Discrete Approximations to Continuous Shortest-Path: Application to Minimum-Risk Path Planning for Groups of Uninhabited Air Vehicles (UAVs)

Jongrae Kim João Hespanha

University of California
Santa Barbara

Outline

1. Motivation—minimum-risk path planning
2. Discretization approach to shortest-path
3. Sampling methods
4. Back to minimum-risk path planning…
Anisotropic shortest-path problem

Compute path ρ from initial position x_i to final position x_f minimizing the integral cost

$$J[\rho] := \int_0^T \ell(\rho(t), \dot{\rho}(t)) \, dt$$

as opposed to isotropic shortest path

$$J[\rho] := \int_0^T \ell(\rho(t), \|\dot{\rho}(t)\|) \, dt$$

Motivating problems

- Minimum-risk path planning for fixed-wing UAVs
- Path-planning for UAV surveillance in complex 3D environments

- Probability of radar acquisition depends on UAVs attitude
- “Safe-space” is very much nonconvex

- Region covered by sensor depends on UAVs attitude
- Free-space is very much nonconvex
Radar acquisition

Probability of UAV being acquired by radar on an elementary time interval \(dt \):

\[\eta(x, \dot{x}, m) dt \]

\(\eta \) changes significantly with the attitude of the UAV with respect to the radar.

Survivability ("risk")

Probability of UAV being acquired by a radar on a path \(\rho \) with duration \(T \)

\[p^{\text{acq}}[\rho] = 1 - e^{- \int_0^T \eta^{\text{acq}}(\rho(t), \dot{\rho}(t)) \, dt} \]

Probability of UAV being destroyed by a radar on a path \(\rho \) with duration \(T \)

\[p^{\text{kill}}[\rho] = p^{\text{leth}} \left(1 - e^{- \int_0^T \eta^{\text{acq}}(\rho(t), \dot{\rho}(t)) \, dt} \right) \]

Conditional probability of kill, given that UAV was acquired by radar.
Survivability ("risk")

k SAM sites

probability of UAV being acquired by a radar on a path ρ with duration T

$$p^{\text{acq}}[\rho] = 1 - e^{-\int_0^T \ell^{\text{acq}}(\rho(t), \dot{\rho}(t)) dt}$$

$\ell^{\text{acq}}(x, v) := \sum_{i=1}^k \eta_i(x, v, m_i)$

probability of UAV being destroyed by a radar on a path ρ with duration T

$$p^{\text{kill}}[\rho] = p^{\text{letha}} \left(1 - e^{-\int_0^T \ell^{\text{acq}}(\rho(t), \dot{\rho}(t)) dt} \right)$$

Anisotropic shortest-path problem

minimize $J[\rho] := \int_0^T \ell(\rho(t), \dot{\rho}(t)) dt$

over all paths ρ with (non-fixed) duration $T > 0$ such that

$\rho(0) = x_i$ initial position

$\rho(T) = x_f$ final position

$||\dot{\rho}|| \leq$ maximum velocity of slowest UCAV
Anisotropic shortest-path problem

\[
\begin{align*}
\text{minimize} \quad J[\rho] := & \int_0^T \ell(\rho(t), \dot{\rho}(t)) dt \\
\text{over all paths } \rho \text{ with (non-fixed) duration } T > 0 \text{ such that} \\
\rho(0) &= x_i \quad \text{initial position} \\
\rho(T) &= x_f \quad \text{final position} \\
\|\dot{\rho}\| &\leq \text{maximum velocity of slowest UCAV}
\end{align*}
\]

We would obtain similar problem formulations if the previous setup was generalized to:

1. *Unknown radar positions* (need to take expected value with respect to the distribution of the radars, analytically or using randomized methods)
2. *Groups of UAVs* flying together
3. *Multi-criteria* optimization (e.g., considering constraints on path duration and fuel consumption)

Variational approach
Assuming that there exists a solution to the Hamilton-Jacobi-Bellman PDE

\[
\min_{v \in V} H(x, v, \nabla_x V(x)) = 0 \quad V(x_f) = 0
\]

the optimal path is given by

\[
\rho(t) = x_i + \int_0^t \arg \min_{v \in V} H(\rho(\tau), v, \nabla_x V(\rho(\tau))) d\tau
\]
Anisotropic shortest-path problem

\[\begin{align*}
\text{minimize} & \quad J[\rho] := \int_0^T \ell(\rho(t), \dot{\rho}(t))dt \\
\text{over all paths} & \quad \rho \quad \text{with (non-fixed) duration} \\
\rho(0) & \quad = x_i \quad \text{initial} \\
\rho(T) & \quad = x_f \quad \text{final} \\
\|\dot{\rho}\| & \quad \leq \text{maximum}
\end{align*} \]

Variational approach

Assuming that there exists a solution to the Hamilton-Jacobi-Bellman PDE

\[\min_{v \in \mathcal{V}} H(x, v, \nabla_x V(x)) = 0 \quad V(x_f) = 0 \]

the optimal path is given by

\[\rho(t) = x_i + \int_0^t \arg \min_{v \in \mathcal{V}} H(\rho(\tau), v, \nabla_x V(\rho(\tau)))d\tau \]

Numerical methods based on the maximum principle also run into difficulties because of local minima.

Discretization approach

- extract a finite set \(\mathcal{X} \) of points
- restrict the search to piecewise linear paths between points in \(\mathcal{X} \)

\[\rho(t) = x_{k-1} + \frac{x_k - x_{k-1}}{\|x_k - x_{k-1}\|} (t - t_{k-1}) \]

\[\forall t \in [t_{k-1}, t_k], \ k \in \{1, 2, \ldots, m\} \]

with

\[0 = t_0 < t_1 < \cdots < t_m = T \]

\[x_k \in \mathcal{X} \quad \forall k \in \{0, 1, \ldots, m\} \]

\(\odot \) original continuous problem was converted into an optimization on a finite graph

\(\odot \) at the expense of a higher cost
Discretization approach

- Extract a finite set X of points
- Restrict the search to piecewise linear paths between points in X

$$\rho(t) = x_{k-1} + \frac{x_k - x_{k-1}}{||x_k - x_{k-1}||} (t - t_{k-1})$$

$\forall t \in [t_{k-1}, t_k], \ k \in \{1, 2, \ldots, m\}$

$$0 = t_0 < t_1 < \cdots < t_m = T$$

$$x_k \in X \ \forall k \in \{0, 1, \ldots, m\}$$

- Original continuous problem was converted into an optimization on a finite graph
- At the expense of a higher cost
- The cost penalty can be made arbitrarily small

Suboptimality

Theorem: For every ϵ, $A > 0$ there exists a finite set X of N_ϵ points such that

$$\min_{\rho \in P_\epsilon} J[\rho] - \min_{\rho \in P_{\|\rho\| \leq A}} J[\rho] \leq \epsilon$$

Optimal cost over piecewise linear paths

Optimal cost over all paths with acceleration bounded by A

But less cost penalty requires more points
Optimized sampling

Theorem: For every ϵ, $A > 0$ there exists a finite set X of N points such that

$$\min_{\rho \in \mathcal{F}_X} J[\rho] - \min_{\rho \in \mathcal{F}_{\|\rho\| \leq A}} J[\rho] \leq \epsilon$$

One can show that the cost penalty ϵ is proportional to

$$\frac{g_{x,k} \epsilon_x + g_{v,k} \epsilon_v + \left(\frac{g_{x,k} + g_{v,k} A}{2}\right) \|x_k - x_{k-1}\|}{\text{norm of the cost gradient around the points}} \quad \text{distance between consecutive points}$$

$$g_{x,k} := \sup_{x \in \mathcal{R}, \|v\| \leq \epsilon} \|\nabla_x \ell(x, v)\|$$

$$g_{v,k} := \sup_{x \in \mathcal{R}, \|v\| \leq \epsilon} \|\nabla_v \ell(x, v)\|$$

one can under-sample where gradient is low and over-sample where gradient is high

Sampling methods

Uniform sampling

extract points randomly over the whole region, with uniform probability

Gradient sampling

extract points randomly over the whole region, with probability proportional to the norm of the gradient

sampling over a regular grid is much worse for anisotropic costs and will not be reported here (not enough directions!)
Optimized sampling

Honeycomb sampling

1. extract points randomly over the whole region with probability proportional to the norm of the gradient

\[\frac{g_{r,k} s_x + g_{r,k} s_y + \frac{g_{r,k} + g_{r,k-1}}{2} \|x_k - x_{k-1}\|}{\text{gradient-norm}} \]

2. compute the Voronoi diagram for these points

3. uniformly sample the edges of the Voronoi diagram

Sampling methods – spots configurations

- **Gradient-norm**
- **Cost & optimal path**
- **Uniform sampling**
- **Gradient-proportional sampling**
- **Honeycomb sampling**
Since the optimal path can avoid danger, gradient-based methods does not help with respect to uniform sampling.
Sampling methods – X configurations

probability of radar acquisition is minimized through azimuth/elevation angles management

Gradient-based methods improve upon uniform sampling

honeycomb sampling is fast and provides good performance over a wide range of configurations
Sampling methods – complex config.

Uniform sampling

Honeycomb sampling

Gradient-proportional sampling

Honeycomb sampling is fast and provides good performance over a wide range of configurations.
Conclusions

• Proposed a method to solve anisotropic shortest path problems based on discretization of the continuous state-space
• Proposed a “honeycomb” sampling algorithm to minimize the penalty introduced
• Illustrated the potentialities of the algorithm for minimum-risk path planning for groups of UAVs—“honeycomb” consistently produces low-risk paths with less computation time!

Future work
• Apply this type of algorithm to other path planning problems (e.g., UAV surveillance in complex 3D environments)
• Support incremental computation to obtain any-time optimization algorithms (for real-time implementation)