use the least-squares method to estimate the systems transfer function.
Try a few values for the degrees of the numerator and denominator polynomials m and n.
Check the quality of the model by following the validation procedure outlines above.

Important: write MATLAB® scripts to automate these procedures. These scripts should take
as inputs the simulation data upkq, ypkq, and the integers m, n.

3. Use the Simulink block to generate the system’s response to step inputs and measurement
noise with intensity 0.01.

For the best values of m and n determined above, plot the SSE vs. the step size. Which step-
size leads to the best model? 2

Practical Considerations in Identification of Discrete-time ARX Models 91

7.2 (Model order). Use the data provided to identify the transfer function of the system. Use the
procedure outlined above to determine the order of the numerator and denominator polynomials.
Plot the largest and smallest singular value of R and the SSE as a function of n.
Important: write MATLAB® scripts to automate this procedure. These scripts should take as inputs
the simulation data upkq, ypkq, and the integers m, n. 2

7.3 (Sampling frequency). Consider a continuous-time system with transfer function

Ppsq “
4π2

s2 ` πs ` 4π2 .

1. Build a Simulink model for this system and collect input/output data for an input square
wave with frequency .25Hz and unit amplitude for two sampling frequencies Ts “ .25sec and
Ts “ .0005sec.

2. Identify the system’s transfer function without down-sampling.

3. Identify the system’s transfer function using the data collected with Ts “ .0005sec but down-
sampled.

Important: write MATLAB® scripts to automate this procedure. These scripts should take
as inputs the simulation data upkq, ypkq, the integers m, n, and the down-sampling period L.

4. Briefly comment on the results. 2

92 João P. Hespanha

Part II

Robust Control

93

Introduction to Robust Control

For controller design purposes it is convenient to imagine that we know an accurate model for the
process, e.g., its transfer function. In practice, this is hardly ever the case:

1. When process models are derived from first principles, they always exhibit parameters that
can only be determined up to some error and always involve simplifications.

E.g., the precise values of masses, moments of inertia, and friction coefficients in models
derived from Newton’s laws; or resistances, capacitances, and gains, in electrical circuits.

2. When one identifies a model experimentally, noise and disturbances generally lead to different
results as the identification experiment is repeated multiple times. Which experiment gave the
true model? The short answer is none, all models obtained have some error.

3. Processes change due to wear and tear so even if a process was perfectly identified before
starting operation, its model will soon exhibit some mismatch with respect to the real process.

The goal of this chapter is to learn how to take process model uncertainty into account, while de-
signing a feedback controller.

Pre-requisites

1. Laplace transform, continuous-time transfer functions, frequency responses, and stability.

2. Classical continuous-time feedback control design using loop-shaping.

3. Knowledge of MATLAB/Simulink.

Further reading A more extensive coverage of robust control can be found, e.g., in [4].

95

96 João P. Hespanha

Lecture 8

Robust stability

This lecture introduces the basic concepts of robust control.

Contents
8.1 Model Uncertainty . 97
8.2 Nyquist Stability Criterion . 100
8.3 Small Gain Condition . 102
8.4 MATLAB® Hints . 105
8.5 Exercises . 105

8.1 Model Uncertainty
Suppose we want to control the spring-mass-damper system in Figure 8.1, which has the following

y
m

k

u

b
Measuring the mass’ vertical position y with
respect to the rest position of the spring, we
obtain from Newton’s law:

m:y “ ´b 9y ´ ky ` u

Figure 8.1. Spring-mass-damper system.

transfer function from the applied force u to the spring position y

Ppsq “
1

ms2 ` bs ` k
. (8.1)

Typically, the mass m, the friction coefficient b, and the spring constant k would be identified ex-
perimentally (or taken from some specifications sheet) leading to confidence intervals for these
parameters and not just a single value:

m P rm0 ´ δ1,m0 ` δ1s, b P rb0 ´ δ2,b0 ` δ2s, k P rk0 ´ δ3,k0 ` δ3s.

The values with subscript 0 are called the nominal values for the parameters and the δi are called the
maximum deviations from the nominal value.

97

98 João P. Hespanha

In practice, this means that there are many admissible transfer functions for the process—one
for each possible combination of m, b, and k in the given intervals. Figure 8.2 shows the Bode plot

MATLAB® Hint 32.
bode(sys) draws the Bode plot
of the system sys. � p. 14

of (8.1) for different values of the parameters m, b, and k.

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

10
-1

10
0

10
1

-180

-135

-90

-45

0
P

h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/s)

Figure 8.2. Bode plot of Ppsq “ 1
ms2`bs`k , for different values of m P r.9,1.1s, b P r.1, .2s, and

k P r2,3s. Note how the different values of the parameters lead to different values for the resonance
frequency. One can see in the phase plot that it may be dangerous to have the cross-over frequency
near the “uncertain” resonance frequency since the phase margin may very a lot depending on the
system parameters. In particular, one process transfer function may lead to a large phase margin,
whereas another one to an unstable closed-loop system.

If we are given a specific controller, we can easily check if that controller is able to stabilize every
one of the possible processes, e.g., by looking at the poles of each closed-loop transfer function.
However, the design problem of constructing a controller that passes this test is more complex. The
idea behind robust control is to design a single controllers that achieves acceptable performance (or
at least stability) for every admissible process transfer function.

8.1.1 Additive Uncertainty
In robust control one starts by characterizing the uncertainty in terms of the process’ frequency
response in a way that make controller design “easy.” To this effect one first selects a nominal
process transfer function P0psq and, then for each admissible process transfer function Ppsq, one
defines:

∆apsq – Ppsq ´ P0psq, (8.2)

which measures how much Ppsq deviates from P0psq. This allows us to express any admissible
transfer function Ppsq as in Figure 8.3. Motivated by the diagram in Figure 8.3, ∆apsq is called an
additive uncertainty block. P0psq should correspond to the “most likely” transfer function, so that
the additive uncertainty block is as small as possible.

In the example above, one would typically choose the transfer function corresponding to the
nominal parameter values

P0psq “
1

m0s2 ` b0s ` k0
,

Robust stability 99

+

+

yu

∆apsq

P0psq

Ppsq

∆apsq – Ppsq ´ P0psq

õ

Ppsq “ P0psq ` ∆apsq

Figure 8.3. Additive uncertainty

and, for each possible transfer function

Ppsq “
1

ms2 ` bs ` k
, m P rm0 ´ δ1,m0 ` δ1s, b P rb0 ´ δ2,b0 ` δ2s, k P rk0 ´ δ3,k0 ` δ3s,

(8.3)

one would then compute the corresponding additive uncertainty in (8.2). Figure 8.4 shows the
magnitude Bode plots of ∆apsq for the process transfer functions in Figure 8.2.

10
-1

10
0

10
1

Frequency (rad/sec)

-100

-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 8.4. Additive uncertainty bounds for the process Bode plots in Figure 8.2 with P0psq –
1

m0s2`b0s`k0
, m0 “ 1, b0 “ 1.5, k0 “ 2.5. The solid lines represent possible magnitude Bode plots

for |∆ap jωq| “ |Pp jωq ´ P0p jωq| and the dashed one represents the uncertainty bound ℓapωq. Note
the large uncertainty bound near the resonance frequency. We shall show shortly how to design a
controller that stabilizes all processes for which the additive uncertainty falls below the dashed line.

To obtain a characterization of the uncertainty purely in the frequency domain, one specify how Note. In what follows, we will
attempt to stabilize every process
Ppsq that satisfies (8.4). This
generally asks for more than what
is needed, since there will likely
be transfer functions ∆apsq whose
magnitude Bode plot lies below
ℓapωq but do not correspond to
any process of the form (8.3).
However, we will see that this
description of uncertainty will
simplify controller design.

large |∆ap jωq| may be for each frequency ω . This is done by determining a function ℓapωq suffi-
ciently large so that for every admissible process transfer function Ppsq we have

|∆ap jωq| “ |Pp jωq ´ P0p jωq| ď ℓapωq, @ω. (8.4)

In practice, the function ℓapωq is simply an upper bound on the magnitude Bode plot of ∆apsq.

When one has available all the admissible Ppsq (or a representative set of them—such as in
Figure 8.2), one can determine ℓapωq by simply plotting |Pp jωq ´ P0p jωq| vs. ω for all the Ppsq

and choosing for ℓapωq a function larger than all the plots. Since in general it is not feasible to plot
all |Pp jωq ´ P0p jωq|, one should provide some “safety-cushion” when selecting ℓapωq. Figure 8.4
shows a reasonable choice for ℓapωq for the Bode plots in Figure 8.2.

100 João P. Hespanha

8.1.2 Multiplicative Uncertainty
The additive uncertainty in (8.2) measures the difference between Ppsq and P0psq in absolute terms
and may seem misleadingly large when both Ppsq and P0psq are large—e.g., at low frequencies when
the process has a pole at the origin. To overcome this difficulty one often defines instead

∆mpsq –
Ppsq ´ P0psq

P0psq
, (8.5)

which measures how much Ppsq deviates from P0psq, relative to the size of Popsq. We can now
express any admissible transfer function Ppsq as in Figure 8.5, which motivates calling ∆mpsq a
multiplicative uncertainty block.

+

+

yu

∆mpsq

P0psq

Ppsq
∆mpsq –

Ppsq ´ P0psq

P0psq

õ

Ppsq “ P0psq
`

1 ` ∆mpsq
˘

Figure 8.5. Multiplicative uncertainty

To obtain a characterization of the uncertainty purely in the frequency domain obtain a charac-Note. Also for multiplicative
uncertainty, we will attempt to
stabilize every process Ppsq that
satisfies (8.6). This generally
asks for more than what is
needed, but we will see that this
description of uncertainty will
simplify controller design.

terization of multiplicative uncertainty, one now determines a function ℓmpωq sufficiently large so
that for every admissible process transfer function Ppsq we have

|∆mp jωq| “
|Ppsq ´ P0psq|

|P0psq|
ď ℓmpωq, @ω. (8.6)

One can determine ℓmpωq by plotting |Ppsq´P0psq|

|P0psq|
vs. ω for all admissible Ppsq (or a representative

set of them) and choosing ℓmpωq to be larger than all the plots. Figure 8.6 shows ℓmpωq for the Bode
plots in Figure 8.2.

8.2 Nyquist Stability Criterion
The first question we address is: Given a specific feedback controller Cpsq, how can we verify that it
stabilizes every admissible process Ppsq. When the admissible processes are described in terms of a
multiplicative uncertainty block, this amounts to verifying that the closed-loop system in Figure 8.7
is stable for every ∆mp jωq with norm smaller than ℓmpωq. This can be done using the Nyquist
stability criterion, which we review next.

The Nyquist criterion is used to investigate the stability of the negative feedback connection inNote. Figure 8.8 can represent
the closed-loop system in
Figure 8.7 if we choose the loop
gain to be
Lpsq –

`

1 ` ∆mpsq
˘

PpsqCpsq.

Figure 8.8. We briefly summarize it here. The textbook [5, Section 6.3] provides a more detailed
description of it with several examples.

The first step for the Nyquist Criterion consists of drawing the Nyquist plot, which is done by

MATLAB® Hint 33.
nyquist(sys) draws the
Nyquist plot of the system
sys. � p. 105

evaluating the loop gain Lp jωq from ω “ ´8 to ω “ `8 and plotting it in the complex plane. This
leads to a closed-curve that is always symmetric with respect to the real axis. This curve should be

Note 21. Why is the Nyquist plot
a closed curve, symmetric with
respect to the real axis? � p. 101

annotated with arrows indicating the direction corresponding to increasing ω .

Robust stability 101

10
-1

10
0

10
1

Frequency (rad/sec)

-100

-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 8.6. Multiplicative uncertainty bounds for the process Bode plots in Figure 8.2 with P0psq –
1

m0s2`b0s`k0
, m0 “ 1, b0 “ 1.5, k0 “ 2.5. The solid lines represent possible magnitude Bode plots

for |∆mp jωq| “
|Pp jωq´P0p jωq|

|P0p jωq|
and the dashed one represents the uncertainty bound ℓmpωq. Note

the large uncertainty bound near the resonance frequency. We shall show shortly how to design a
controller that stabilizes all processes for which the multiplicative uncertainty falls below the dashed
line.

+

−

+

+

yur

∆mpsq

P0psqCpsq

|∆mp jωq| ď ℓmpωq, @ω

Figure 8.7. Unity feedback configuration with multiplicative uncertainty

Attention! Any poles of Lpsq on the imaginary axis should be moved slightly to the left of the axis
to avoid divisions by zero. E.g., Note. Why are we “allowed” to

move the poles on the imaginary
axis? Because stability is a
“robust property,” in the sense
that stability is preserved under
small perturbations of the process
(perturbations such as moving the
poles by a small ε).

Lpsq “
s ` 1

sps ´ 3q
ÝÑ Lε psq «

s ` 1
ps ` εqps ´ 3q

Lpsq “
s

s2 ` 4
“

s
ps ` 2 jqps ´ 2 jq

ÝÑ Lε psq «
s

ps ` ε ` 2 jqps ` ε ´ 2 jq
“

s
ps ` εq2 ` 4

,

for a small ε ą 0. The Nyquist criterion should then be applied to the “perturbed” transfer function
Lε psq. If we conclude that the closed-loop is stable for Lε psq with very small ε , then the closed-loop
with Lpsq will also be stable and vice-versa. 2

Note 21 (Nyquist plot). Why is the Nyquist plot a closed curve? Because

lim
ωÑ8

Lp jωq “ lim
ωÑ´8

Lp jωq “ 0

if the number of poles is larger than the number of zeros or

lim
ωÑ8

Lp jωq “ lim
ωÑ´8

Lp jωq “ k ‰ 0

102 João P. Hespanha

+

−

yr
Lpsq

Figure 8.8. Negative feedback

if the number of poles is equal to the number of zeros, in which case k is the high-frequency gain.

Why is the Nyquist plot symmetric with respect to the real axis? Because Lp` jωq and Lp´ jωq

are complex conjugate numbers and therefore symmetric with respect to the real axis. Recall that
addition, multiplication, and division of complex numbers “commute” with the complex-conjugate
operation:

a˚ ` b˚ “ pa ` bq˚, a˚b˚ “ pabq˚, a˚{b˚ “ pa{bq˚. 2

Nyquist Stability Criterion. The total number of closed-loop unstable (i.e., in the right-hand-side
plane) poles (#CUP) is given by

#CUP “ #ENC ` #OUP,

where #OUP denotes the number of (open-loop) unstable poles of Lpsq and #ENC the number clock-Note. To count the number of
clockwise encirclements of the
Nyquist plot around the point
´1, we draw a ray from ´1 to 8

in any direction and add one each
time the Nyquist plot crosses the
ray in the clockwise direction
(with respect to the origin of the
ray) and subtract one each time it
crosses the ray in the
counter-clockwise direction. The
final count gives #ENC.

wise encirclements of the Nyquist plot around the point ´1. To have a stable closed-loop one thus
needs

#ENC “ ´#OUP. 2

Example 8.1 (Spring-mass-damper system (cont.)). Figure 8.9 shows the Nyquist plot of the loop
gain

L0psq “ CpsqP0psq, (8.7)

for the nominal process model

P0psq –
1

m0s2 ` b0s ` k0
, m0 “ 1, b0 “ 1.5, k0 “ 2.5, (8.8)

(used in Figures 8.4 and 8.6) and a PID controller

Cpsq –
10
s

` 15 ` 5s, (8.9)

To obtain this plot, we moved the single controller pole on the imaginary axis to the left-hand side of
the complex plane. Since this led to an open loop gain with no unstable poles (#OUP “ 0) and there
are no encirclements of ´1 (#ENC “ 0), we conclude that the closed-loop system is stable. This
means that the given PID controller Cpsq stabilizes, at least, the nominal process P0psq. It remains to
check if it also stabilizes every admissible process model with multiplicative uncertainty. 2

8.3 Small Gain Condition
Consider the closed-loop system in Figure 8.7 and suppose that we are given a controller Cpsq that
stabilizes the nominal process P0psq, i.e., the closed-loop is stable when ∆mpsq “ 0. Our goal is to
find out if the closed-loop remains stable for every ∆mp jωq with norm smaller than ℓmpωq.

Since Cpsq stabilizes P0psq, we know that the Nyquist plot of the nominal (open-loop) transfer
function

L0psq “ CpsqP0psq,

Robust stability 103

Figure 8.9. Nyquist plot for the (open-loop) transfer function in (8.7). The right figure shows a
zoomed view of the origin. To avoid a pole over the imaginary axis, in these plots we moved the
pole of the controller from 0 to ´.01.

has the “right” number of encirclements (#ENC “ ´#OUP, where #OUP is the number of unstable
poles of L0psq. To check is the closed-loop is stable from some admissible process transfer function

Ppsq “ P0psq
`

1 ` ∆mpsq
˘

,

we need to draw the Nyquist plot of Note. We are assuming that Lpsq

and L0psq have the same number
of unstable poles #OUP and
therefore stability is achieved for
the same number of
encirclements #ENC “ ´#OUP.
In practice this means that the
uncertainty should not change the
stability of any open-loop pole.

Lpsq “ CpsqPpsq “ CpsqP0psq
`

1 ` ∆mpsq
˘

“ L0psq ` L0psq∆mpsq

and verify that we still get the same number of encirclements.

Lp jωq
L0p jωq

|Lp jωq ´ L0p jωq|

|1 ` L0p jωq|

´1

Figure 8.10. Nyquist plot derivation of the small-gain conditions

For a given frequency ω , the Nyquist plots of Lpsq and L0psq differ by

|Lp jωq ´ L0p jωq| “ |L0p jωq∆mp jωq| ď |L0p jωq|ℓmpωq,

A simple way to make sure that Lp jωq and L0p jωq have the same number of encirclements is to ask
that the difference between the two always be smaller than the distance from L0p jωq to the point
´1, i.e.,

|L0p jωq|ℓmpωq ă |1 ` L0p jωq| ô
|L0p jωq|

|1 ` L0p jωq|
ă

1
ℓmpωq

@ω.

This leads to the so called small-gain condition:

104 João P. Hespanha

Small-gain Condition. The closed-loop system in Figure 8.7 is stable for every ∆mp jωq with normNote. A mnemonic to remember
(8.10) is that the transfer function
whose norm needs to be small is
precisely the transfer function
“seen” by the ∆m block in
Figure 8.7. This mnemonic also
“works” for additive
uncertainty. � p. 106

MATLAB® Hint 34. To check if
(8.10) holds for a specific system,
draw 20log10

1
ℓmpωq

“

´20log10 ℓmpωq on top of the
magnitude Bode plot of the
complementary sensitivity
function and see if the latter
always lies below the former.

smaller than ℓmpωq, provided that
ˇ

ˇ

ˇ

Cp jωqP0p jωq

1 `Cp jωqP0p jωq

ˇ

ˇ

ˇ
ă

1
ℓmpωq

, @ω. (8.10)

The transfer function on the left-hand-side of (8.10) is precisely the complementary sensitivity func-
tion:

T0psq – 1 ´ S0psq, S0psq –
1

1 `CpsqP0psq

for the nominal process. So (8.10) can be interpreted as requiring the norm of the nominal com-
plementary sensitivity function to be smaller than 1{ℓmpωq, @ω . For this reason (8.10) is called a
small-gain condition.

Attention! The condition (8.10) only involves the controller Cpsq (to be designed) and the nominal
process P0psq. Specifically, it does not involve testing some condition for every admissible process
Ppsq. This means that we can focus only on the nominal process Popsq when we design the controller
Cpsq, and yet if we make sure that (8.10), we have the guarantee that Cpsq stabilizes every Ppsq in
Figure 8.7. 2

Example 8.2 (Spring-mass-damper system (cont.)). Figure 8.11 shows the Bode plot of the com-
plementary sensitivity function for the nominal process in (8.8) and the PID controller in (8.9). In

10
-1

10
0

10
1

10
2

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/s)

-30

-20

-10

0

10

M
a
g
n
it
u
d
e
 (

d
B

)

.

Figure 8.11. Verification of the small gain condition for the nominal process (8.8), the multiplicative
uncertainty in Figure 8.6, and the PID controller (8.9). The solid line corresponds to the Bode plot
of the complementary sensitivity function T0psq and the dashed line to 1

ℓmpωq
(both in dB).

the same plot we can see the 20log10
1

ℓmpωq
“ ´20log10 ℓmpωq, for the ℓmpωq in Figure 8.6. Since

the magnitude plot of T0p jωq is not always below that of 1
ℓmpωq

, we conclude that the system may
be unstable for some admissible processes. However, if we redesign our controller to consist of an
integrator with two lags

Cpsq “
.005ps ` 5q2

sps ` .5q2 , (8.11)

Robust stability 105

the magnitude plot of T0p jωq is now always below that of 1
ℓmpωq

and we can conclude from Fig-
ure 8.12 that we have stability for every admissible process. In this case, the price to pay was a low

10
-2

10
-1

10
0

10
1

10
2

10
3

-450

-360

-270

-180

-90

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/s)

-60

-40

-20

0

20

40

M
a
g
n
it
u
d
e
 (

d
B

)

.

Figure 8.12. Verification of the small gain condition for the nominal process (8.8), the multiplicative
uncertainty in Figure 8.6, and the integrator with 2 lags controller (8.11). The solid line corresponds
to the Bode plot of the complementary sensitivity function T0psq and the dashed line to 1

ℓmpωq
(both

in dBs).

bandwidth. This example illustrates a common problem in the control of systems with uncertainty: Note. Recall that the
complementary sensitivity
function is also the closed-loop
transfer function for the reference
r to the output y. Good tracking
requires this function to be close
to 1, whereas to reject large
uncertainty we need this function
to be much smaller than 1.

it is not possible to get good reference tracking over ranges of frequencies for which there is large
uncertainty. 2

8.4 MATLAB® Hints

MATLAB® Hint 33 (nyquist). The command nyquist(sys) draws the Nyquist plot of the sys-
tem sys. To specify the system you can use any of the commands in Matlab hint 32.

Especially when there are poles very close to the imaginary axis (e.g., because they were actually
on the axis and you moved them slightly to the left), the automatic scale may not be very good
because it may be hard to distinguish the point ´1 from the origin. In this case, you can use then
zoom features of MATLAB to see what is going on near ´1: Try clicking on the magnifying glass
and selecting a region of interest; or try left-clicking on the mouse and selecting “zoom on (-1,0)”
(without the magnifying glass selected.) 2

8.5 Exercises

8.1 (Unknown parameters). Suppose one want to control the orientation of a satellite with respect
to its orbital plane by applying a thruster’s generated torque. The system’s transfer function is give
by

Ppsq –
10pbs ` kq

s2ps2 ` 11pbs ` kqq
,

106 João P. Hespanha

where the values of the parameters b and k are not exactly known, but it is known that

.09 ď k ď .4 .006 ď b ď .03.

Find a nominal model and compute the corresponding additive and multiplicative uncertainty bounds. 2

8.2 (Noisy identification in continuous time). The data provided was obtained from 25 identification
experiments for a continuous-time system with transfer function

Hpsq “
α1s ` α0

s3 ` β2s2 ` β1s ` β0
.

The input and output corresponding to the ith experiment is stored in u{i} and y{i}, respectively,
for iP t1,2, . . . ,25u. The sampling time is in the variable Ts.

1. Construct an estimate Ĥallpsq of the transfer function based on the data from all the 25 exper-
MATLAB® Hint 16. merge
allows one to combine data from
multiple experiments. . . � p. 46

iments.

Hint: Use tfest and merge.

2. Construct 25 estimates Ĥipsq of the transfer function, each based on the data from a single
experiment. Use the estimate Ĥallpsq as a nominal model and compute additive and multi-
plicative uncertainty bounds that include all the Ĥipsq. Justify your answer with plots like
those shown in Figures 8.4 and 8.6. 2

8.3 (Noisy identification in discrete time). The Simulink block provided corresponds to a discrete-
time system with transfer function

Hpzq “
α1z ` α0

z2 ` β1z ` β0
.

1. Use least-squares to estimate the 4 coefficients of the transfer function. Repeat the identifica-
tion experiment 25 times to obtain 25 estimates of the system’s transfer functions.

2. Convert the discrete-time transfer functions so obtained to continuous-time using the Tustin
transformation.

Hint: Use the MATLAB command d2c.

3. Select a nominal model and compute the corresponding additive and multiplicative uncertainty
bounds. 2

8.4 (Small gain). For the nominal process model and multiplicative uncertainty that you obtained
in Exercise 8.2, use the small gain condition in (8.10) to verify if the following controllers achieve
stability for all admissible process models:

C1psq “ 1000 C2psq “
10

s ` .01
C3psq “

10
s ´ .01

C4psq “
100ps ` 1q

ps ` .01qps ` 3q2 C5psq “
1000ps ` 1q

ps ` .01qps2 ` 6s ` 18q
C6psq “

1000
ps ` .01qps2 ` 6s ` 25q

Justify your answers with Bode plots like those in Figures 8.11 and 8.12.

Hint: Remember that checking the small gain condition in (8.10) does not suffice, you also need
to check if the controller stabilizes the nominal process model. 2

8.5 (Robustness vs. performance). Justify the statement: “It is not possible to get good reference
tracking over ranges of frequencies for which there is large uncertainty.” 2

8.6 (Additive uncertainty). Derive a small-gain condition similar to (8.10) for additive uncertainty.
Check if the mnemonic in Sidebar 8.3 still applies.

Hint: With additive uncertainty, the open-loop gain is given by

Lpsq “ CpsqPpsq “ Cpsq
`

P0psq ` ∆apsq
˘

“ L0psq `Cpsq∆apsq,

which differs from L0psq by Cpsq∆apsq. 2

Lecture 9

Control design by loop shaping

The aim of this lecture is to show how to do control design taking into account unmodeled dynamics.
The loop-shaping control design method will be used for this purpose.

Contents
9.1 The Loop-shaping Design Method . 107
9.2 Open-loop vs. closed-loop specifications . 107
9.3 Open-loop Gain Shaping . 112
9.4 Exercises . 113

9.1 The Loop-shaping Design Method

yur

d

n

e

´

`

`

`
PpsqCpsq

Figure 9.1. Closed-loop system

The goal of this lecture is to briefly review the loop-shaping control design method for SISO Note. The loop-shaping design
method is covered extensively,
e.g., in [5].

systems. The basic idea behind loop shaping is to convert the desired specifications on the closed-
loop system in Figure 9.1 into constraints on the open-loop gain

Lpsq – CpsqP0psq.

The controller Cpsq is then designed so that the open-loop gain Lpsq satisfies these constraints. The
shaping of Lpsq can be done using the classical methods briefly mentioned in Section 9.3 and ex-
plained in much greater detail in [5, Chapter 6.7]. However, it can also be done using LQR state
feedback, as discussed in Section 11.5, or using LQG/LQR output feedback controllers, as we shall
see in Section 12.6.

9.2 Open-loop vs. closed-loop specifications
We start by discussing how several closed-loop specifications can be converted into constraints on
the open-loop gain Lpsq.

107

108 João P. Hespanha

Stability. Assuming that the open-loop gain has no unstable poles, the stability of the closed-loop
system is guaranteed as long as the phase of the open-loop gain is above ´180˝ at the cross-over
frequency ωc, i.e., at the frequency for whichNotation. The distance between

the phase of Lp jωcq and ´180˝

is called the phase margin. See
Figure 9.2.

|Lp jωcq| “ 1.

´1

PM

Lp jωq

Im

Re

Figure 9.2. Phase margin (PM).

Overshoot. Larger phase margins generally correspond to a smaller overshoot for the step re-
sponse of the closed-loop system. The following rules of thumb work well when the open-loop gain
Lpsq has a pole at the origin, an additional real pole, and no zeros:Note. Additional zeros and poles

at frequencies significantly above
the cross over generally have
little effect and can be ignored.
However, additional dynamics
below or around the cross-over
frequency typically affect the
overshoot; and make determining
the needed phase margin to
achieve a desired overshoot a trial
and error process.

Lpsq “
k

sps ` pq
, p ą 0.

They are useful to determine the value of the phase margin needed to obtain the desired overshoot:

Phase margin overshoot
45˝ ď 15%
60˝ ď 10%
65˝ ď 5%

Reference tracking. Suppose that one wants the tracking error to be at least kT ! 1 times smaller
than the reference, over the range of frequencies r0,ωT s. In the frequency domain, this can beNote. Typically one wants to

track low frequency references,
which justifies the requirement
for equation (9.1) to hold in an
interval of the form r0,ωT s.

expressed by

|Ep jωq|

|Rp jωq|
ď kT , @ω P r0,ωT s, (9.1)

where Epsq and Rpsq denote the Laplace transforms of the tracking error e – r ´ y and the refer-
ence signal r, respectively, in the absence of noise and disturbances. For the closed-loop system in
Figure 9.1,

Epsq “
1

1 ` Lpsq
Rpsq.

Therefore (9.1) is equivalent to

1
|1 ` Lp jωq|

ď kT , @ω P r0,ωT s ô |1 ` Lp jωq| ě
1
kT

, @ω P r0,ωT s. (9.2)

This condition is guaranteed to hold by requiring that
Note 22. Why? � p. 109

|Lp jωq| ě
1
kT

` 1, @ω P r0,ωT s, (9.3)

which is a simple bound on the magnitude of the Bode plot of Lpsq, as shown in Figure 9.3.

Control design by loop shaping 109

|Lp jωq|

ω

ωT

1

kT

` 1

q

Figure 9.3. Reference tracking specifications for the loop shaping design method

Note 22 (Condition (9.3)). For (9.2) to hold, we need the distance from Lp jωq to the point ´1 to
always exceed 1{kT . As one can see in Figure 9.4, this always hold if Lp jωq remains outside a circle
of radius 1 ` 1{kT . 2 Note. It is clear from Figure 9.4

that asking for Lp jωq to stay
outside the larger circle of radius
1 ` 1{kT can be much more than
what we need, which is just for
Lp jωq to be remain outside the
smaller circle with radius 1{kT
centered at the point ´1.
However, when 1{kT is very large
the two circles in Figure 9.4 are
actually very close to each other
and condition (9.3) is actually not
very conservative.

´1
1

kT

1
kT

` 1

Im

Re

Figure 9.4. Justification for why (9.3) guarantees that (9.2) holds.

Disturbance rejection. Suppose that one wants input disturbances to appear in the output attenu-
ated at least kD ! 1 times, over the range of frequencies rωD1 ,ωD2s. In the frequency domain, this Note. Typically one wants to

reject low-frequency disturbances
and therefore ωD1 and ωD2 in
(9.4) generally take low values.
Occasionally, disturbances are
known to have very narrow
bandwidths, which case ωD1 and
ωD2 are very close to each other,
but may not necessarily be very
small.

can be expressed by

|Y p jωq|

|Dp jωq|
ď kD, @ω P rωD1 ,ωD2s, (9.4)

where Y psq and Dpsq denote the Laplace transforms of the output y and the input disturbance d,
respectively, in the absence of reference and measurement noise. For the closed-loop system in
Figure 9.1,

Y psq “
P0psq

1 ` Lpsq
Dpsq,

and therefore (9.4) is equivalent to

|P0p jωq|

|1 ` Lp jωq|
ď kD, @ω P rωD1 ,ωD2s ô |1 ` Lp jωq| ě

|P0p jωq|

kD
, @ω P rωD1 ,ωD2s.

This condition is guaranteed to hold by requiring that Note. The reasoning needed to
understand (9.5) is basically the
same as for (9.3) but with
|P0p jωq|

kD
instead of 1

kT
.|Lp jωq| ě

|P0p jωq|

kD
` 1, @ω P rωD1 ,ωD2s, (9.5)

which is again a simple bound on the magnitude of the Bode plot of Lpsq, as shown in Figure 9.5.

110 João P. Hespanha

|Lp jωq|

ω

ωD2

|P0p jωq|

kD

` 1

q

Figure 9.5. Disturbance rejection specifications for the loop shaping design method

Noise rejection. Suppose that one wants measurement noise to appear in the output attenuated at
least kN ! 1 times, over the range of frequencies rωN ,8q. In the frequency domain, this can beNote. Typically one needs to

reject high frequencies noise,
which justifies the requirement
for equation (9.6) to hold in an
interval of the form rωN ,8q.

expressed by

|Y p jωq|

|Np jωq|
ď kN , @ω P rωN ,8q, (9.6)

where Y psq and Npsq denote the Laplace transforms of the output y and the measurement noise n,
respectively, in the absence of reference and disturbances. For the closed-loop system in Figure 9.1,

Y psq “ ´
Lpsq

1 ` Lpsq
Npsq, (9.7)

and therefore (9.6) is equivalent to

|Lp jωq|

|1 ` Lp jωq|
ď kN , @ω P rωN ,8q ô

ˇ

ˇ

ˇ
1 `

1
Lp jωq

ˇ

ˇ

ˇ
ě

1
kN

, @ω P rωN ,8q. (9.8)

This condition is guaranteed to hold by requiring thatNote. The reasoning needed to
understand (9.9) is basically the
same as for (9.3) but with 1

Lp jωq

instead of Lp jωq.
ˇ

ˇ

ˇ

1
Lp jωq

ˇ

ˇ

ˇ
ě

1
kN

` 1, @ω P rωN ,8q ô |Lp jωq| ď
kN

1 ` kN
, @ω P rωN ,8q, (9.9)

which is again a simple bound on the magnitude of the Bode plot of Lpsq, as shown in Figure 9.6.

|Lp jωq|

ωωN

kN

1 ` kNq

Figure 9.6. Noise rejection specifications for the loop shaping design method

Robustness with respect to multiplicative uncertainty. Suppose that one wants the closed-loop
to remain stable for every multiplicative uncertainty ∆mp jωq with norm smaller than ℓmpωq. In view
of the small gain condition in (8.10), this can be guaranteed by requiring that

|Lp jωq|

|1 ` Lp jωq|
ď

1
ℓmpωq

, @ω, (9.10)

Control design by loop shaping 111

which is equivalent to Note. While the condition in
(9.11) is similar to the one in
(9.8), we now need it to hold for
every frequency and we no longer
have the “luxury” of simply
requiring |Lp jωq| to be small for
every frequency.

ˇ

ˇ

ˇ
1 `

1
Lp jωq

ˇ

ˇ

ˇ
ě ℓmpωq, @ω. (9.11)

We have two options to make sure that (9.11) hold:

1. As in the discussion for noise rejection, we can require |Lp jωq| to be small. In particular, Note. To derive (9.12) simply
re-write (9.8)–(9.9) with 1{kN
replaced by ℓpω).

reasoning as before we may require that
ˇ

ˇ

ˇ

1
Lp jωq

ˇ

ˇ

ˇ
ě ℓmpωq ` 1, ô |Lp jωq| ď

1
1 ` ℓmpωq

ă 1. (9.12)

This condition will hold for frequencies for which we can make |Lp jωq| small; typically at
high frequencies, as shown in Figure 9.7.

2. Alternatively, (9.11) may hold even when |Lp jωq| large, provided that ℓmpωq is small. In
particular, since Note. Why does (9.13) hold?

Because of the triangular
inequality:
1 “

ˇ

ˇ

ˇ
1 ` 1

Lp jωq
´ 1

Lp jωq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
1 ` 1

Lp jωq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

1
Lp jωq

ˇ

ˇ

ˇ
form which

(9.13) follows.

ˇ

ˇ

ˇ
1 `

1
Lp jωq

ˇ

ˇ

ˇ
ě 1 ´

ˇ

ˇ

ˇ

1
Lp jωq

ˇ

ˇ

ˇ
, (9.13)

the condition (9.11) holds, provided that we require that

1 ´

ˇ

ˇ

ˇ

1
Lp jωq

ˇ

ˇ

ˇ
ě ℓmpωq ô |Lp jωq| ě

1
1 ´ ℓmpωq

ą 1. (9.14)

This condition will hold for frequencies for which we can make |Lp jωq| large; typically at
low frequencies, as shown in Figure 9.7.

From the two conditions (9.12)–(9.14), one generally needs to be mostly concerned about (9.12).
This is because when ℓmpωq is small, (9.11) will generally hold. However, when ℓmpωq is large,
for (9.11) to hold we need Lp jωq to be small, which corresponds precisely to the condition (9.12).
Hopefully, ℓmpωq will only be large at high frequencies, for which we do not need (9.3) or (9.5) to
hold. In view of this, it is common to design a controller ignoring (9.14) and, after the controller has
been designed, verify that it satisfies (9.11) for every frequency.

|Lp jωq|

ω

1

1 ´ ℓmpωq

1

1 ` ℓmpωq

Figure 9.7. Robustness with respect to multiplicative uncertainty constraints for loop shaping design

Summary
Table 9.1 and Figure 9.8 summarize the constraints on the open-loop gain Lp jωq discussed above.

Attention! The conditions derived above for the open-loop gain Lp jωq are sufficient for the original
closed-loop specifications to hold, but they are not necessary. When the open-loop gain “almost”
verifies the conditions derived, it may be worth it to check directly if it verifies the original closed-
loop conditions. This is actually crucial for the conditions (9.12)–(9.14) that arise from robustness
with respect to multiplicative uncertainty, because around the crossover frequency |Lp jωcq| « 1 will
not satisfy either of these conditions, but it will generally satisfy the original condition (9.10) (as
long as ℓmpωq is not too large). 2

112 João P. Hespanha

closed-loop specification open-loop constraint
overshoot ď 10% (ď 5%) phase margin ě 60 deg (ě 65 deg)
|Ep jωq|

|Rp jωq|
ď kT , @ω P r0,ωT s |Lp jωq| ě

1
kT

` 1, @ω P r0,ωT s

|Y p jωq|

|Dp jωq|
ď kD, @ω P rωD1 ,ωD2s |Lp jωq| ě

|P0p jωq|

kD
` 1, @ω P rωD1 ,ωD2s

|Y p jωq|

|Np jωq|
ď kN , @ω P rωN ,8q |Lp jωq| ď

kN

1 ` kN
, @ω P rωN ,8q

|Lp jωq|

|1 ` Lp jωq|
ď

1
ℓmpωq

, @ω |Lp jωq| ď
1

1 ` ℓmpωq

´

or |Lp jωq| ě
1

1 ´ ℓmpωq

¯

Table 9.1. Summary of the relationship between closed-loop specifications and open-loop con-
straints for the loop shaping design method

|Lp jωq|

ω

ωT

1

kT

` 1

ωD2

|P0p jωq|

kD

` 1

ωN

kN

1 ` kN

1

1 ´ ℓmpωq

1

1 ` ℓmpωq

Figure 9.8. Typical open-loop specifications for the loop shaping design method

9.3 Open-loop Gain Shaping

In classical lead/lag compensation, one starts with a basic unit-gain controllerNote. When the process does not
have an integrator and we want
zero steady-state error, it is
common to include an integrator
in the controller and thus start
instead with Cpsq “ 1{s.

Cpsq “ 1

and “adds” to it appropriate blocks to shape the desired open-loop gain

Note. One actually does not
“add” to the controller. To be
precise, one multiplies the
controller by appropriate gain,
lead, and lag blocks. However,
this does correspond to additions
in the magnitude (in dBs) and
phase Bode plots.

Lpsq – CpsqP0psq,

so that it satisfies the appropriate open-loop constraints. This shaping can be achieved using three
basic tools.

1. Proportional gain. Multiplying the controller by a constant k moves the magnitude Bode plot
up and down, without changing its phase.

2. Lead compensation. Multiplying the controller by a lead block with transfer functionNote. A lead compensator also
increases the cross-over
frequency, so it may require some
trial and error to get the peak of
the phase right at the cross-over
frequency.

Cleadpsq “
T s ` 1

αT s ` 1
, α ă 1

increases the phase margin when placed at the cross-over frequency. Figure 9.9a shows the
Bode plot of a lead compensator.

Control design by loop shaping 113

3. Lag compensation. Multiplying the controller by a lag block with transfer function

Clagpsq “
s{z ` 1
s{p ` 1

, p ă z

decreases the high-frequency gain. Figure 9.9b shows the Bode plot of a lag compensator. Note. A lag compensator also
increases the phase, so it can
decrease the phase margin. To
avoid this, one should only
introduce lag compensation away
from the cross-over frequency.

This design method has two important limitations:

1. When the cross-over region is very narrow, it may be hard to construct lead-lag compensators
that achieve any reasonable phase margin, or even that are able to achieve closed-loop stability
at all.

2. This procedure does not generalize easily to feedback loops with multiple sensors and/or
multiple actuators.

9.4 Exercises
9.1 (Loop-shape 1). Consider again the nominal process model and multiplicative uncertainty that
you obtained in Exercise 8.2. Design a controller for this process that achieves stability for all
admissible process models and that exhibits:

1. zero steady-state error to a step input,

2. Phase Margin no smaller then 60degrees,

3. steady-state error for sinusoidal inputs with frequencies ω ă 0.1rad/sec smaller than 1/10
(´20dB).

4. Rise time faster than or equal to 1.5sec 2

9.2 (Loop-shape 2). Consider the following nominal transfer function ans uncertainty bound:

P0psq “
1

sp1 ` s{5qp1 ` s{20q
, ℓmpωq “ |Lp jωq|,

where

Lpsq –
2.5

p1 ` s{20q2 .

Use loop shaping to design a controller that achieves stability for all admissible process models and
that exhibits:

1. steady-state error to a ramp input no larger than .01,

2. Phase Margin no smaller then 45degrees,

3. steady-state error for sinusoidal inputs with frequencies ω ă 0.2rad/sec smaller than 1/250
(´50dB), and

4. attenuation of measurement noise by at least a factor of 100 (´40dB) for frequencies greater
than 200rad/sec. 2

114 João P. Hespanha

1

1

α

1

T

1

αT

ωmax “
1

?
αT

φmax

(a) Lead

1

p

z

p z

ωmax “
?

pz

(b) Lag

Figure 9.9. Bode plots of lead/lag compensators. The maximum lead phase angle is given by
φmax “ arcsin 1´α

1`α
; therefore, to obtain a desired given lead angle φmax one sets α “

1´sinφmax
1`sinφmax

.

Part III

LQG/LQR Controller Design

115

Introduction to LQG/LQR
Controller Design

In optimal control one attempts to find a controller that provides the best possible performance with
respect to some given measure of performance. E.g., the controller that uses the least amount of
control-signal energy to take the output to zero. In this case the measure of performance (also called
the optimality criterion) would be the control-signal energy.

In general, optimality with respect to some criterion is not the only desirable property for a
controller. One would also like stability of the closed-loop system, good gain and phase margins,
robustness with respect to unmodeled dynamics, etc.

In this section we study controllers that are optimal with respect to energy-like criteria. These
are particularly interesting because the minimization procedure automatically produces controllers
that are stable and somewhat robust. In fact, the controllers obtained through this procedure are
generally so good that we often use them even when we do not necessarily care about optimizing
for energy. Moreover, this procedure is applicable to multiple-input/multiple-output processes for
which classical designs are difficult to apply.

Pre-requisites

1. Basic knowledge of state-space models (briefly reviewed here)

2. Familiarity with basic vector and matrix operations.

3. Knowledge of MATLAB/Simulink.

Further reading A more extensive coverage of LQG/LQR controller design can be found, e.g.,
in [8].

117

118 João P. Hespanha

Lecture 10

Review of State-space models

Contents
10.1 State-space Models . 119
10.2 Input-output Relations . 120
10.3 Realizations . 121
10.4 Controllability and Observability . 121
10.5 Stability . 122
10.6 MATLAB® Hints . 122

10.1 State-space Models
Consider the system in Figure 10.1 with m inputs and k outputs. A state-space model for this system

uptq P R
m

yptq P R
k

9x “ f px,uq

y “ gpx,uq

Figure 10.1. System with m inputs and k outputs

relates the input and output of a system using the following first-order vector ordinary differential
equation

9x “ f px,uq, y “ gpx,uq. (10.1)

where x P Rn is called the state of system. In this Chapter we restrict our attention to linear time-
invariant (LTI) systems for which the functions f p¨, ¨q and gp¨, ¨q are linear. In this case, (10.1) has

MATLAB® Hint 35.
ss(A,B,C,D) creates a LTI
state-space model with
realization (10.2). � p. 122

the special form

9x “ Ax ` Bu, y “ Cx ` Du, (10.2)

where A is a n ˆ n matrix, B a n ˆ m matrix, C a k ˆ n matrix, and D a k ˆ m matrix.

Example 10.1 (Aircraft roll-dynamics). Figure 10.2 shows the roll-angle dynamics of an aircraft
[12, p. 381]. Defining

x –
“

θ ω τ
‰1

we conclude that

9x “ Ax ` Bu

119

120 João P. Hespanha

roll-angle

roll-rate= ˙

applied torqueroll-angle

9θ “ ω

9ω “ ´.875ω ´ 20τ

9τ “ ´50τ ` 50u

Figure 10.2. Aircraft roll-angle dynamics

with

A –

»

–

0 1 0
0 ´.875 ´20
0 0 ´50

fi

fl , B –

»

–

0
0

50

fi

fl .

If we have both θ and ω available for control, we can define

y –
“

θ ω
‰1

“ Cx ` Du

with

C –

„

1 0 0
0 1 0

ȷ

, D –

„

0
0

ȷ

. 2

10.2 Input-output Relations
Note 2. The (unilateral) Laplace
transform of a signal xptq is given
by

Xpsq –

ż 8

0
e´st xptqdt.

See [5, Appendix A] for a review
of Laplace transforms.

The transfer-function of this system can be found by taking Laplace transforms of (10.2):
#

9x “ Ax ` Bu,
y “ Cx ` Du,

L
ÝÝÝÝÝÑ

#

sXpsq “ AXpsq ` BUpsq,

Y psq “ CXpsq ` DUpsq,

where Xpsq, Upsq, and Y psq denote the Laplace transforms of xptq, uptq, and yptq. Solving for Xpsq,
we get

psI ´ AqXpsq “ BUpsq ô Xpsq “ psI ´ Aq´1BUpsq

and therefore

Y psq “ CpsI ´ Aq´1BUpsq ` DUpsq “
`

CpsI ´ Aq´1B ` D
˘

Upsq.

Defining
MATLAB® Hint 1.
tf(num,den) creates a
transfer-function with numerator
and denominator specified by
num, den. � p. 13

MATLAB® Hint 2.
zpk(z,p,k) creates a
transfer-function with zeros,
poles, and gain specified by z, p,
k. � p. 13

MATLAB® Hint 36.
tf(sys ss) and zpk(sys ss)

compute the transfer-function of
the state-space model
sys ss. � p. 122

T psq – CpsI ´ Aq´1B ` D,

we conclude that

Y psq “ T psqUpsq. (10.3)

To emphasize the fact that T psq is a k ˆ m matrix, we call it the transfer-matrix of the system (10.2).

The relation (10.3) between the Laplace transforms of the input and the output of the system is
only valid for zero initial conditions, i.e., when xp0q “ 0. The general solution to the system (10.2)
in the time domain is given by

xptq “ eAtxp0q `

ż t

0
eApt´sqBupsqds, (10.4)

yptq “ CeAtxp0q `

ż t

0
CeApt´sqBupsqds ` Duptq, @t ě 0. (10.5)

Review of State-space models 121

Equation (10.4) is called the variation of constants formula.
MATLAB® Hint 37. expm
computes the exponential of a
matrix. � p. 122

Example 10.2 (Aircraft roll-dynamics). The transfer-function for the state-space model in Exam-
ple 10.1 is given by:

T psq “

«

´1000
sps`.875qps`50q

´1000
ps`.875qps`50q

ff

2

10.3 Realizations
Consider a transfer-matrix

T psq “

»

—

—

—

–

T11psq T12psq ¨ ¨ ¨ T1mpsq

T21psq T22psq ¨ ¨ ¨ T2mpsq

...
...

. . .
...

Tk1psq Tk2psq ¨ ¨ ¨ Tkmpsq

fi

ffi

ffi

ffi

fl

,

where all the Ti jpsq are given by a ratio of polynomials with the degree of the numerator smaller than
or equal to the degree of the denominator. It is always possible to find matrices A,B,C,D such that

MATLAB® Hint 38.
ss(sys tf) computes a
realization of the
transfer-function
sys tf. � p. 122

T psq “ CpsI ´ Aq´1B ` D.

This means that it is always possible to find a state-space model like (10.2) whose transfer-matrix is
precisely T psq. The model (10.2) is called a realization of T psq.

Attention! Realizations are not
unique, i.e., several state-space
models may have the same
transfer function.

10.4 Controllability and Observability
The system (10.2) is said to be controllable when given any initial state xi P Rn, any final state
x f P Rn, and any finite time T , one can find an input signal uptq that takes the state of (10.2) from xi
to x f in the interval of time 0 ď t ď T , i.e., when there exists an input uptq such that

x f “ eAT xi `

ż T

0
eApT ´sqBupsqds.

To determine if a system is controllable, one can compute the controllability matrix, which is defined
MATLAB® Hint 39.
ctrb(sys) computes the
controllability matrix of the
state-space system sys.
Alternatively, one can use
directly ctrb(A,B). � p. 123

MATLAB® Hint 40. rank(M)
computes the rank of a matrix M.

by

C –
“

B AB A2B ¨ ¨ ¨ An´1B
‰

.

The system is controllable if and only if this matrix has rank equal to the size n of the state vector.

The system (10.2) is said to be observable when one can determine the initial condition xp0q by
simply looking at the input and output signals uptq and yptq on a certain interval of time 0 ď t ď T ,
i.e., one can solve

yptq “ CeAtxp0q `

ż t

0
CeApt´sqBupsqds ` Duptq, @0 ď t ď T,

uniquely for the unknown xp0q. To determine if a system is observable, one can compute the ob-
MATLAB® Hint 41.
obsv(sys) computes the
controllability matrix of the
state-space system sys.
Alternatively, one can use
directly obsv(A,C). � p. 123

servability matrix, which is defined by

O –

»

—

—

—

—

—

–

C
CA
CA2

...
CAn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The system is observable if and only if this matrix has rank equal to the size n of the state vector.

122 João P. Hespanha

Example 10.3 (Aircraft roll-dynamics). The controllability and observability matrices for the state-
space model in Example 10.1 are given by:

C “

»

–

0 0 ´1000
0 ´1000 50875

50 ´2500 125000

fi

fl , O “

»

—

—

—

—

—

—

–

1 0 0
0 1 0
0 1 0
0 ´.875 ´20
0 ´.875 ´20
0 .7656 1017.5

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Both matrices have rank 3 so the system is both controllable and observable. 2

10.5 Stability
The system (10.2) is asymptotically stable when all eigenvalues of A have negative real parts. In this

MATLAB® Hint 42. eig(A)
computes the eigenvalues of the
matrix A. � p. 123

case, for any bounded input uptq the output yptq and the state xptq are also bounded, i.e.,

}uptq} ď c1, @t ě 0 ñ }yptq} ď c2, }xptq} ď c3 @t ě 0.

Moreover, if uptq converges to zero as t Ñ 8, then xptq and yptq also converge to zero as t Ñ 8.

Example 10.4 (Aircraft roll-dynamics). The eigenvalues of the matrix the A matrix for the state-
space model in Example 10.1 are t0,´.875,´50u so the system is not asymptotically stable. 2

10.6 MATLAB® Hints
MATLAB® Hint 35 (ss). The command sys ss=ss(A,B,C,D) assigns to sys ss a MATLAB
LTI state-space model with realization

9x “ Ax `Bu, y “ Cx `Du.

Optionally, one can specify the names of the inputs, outputs, and state to be used in subsequent plots
as follows:

sys ss=ss(A,B,C,D,...

’InputName’,{’input1’,’input2’,...},...
’OutputName’,{’output1’,’output2’,...},...
’StateName’,{’input1’,’input2’,...})

The number of elements in the bracketed lists must match the number of inputs,outputs, and state
variables. 2

MATLAB® Hint 36 (tf). The commands tf(sys ss) and zpk(sys ss) compute the transfer-
function of the state-space model sys ss specified as in Matlab Hint 35.

tf(sys ss) stores (and displays) the transfer function as a ratio of polynomials on s.

zpk(sys ss) stores (and displays) the polynomials factored as the product of monomials (for the
real roots) and binomials (for the complex roots). This form highlights the zeros and poles of the
system. 2

MATLAB® Hint 38 (ss). The command ss(sys tf) computes the state-space model of the trans-
fer function sys specified as in Matlab Hints 1 or 2. 2

MATLAB® Hint 37 (expm). The command expm(M) computes the matrix exponential eM. With
the symbolic toolbox, this command can be used to compute eAt symbolically as follows:

Review of State-space models 123

syms t

expm(A*t)

The first command defines t as a symbolic variable and the second computes eAt (assuming that the
matrix A has been previously defined). 2

MATLAB® Hint 39 (ctrb). The command ctrb(sys) computes the controllability matrix of the
system sys. The system must be specified by a state-space model using, e.g., sys=ss(A,B,C,D),
where A,B,C,D are a realization of the system. Alternatively, one can use directly ctrb(A,B). 2

MATLAB® Hint 41 (obsv). The command obsv(sys) computes the observability matrix of the
system sys. The system must be specified by a state-space model using, e.g., sys=ss(A,B,C,D),
where A,B,C,D are a realization of the system. Alternatively, one can use directly obsv(A,C). 2

MATLAB® Hint 42 (eig). The command eig(A) computes the eigenvalues of the matrix A. Alter-
natively, eig(sys) computes the eigenvalues of the A matrix for a state-space system sys specified
by sys=ss(A,B,C,D), where A,B,C,D are a realization of the system. 2

124 João P. Hespanha

Lecture 11

Linear Quadratic Regulation (LQR)

This lecture introduces the Linear Quadratic Regulator (LQR) optimal control problem under state
feedback. This control method leads to several desirable robustness properties and can be used for
loop-shaping.

Contents
11.1 Feedback Configuration . 125
11.2 Optimal Regulation . 126
11.3 State-Feedback LQR . 127
11.4 Stability and Robustness . 128
11.5 Loop-shaping Control using LQR . 130
11.6 MATLAB® Hints . 133
11.7 To Probe Further . 134
11.8 Exercises . 135

11.1 Feedback Configuration
Figure 11.1 shows the feedback configuration for the Linear quadratic regulation (LQR) problem.

−
yptq P R

k

zptq P R
ℓ

uptq P R
m

processcontroller

Figure 11.1. Linear quadratic regulation (LQR) feedback configuration. Note the negative feedback
and the absence of a reference signal. Reference signals will be introduced in Lecture 13.

In this configuration, the state-space model of the process is of the form Note. Recall from Section 10.2
that for this state-space model the
transfer function from u to y is
given by CpsI ´ Aq´1B and the
transfer function from u to z is
given by GpsI ´ Aq´1B ` H.

� p. 120

9x “ Ax ` Bu, y “ Cx, z “ Gx ` Hu. (11.1)

and has two distinct outputs:

1. The measured output yptq P Rk corresponds to the signal(s) that can be measured and are
therefore available for feedback. If the controller transfer-matrix is Cpsq, we have

Upsq “ ´CpsqY psq,

where Y psq and Upsq denote the Laplace transforms of the process input uptq and the measured
output yptq, respectively.

125

126 João P. Hespanha

2. The controlled output zptq P Rℓ corresponds to a signal that one would like to make as small
as possible in the shortest possible amount of time.

Sometimes zptq “ yptq, which means that our control objective is to make the whole measured
output very small. However, when the measured output yptq is a vector, often one simply
needs to make one of its entries, say y1ptq, small. In this case, one chooses zptq “ y1ptq.

Note 23. In the context of
Example 10.1, one could imagine
that, while both and θ and ω can
be measured, one may mostly
want to regulate the roll angle
θ . � p. 119

In some situations one chooses

zptq “

„

y1ptq
9y1ptq

ȷ

,

which means that we want to make both the measured output y1ptq and its derivative 9y1ptq
very small. Many other options are possible.

The choice of z should be viewed as a design parameter. In Section 11.5 we will study the
impact of this choice in the performance of the closed-loop.

11.2 Optimal Regulation
The LQR problem is defined as follows:

Problem 11.1 (Optimal LQR). Find the controller transfer-matrix Cpsq that makes the following
Notation 5. Given an m-vector,

v “
“

v1 v2 ¨ ¨ ¨ vm
‰

,

}v} denotes the Euclidean norm
of v, i.e.,

}v} “ v1v “

´

m
ÿ

i“1

v2
i

¯
1
2
.

criterion as small as possible

JLQR –

ż 8

0
}zptq}2 ` ρ }uptq}2dt, (11.2)

where ρ is a positive constant. 2

The term
ż 8

0
}zptq}2dt

corresponds to the energy of the controlled output and the term
ż 8

0
}uptq}2dt

to the energy of the control input. In LQR one seeks a controller that minimizes both energies.
However, decreasing the energy of the controlled output will require a large control input, and a
small control input will lead to large controlled outputs. The role of the constant ρ is to establish a
trade-off between these conflicting goals.

1. When we chose ρ very large, the most effective way to decrease JLQR is to employ a small
control input, at the expense of a large controlled output.

2. When we chose ρ very small, the most effective way to decrease JLQR is to obtain a very small
controlled output, even if this is achieved at the expense of employing a large control input.

Often the optimal LQR problem is defined more generally and consists of finding the controller
Note 24. The most general form
for the quadratic criteria is

ż 8

0
x1Q̄x ` u1R̄u ` 2x1N̄udt

. . . � p. 134

transfer-matrix Cpsq that minimizes

JLQR –

ż 8

0
zptq1Qzptq ` ρu1ptqRuptqdt, (11.3)

Linear Quadratic Regulation (LQR) 127

where Q is an ℓˆ ℓ symmetric positive-definite matrix, R an m ˆ m symmetric positive-definite
Note 25. Many choices for the
matrices Q and R are possible, but
one should always choose both
matrices to be positive-definite.
We recall that a symmetric q ˆ q
matrix M is positive-definite if
x1Mx ą 0, for every nonzero
vector x P Rq . . . � p. 135

matrix, and ρ a positive constant.

Bryson’s rule A first choice for the matrices Q and R in (11.3) is given by the Bryson’s rule [5,

Note. Bryson’s rule was widely
used when LQR first appeared,
but became “obsolete” when
robust control and loop shaping
appeared. In Section 11.5 we will
discuss systematic methods to
chose the weights in the LQR
criterion. � p. 130

p. 537]: select Q and R diagonal with

Qii “
1

maximum acceptable value of z2
i
, i P t1,2, . . . , ℓu

R j j “
1

maximum acceptable value of u2
j
, j P t1,2, . . . ,mu,

which corresponds to the following criteria

JLQR –

ż 8

0

´

ℓ
ÿ

i“1

Qii ziptq2 ` ρ

m
ÿ

j“1

R j j u jptq2
¯

dt.

In essence the Bryson’s rule scales the variables that appear in JLQR so that the maximum accept-
able value for each term is one. This is especially important when the units used for the different
components of u and z make the values for these variables numerically very different from each
other.

11.3 State-Feedback LQR

In the state-feedback version of the LQR problem (Figure 11.2), we assume that the whole state x
can be measured and therefore it is available for control.

−
xptq P R

n

zptq P R
ℓ

uptq P R
m

processcontroller

Figure 11.2. Linear quadratic regulation (LQR) with state feedback

Solution to the optimal state-feedback LQR Problem 11.1. The optimal state-feedback LQR controller
MATLAB® Hint 43. lqr
computes the optimal
state-feedback controller gain
K. � p. 133

for the criteria (11.3) is a simple matrix gain of the form

u “ ´Kx (11.4)

where K is the m ˆ n matrix given by

K “ pH 1QH ` ρRq´1pB1P ` H 1QGq

and P is the unique positive-definite solution to the following equation

A1P ` PA ` G1QG ´ pPB ` G1QHqpH 1QH ` ρRq´1pB1P ` H 1QGq “ 0,

known as the Algebraic Riccati Equation (ARE). 2

128 João P. Hespanha

11.4 Stability and Robustness
The state-feedback control law (11.4), results in a closed-loop system of the form

Note 26. A system 9x “ Ax ` Bu
is asymptotically stable when all
eigenvalues of A have negative
real parts. See
Section 10.5. � p. 122

9x “ pA ´ BKqx.

A crucial property of LQR controller design is that this closed-loop is asymptotically stable (i.e., all
the eigenvalues of A ´ BK have negative real part) as long as the following two conditions hold:

1. The system (11.1) is controllable.
Note 27. The definitions and tests
for controllability and
observability are reviewed in
Section 10.4. � p. 121

2. The system (11.1) is observable when we ignore y and regard z as the sole output:

Attention! When selecting the
measured output z, it is important
to verify that the observability
condition is satisfied.

9x “ Ax ` Bu, z “ Gx ` Hu.

Perhaps even more important is the fact that LQR controllers are inherently robust with respect
to process uncertainty. To understand why, consider the open-loop transfer-matrix from the process’
input u to the controller’s output ū (Figure 11.3). The state-space model from u to ū is given by

´
x

uū

9x “ Ax ` BuK

Figure 11.3. State-feedback open-loop gain

9x “ Ax ` Bu, ū “ ´Kx,

which corresponds to the following open-loop negative feedback m ˆ m transfer-matrixNote. In a negative-feedback
configuration, the output of the
process is multiplied by ´1
before being connected to the
input of the controller. Often a
reference signal is also added to
the input of the controller.

Lpsq “ KpsI ´ Aq´1B. (11.5)

We focus our attention in single-input processes (m “ 1), for which Lpsq is a scalar transfer-function

Note. LQR controllers also
exhibit robustness properties for
multiple-input processes.
However, in this case Lpsq is a
m ˆ m transfer-matrix and one
needs a multi-variable Nyquist
criterion.

and the following holds:

Kalman’s Inequality. When H 1G “ 0, the Nyquist plot of Lp jωq does not enter a circle of radius
one around ´1, i.e.,

|1 ` Lp jωq| ě 1, @ω P R. 2

Kalman’s Inequality is represented graphically in Figure 11.4 and has several significant implica-
tions, which are discussed next.

Positive gain margin If the process’ gain is multiplied by a constant k ą 1, its Nyquist plot simply
expands radially and therefore the number of encirclements does not change. This corresponds to a
positive gain margin of `8.

Negative gain margin If the process’ gain is multiplied by a constant .5 ă k ă 1, its Nyquist
plot contracts radially but the number of encirclements still does not change. This corresponds to a
negative gain margin of 20log10p.5q “ ´6dB.

Phase margin If the process’ phase increases by θ P r´60,60s degrees, its Nyquist plots rotates
by θ but the number of encirclements still does not change. This corresponds to a phase margin of
˘60 degrees.

Linear Quadratic Regulation (LQR) 129

´1´2

60o

Lp jωq

Im

Re

Figure 11.4. Nyquist plot for a LQR state-feedback controller

+

+−

xu

∆mpsq

9x “ Ax ` BuK

|∆mp jωq| ď ℓmpωq, @ω

Figure 11.5. Unity feedback configuration with multiplicative uncertainty

Multiplicative uncertainty Kalman’s inequality guarantees that
Note 28. Why?. . . � p. 135

ˇ

ˇ

ˇ

ˇ

Lp jωq

1 ` Lp jωq

ˇ

ˇ

ˇ

ˇ

ď 2. (11.6)

Since, we known that the closed-loop system in Figure 11.5 remains stable for every multiplicative
uncertainty block ∆mp jωq with norm smaller than ℓmpωq, as long as

ˇ

ˇ

ˇ

ˇ

Lp jωq

1 ` Lp jωq

ˇ

ˇ

ˇ

ˇ

ă
1

ℓmpωq
, (11.7)

we conclude that an LQR controller provides robust stability with respect to any multiplicative
uncertainty with magnitude smaller than 1

2 , because we then have
ˇ

ˇ

ˇ

ˇ

Lp jωq

1 ` Lp jωq

ˇ

ˇ

ˇ

ˇ

ď 2 ă
1

ℓmpωq
.

However, much larger additive uncertainties may be admissible: e.g., when Lp jωq " 1, (11.7) will
hold for ℓmpωq almost equal to 1; and when Lp jωq ! 1, (11.7) will hold for ℓmpωq almost equal to
1{Lp jωq " 1.

130 João P. Hespanha

Attention! Kalman’s inequality is only valid when H 1G “ 0. When H 1G ‰ 0, LQR controllers can
Note 29. A simple condition to
have H1G “ 0 (that is sufficient
but not necessary) is for the
transfer function
T psq “ GpsI ´ Aq´1B ` H from
u to z to be strictly proper, as this
means that H “ 0. � p. 130

be significantly less robust. This limits to same extent the controlled outputs that can be placed in z.
To explore this, consider the following examples:

1. Suppose that u is a scalar and z “ z1 is also a scalar, with the transfer function from u to z “ z1
given by

1
s ` 1

.

Since this transfer function is strictly proper, we have H “ 0 and therefore H 1G “ 0.

2. Suppose now that we had to z a second controlled output z2 “ 9z1. In this case, the transfer
function from the scalar input u to the vector z “ r z1 z2 s

1 is given by
„ 1

s`1
s

s`1

ȷ

.

In this case, the H matrix is given byNote. To verify that we do have
H1G ‰ 0, we need to actually
determine G: A realization for
„

1
s`1

s
s`1

ȷ

“

„

1
s`1

1´ 1
s`1

ȷ

turns out to

be one-dimensional with A “ ´1,
B “ 1, G “

“ 1
´1

‰

, H “
“

0
1

‰

, for
which we indeed have
H1G “ ´1 ‰ 0.

H “ lim
sÑ8

„ 1
s`1

s
s`1

ȷ

“

„

0
1

ȷ

,

and we no longer have H 1G “ 0. 2

Note 29 (Strictly proper transfer functions). Recall that the transfer function of the state-space model

9x “ Ax ` Bu, z “ Gx ` H

is given by

T psq “ GpsI ´ Aq´1B ` H.

As we make s Ñ 8, the term sI dominates over A in psI ´ Aq and we get:

lim
sÑ8

T psq “ lim
sÑ8

GpsIq´1B ` H

“ lim
sÑ8

1
s

GB ` H

“ H.

This shows that when the transfer function T psq “ GpsI ´ Aq´1B ` H is strictly proper, i.e., when it
has more poles than zeros, we have limsÑ8 T psq “ 0 and therefore H “ 0. Conversely, if the transfer
function is not strictly proper, we will necessarily have H ‰ 0. However, this may not mean that
G1H ‰ 0. 2

11.5 Loop-shaping Control using LQR
Although Bryson’s rule sometimes gives good results, it may not suffice to satisfy tight control
specifications. We will see next a few other rules that allow us to actually do loop shaping using
LQR. We restrict our attention to the single-input case (m “ 1) and R “ 1, Q “ I, which corresponds
toNote. Recall that the loop-gain

(11.5) that appears in Kalman’s
inequality is from u to ū in
Figure 11.3. JLQR –

ż 8

0
}zptq}2 ` ρ uptq2dt

and a scalar loop gain Lpsq “ KpsI ´ Aq´1B.

Linear Quadratic Regulation (LQR) 131

Low-frequency open-loop gain For the range of frequencies for which |Lp jωq| " 1 (typically low
MATLAB® Hint 44.
sigma(sys) draws the
norm-Bode plot of the system
sys. � p. 133

frequencies), we have that

|Lp jωq| «
}Pzp jωq}
a

H 1H ` ρ

where

Pzpsq – GpsI ´ Aq´1B ` H

is the transfer function from the control signal u to the controlled output z. To understand the
implications of this formula, it is instructive to consider two fairly typical cases:

1. When z “ z1, with z1 – C1x scalar, we have G “ C1 and H “ 0, leading to Note. Although the magnitude of
Lp jωq mimics the magnitude of
P1p jωq, the phase of the
open-loop gain Lp jωq always
leads to a stable closed-loop with
a phase margin of at least ˘60
degrees.

|Lp jωq| «
|P1p jωq|

?
ρ

. (11.8)

where

P1psq – C1psI ´ Aq´1B

is the transfer function from the control input u to the output z1. In this case, Note. The parameter ρ behaves
like a proportional gain in
classical loop shaping, but now
we automatically get stability and
phase margin without the need
for any lead compensator.
However, since ρ appears within
a square root in (11.8), to move
the magnitude plot down by say
20dBs we need to increase ρ by
1002. In practice, large changes
in ρ are needed to see significant
effects in |Lp jωq|.

(a) the “shape” of the magnitude of the open-loop gain Lp jωq is determined by the magni-
tude of the transfer function from the control input u to the output z1;

(b) the parameter ρ moves the magnitude Bode plot up and down (see Figure 11.6a).

2. When z “
“

z1 γ 9z1
‰1, we can show that

Note 30. Why does
z “

“

z1 γ 9z1
‰1 lead to (11.9)?

� p. 135

|Lp jωq| «
|1 ` jγω| |P1p jωq|

a

H 1H ` ρ
. (11.9)

In this case the low-frequency open-loop gain mimics the process transfer function from u to
z1, with an extra zero at 1{γ and scaled by 1?

H1H`ρ
. Thus

(a) ρ moves the magnitude Bode plot up and down (more precisely H 1H ` ρ),

Note. The parameter ρ behaves
like a proportional gain in
classical loop shaping.

(b) large values for γ lead to a low-frequency zero and generally result in a larger phase

Note 31. The introduction of the
output γ 9z1 has an effect similar to
that of lead compensation in
classical control (see
Section 9.3). � p. 112

Unfortunately, in LQR there is no
equivalent to a lag compensator
to decrease the high-frequency
gain. We will see in Section 12.6
that this limitation of LQR can be
overcome with output-feedback
controllers.

margin (above the minimum of 60 degrees) and smaller overshoot in the step response
(see Figure 11.6b). However, this is often achieved at the expense of a slower response.

High-frequency open-loop gain For ω " 1, we have that

|Lp jωq| «
c

ω
?

ρ
,

for some constant c. We thus conclude the following:

1. LQR controllers always exhibit a high-frequency magnitude decay of ´20dB/decade.

2. The cross-over frequency is approximately given by

c
ωcross

?
ρ

« 1 ô ωcross «
c

?
ρ
,

which shows that the cross-over frequency is proportional to 1{
?

ρ and generally small values
for ρ result in faster step responses.

132 João P. Hespanha

Open−loop Bode Diagrams

Frequency (rad/sec)

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

P
h
a
s
e
 (

d
e
g
)

−40

−20

0

20

40

60

80

From: u To: Out(1)

M
a
g
n
it
u
d
e
 (

d
B

)

rho = 0.01

rho = 1

rho = 100

u to roll angle

(a) Open-loop gain for several values of ρ . This pa-
rameter allow us to move the whole magnitude Bode
plot up and down.

Open−loop Bode Diagrams (LQR z = roll−angle,roll−rate)

Frequency (rad/sec)

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

P
h
a
s
e
 (

d
e
g
)

−40

−20

0

20

40

60

80

From: u To: Out(1)

M
a
g
n
it
u
d
e
 (

d
B

)

gamma = 0.01

gamma = 0.1

gamma = 0.3

u to roll angle

(b) Open-loop gain for several values of γ . Larger
values for this parameter result in a larger phase mar-
gin.

Figure 11.6. Bode plots for the open-loop gain of the LQR controllers in Example 11.1. As expected,
for low frequencies the open-loop gain magnitude matches that of the process transfer function from
u to θ (but with significantly lower/better phase) and at high-frequencies the gain’s magnitude falls
at ´20dB/decade.

Attention! The (slow) ´20dB/decade magnitude decrease is the main shortcoming of state-feedback
LQR controllers because it may not be sufficient to clear high-frequency upper bounds on the open-
loop gain needed to reject disturbances and/or for robustness with respect to process uncertainty. We
will see in Section 12.6 that this can actually be improved with output-feedback controllers. 2Note. This may appear counter

intuitive as being able to measure
the full state seems desirable.
However, by introducing
dynamics between measurements
(including state measurements)
and the control input u will
enable us to filter-out
measurement noise.

Example 11.1 (Aircraft roll-dynamics). Figure 11.6 shows Bode plots of the open-loop gain Lpsq “

KpsI ´ Aq´1B for several LQR controllers obtained for the aircraft roll-dynamics in Example 10.1.
The controlled output was chosen to be z –

“

θ γ 9θ
‰1

, which corresponds to

G –

„

1 0 0
0 γ 0

ȷ

, H –

„

0
0

ȷ

.

The controllers were obtained with R “ 1, Q “ I2ˆ2, and several values for ρ and γ . Figure 11.6a
shows the open-loop gain for several values of ρ and Figure 11.6b shows the open-loop gain for
several values of γ .

Figure 11.7 shows Nyquist plots of the open-loop gain Lpsq “ KpsI ´Aq´1B for different choices
of the controlled output z. In Figure 11.7a z –

“

θ 9θ
‰1

, which corresponds to

G –

„

1 0 0
0 1 0

ȷ

, H –

„

0
0

ȷ

.

In this case, H 1G “ r 0 0 0 s and Kalman’s inequality holds as can be seen in the Nyquist plot. In
Figure 11.7b, the controlled output was chosen to be z –

“

θ 9τ
‰1, which corresponds to

G –

„

1 0 0
0 0 ´50

ȷ

, H –

„

0
50

ȷ

.

In this case we have H 1G “ r 0 0 ´2500 s and Kalman’s inequality does not hold. We can see from the
Nyquist plot that the phase and gain margins are very small and there is little robustness with respect
to unmodeled dynamics since a small perturbation in the process can lead to an encirclement of the
point ´1. 2

Linear Quadratic Regulation (LQR) 133

−150

−100

−50

0

50

100
From: u To: Out(1)

M
a
g
n
it
u
d
e
 (

d
B

)

Open−loop Bode Diagrams (LQR z = roll−angle,roll−rate)

Frequency (rad/sec)

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

P
h
a
s
e
 (

d
e
g
)

(a) z –

”

θ
9θ

ı

, leads to G “
“

1 0 0
0 1 0

‰

, H “

„

0
0

ȷ

, and

H1G “ 0

−5 −4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
From: u To: uu

−1−2

π/3

Open−loop Nyquist Diagram (LQR z = roll−angle,dot tau)

Real Axis

Im
a

g
in

a
ry

 A
x
is

(b) z –
“

θ
9τ

‰

, leads to G “
“1 0 0

0 0 ´50
‰

, H “

„

0
50

ȷ

,

H1G “ r 0 0´2500 s ‰ 0

Figure 11.7. Bode plots for the open-loop gain of the LQR controllers in Example 11.1

11.6 MATLAB® Hints
MATLAB® Hint 43 (lqr). The command [K,S,E]=lqr(A,B,QQ,RR,NN) computes the optimal
state-feedback LQR controller for the process

9x “ Ax `Bu

with criteria

J –

ż 8

0
xptq1QQxptq ` u1ptqRRuptq ` 2x1ptqNNuptqdt. (11.10)

This command returns the optimal state-feedback matrix K, the solution P to the corresponding
Algebraic Riccati Equation, and the poles E of the closed-loop system.

The criteria in (11.10) is quite general and enable us to solve several versions of the LQR problem:
With the criterion that we used in (11.3), we have

Note 32. How to get the matrices
A, B, G, H for a model obtained
using system identification?

� p. 134
JLQR –

ż 8

0
zptq1Qzptq ` ρu1ptqRuptqdt

–

ż 8

0

`

Gxptq ` Huptq
˘1Q

`

Gxptq ` Huptq
˘

` ρu1ptqRuptqdt

“

ż 8

0
xptq1G1QGxptq ` uptq1

`

H 1QH ` ρI
˘

uptq ` 2xptq1G1QHuptqdt,

which matches (11.10) by selecting

QQ “ G1QG, RR “ H 1QH ` ρR, NN “ G1QH.

If instead we want to use the criterion in (11.2) one should select

QQ “ G1G, RR “ H 1H ` ρI, NN “ G1H. 2

MATLAB® Hint 44 (sigma). The command sigma(sys) draws the norm-Bode plot of the system
sys. For scalar transfer functions this command plots the usual magnitude Bode plot but for vector
transfer function it plots the norm of the transfer function versus the frequency. 2

134 João P. Hespanha

Note 32. For process models obtained from system identification using the procedures discussed in
Lectures 2–7, the different components of the state may not have physical meaning. In this case,
we need to obtain the different matrices directly from the identified model. To see how this case be
done, suppose that we identified a SISO model with input u and measured output y and consider the
following options for our desired controller output z:

1. The simplest option consists of using the measured output y as our only measured output z. In
this case, we could get the matrices A,B,G,H as follows:

model=tfest(data)

T=tf(model)

[A,B,G,H]= ssdata(T)

2. Suppose now that the resulting controller exhibited too much overshoot and we want to use
instead z “

“

y γ 9y
‰1 for some γ ą 0 (see Section 11.5). In this case, we could get the matrices

A,B,G,H as follows:
Note sb:low-freq.
Why? � p. 135 model=tfest(data)

T=tf(model)

[A,B,C,D]= ssdata(T)

G=[C;gamma*C*A]

H=[0; gamma*C*B]

3. The previous controlled output might lead to H 1G ‰ 0 in case the transfer function from u to
y is strictly proper, but the transfer function from u to 9y is not. In this case, we might want
to consider instead z “

“

y γ ȳ
‰1 where ȳ is obtained from y through a transfer function of the

form ps
s`p , with p ą 0, which essentially takes a derivative of y “up to the frequency of the

pole p.” To accomplish this, we could use the following code

model=tfest(data)

T=tf(model)

Tfilter =[1;tf([p,0],[1,p])]

T1=Tfilter*T

[A,B,G,H]= ssdata(T1)

where we use the “filter” Tfilter with transfer function
”

1
ps

s`p

ı

to get y and ȳ from the output
y.

11.7 To Probe Further
Note 24 (General LQR). The most general form for a quadratic criteria is

J –

ż 8

0
xptq1Q̄xptq ` u1ptqR̄uptq ` 2x1ptqN̄uptqdt. (11.11)

Since z “ Gx ` Hu, the criterion in (11.2) is a special form of (11.11) with

Q̄ “ G1G, R̄ “ H 1H ` ρI, N̄ “ G1H

and (11.3) is a special form of (11.11) with

Q̄ “ G1QG, R̄ “ H 1QH ` ρR, N̄ “ G1QH.

For this criteria, the optimal state-feedback LQR controller is still of the form

u “ ´K̄x

Linear Quadratic Regulation (LQR) 135

but now K̄ is given by

K̄ “ R̄´1pB1P̄ ` N̄q

and P̄ is a solution to the following Algebraic Riccati Equation (ARE)

A1P ` PA ` Q̄ ´ pP̄B ` N̄qR̄´1pB1P̄ ` N̄1q “ 0. 2

Note 25. A symmetric k ˆ k matrix M is positive-definite if

x1Mx ą 0,

for every nonzero vector x P Rk. Positive-definite matrices are always nonsingular and their inverses
are also positive-definite.

To test if a matrix is positive define one can compute its eigenvalues. If they are all positive the
MATLAB® Hint 42. eig(A)
computes the eigenvalues of the
matrix A. � p. 123

matrix is positive-definite, otherwise it is not. 2

Note 28 (Multiplicative uncertainty). Since the Nyquist plot of Lp jωq does not enter a circle of
radius one around ´1, we have that

|1 ` Lp jωq| ě 1 ñ

ˇ

ˇ

ˇ

ˇ

1
1 ` Lp jωq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1 ´
Lp jωq

1 ` Lp jωq

ˇ

ˇ

ˇ

ˇ

ď 1 ñ

ˇ

ˇ

ˇ

ˇ

Lp jωq

1 ` Lp jωq

ˇ

ˇ

ˇ

ˇ

ď 2. 2

Note 30 (Equation (11.9)). When z “
“

y γ 9y
‰1, we have that

z “

„

y
γ 9y

ȷ

“

„

Cx
γCAx ` γCBu

ȷ

ñ G “

„

C
γCA

ȷ

, H “

„

0
γCB

ȷ

.

In this case,

Pzpsq “

„

Pypsq

γsPypsq

ȷ

“

„

1
γs

ȷ

Pypsq,

where Pypsq – CpsI ´ Aq´1B, and therefore

|Lp jωq| «

a

1 ` γ2ω2 |Pyp jωq|
a

H 1H ` ρ
“

|1 ` jγω| |Pyp jωq|
a

H 1H ` ρ
. 2

11.8 Exercises
11.1. Verify using the diagram in Figure 13.1 that, for the single-input case (m “ 1), the closed-loop
transfer function Tupsq from the reference r to the process input u is given by

Tupsq “
1

1 ` L
pKF ` Nq,

where Lpsq “ KpsI ´ Aq´1B, and the closed-loop transfer function Tz from the reference r to the
controlled output z is given by

Tzpsq “
1

1 ` L
PzpKF ` Nq,

where Pzpsq “ GpsI ´ Aq´1B ` H. 2

11.2. Consider an inverted pendulum operating near the upright equilibrium position, with lin-
earized model given by

„

9θ

:θ

ȷ

“

„

0 1
g
ℓ ´ b

mℓ2

ȷ„

θ

9θ

ȷ

`

„

0
1

mℓ2

ȷ

u, y “ θ ,

where u denotes an applied torque, the output y “ θ is the pendulum’s angle with a vertical axis
pointing up, and ℓ “ 1m, m “ 1Kg, b “ .1N/m/s, g “ 9.8m/s2.

136 João P. Hespanha

1. Design a PD controller using LQR

2. Design a PID controller using LQR

Hint: Consider an “augmented” process model with state θ , 9θ , zptq “
şt

0 θpsqds.

For both controllers provide the Bode plot of the open-loop gain and the closed-loop step response.
2

Lecture 12

LQG/LQR Output Feedback

This lecture introduces full-state observers as a tool to complement LQR in the design of output-
feedback controllers. Loop-gain recovery is need for loop shaping based on LQG/LQR controllers.

Contents
12.1 Output Feedback . 137
12.2 Full-order Observers . 137
12.3 LQG Estimation . 138
12.4 LQG/LQR Output Feedback . 139
12.5 Separation Principle . 140
12.6 Loop-gain Recovery . 140
12.7 Loop Shaping using LQR/LQG . 141
12.8 MATLAB® Hints . 142
12.9 Exercises . 142

12.1 Output Feedback
The state-feedback LQR formulation considered in Chapter 11.3 suffered from the drawback that
the optimal control law

uptq “ ´Kxptq (12.1)

required the whole state x of the process to be measurable. An possible approach to overcome this
difficulty is to estimate the state of the process based solely on the measured output y, and use

uptq “ ´Kx̂ptq

instead of (12.1), where x̂ptq denotes an estimate of the process’ state xptq. In this chapter we
consider the problem of constructing state estimates.

12.2 Full-order Observers
Consider a process with state-space model

9x “ Ax ` Bu, y “ Cx, (12.2)

where y denotes the measured output, u the control input. We assume that x cannot be measured and
our goal to estimate its value based on y.

Suppose we construct the estimate x̂ by replicating the process dynamics as in

9̂x “ Ax̂ ` Bu. (12.3)

137

138 João P. Hespanha

To see if this would generate a good estimate for x, we can define the state estimation error e – x´ x̂
and study its dynamics. From (12.2) and (12.3), we conclude that

9e “ Ax ´ Ax̂ “ Ae.

This shows that when the matrix A is asymptotically stable the error e converges to zero for any
input u, which is good news because it means that x̂ eventually converges to x as t Ñ 8. However,
when A is not stable e is unbounded and x̂ grow further and further apart from x as t Ñ 8. To avoid
this, one includes a correction term in (12.3):

9̂x “ Ax̂ ` Bu ` Lpy ´ ŷq, ŷ “ Cx̂, (12.4)

where ŷ should be viewed as an estimate of y and L a given n ˆ k matrix. When x̂ is equal (or very
close) to x, then ŷ will be equal (or very close) to y and the correction term Lpy ´ ŷq plays no role.
However, when x̂ grows away from x, this term will (hopefully!) correct the error. To see how this
can be done, we re-write the estimation error dynamics now for (12.2) and (12.4):

9e “ Ax ´ Ax̂ ´ LpCx ´Cx̂q “ pA ´ LCqe.

Now e converges to zero as long as A ´ LC is asymptotically stable. It turns out that, even when
A is unstable, in general we will be able to select L so that A ´ LC is asymptotically stable. The
system (12.4) can be re-write as

9̂x “ pA ´ LCqx̂ ` Bu ` Ly, (12.5)

and is called a full-order observer for the process. Full-order observers have two inputs—the pro-Note. “Full-order” refers to the
fact that the size of its state x̂ is
equal to the size of the process’
state x, even though the output y
may directly provide the values
of some components of x. In fact,
we will find such observers
useful even when the whole state
can be measured to improve the
high-frequency response of an
LQR controller. See
Section 11.5. . . � p. 130

cess’ control input u and its measured output y—and a single output—the state estimate x̂. Fig-
ure 12.1 shows how a full-order observer is connected to the process.

z

y

x̂

u

9x “ Ax ` Bu

9̂x “ pA ´ LCqx̂ ` Bu ` Ly

Figure 12.1. Full-order observer

12.3 LQG Estimation
Any choice of L in (12.4) for which A ´ LC is asymptotically stable will make x̂ converge to x, as
long at the process dynamics is given by (12.2). However, in general the output y is affected by
measurement noise and the process dynamics are also affected by disturbance. In light of this, a
more reasonable model for the process isNote. We shall see later in

Section 12.6 that we often use
B̄ “ B, which corresponds to an
additive disturbance:
9x “ Ax ` Bpu ` dq. � p. 140

9x “ Ax ` Bu ` B̄d, y “ Cx ` n, (12.6)

where d denotes a disturbance and n measurement noise. In this case, we need to re-write the
estimation error dynamics for (12.6) and (12.4), which leads to

9e “ Ax ` B̄d ´ Ax̂ ´ LpCx ` n ´Cx̂q “ pA ´ LCqe ` B̄d ´ Ln.

Because of n and d, the estimation error will generally not converge to zero, but we would still like it
to remain small by appropriate choice of the matrix L. This motivates the so called Linear-quadratic
Gaussian (LQG) estimation problem:

LQG/LQR Output Feedback 139

Problem 12.1 (Optimal LQG). Find the matrix gain L that minimizes the asymptotic expected value Note. A zero-mean white noise
process n has an autocorrelation
of the form

Rnpt1, t2q – E
“

npt1qn1pt2q
‰

“ QN δpt1 ´ t2q.

Such process is wide-sense
stationary in the sense that its
mean is time-invariant and its
autocorrelation Rpt1, t2q only
depends on the difference
τ – t1 ´ t2. Its power spectrum is
the same for every frequency ω

and given by

Snpωq –

ż 8

´8

Rpτqe´ jωτ dτ “ QN .

The precise mathematical
meaning of this is not particularly
important for us. The key point is
that a large value for QN means
that the disturbance is large,
whereas a large SN means that the
noise is large.

of the estimation error:

JLQG – lim
tÑ8

E
“

}eptq}2‰,

where dptq and nptq are zero-mean Gaussian noise processes (uncorrelated from each other) with
power spectrum

Sdpωq “ QN , Snpωq “ RN , @ω. 2
Solution to the optimal LQG Problem 12.1. The optimal LQG estimator gain L is the n ˆ k matrix

MATLAB® Hint 45. kalman
computes the optimal LQG
estimator gain L. � p. 142

given by

L “ PC1R´1
N

and P is the unique positive-definite solution to the following Algebraic Riccati Equation (ARE)

Note 25. A symmetric q ˆ q
matrix M is positive definite if
x1Mx ą 0, for every nonzero
vector x P Rq. � p. 135

AP ` PA1 ` B̄QN B̄1 ´ PC1R´1
N CP “ 0.

When one uses the optimal gain L in (12.5), this system is called the Kalman-Bucy filter.

A crucial property of this system is that A ´ LC is asymptotically stable as long as the following
two conditions hold:

1. The system (12.6) is observable.

2. The system (12.6) is controllable when we ignore u and regard d as the sole input.

Different choices of QN and RN result in different estimator gains L:

Note. We will return to the
selection of QN and RN in
Section 12.6. � p. 140

1. When RN is very small (when compared to QN), the measurement noise n is necessarily small
so the optimal estimator interprets a large deviation of ŷ from y as an indication that the
estimate x̂ is bad and needs to be correct. In practice, this lead to large matrices L and fast
poles for A ´ LC.

2. When RN is very large, the measurement noise n is large so the optimal estimator is much more
conservative in reacting to deviations of ŷ from y. This generally leads to smaller matrices L
and slow poles for A ´ LC.

12.4 LQG/LQR Output Feedback
We now go back to the problem of designing an output-feedback controller for the process:

9x “ Ax ` Bu, y “ Cx, z “ Gx ` Hu.

Suppose that we designed a state-feedback controller

u “ ´Kx (12.7)

that solves an LQR problem and constructed an LQG state-estimator

9̂x “ pA ´ LCqx̂ ` Bu ` Ly.

We can obtain an output-feedback controller by using the estimated state x̂ in (12.7), instead of the
MATLAB® Hint 46.
reg(sys,K,L) computes the
LQG/LQR positive
output-feedback controller for the
process sys with regulator gain K

and estimator gain L. � p. 142

true state x. This leads to the following output-feedback controller

9̂x “ pA ´ LCqx̂ ` Bu ` Ly “ pA ´ LC ´ BKqx̂ ` Ly, u “ ´Kx̂,

with negative-feedback transfer matrix given by

Cpsq “ KpsI ´ A ` LC ` BKq´1L.

This is usually known as an LQG/LQR output-feedback controller and the resulting closed-loop is
shown in Figure 12.2.

140 João P. Hespanha

´

eT “ ´y

y

z

u
9x “ Ax ` Bu

z “ Gx ` Hu

y “ Cx

9̂x “ pA ´ LC ´ BKqx̂ ´ LeT

u “ ´Kx̂

Figure 12.2. LQG/LQR output feedback

12.5 Separation Principle
The first question to ask about an LQG/LQR controller is whether or not the closed-loop system will
be stable. To answer this question we collect all the equations that defines the closed-loop system:

9x “ Ax ` Bu, y “ Cx, (12.8)
9̂x “ pA ´ LCqx̂ ` Bu ` Ly, u “ ´Kx̂. (12.9)

To check the stability of this system it is more convenient to consider the dynamics of the estimation
error e – x ´ x̂ instead of the the state estimate x̂. To this effect we replace in the above equations x̂
by x ´ e, which yields:

9x “ Ax ` Bu “ pA ´ BKqx ` BKe, y “ Cx,

9e “ pA ´ LCqe, u “ ´Kpx ´ eq.

This can be written in matrix notation as
„

9x
9e

ȷ

“

„

A ´ BK BK
0 A ´ LC

ȷ„

x
e

ȷ

, y “
“

C 0
‰

„

x
e

ȷ

.

Separation Principle. The eigenvalues of the closed-loop system (12.8)–(12.9) are given by thoseNote. Any eigenvalue of a block
diagonal matrix must be an
eigenvalue of one of the diagonal
blocks.

of the state-feedback regulator dynamics A ´ BK together with those of state-estimator dynamics
A ´ LC. In case these both matrices are asymptotically stable, then so is the closed-loop (12.8)–
(12.9).

12.6 Loop-gain Recovery
We saw in Sections 11.4 and 11.5 that state-feedback LQR controllers have desirable robustness
properties and that we can shape the open-loop gain by appropriate choice of the LQR weighting
parameter ρ and the choice of the controlled output z. It turns out that we can, to some extent,
recover the LQR open-loop gain for the LQG/LQR controller.

Loop-gain recovery. Suppose that the process is single-input/single-output and has no zeros in the
right half-place. SelectingNote. B̄ “ B corresponds to an

additive input disturbance since
the process becomes

9x “ Ax ` Bu ` B̄d

“ Ax ` Bpu ` dq.

B̄ – B, QN – 1, RN – σ , σ ą 0,

the open-loop gain for the output-feedback LQG/LQR controller converges to the open-loop gain for
the state-feedback LQR state-feedback controller over a range of frequencies r0,ωmaxs as we make
σ Ñ 0, i.e.,

Cp jωqPp jωq
σ Ñ 0

ÝÝÝÝÝÝÝÝÑ Kp jωI ´ Aq´1B, @ω P r0,ωmaxs

In general, the larger ωmax is, the smaller σ needs to be for the gains to match.

LQG/LQR Output Feedback 141

Attention! 1. To achieve loop-gain recovery we need to chose RN – σ , even if this does not
accurately describe the noise statistics. This means that the estimator may not be optimal for
the actual noise.

2. One should not make σ smaller than necessary because we do not want to recover the (slow)
´20dB/decade magnitude decrease at high frequencies. In practice we should make σ just Note. We need loop recovery up

to the cross-over frequency to
maintain the desired phase
margin, otherwise the LQG/LQR
controller may have a phase
margin that is much smaller than
that of the original LQR
controller.

small enough to get loop recovery until just above or at cross-over. For larger values of ω , the
output-feedback controller may actually behave much better than the state-feedback one.

3. When the process has zeros in the right half-plane, loop-gain recovery will generally only work
up to the frequencies of the nonminimum-phase zeros.
When the zeros are in the left half-plane but close to the axis, the closed-loop will not be very
robust with respect to uncertainty in the position of the zeros. This is because the controller
will attempt to cancel these zeros. 2

Example 12.1 (Aircraft roll-dynamics). Figure 12.3a shows Bode plots of the open-loop gain for
the state-feedback LQR state-feedback controller vs. the open-loop gain for several output-feedback
LQG/LQR controller obtained for the aircraft roll-dynamics in Example 10.1. The LQR controller

Open−loop Bode Diagrams (LQR/LQG z = {roll−angle}})

Frequency (rad/sec)

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

P
h
a
s
e
 (

d
e
g
)

−80

−60

−40

−20

0

20

40

60

80

From: u To: Out(1)

M
a
g
n
it
u
d
e
 (

d
B

)

sigma = 0.01

sigma = 1e−05

sigma = 1e−08

LQR loop−gain

(a) Open-loop gain

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

Step Response

Time (sec)

A
m

p
lit

u
d
e

sigma = 0.01

sigma = 1e−05

sigma = 1e−08

LQR loop−gain

(b) Closed-loop step response

Figure 12.3. Bode plots and closed-loop step response for the open-loop gain of the LQR controllers
in Examples 12.1, 13.2.

was designed using the controlled output z –
“

θ γ 9θ
‰1

, γ “ .1 and ρ “ .01. For the LQG state-
estimators we used B̄ “ B and RN “ σ for several values of σ . We can see that, as σ decreases,
the range of frequencies over which the open-loop gain of the output-feedback LQG/LQR controller
matches that of the state-feedback LQR state-feedback increases. Moreover, at high frequencies the
output-feedback controllers exhibit much faster (and better!) decays of the gain’s magnitude. 2

12.7 Loop Shaping using LQR/LQG
We can now summarize the procedure to do open-loop gain shaping using LQG/LQR, to be con-
trasted with the classical lead-lag compensation briefly recalled in Section 9.3: Note. A significant difference

between this procedure and that
discussed in Section 9.3, is that
stability of the closed loop is now
always automatically guaranteed.

1. Start by designing the LQR gain K assuming that the full state can be measured to obtain an
appropriate loop gain in the low-frequency range, up to the cross-over frequency.

This can be done using the procedure described in Section 11.5, where

(a) the parameter ρ can be used to move the magnitude Bode plot up and down, and

(b) the parameter γ can be used to improve the phase margin.

142 João P. Hespanha

2. Use LQG to achieve loop-gain recovery up to the cross-over frequency.

This can be done using the procedure described in Section 12.6, by decreasing σ just to the
point where one gets loop recovery until just above or at the cross-over frequency. Hopefully,
this still permits satisfying any high-frequency constraints for the loop gain.

12.8 MATLAB® Hints
MATLAB® Hint 45 (kalman). The command [est,L,P]=kalman(sys,QN,RN) computes the
optimal LQG estimator gain for the process

9x “ Ax `Bu `BBd, y “ Cx ` n, (12.10)

where dptq and nptq are uncorrelated zero-mean Gaussian noise processes with covariance matrices

E
“

dptqd1pτq
‰

“ δ pt ´ τqQN, E
“

nptqn1pτq
‰

“ δ pt ´ τqRN.

The variable sys should be a state-space model created using sys=ss(A,[B BB],C,0). This com-Attention! The process model
sys should have the D matrix
equal to zero, even though
(12.10) seems to imply otherwise.

mand returns the optimal estimator gain L, the solution P to the corresponding algebraic Riccati
equation, and a state-space model est for the estimator. The inputs to est are ru; ys, and its outputs
are rŷ; x̂s.

For loop transfer recovery (LTR), one should set

BB “ B, QN “ I, RN “ σ I, σ Ñ 0. 2

MATLAB® Hint 46 (reg). The function reg(sys,K,L) computes a state-space model for a posi-
tive output feedback LQG/LQR controller for the process with state-space model sys with regulatorAttention! Somewhat

unexpectedly, the command reg

produces a positive feedback
controller.

gain K and estimator gain L. 2

12.9 Exercises
12.1. Consider an inverted pendulum on a cart operating near the upright equilibrium position, with
linearized model given by

»

—

—

–

p
9p
9θ

:θ

fi

ffi

ffi

fl

“

»

—

—

–

0 1 0 0
0 0 ´2.94 0
0 0 0 1
0 0 11.76 0

fi

ffi

ffi

fl

»

—

—

–

p
9p

θ

9θ

fi

ffi

ffi

fl

`

»

—

—

–

0
.325

0
´.3

fi

ffi

ffi

fl

F

where F denotes a force applied to the cart, p the cart’s horizontal position, and θ the pendulum’s
angle with a vertical axis pointing up.

1. Design an LQG/LQR output-feedback controller that uses only the angle θ and the position
of the cart p.

2. Design an LQG/LQR output-feedback controller that uses the angle θ , the angular velocity 9θ ,
the position of the cart p, and its derivative using LQG/LQR (full-state feedback).

Why use LQG when the state is accessible?

For both controllers provide the Bode plot of the open-loop gain of the LQR control Lpsq “ kpsI ´

Aq´1B, the open-loop gain of the LQR controller CpsqPpsq, and the closed-loop response to a step
in the cart’s horizontal position (with set-point for θ “ 0). 2

Lecture 13

Set-Point Control

This lecture addresses the design of reference-tracking controllers based on LQG/LQR.

Contents
13.1 Nonzero Equilibrium State and Input . 143
13.2 State feedback . 144
13.3 Output feedback . 145
13.4 MATLAB® Hints . 146
13.5 Exercises . 147

13.1 Nonzero Equilibrium State and Input
Consider again the system

9x “ Ax ` Bu, y “ Cx, z “ Gx ` Hu, x P Rn, u P Rm, z P Rℓ.

Often one does not want to make z as small as possible, but instead make it converge as fast as
possible to a given constant set-point value r. This can be achieved by making the state x and the
input u of the process (11.1) converge to values x˚ and u˚ for which

Ax˚ ` Bu˚ “ 0, r “ Gx˚ ` Hu˚. (13.1)

The right equation makes sure that z will be equal to r when x and u reach x˚ and u˚, respectively.
The left-equation makes sure that when these values are reached, 9x “ 0 and therefore x will remain
equal to x˚, i.e., x˚ is an equilibrium state.

Given the desired set-point r for x, computing x˚ and u˚ is straightforward because (13.1) is a Note. When the process
transfer-function has an
integrator, one generally gets
u˚ “ 0.

system of linear equations and in general the solution to these equations is of the form

x˚ “ Fr, u˚ “ Nr. (13.2)

143

144 João P. Hespanha

For example, when the number of inputs to the process m is equal to the number of controlled outputsNote. The matrix
“

A B
G H

‰

is
invertible unless the process’
transfer-function from u to z has a
zero at the origin. This derivative
effect will always make z
converge to zero when the input
converges to a constant.

ℓ, we have
„

A B
G H

ȷ

pn`ℓqˆpn`mq

„

x˚

u˚

ȷ

“

„

0
r

ȷ

ô

„

x˚

u˚

ȷ

“

„

A B
G H

ȷ´1„0
r

ȷ

“

„

ˆ Fnˆℓ

ˆ Nmˆℓ

ȷ„

0
r

ȷ

, (13.3)

where F is an n ˆ ℓ matrix given by the top n rows and right-most ℓ columns of
“

A B
G H

‰´1 and N is

an m ˆ ℓ matrix given by the bottom m rows and right-most ℓ columns of
“

A B
G H

‰´1.

Attention! When the number of process inputs m is larger than the number of controlled outputs
MATLAB® Hint 47. When the
number of process inputs m is
larger than or equal to the number
of controlled outputs ℓ, the
matrices F and N in (13.2) can be
easily computed using
MATLAB®. � p. 146

ℓ we have an over-actuated system and the system of equations (13.1) will generally have multiple
solutions. One of them is

„

x˚

u˚

ȷ

“

„

A B
G H

ȷ1ˆ„A B
G H

ȷ„

A B
G H

ȷ1˙´1

looooooooooooooooooooomooooooooooooooooooooon

pseudo inverse of
”

A B
G H

ı

„

0
r

ȷ

. (13.4)

In this case, we can still express x˚ and u˚ as in (13.2).

When the number of process inputs m is smaller than the number of controlled outputs ℓ we have
an under-actuated system and the system of equations (13.1) may not have a solution. In fact, a
solution will only exists for some specific references r. However, when it does exist, the solution
can still express x˚ and u˚ as in (13.2). 2

13.2 State feedback
When one wants z to converge to a given set-point value r, we define the following perturbations
with respect to the desired equilibrium:

∆x – x ´ x˚, ∆u – u ´ u˚,

where x˚ and u˚ are given by (13.2). To achieve set-point control one then sets
Note 33. Why? � p. 144

∆u “ ´K∆x, (13.5)

where K is the gain of the optimal regulation problem. This equation, is consistent with getting
u “ u˚ when x “ x˚. Replacing ∆u and ∆x by their definitions, this leads to the following state-
feedback controller

u “ ´Kpx ´ x˚q ` u˚ “ ´Kx ` pKF ` Nqr, (13.6)

The corresponding control architecture is shown in Figure 13.1. The state-space model for the
closed-loop system is given by

9x “ Ax ` Bu “ pA ´ BKqx ` BpKF ` Nqr

z “ Gx ` Hu “ pG ´ HKqx ` HpKF ` Nqr.

Note 33 (Set-point control with state-feedback). To understand why (13.5) works, suppose we define

∆z “ z ´ r, ∆x “ x ´ x˚, ∆u “ u ´ u˚.

Then

9∆x “ Ax ` Bu “ Apx ´ x˚q ` Bpu ´ u˚q ` Ax˚ ` Bu˚

Set-Point Control 145

−+ +

+r

x

x˚
z

u

u˚

9x “ Ax ` BuKF

N

Figure 13.1. Linear quadratic set-point control with state feedback

∆z “ Gx ` Hu ´ r “ Gpx ´ x˚q ` Hpu ´ u˚q ` Gx˚ ` Hu˚ ´ r

and we conclude that

9∆x “ A∆x ` B∆u, ∆z “ G∆x ` H∆u. (13.7)

The control signal in (13.5), is therefore the optimal state-feedback LQR controller that minimizes

JLQR –

ż 8

0
∆zptq1Q∆zptq ` ρ∆u1ptqR∆uptqdt,

This controller makes the system (13.7) asymptotically stable and therefore ∆x, ∆u, ∆z all converge
to zero as t Ñ 8, which means that z converges to r. 2

Example 13.1 (Aircraft roll-dynamics). Figure 13.2 shows step responses for the state-feedback
LQR controllers in Example 11.1, whose Bode plots for the open-loop gain are shown in Figure 11.6.
Figure 13.2a shows that smaller values of ρ lead to faster responses and Figure 13.2b shows that

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

p
lit

u
d
e

rho = 0.01

rho = 1

rho = 100

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

p
lit

u
d
e

gamma = 0.01

gamma = 0.1

gamma = 0.3

(b)

Figure 13.2. Step responses for the closed-loop LQR controllers in Example 13.1

larger values for γ lead to smaller overshoots (but slower responses). 2

13.3 Output feedback
When one wants z to converge to a given set-point value r, the output-feedback LQG/LQR controller
should be

9̄x “ pA ´ LC ´ BKqx̄ ` LpCx˚ ´ yq, u “ Kx̄ ` u˚, (13.8)

146 João P. Hespanha

where x˚ and u˚ are given by (13.2). The controller (13.8) comes from setting u´u˚ “ ´Kpx̂´x˚q
Note 34. Why? � p. 146 and defining x̄ – x˚ ´ x̂.

The corresponding control architecture is shown in Figure 13.3. The state-space model for theNote. When z “ y, we have
G “ C, H “ 0 and in this case
Cx˚ “ r. This corresponds to
CF “ 1 in Figure 13.3. When the
process has an integrator we get
N “ 0 and obtain the usual
unity-feedback configuration.

closed-loop system is given by
„

9x
9̄x

ȷ

“

„

Ax ` BpKx̄ ` u˚q

pA ´ LC ´ BKqx̄ ` LpCx˚ ´Cxq

ȷ

“

„

A BK
´LC A ´ LC ´ BK

ȷ„

x
x̄

ȷ

`

„

BN
LCF

ȷ

r

z “ Gx ` HpKx̄ ` u˚q “
“

G HK
‰

„

x
x̄

ȷ

` HNr

+ − +

+r

y

Cx˚
z

u

u˚

9x “ Ax ` Bu

y “ Cx

9̄x “ pA ´ LC ´ BKqx̄ ` Lv

u “ Kx̄
CF

N

Figure 13.3. LQG/LQR set-point control

Note 34 (Set-point control with output feedback). To understand why (13.8) works suppose we
define

z̃ “ z ´ r, x̃ “ x ´ x˚ ` x̄.

Then

9̃x “ pA ´ LCqx̃ (13.9)
9̄x “ pA ´ BKqx̄ ´ LCx̃ (13.10)
z̃ “ Gpx̃ ´ x̄q ` HKx̄. (13.11)

1. Since A ´ LC is asymptotically stable, we conclude from (13.9) that x̃ Ñ 0 as t Ñ 8. In
practice, we can view the state x̄ of the controller as an estimate of x˚ ´ x.

2. Since A ´ BK is asymptotically stable and x̃ Ñ 0 as t Ñ 8, we conclude from (13.10) that
x̄ Ñ 0 as t Ñ 8.

3. Since x̃ Ñ 0 and x̄ Ñ 0 as t Ñ 8, we conclude from (13.11) that z Ñ r as t Ñ 8. 2

Example 13.2 (Aircraft roll-dynamics). Figure 12.3b shows step responses for the output-feedback
LQG/LQR controllers in Example 12.1, whose Bode plots for the open-loop gain are shown in
Figure 12.3a. We can see that smaller values of σ lead to a smaller overshoot mostly due to a larger
gain margin. 2

13.4 MATLAB® Hints
MATLAB® Hint 47. When the number of process inputs m is larger than or equal to the number of
controlled outputs ℓ, the matrices F and N in (13.2) that correspond to the equilibria in either (13.3)
or (13.4) can be computed using the following MATLAB® commands:

M=pinv([A,B;G,H]);

F=M(1:n,end-l+1:end);

N=M(end-m+1:end,end-l+1:end);

where n denotes the size of the state, l the number of controlled outputs, and m the number of process
inputs. 2

Set-Point Control 147

13.5 Exercises
13.1. Verify equations (13.9), (13.10), and (13.11). 2

148 João P. Hespanha

Part IV

Nonlinear Control

149

Introduction to Nonlinear Control

uptq P R
m

xptq P R
n

9x “ f px,uq

uptq P R
m

xptq P R
n

u “ kpxq

9x “ f px,uq

Figure 13.4. Nonlinear process with m inputs Figure 13.5. Closed-loop nonlinear system
with state-feedback

In this section we consider the control of nonlinear systems such as the one shown in Figure 13.4.
Our goal is to construct a state-feedback control law of the form Note. This control-law implicitly

assumes that the whole state x
can be measured.u “ kpxq

that results in adequate performance for the closed-loop system

9x “ f
`

x,kpxq
˘

.

Typically, at least we want x to be bounded and converge to some desired reference value r.

Pre-requisites

1. Basic knowledge of nonlinear ordinary differential equations.

2. Basic knowledge of continuous-time linear controller design.

3. Familiarity with basic vector and matrix operations.

Further reading A more extensive coverage of nonlinear control can be found, e.g., in [9].

151

152 João P. Hespanha

Lecture 14

Feedback linearization controllers

This lecture introduces a control design method for nonlinear systems that uses state feedback to
obtain linear closed-loop dynamics.

Contents
14.1 Feedback Linearization . 153
14.2 Generalized Model for Mechanical Systems . 154
14.3 Feedback Linearization of Mechanical Systems 156
14.4 Exercises . 157

14.1 Feedback Linearization
In feedback linearization control design, we decompose the control signal u into two components
with distinct roles:

u “ unl ` v,

where

1. unl is used to “cancel” the process’ nonlinearities, and

2. v is used to control the resulting linear system.

u

y

Fdrag
g

From Newton’s law:

m:y “ Fdrag ´ mg ` u

“ ´
1
2

cρA 9y| 9y| ´ mg ` u,

where m is the vehicle’s mass, g gravity’s ac-
celeration, Fdrag “ ´ 1

2 cρA 9y| 9y| the drag force,
and u an applied force.

Figure 14.1. Dynamics of a vehicle moving vertically in the atmosphere

153

154 João P. Hespanha

To understand how this is done, consider the vehicle shown in Figure 14.1 moving vertically in theNote. For large objects moving
through air, the air resistance is
approximately proportional to the
square of the velocity,
corresponding to a drag force that
opposes motion, given by

Fdrag “ ´
1
2

cρA 9y| 9y|

where ρ is the air density, A the
cross-sectional area, and c the
drag coefficient, which is 0.5 for
a spherical object and can reach 2
for irregularly shaped objects
[11]. Fdrag always points in the
opposite direction of 9y.

atmosphere. By choosing

u “ unlp 9yq ` v, unlp 9yq –
1
2

cρA 9y| 9y| ` mg,

we obtain

m:y “ ´
1
2

cρA 9y| 9y| ´ mg ` punlp 9yq ` vq “ v ñ :y “
1
m

v.

In practice, we transformed the original nonlinear process into a (linear) double integrator with
transfer function from v to y given by

T psq –
1

ms2 .

We can now use linear methods to find a controller for v that stabilizes the closed-loop. E.g., a PDNote. Any linear method can be
used to design the controller for
v, but we shall see shortly that
robustness with respect to
multiplicative uncertainty is
important for the closed-loop.

controller of the form

v “ KPe ` KD 9e, e – r ´ y.

Figure 14.2 shows a diagram of the overall closed-loop system.

+ +

+−

r e uv

unl

y

1

2
cρA 9y| 9y| ` mg

m:y “ ´
1

2
cρA 9y| 9y| ´ mg ` uKPe ` KD 9e

Figure 14.2. Feedback linearization controller. From an “input-output” perspective, the system in
the dashed block behaves as a linear system with transfer function T psq – 1

ms2 .

14.2 Generalized Model for Mechanical Systems
The equations of motion of many mechanical systems can be written in the following general formNote. These include robot-arms,

mobile robots, airplanes,
helicopters, underwater vehicles,
hovercraft, etc.

Mpqq:q ` Bpq, 9qq 9q ` Gpqq “ F, (14.1)

where

• q P Rk is a k-vector with linear and/or angular positions called the vector of generalized coor-
dinates;

• F P Rk is a k-vector with applied forces and/or torques called the vector of generalized forces;

• Gpqq is a k-vector sometimes called the vector of conservative forces (typically, gravity or
forces generated by springs);

• Mpqq is a k ˆ k non-singular symmetric positive-definite matrix called the mass matrix; and
Note 25. A symmetric k ˆ k
matrix M is positive definite if
x1Mx ą 0, for every nonzero
vector x P Rk . � p. 135

• Bpq, 9qq is a k ˆk matrix sometimes called the centrifugal/Coriolis/friction matrix, for systems
with no friction we generally have

9q1Bpq, 9qq 9q “ 0, @ 9q P Rk

whereas for systems with friction

9q1Bpq, 9qq 9q ě 0, @ 9q P Rk,

with equality only when 9q “ 0.

Feedback linearization controllers 155

Examples
Example 14.1 (Rocket). The dynamics of the vehicle in Figure 14.1 that moves vertically in the
atmosphere are given by

m:y “ ´
1
2

cρA 9y| 9y| ´ mg ` u,

where m is the vehicle’s mass, g gravity’s acceleration, ρ is the air density, A the cross-sectional
area, c the drag coefficient, and u an applied force. This equation can be identified with (14.1),
provided that we define

q – y, Mpqq – m, Bpqq –
1
2

cρA| 9y|, Gpqq – mg, F – u. 2

θ

ℓ

g

m

θ1

θ2

ℓ1

ℓ2

m1

m2

Figure 14.3. Inverted pendulum Figure 14.4. Two-link robot manipulator

Example 14.2 (Inverted pendulum). The dynamics of the inverted pendulum shown in Figure 14.3
are given by

mℓ2 :θ “ mgℓsinθ ´ b 9θ ` T,

where T denotes a torque applied at the base, and g is the gravity’s acceleration. This equation can
be identified with (14.1), provided that we define Note. When the pendulum is

attached to a cart and the input u
is the cart’s acceleration :z, we
have T “ ´mℓucosθ but this
makes the problem more difficult,
especially around θ “ ˘π{2.
Why?

q – θ , Mpqq – mℓ2, Bpqq – b, Gpqq – ´mgℓsinθ , F – T. 2

Example 14.3 (Robot arm). The dynamics of the robot-arm with two revolution joints shown in
Figure 14.4 can be written as in (14.1), provided that we define

q –

„

θ1
θ2

ȷ

, F –

„

τ1
τ2

ȷ

.

where τ1 and τ2 denote torques applied at the joints. For this system

Mpqq –

„

m2ℓ
2
2 ` 2m2ℓ1ℓ2 cosθ2 ` pm1 ` m2qℓ2

1 m2ℓ
2
2 ` m2ℓ1ℓ2 cosθ2

m2ℓ1ℓ2 cosθ2 ` m2ℓ
2
2 m2ℓ

2
2

ȷ

Bpq, 9qq –

„

´2m2ℓ1ℓ2 9θ2 sinθ2 ´m2ℓ1ℓ2 9θ2 sinθ2

m2ℓ1ℓ2 9θ1 sinθ2 0

ȷ

Gpqq – g
„

m2ℓ2 cospθ1 ` θ2q ` pm1 ` m2qℓ1 cosθ1
m2ℓ2 cospθ1 ` θ2q

ȷ

.

where g is the gravity’s acceleration [2, p. 202–205]. 2

156 João P. Hespanha

x

y

θ

ℓ
Fp

Fs

Figure 14.5. Hovercraft

Example 14.4 (Hovercraft). The dynamics of the hovercraft shown in Figure 14.5 can be written as
in (14.1), provided that we define

q –

»

–

x
y
θ

fi

fl , F –

»

–

pFs ` Fpqcosθ ´ Fℓ sinθ

pFs ` Fpqsinθ ` Fℓ cosθ

ℓpFs ´ Fpq

fi

fl ,

where Fs, Fp, and Fℓ denote the starboard, portboard, and lateral fan forces. The vehicle in the
photograph does not have a lateral fan, which means that Fℓ “ 0. It is therefore called underactuated
because the number of controls (Fs and Fp) is smaller than the number of degrees of freedom (x, y,
and θ). For this system

Mpqq –

»

–

m 0 0
0 m 0
0 0 J

fi

fl , Bpqq –

»

–

dv 0 0
0 dv 0
0 0 dω

fi

fl ,

where m “ 5.5 kg is the mass of the vehicle, J “ 0.047 kg m2 its rotational inertia, dv “ 4.5 the
coefficient of linear friction, dω “ .41 the coefficient of rotational friction, and ℓ “ 0.123 m the
moment arm of the forces. In these equations, the geometry and mass centers of the vehicle are
assumed to coincide [3]. 2

14.3 Feedback Linearization of Mechanical Systems
A mechanical system is called fully actuated when one has control over the whole vector or gen-
eralized forces. For such systems we regard u – F as the control input and we can use feedback
linearization to design nonlinear controllers. In particular, choosing

F “ u “ unlpq, 9qq ` Mpqqv, unlpq, 9qq – Bpq, 9qq 9q ` Gpqq,

we obtain

Mpqq:q ` Bpq, 9qq 9q ` Gpqq “ Bpq, 9qq 9q ` Gpqq ` Mpqqv ô :q “ v.

Expanding the k-vectors :q and v in their components, we obtain
»

—

—

—

–

:q1
:q2
...
:qk

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

v1
v2
...

vk

fi

ffi

ffi

ffi

fl

and therefore we can select each vi as if we were designing a controller for a double integrator

:qi “ vi.

Feedback linearization controllers 157

Attention! Measurement noise can lead to problems in feedback linearization controllers. When
the measurements of q and 9q are affected by noise, we have

Mpqq:q ` Bpq, 9qq 9q ` Gpqq “ unlpq ` n, 9q ` wq ` Mpq ` nqv,

where n is measurement noise in the q sensors and w the measurement noise in the 9q sensors. In this
case

Mpqq:q ` Bpq, 9qq 9q ` Gpqq “ Bpq ` n, 9q ` wqp 9q ` wq ` Gpq ` nq ` Mpq ` nqv (14.2)

and (with some work) one can show that

:q “
`

I ` ∆
˘

v ` d, (14.3)

where Note. See
Exercise 14.1. � p. 157

∆ – Mpqq´1`Mpq ` nq ´ Mpqq
˘

,

d – Mpqq´1
´

`

Bpq ` n, 9q ` wq ´ Bpq, 9qq
˘

9q ` Bpq ` n, 9q ` wqw ` Gpq ` nq ´ Gpqq

¯

.

Since ∆ and d can be very large, with feedback linearization controllers it is particularly important
to make sure that the controller selected for v is robust with respect to multiplicative uncertainty and
good at rejecting disturbances.

14.4 Exercises
14.1. Verify that (14.3) is indeed equivalent to (14.2), by solving the latter equation with respect to
:q. 2

14.2. Design a feedback linearization controllers to drive the inverted pendulum in Example 14.2
to the up-right position. Use the following values for the parameters: ℓ “ 1 m, m “ 1 kg, b “

.1 N m´1s´1, and g “ 9.8 m s´2. Verify the performance of your system in the presence of measure-
ment noise using Simulink. 2

158 João P. Hespanha

Lecture 15

Lyapunov Stability

This lecture introduces a definition of stability for nonlinear systems and the basic tools used to
check whether a nonlinear system is stable.

Contents
15.1 Lyapunov Stability . 159
15.2 Lyapunov Stability Theorem . 161
15.3 Exercise . 162
15.4 LaSalle’s Invariance Principle . 162
15.5 Liénard Equation and Generalizations . 163
15.6 To Probe Further . 165
15.7 Exercises . 165

15.1 Lyapunov Stability
Although feedback linearization provides a simple method to design controllers for nonlinear sys-
tems. The resulting controllers are sometimes very sensitive to measurement noise because it pre-
vents a perfect cancellation of the nonlinearities. It turns out that such cancellation is not always
needed.

Consider again the vehicle shown in Figure 14.1 and suppose that we simply want to control its
velocity 9y. For simplicity, we assume that the applied force u is constant and larger than mg (i.e.,
there is an excess upward force) and that the units were chosen so that all constant coefficient are
numerically equal to 1:

:y “ ´ 9y| 9y| ` 1.

Since

´ 9y| 9y| ` 1 “ 0 ô 9y “ 1,

we conclude that 1 is the only equilibrium-point for the system, i.e.,

9yptq “ 1, @t ě 0,

is the only possible constant trajectory for the system. A question that may then arise is:

Will 9yptq converge to 1 as t Ñ 8, when 9yp0q “ 1?

To study this question we will consider an “error” system that looks at the difference from 9y to the
equilibrium-point 1. Defining x – 9y ´ 1, we conclude that

9x “ ´px ` 1q|x ` 1| ` 1. (15.1)

and the previous question could be reformulated as

159

160 João P. Hespanha

Will xptq converge to 0 as t Ñ 8, when xp0q “ 0?

To address this question, suppose that we define

V pxq “ x2

and compute V ’s derivative with respect to time using the chain rule:

9V ptq “
dV

`

xptq
˘

dt
“

BV
Bx

9x “ 2x
`

´ px ` 1q|x ` 1| ` 1
˘

“

#

´2x2px ` 2q x ě ´1
2xpx2 ` 2x ` 2q x ă ´1.

(15.2)

Figure 15.1 shows the right-hand-side of (15.2) as a function of x and the solution of xptq of (15.1)
for a couple of initial values xp0q. Three conclusions can be drawn from here:

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-35

-30

-25

-20

-15

-10

-5

0

x

9 V

(a) 9V vs. x

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
pt

q

t

(b) xptq for different initial values xp0q

Figure 15.1. Solutions to (15.1) and left-hand side of (15.2)

Boundedness For every initial condition xp0q, |xptq| will remain bounded for all t ě 0, i.e., it will
not blow up. This is because V

`

xptq
˘

“ x2ptq cannot increase.

Stability If we start xp0q very close to zero, then xptq will remain very close to zero for all times
t ě 0. This is because V

`

xptq
˘

“ x2ptq will always be smaller or equal than V
`

xp0q
˘

.

Convergence xptq Ñ 0 as t Ñ 8. This is because the right-hand side of (15.2) is only equal to zero
when x “ 0 and therefore 9V will be strictly negative for any nonzero x.

This finally provides an answer to the previous questions: Yes! x Ñ 0 as t Ñ 8.

When a system exhibits these three properties we say that the origin is globally asymptotically stable.
This notion of stability for nonlinear systems was originally proposed by Aleksandr Lyapunov and
now carries his name.

Definition 15.1 (Lyapunov stability). Given a system

9x “ f pxq, t ě 0, x P Rn, (15.3)

we say that:

(i) the trajectories are globally bounded if for every initial condition xp0q, there exists a scalar
α
`

xp0q
˘

ě 0 such that
›

›xptq
›

› ď α
`

xp0q
˘

, @t ě 0;

(ii) the origin is globally stable if the trajectories are globally bounded and αpxp0qq Ñ 0 as xp0q Ñ

0;

Lyapunov Stability 161

(iii) the origin is globally asymptotically stable if it is globally stable and in addition xptq Ñ 0 as
t Ñ 8.

Attention! The requirement (ii) is rather subtle but very important. In essence, it says that if we
choose the initial condition xp0q very close to the origin, then the upper bound αpxp0qq will also be
very small and the whole trajectory stays very close to the origin. 2

15.2 Lyapunov Stability Theorem
The technique used before to conclude that the origin is globally asymptotically stable for the sys-
tem (15.1) is a special case of a more general method proposed by Aleksandr M. Lyapunov. His main
contribution to nonlinear control was the realization that an appropriate choice of the function V pxq

could make proving stability very simple. In the example above (and in fact in most one-dimensional
systems) V pxq “ x2 works well, but for higher dimensional systems the choice of V pxq is critical.

Lyapunov Stability Theorem. Suppose that there exists a scalar-valued function V : Rn Ñ R with
the following properties:

(i) V pxq is differentiable;

(ii) V pxq is positive definite, which means that V p0q “ 0 and

V pxq ą 0, @x ‰ 0.

(iii) V pxq is radially unbounded, which means that V pxq Ñ 8 whenever x Ñ 8;

(iv) ∇xV pxq ¨ f pxq is negative definite, which means that ∇xV p0q ¨ f p0q “ 0 and
Notation 6. Given a scalar
function of n variables
f px1, . . . ,xmq, ∇x f denotes the
gradient of f , i.e.,

∇x f px1,x2, . . . ,xmq “
”

B f
Bx1

B f
Bx2

¨ ¨ ¨
B f

Bxm

ı

.

∇xV pxq ¨ f pxq ă 0, @x ‰ 0.

Then the origin is globally asymptotically stable for the system (15.3). The function V pxq is called a

Note 35. What is the intuition
behind Lyapunov’s stability
theorem? � p. 161

Lyapunov function. 2

The function V pxq “ x2 considered before satisfies all the conditions of the Lyapunov Stability
Theorem for the system (15.1) so our conclusion that the origin was globally asymptotically stable
is consistent with this theorem.

Note 35 (Lyapunov Stability Theorem). When the variable x is a scalar,

9V ptq “
dV

`

xptq
˘

dt
“

BV
Bx

9x “
BV
Bx

f pxq,

but when x and f are n-vectors, i.e.,

9x “ f pxq ô

»

—

—

—

–

9x1
9x2
...
9xn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

f1pxq

f2pxq

...
fnpxq

fi

ffi

ffi

ffi

fl

,

we have
Note 36. These derivatives exist
because of condition (i) in
Lyapunov Stability Theorem.

Attention! Computing the inner
product BV

Bx f pxq actually gives us
9V ptq.

9V ptq “
dV

`

xptq
˘

dt
“

dV
`

x1ptq,x2ptq, . . . ,xnptq
˘

dt
“

n
ÿ

i“1

BV
Bxi

9xi “

n
ÿ

i“1

BV
Bxi

fipxq “ ∇xV pxq ¨ f pxq.

Condition (iv) thus requires V pxq to strictly decrease as long x ‰ 0. Because of condition (ii), x ‰ 0
is equivalent to V pxq ą 0 so V pxq must decrease all the way to zero.

Since V pxq is only zero at zero and condition (iii) excludes the possibility that V pxq Ñ 0 as x Ñ 8,
this necessarily implies that x Ñ 0 as t Ñ 8. 2

162 João P. Hespanha

Example 15.1. Consider the following system

:y ` p1 ` | 9y|qpy ` 9yq “ 0.

Defining x “
“

x1 x2
‰1

–
“

y 9y
‰1, this system can be written as 9x “ f pxq as follows:

9x1 “ x2,

9x2 “ ´p1 ` |x2|qpx1 ` x2q.

Suppose we want to show that the origin is globally asymptotically stable. A “candidate” LyapunovNote. Finding a Lyapunov
function is more an art than a
science. Fortunately several
“artists” already discovered
Lyapunov for many systems of
interest. More on this shortly. . .

function for this system is

V pxq – x2
1 ` px1 ` x2q2.

This function satisfies the requirements (i)–(iii). Moreover,
Note. Even when ∇xV pxq ¨ f pxq

has a relatively simply form, it is
often hard to verify that it is never
positive. However, we will see in
Lecture 16 that it is often easier
to design a control that makes
sure this is the case. � p. 167

∇xV pxq ¨ f pxq “ 2x1 9x1 ` 2px1 ` x2qp 9x1 ` 9x2q

“ 2x1x2 ` 2px1 ` x2q
`

x2 ´ p1 ` |x2|qpx1 ` x2q
˘

“ 2x1p´x1 ` x1 ` x2q ` 2px1 ` x2q
`

x2 ´ p1 ` |x2|qpx1 ` x2q
˘

“ ´2x2
1 ` 2px1 ` x2q

`

x1 ` x2 ´ p1 ` |x2|qpx1 ` x2q
˘

“ ´2x2
1 ´ 2|x2|px1 ` x2q2 ď 0.

Since we only have equality to zero when x1 “ x2 “ 0, we conclude that (iv) also holds and therefore
V pxq is indeed a Lyapunov function and the origin is globally asymptotically stable. 2

15.3 Exercise
15.1. The average number of data-packets sent per second by any program that uses the TCP proto-
col (e.g., ftp) evolves according to an equation of the form:

9r “
1

RT T 2 ´
2
3

pdroprpr ` dq,

where r denotes the average sending rate, RT T denotes the round-trip time for one packet in seconds,
pdrop the probability that a particular packet will be dropped inside the network, and d the average
sending rate of other data-flows using the same connection. All rates are measured in packets per
second. Typically one packet contains 1500bytes.

1. Find the equilibrium-point req for the sending rate.

Hint: When d “ 0, your expression should simplify to

req “

a

3{2
RT T ?pdrop

.

This is known as the “TCP-friendly” equation.

2. Verify that the origin is globally asymptotically stable for the system with state x – r ´ req.
2

15.4 LaSalle’s Invariance Principle
Consider now the system

:y ` 9y| 9y| ` y3 “ 0

Lyapunov Stability 163

Defining x “
“

x1 x2
‰1

–
“

y 9y
‰1, this system can be written as 9x “ f pxq as follows:

9x1 “ x2, (15.4)

9x2 “ ´x2|x2| ´ x3
1. (15.5)

A candidate Lyapunov function for this system is

V pxq –
x2

2
2

`
x4

1
4
.

This function satisfies the requirements (i)–(iii). However,

∇xV pxq ¨ f pxq “ x2 9x2 ` x3
1 9x1 “ ´|x2|x2

2

and therefore it does not satisfy (iv) because

∇xV pxq ¨ f pxq “ 0 for x2 “ 0, x1 ‰ 0.

However,

∇xV pxq ¨ f pxq “ 0 ñ x2 “ 0

so V can only stop decreasing if x2 converges to zero. Moreover, if we go back to (15.5) we see that
x2ptq “ 0, @t must necessarily imply that x1ptq “ 0, @t. So although V pxq is not a Lyapunov function,
it can still be used to prove that the origin is globally asymptotically stable. The argument just used
to prove that the origin is asymptotically stable is due to J. P. LaSalle:

LaSalle’s Invariance Principle. Suppose that there exists a scalar-valued function V : Rn Ñ R that
Note 37. In general, LaSalle’s
Invariance Principle is stated in a
more general form. � p. 165

satisfies the conditions (i)–(iii) of the Lyapunov Stability Theorem as well as

(iv)’ ∇xV pxq ¨ f pxq is negative semi-definite, which means that

∇xV pxq ¨ f pxq ď 0, @x,

and, in addition, for every solution xptq for which

∇xV
`

xptq
˘

¨ f
`

xptq
˘

“ 0, @t ě 0 (15.6)

we must necessarily have that

xptq “ 0, @t ě 0. (15.7)

Then the origin is globally asymptotically stable for the system (15.3). In this case the function V pxq

is called a weak Lyapunov function. 2

15.5 Liénard Equation and Generalizations
LaSalle’s Invariance principle is especially useful to prove stability for systems with dynamics de-
scribed by the Liénard equation:

Note 38. The system considered
in Section 15.4 was precisely of
this form.

:y ` bpy, 9yq 9y ` λ pyq “ 0,

where y is a scalar and bpy, 9yq, λ pyq are functions such that

bpy, 9yq ą 0, @ 9y “ 0 (15.8)
λ pyq ‰ 0, @y “ 0 (15.9)

Λpyq –

ż y

0
λ pzqdz ą 0, @y “ 0 (15.10)

164 João P. Hespanha

lim
yÑ8

Λpyq “ 8. (15.11)

This type of equation arises in numerous mechanical systems from Newton’s law.

Defining x “
“

x1 x2
‰1

–
“

y 9y
‰1, the Liénard equation can be written as 9x “ f pxq as follows:

9x1 “ x2, (15.12)
9x2 “ ´bpx1,x2qx2 ´ λ px1q. (15.13)

A candidate Lyapunov function for this system isNote. This is how we got the
Lyapunov function for the system
in Section 15.4. Verify!

V pxq –
x2

2
2

` Λpx1q. (15.14)

This function satisfies the requirements (i)–(iii) of the Lyapunov Stability Theorem andNote. Recall that (i) asked for
V pxq to be differentiable, (ii)
asked for V pxq to be positive
definite, and (iii) asked for V pxq

to be radially unbounded.

∇xV pxq ¨ f pxq “ x2 9x2 ` λ px1q 9x1 “ ´bpx1,x2qx2
2 ď 0,

since bpx1,x2q ą 0 for every x2 ‰ 0 [cf. (15.8)]. Moreover, from (15.8) we conclude that

∇xV pxq ¨ f pxq “ 0 ñ x2 “ 0.

Because of (15.13), any trajectory with x2ptq “ 0, @t necessarily must have λ
`

x1ptq
˘

“ 0, @t, which
in turn implies that x1ptq “ 0, @t because of (15.9). Therefore V pxq is a weak Lyapunov function
and the origin is globally asymptotically stable.

The type of weak Lyapunov function used for the Liénard equation can also be used for higher-
order dynamical system of the form

Mpqq:q ` Bpq, 9qq 9q ` Lq “ 0, (15.15)

where q is a k-vectors and Mpqq, Bpq, 9qq, and L are k ˆ k matrices with Mpqq and L symmetric and
positive definite.

Note 25. A symmetric k ˆ k
matrix M is positive definite if
x1Mx ą 0, for every nonzero
vector x P Rk . � p. 135

Defining

x “

„

x1
x2

ȷ

–

„

q
9q

ȷ

P R2k,

the system (15.15) can be written as 9x “ f pxq as follows:

9x1 “ x2, 9x2 “ ´Mpx1q´1
´

Bpx1,x2qx2 ` Lx1

¯

. (15.16)

A candidate Lyapunov function for this system is

V pxq –
1
2

x1
2Mpx1qx2 `

1
2

x1
1Lx1. (15.17)

This function satisfies the requirements (i)–(iii) andNote. Using the product rule:
dpx1Mxq

dt “

dx
dt

1
Mx ` x1M dx

dt ` x1 dM
dt x. But

since dx
dt

1
Mx is a scalar, it is equal

to its transpose and we get
dpx1Mxq

dt “ 2x1M dx
dt ` x1 dM

dt x.

∇xV pxq ¨ f pxq “ x1
2Mpx1q 9x2 `

1
2

x1
2

´dMpx1q

dt

¯

x2 ` 9x1
1Lx1

“ ´x1
2

´

Bpx1,x2q ´
1
2

dMpx1q

dt

¯

x2. (15.18)

Lyapunov Stability 165

Using LaSalle’s Invariance Principle, we conclude that the origin is globally asymptotically stable
as long as Note. Why do we need (15.19) to

be positive definite? Because in
this case, 9V “ 0 in (15.18)
necessarily implies that x2 “ 0.
Replacing x2 “ 0 in (15.16) leads
to Mpx1q´1Lx1 “ 0, which
means that x1 “ 0 because both
Mpx1q and L are nonsingular
matrices.

Bpx1,x2q ´
1
2

dMpx1q

dt
(15.19)

is positive definite. This will be used shortly to design controllers for mechanical systems.

15.6 To Probe Further
Note 37 (LaSalle’s Invariance Principle). LaSalle’s Invariance Principle is generally stated in the
following form.

LaSalle’s Invariance Principle. Suppose that there exists a scalar-valued function V : Rn Ñ R that
satisfies the conditions (i)–(iii) of Lyapunov Stability Theorem as well as

(iv)” ∇xV pxq ¨ f pxq is negative semi-definite, which means that

∇xV pxq ¨ f pxq ď 0, @x.

Then the origin is globally stable for the system (15.3). Moreover, let E denote the set of all points
for which ∇xV pxq ¨ f pxq “ 0, i.e.,

E –
␣

x P Rn : ∇xV pxq ¨ f pxq “ 0
(

,

and let M be the largest invariant set for the system (15.3) that is fully contained in E. Then every Note. A set M is said to be
invariant for the system (15.3) if
every trajectory that starts inside
M will remain inside this set
forever.

solution to (15.3) approaches M as t Ñ 8. In case M only contains the origin, the origin is globally
asymptotically stable for the system (15.3).

The condition (iv)’ that appeared in Section (iv), requires that any solution xptq that stays inside the
set E forever, must necessarily be the identically zero [see equation (15.6)]. This means that the set
M can only contain the origin, because otherwise there would be another solution xptq that would
start inside M Ă E and stay inside this set forever. 2

15.7 Exercises
15.2. For the following systems, show that the origin is asymptotically stable using the Lyapunov
function provided.

#

9x “ ´x ` y ´ xy2

9y “ ´x ´ y ´ x2y
V px,yq “ x2 ` y2 (15.20)

#

9x “ ´x3 ` y4

9y “ ´y3px ` 1q
V px,yq “ x2 ` y2 (15.21)

#

9x “ ´x ` 4y
9y “ ´x ´ y3 V px,yq “ x2 ` 4y2 (15.22)

#

9x “ x ` 4y
9y “ ´2x ´ 5y

V px,yq “ x2 ` bxy ` ay2 (15.23)

For the last system, determine possible values for the constants a,b P R (recall that V must be
positive definite).

Hint for (15.23): it may be useful to know that a quadratic function of the form f px,yq “ αx2 `

βxy ` γy2 is

166 João P. Hespanha

1. positive definite (and radially unbounded) if and only if

α ą 0, γ ą 0, αγ ą
β 2

4
;

2. and it is negative definite (and radially unbounded) if and only if

α ă 0, γ ă 0, αγ ą
β 2

4
.

You should simplify the problem by trying to pick values for a and b that lead to a simple
expression for 9V – ∇xV pxq ¨ f pxq. This can make it easy to checked whether or not 9V is
negative definite and thus simplify the choice of a,b. 2

15.3. For the following systems, show that the origin is asymptotically stable using the Lyapunov
function provided.

#

9x “ y
9y “ ´x ´ y

V px,yq “ x2 ` y2 (15.24)

#

9x “ y
9y “ ´y|y| ´ 3x

V px,yq “ ax2 ` by2 (15.25)

For the last system, determine possible values for the constants a and b (recall that V must be positive
definite).

Hint for (15.25): You can simplify the problem by picking values for a and b that lead to a simple
expression for 9V – ∇xV pxq ¨ f pxq. This can make it easy to checked whether or not 9V is negative
definite. 2

15.4. Consider the hovercraft model in Example 14.4. Show that if the generalized force vector is
set to F “ ´q, then the origin is globally asymptotically stable. 2

Lecture 16

Lyapunov-based Designs

This lecture introduces a method to design controllers for nonlinear systems based directly on satis-
fying the conditions of Lyapunov Stability theorem.

Contents
16.1 Lyapunov-based Controllers . 167
16.2 Application to Mechanical Systems . 168
16.3 Exercises . 170

16.1 Lyapunov-based Controllers
In Lyapunov-based designs one starts by selecting a candidate Lyapunov function and then chooses
the control signal for which the chosen Lyapunov function does indeed decrease along the trajecto-
ries of the closed-loop system.

To understand how this can be done, consider again the vehicle shown in Figure 14.1 with units
chosen so that all constant coefficient are numerically equal to 1

:y “ ´ 9y| 9y| ´ 1 ` u

and suppose we want y to converge to some constant reference value r. Defining the tracking error
e – y ´ r, we conclude that

:e “ ´ 9e| 9e| ´ 1 ` u.

Setting the state

x “

„

x1
x2

ȷ

–

„

e
9e

ȷ

the dynamics of the system can be written as 9x “ f px,uq as follows: Note. It is useful to recall here
the Liénard equation
:y ` bpy, 9yq 9y ` λpyq “ 0 and its
state-space form 9x1 “ x2,
9x2 “ ´bpx1,x2qx2 ´ λpx1q, for
which we used the Lyapunov

function V pxq –
x2

2
2 ` Λpx1q,

Λpyq –
şy

0 λpzqdz ą 0.

9x1 “ x2 (16.1)
9x2 “ ´x2|x2| ´ 1 ` u, (16.2)

and we would like to make the origin globally asymptotically stable.

167

168 João P. Hespanha

In view of what we saw for the Liénard equation, we will try to makeNote. Compare with

V pxq –
x2

2
2

` Λpx1q

in (15.14). Essentially, we are
aiming for

Λpx1q “

ż x1

0
λpzqdz “ ρ

x2
1

2
,

which would correspond to
λpx1q “ ρx1 [Why? Take
derivatives of the equalities
above]. We will find other
interesting options in
Exercise 16.1. � p. 170

V pxq –
x2

2
2

` ρ
x2

1
2
, ρ ą 0

a Lyapunov function for the system by appropriate choice of u. This function satisfies the require-
ments (i)–(iii) and

∇xV pxq ¨ f px,uq “ x2 9x2 ` ρx1 9x1 “ ´x2
2|x2| ` x2p´1 ` u ` ρx1q.

A simple way to make the system Lyapunov stable is then to select

´1 ` u ` ρx1 “ 0 ô u “ 1 ´ ρx1 “ 1 ´ ρpy ´ rq,

which leads to

∇xV pxq ¨ f px,uq “ ´x2
2|x2|,

and therefore the candidate V pxq becomes a weak Lyapunov function for the closed-loop:

9x1 “ x2,

9x2 “ ´x2|x2| ´ 1 ` upx1q “ ´x2|x2| ´ ρx1.

Attention! A feedback linearization controller for (16.2) would cancel both the nonlinearity ´x2|x2|

and the ´1 terms, using a controller of the form

upx1,x2q “ 1 ` x2|x2| ´ KPx1 ´ KDx2, KP,KD ą 0.

However, in the presence of measurement noise this would lead to the following closed-loop system

9x1 “ x2

9x2 “ ´x2|x2| ´ 1 ` upx1 ` n1,x2 ` n2q “ ´KPx1 ´ KDx2 ` d

where d is due to the noise and is equal to

d – ´KPn1 ´ KDn2 ´ x2|x2| ` x2|x2 ` n2| ` n2|x2 ` n2|.

The main difficulty with this controller is that n2 appears in d multiplied by x2 so even with little
noise, d can be large if x2 is large.

Consider now the Lyapunov-based controllerNote. This controller does not
attempt to cancel the term x2|x2|

that actually helps in making
9V ă 0.

upx1q “ 1 ´ ρx1

also in the presence of noise:

9x1 “ x2

9x2 “ ´x2|x2| ´ 1 ` upx1 ` n1q “ ´x2|x2| ´ ρx1 ` d, d “ ´ρn1.

This controller is not affected at all by noise in the measurement of x2 “ 9y and the noise in the
measurement of x1 “ y ´ r is not multiplied by the state. 2

16.2 Application to Mechanical Systems
Consider again a fully actuated mechanical system of the following form

Mpqq:q ` Bpq, 9qq 9q ` Gpqq “ u (16.3)

Lyapunov-based Designs 169

and suppose that we want to make q converge to some constant value r. Defining

x “

„

x1
x2

ȷ

–

„

q ´ r
9q

ȷ

P R2k,

the system (16.3) can be written as 9x “ f px,uq as follows:

9x1 “ x2,

9x2 “ ´Mpx1 ` rq´1
´

Bpx1 ` r,x2qx2 ` Gpx1 ` rq ´ u
¯

.

Based on what we saw in Section 15.5, we will try to make Note. Compare this V pxq with
equation (15.17). � p. 164

V pxq –
1
2

x1
2Mpx1 ` rqx2 `

γ1

2
x1

1x1, γ1 ą 0

a Lyapunov function for the system by appropriate choice of u. This function satisfies the require-
ments (i)–(iii) and

∇xV pxq ¨ f pxq “ x1
2Mpx1 ` rq 9x2 `

1
2

x1
2

´dMpx1 ` rq

dt

¯

x2 ` γ1 9x1
1x1

“ ´x1
2

´

Bpx1 ` r,x2qx2 ´
1
2

dMpx1 ` rq

dt
x2 ` Gpx1 ` rq ´ u ´ γ1x1

¯

.

Since in general x1
2Bpx1 ` r,x2qx2 ě 0, a simple way to make the system Lyapunov stable is to select

´
1
2

dMpx1 ` rq

dt
x2 ` Gpx1 ` rq ´ u ´ γ1x1 “ γ2x2

ô u “ ´
1
2

dMpx1 ` rq

dt
x2 ` Gpx1 ` rq ´ γ1x1 ´ γ2x2

“ ´
1
2

dMpqq

dt
9q ` Gpqq ´ γ1pq ´ rq ´ γ2 9q,

which leads to

∇xV pxq ¨ f pxq “ ´x1
2Bpx1 ` r,x2qx2 ´ γ2x1

2x2.

and therefore the candidate V pxq becomes a weak Lyapunov function for the closed-loop.

Attention! For several mechanical system

x1
2

´

Bpx1 ` r,x2qx2 ´
1
2

dMpx1 ` rq

dt

¯

x2 ě 0.

For those systems it suffices to select

Gpx1 ` rq ´ u ´ γ1x1 “ γ2x2 ô u “ Gpx1 ` rq ´ γ1x1 ´ γ2x2 (16.4)
“ Gpqq ´ γ1pq ´ rq ´ γ2 9q,

which leads to

∇xV pxq ¨ f pxq “ ´x1
2

´

Bpx1 ` r,x2qx2 ´
1
2

dMpx1 ` rq

dt

¯

x2 ´ γ2x1
2x2

ď ´γ2x1
2x2. 2

The controller (16.4) corresponds to the control architecture shown in Figure 16.1. This controller Note. This type of control is very
common in robotic manipulators.resembles the feedback linearization controller in Figure 14.2, with the key difference that now the

gravity term is canceled, but not the friction term. 2

170 João P. Hespanha

`

`

´

´

u
q

9q

r
γ1p¨q

γ2

Gp¨q

Process

Figure 16.1. Control architecture corresponding to the Lyapunov-based controller in (16.4).

16.3 Exercises
16.1. Design a controller for the system (16.2) using the following candidate Lyapunov functionNote. Compare with

V pxq –
x2

2
2

` Λpx1q

in (15.14). Essentially, we are
aiming for

Λpx1q “

ż x1

0
λpzqdz

“ ρx1 arctanpx1q,

which would correspond to
λpx1q “ ρ

´

x1
1`x2

1
` arctanpx1q

¯

[Why? Take derivatives of the
equalities above].

V pxq –
x2

2
2

` ρx1 arctanpx1q, ρ ą 0.

What is the maximum value of u that this controller requires? Can you see an advantage of using
this controller with respect to the one derived before? 2

16.2. Consider again system (16.2) and the following candidate Lyapunov function

V pxq –
x2

2
2

` ρx1 arctanpx1q, ρ ą 0.

Find a Lyapunov-based control law upx1,x2q that keeps

∇xV pxq ¨ f px,uq ď ´x2
2|x2|,

always using the u with smallest possible norm. This type of controller is called a point-wise min-
norm controller and is generally very robust with respect to process uncertainty. 2

16.3. Design a Lyapunov based controller for the inverted pendulum considered in Exercise 14.2 and
compare its noise rejection properties with the feedback linearization controller previously designed.

2

16.4. Re-design the controller in Exercise 16.3 to make sure that the control signal always remains
bounded. Investigate its noise rejection properties.

Hint: Draw inspiration from Exercises 16.1 and 16.2. 2

Bibliography
[1] R. Adrain. Research concerning the probabilities of the errors which happen in making obser-

vations. The Analyst, I:93–109, 1808. Article XIV. (cited in p. 33)

[2] J. J. Craig. Introduction to Robotics Mechanics and Control. Addison Wesley, Reading, MA,
2nd edition, 1986. (cited in p. 155)

[3] L. Cremean, W. Dunbar, D. van Gogh, J. Hickey, E. Klavins, J. Meltzer, and R. Murray. The
Caltech multi-vehicle wireless testbed. In Proc. of the 41st IEEE Conf. on Decision and Contr.,
Dec. 2002. (cited in p. 156)

Lyapunov-based Designs 171

[4] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory. Number 36 in Texts in
Applied Mathematics. Springer, New York, 1999. (cited in p. 95)

[5] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems.
Prentice Hall, Upper Saddle River, NJ, 4th edition, 2002. (cited in p. 7, 9, 18, 100, 107, 120, 127)

[6] C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientum
(the theory of the motion of heavenly bodies moving around the sun in conic sections).
Hamburg, Germany, 1809. URL http://134.76.163.65/agora_docs/137784TABLE_

OF_CONTENTS.html. (cited in p. 33)

[7] B. Hayes. Science on the farther shore. American Scientist, 90(6):499–502, Nov. 2002. (cited
in p. 33)

[8] J. P. Hespanha. Linear Systems Theory. Princeton Press, Princeton, New Jersey, 2nd edition,
Feb. 2018. (cited in p. 117)

[9] H. K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 2002. (cited
in p. 151)

[10] L. Ljung. System Identification: Theory for the user. Information and System Sciences Series.
Prentice Hall, Upper Saddle River, NJ, 2nd edition, 1999. (cited in p. 3, 18, 33)

[11] R. A. Serway and R. J. Beichner. Physics for Scientists and Engineers. Brooks Cole, 5th
edition, 1999. (cited in p. 154)

[12] J. V. Vegte. Feedback Control Systems. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1994.
(cited in p. 119)

http://134.76.163.65/agora_docs/137784TABLE_OF_CONTENTS.html
http://134.76.163.65/agora_docs/137784TABLE_OF_CONTENTS.html

	I System Identification
	Computer-Controlled Systems
	Computer Control
	Continuous-time Systems
	Discrete-time Systems
	Discrete-time vs. Continuous-time Transfer Functions
	MATLAB® Hints
	To Probe Further
	Exercise

	Non-parametric Identification
	Non-parametric Methods
	Continuous-time Time-domain Identification
	Discrete-time Time-domain Identification
	Continuous-time Frequency Response Identification
	Discrete-time Frequency Response Identification
	MATLAB® Hints
	To Probe Further
	Exercises

	Parametric Identification using Least-Squares
	Parametric Identification
	Least-Squares Line Fitting
	Vector Least-Squares
	To Probe Further
	Exercises

	Parametric Identification of a Continuous-Time ARX Model
	CARX Model
	Identification of a CARX Model
	CARX Model with Filtered Data
	Identification of a CARX Model with Filtered Signals
	Dealing with Known Parameters
	MATLAB® Hints
	To Probe Further
	Exercises

	Practical Considerations in Identification of Continuous-time CARX Models
	Choice of Inputs
	Signal Scaling
	Choice of Model Order
	Combination of Multiple Experiments
	Closed-loop Identification
	Exercises

	Parametric Identification of a Discrete-Time ARX Model
	ARX Model
	Identification of an ARX Model
	Dealing with Known Parameters
	MATLAB® Hints
	To Probe Further
	Exercises

	Practical Considerations in Identification of Discrete-time ARX Models
	Choice of Inputs
	Signal Scaling
	Choice of Sampling Frequency
	Choice of Model Order
	Combination of Multiple Experiments
	Closed-loop Identification
	MATLAB® Hints
	Exercises

	II Robust Control
	Robust stability
	Model Uncertainty
	Nyquist Stability Criterion
	Small Gain Condition
	MATLAB® Hints
	Exercises

	Control design by loop shaping
	The Loop-shaping Design Method
	Open-loop vs. closed-loop specifications
	Open-loop Gain Shaping
	Exercises

	III LQG/LQR Controller Design
	Review of State-space models
	State-space Models
	Input-output Relations
	Realizations
	Controllability and Observability
	Stability
	MATLAB® Hints

	Linear Quadratic Regulation (LQR)
	Feedback Configuration
	Optimal Regulation
	State-Feedback LQR
	Stability and Robustness
	Loop-shaping Control using LQR
	MATLAB® Hints
	To Probe Further
	Exercises

	LQG/LQR Output Feedback
	Output Feedback
	Full-order Observers
	LQG Estimation
	LQG/LQR Output Feedback
	Separation Principle
	Loop-gain Recovery
	Loop Shaping using LQR/LQG
	MATLAB® Hints
	Exercises

	Set-Point Control
	Nonzero Equilibrium State and Input
	State feedback
	Output feedback
	MATLAB® Hints
	Exercises

	IV Nonlinear Control
	Feedback linearization controllers
	Feedback Linearization
	Generalized Model for Mechanical Systems
	Feedback Linearization of Mechanical Systems
	Exercises

	Lyapunov Stability
	Lyapunov Stability
	Lyapunov Stability Theorem
	Exercise
	LaSalle's Invariance Principle
	Liénard Equation and Generalizations
	To Probe Further
	Exercises

	Lyapunov-based Designs
	Lyapunov-based Controllers
	Application to Mechanical Systems
	Exercises

