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Abstract— Data-driven control benefits from rich datasets,
but constructing such datasets becomes challenging when gath-
ering data is limited. We consider an offline experiment design
approach to gathering data where we design a control input
to collect data that will most improve the performance of
a feedback controller. We show how such a control-oriented
approach can be used in a setting with linear dynamics
and quadratic objective and, through design of a gradient
estimator, solve the problem via stochastic gradient descent.
We contrast our method with a classical A-optimal experiment
design approach and numerically demonstrate that our method
outperforms A-optimal design in terms of improving control
performance.

I. INTRODUCTION

Model-based control methods benefit from useful models
of the controlled system. Consider a setting in which there
is uncertainty in the model parameters and there is an
opportunity to collect experimental data to learn more about
the system. The data collection involves selecting a control
input, and this paper focuses on the optimal selection of
such an input with the goal of eventually generating a “high-
performance” controller for the uncertain process. In this
context, “high-performance” is defined in terms of a pre-
specified criterion that we use to evaluate the performance
of a given controller. This motivates the following control-
oriented experiment design problem: select a control input
for a data-collection experiment so that the feedback con-
troller designed using the data acquired will lead to the best
possible performance. Our approach is general in terms of the
control design procedure used to generate the controller from
the experimental data collected. However, in this paper we
focus our attention on controllers generated through certainty
equivalence, which in this context means constructing an a-
posteriori estimate for the process and designing a controller
for this estimate.

This paper includes two key contributions: First, we show
how such a control-oriented approach to experiment design
can be carried out for the control of a linear system with un-
certain matrix dynamics and a quadratic objective function.
While this problem does not have a closed-form solution, we
show that it can be efficiently solved by stochastic gradient
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descent. The second contribution lies in the observation that
our formulation of a control-oriented approach to experiment
design generally leads to closed-loop controllers that exhibit
higher performance than what would be achieved by classical
forms of experiment design, which are typically aimed at
minimizing a-posteriori estimation error (or other generic
forms of post-experiment uncertainty), rather than focusing
directly on improving closed-loop performance.

In this work, we focus on the offline experiment design
setting for data-driven control. In Section II we present a gen-
eral formulation for experiment design that takes into account
a-priori parameter uncertainty in discrete-time dynamics. We
consider an experiment that generates a dataset consisting of
state and input measurements, where the dataset is used in the
construction of a controller. The resulting optimal experiment
design problem aims to improve the expected performance
of the controller with respect to possible parameter values as
well process noise during the experiment. This formulation
is contrasted with classical experiment design formulations
that aim to minimize a measure of the parameter uncertainty
[1].

We then turn to the linear quadratic regulator (LQR) set-
ting in Section III, where we define the linear dynamics and
quadratic control objective. We address the system identifi-
cation step and how to handle exploding trajectories during
(simulated) experiments. For the data-driven controller, we
use an LQR controller with certainty equivalence in the
parameters [2]. The solutions available in LQR are amenable
to fast computations, which is conducive to the numerical
approach we take later on.

We go on to present the solution method to the experiment
design approach in Section IV. We use a first-order approach
by designing a pathwise gradient estimator for the purposes
of stochastic gradient descent. By leveraging the structure
of the problem, we find a gradient estimate that proves to
be effective numerically as illustrated in Section V. In order
to validate our method, we compare our approach against a
classical experiment design that aims to reduce a measure
of the uncertainty in the parameters. We first illustrate our
method’s advantages when compared against the classical
experiment design and then go on to show how the problem
can be scaled to systems of a moderate order.

Related work: The issue of how to gather data through
well-planned experiments has traditionally been addressed
through the framework of optimal experiment design. Mod-
ern optimal experiment design is often attributed to Gustav
Elfving, who designed experiments to minimize measures of
parameter error covariance [3]. Later on, researchers worked



on aligning experiment design with particular criteria, in-
cluding control objectives [4]. See [5] for a thorough review
of early work in this area. Recent relevant work in this area
includes [6], which proposes a stochastic gradient descent
approach to designing experiments that minimizes a post-
experiment optimal control objective. Work in experiment
design for control in the statistical learning community in-
cludes [7], [8], [9], all of which emphasize theoretical aspects
of learning linear systems. As an alternative paradigm, online
learning or adaptive control allow for improvement during
the experiment trial. Adaptive control has been well-covered
in [10], and online linear quadratic regulation has been
explored from learning theory in [11].

As we focus on the linear quadratic regulator setting, the
most relevant papers are from [7], in which the authors derive
fundamental limits for learning the linear quadratic regulator
via offline experiments, and [8], in which the authors propose
an experiment design method for learning linear systems for
particular tasks. The former focuses on the statistical learning
guarantees associated with the LQR problem but do not
broach how to construct an optimal experiment. In the latter,
the authors propose a weighted-trace optimal experiment
design that bears similarity to L-optimal experiment design
for control-oriented identification as noted in [5]; the authors
consider convergence of sequential experiment designs to the
underlying system.

Gradient estimation has seen particular attention in the
machine learning community [12], and two dominant meth-
ods are via the pathwise gradient and the score function (or
log score) method [13]. Score function estimators benefit
from only taking the gradient of the density function, but
the structure of our problem is not amenable: as such, we
focus on the pathwise gradient estimate.

II. EXPERIMENT DESIGN FOR DATA-DRIVEN CONTROL

We consider a discrete-time system with dynamics of the
form

xt+1 = f(xt, ut, wt; θ), (1)

with state xt ∈ Rnx , control input ut ∈ Rnu , and an
unmeasured stochastic disturbance wt ∈ Rnw independent
and identically distributed across time. The dynamics depend
on stochastic parameters θ that are unknown, but for which
we have an a-priori distribution.

An experiment will be performed to provide additional
information about the parameter θ. State and input measure-
ments are collected throughout the experiment providing a
sequence of M triples D := {(x+

i , xi, ui) : i = 1, ...,M}
that satisfy the basic model of the dynamical system:

x+
i = f(xi, ui, wi; θ), ∀i ∈ {1, . . . ,M} (2)

with the wi independent across indices i and with the same
distribution as the disturbance. If the experiment consists of
a single run of (1) over a time horizon t = 1 through t =
T , then the index i is simply time and M = T . However,
in general, “an experiment” may include multiple runs of
(1) over different time horizons, in which case (2) include

all the data collected. To simplify notation we collect all
the columns vectors x+

i , xi ∈ Rnx , ui ∈ Rnu into matrices
with M columns that we denote by X+, X ∈ Rnx×M , U ∈
Rnu×M , respectively.

Our goal is to design a controller π that optimizes a given
cost function J(π; θ) that depends both on the controller and
on the actual (but unknown) value of the parameter θ. We
also take as given a control design procedure that maps the
experiment design data D to a specific controller π, with the
goal of minimizing the cost J(π; θ). A reasonable procedure
would be to select a controller that minimizes the expected
value of the cost J(π; θ), given the data D collected during
the experiment, as in:

K(D) = argmin
π

E[J(π; θ) | D]. (3)

However, and because this optimization is often intractable,
our presentation considers a general control design method
K : D 7→ π, which may or may not be optimal.

The experiment design problem arises from the observa-
tion that the data D collected depends on the control inputs
U used during the experiment as well as on the actual
realizations of the the random disturbances (also during the
experiment) that we denote by W ∈ Rnw×M . To emphasize
this dependence, we use the notation DU,W to express the
dependence of the dataset on these variables. The optimal
experiment design problem can then be formulated as

min
U∈U

E
[
J
(
π; θ
)]
, π := K

(
DU,W

)
, (4)

where the expectation refers to an integration over (i) the
a-priori distribution of the parameter θ, and (ii) the real-
ization of the disturbance W during the actual experiment.
The minimization is performed over a set of admissible
controls that we denote generically by U . The experiment
design criterion (4) should be contrasted with more classical
formulations that set the goal of the experiment to minimize
some measure of uncertainty about the unknown parameter
θ. For example, an A-optimal experiment design essentially
tries to minimize

min
U∈U

E
[∥∥θ̂(DU,W

)
− θ
∥∥2], θ̂

(
DU,W

)
:= E

[
θ | DU,W

]
.

(5)

The key distinction is that (5) ignores the impact of uncer-
tainty on the control objective J(π; θ) and therefore does not
take advantage of the fact that reducing uncertainty on some
parameters may be much more important than on others, for
our ultimate control objective of minimizing J(π; θ).

III. EXPERIMENT DESIGN FOR THE LINEAR QUADRATIC
REGULATOR

We now specialize the general setup described above to the
finite-horizon linear quadratic regulator setup. Specifically,
we consider the process

xt+1 = Axt +But + wt, (6)



such that θ contains the elements of A and B, and wt is
Gaussian noise identically distributed across time with zero
mean and covariance Σw.

We consider a quadratic optimization criterion of the form:

J(π; θ) := E
[
xT
NQNxN +

N−1∑
t=0

xT
t Qxt + uT

t Rut | θ
]
, (7)

where the expectation refers to an integration over the distur-
bances encountered by the controller π; QN , Q are positive
semidefinite matrices; and R a positive definite matrix.

We consider a common option for control design generally
known as certainty equivalence (CE): certainty equivalence
design KCE(D) computes the a-posteriori expected value
of the unknown parameters θ̂ := E[θ | D] and computes
the linear optimal controller ut = Ktxt that minimizes (7),
assuming that the estimate θ̂ is correct.

1) System identification: In order to generate the a-
posteriori estimate of the system θ̂ for KCE(D), we employ
linear regression on a dataset D, which in our case will be
the dataset generated under the experiment decision variable
U . For identification, we express (6) as:

X+ = ΘZ +W (8)

with Z = [X;U ] ∈ R(nx+nu)×M , and Θ := [A,B] ∈
Rnx×(nx+nu). For ease of notation, we use θ ∈ Rnx(nx+nu)

to denote the vectorized version of Θ via stacking its
columns.

Corollary 1: [14] Consider a Gaussian prior on the pa-
rameters with mean Θ0 ∈ Rnx×(nx+nu) and covariance of
the (i, j)th element with the (k, l)th element of Θ given by
E[(Θ̂−Θ)ij(Θ̂−Θ)kl] = (Σw)ki(Λ

−1
0 )jl, where Σw is the

known noise covariance and Λ−1
0 ∈ R(nx+nu)×(nx+nu) is a

prior on the parameter covariance. The weighted Bayesian
estimator for Θ is

Θ̂ = (Θ0Λ0 +X+SZT )Λ−1
n , (9a)

and the error covariance of the estimate Θ̂ is

E[(Θ̂−Θ)ij(Θ̂−Θ)kl] = (Σw)ki(Λ
−1
n )jl, (9b)

where Λn := Λ0 + ZSZT , and S ∈ RM×M is the weight
matrix.

Proof: See [14].
The weight matrix S improves the numerics of the regression
problem, particularly since simulating unstable systems can
lead to exponential growth in the state that, due to large
numbers, lead to deleterious performance in the inversion of
Λn. In particular, let

S(X) := diag([s(x0), ..., s(xN )]) (10)

where s(x) ∈ [0, 1] ensures that the weight matrix as-
signs zero weight to points on trajectories that are nu-
merically too large. For this work, we choose s(x) :=
arctan(∥xt − α1∥α2)/π + 0.5, and α1, α2 are design pa-
rameters.

2) Certainty equivalent control: Given an estimate of the
parameters θ from (9) with means Â and B̂, respectively, we
construct our controller KCE(D) by recursively solving the
Riccati difference equations given by

Kt = −(R+ B̂TPt+1B̂)−1B̂TPt+1Â, (11a)

Pt = Q+KT
t RKt − (Â+ B̂Kt)

TPt+1(Â+ B̂Kt),
(11b)

with PN = QN ; Q,QN are positive semidefinite matrices
and R a positive definite matrix.

Corollary 2: [15] For a sequence of linear feedback gains,
π := {K0, ...,KN−1} from KCE(D), we can express the
finite-horizon LQR cost (7) for the system in (6) parameter-
ized by θ as

J(π; θ) = xT
0 P0x0 +

N−1∑
t=0

tr(Pt+1Σw), (12a)

where

Pt = Q+KT
t RKt − (A+BKt)

TPt+1(A+BKt),
(12b)

with boundary condition PN = QN .
Proof: See, for example, [15].

IV. EXPERIMENT DESIGN VIA GRADIENT DESCENT

In order to solve the experiment design optimization (4),
we take a gradient-descent approach:

Ui+1 = ProjU (Ui − ηi∇̂U ), (13)

where ProjU (·) projects U onto the set of admissible inputs
U , ηi is step size, and ∇̂U is an approximation of the true
gradient ∇U given by differentiating the experiment criteria
(4):

∇U E
[
J
(
K
(
D
)
; θ
)]

=

∇U

∫
J
(
K
(
D
)
; θ
)
p(X |U, x0, θ)p(θ)dθdX,

(14)

where x0 is the initial state for the experiment. The gradient
of the integral is analytically intractable, motivating the use
of a Monte Carlo gradient estimate. A gradient estimate
generally requires an exchange of the gradient and integral

∇U

∫
F (X,U)p(X|U)dX =

∫
∇U

(
F (X,U)p(X|U)

)
dX,

(15)

for an arbitrary F (·) and density p(·), where the exchange is
valid when (i) the magnitude of the gradient of the integrand
is bounded by a function (ii) that is integrable with respect
to the random variable. See [16] for further treatment of the
exchange.

By introducing a change of variable g(·) and using the
Law of the Unconscious Statistician [17], we remove the
need to differentiate the density such that

∇U

∫
F (X,U)p(X |U)dX =∫

p(ϵ)∇UF (X,U)|X=g(ϵ;U,x0,θ)dϵ, ϵ ∼ p(ϵ),

(16)



and only F (·) needs to differentiated. This leads to the Monte
Carlo pathwise gradient estimator [12]:

1

L

L∑
l=1

∇UF (X,U)|X=g(ϵ(l);U), ϵ(l) ∼ p(ϵ). (17)

For our problem in (14), we can find a suitable change of
variable using the dynamics.

Theorem 1: The change of variable g : Rnx×M×Rnu×M×
Rnx×Rnθ → Rnx×M for (14) given by the recursion of the
dynamics (1):

x1 = f(x0, u0, w0; θ), (18a)
x2 = f(f(u0, x0, w0; θ), u1, w1; θ), (18b)

...
xM = f(f(xM−2, uM−2, wM−2; θ), uM−1, wM−1; θ),

(18c)

where xM is the final state, recursively dependent on all
preceding states, satisfies (16) such that X = g(W ;U, x0, θ)
with W distributed according to p(W ), the process noise.
Proof: Under the process (1), use the Markov property to
write the density of X as

p(X |U, x0, θ) = ΠT−1
t=0 p(xt+1 |xt, ut, θ). (19a)

For any time t,

p(xt+1 |xt, ut, θ) = p(xt+1 |xt, ut, wt, θ)p(wt), (19b)

where p(xt+1 |xt, ut, wt, θ) is deterministic given
the dynamics, f(·), in (1) such that sampling from
p(xt+1 |xt, ut, θ) is equivalent to sampling from
f(xt, ut, wt; θ), wt ∼ p(w). Extend this recursively
by expressing

p(xt+1 |xt, ut, wt, θ) = Πt
i=0p(xi+1 |xi, ui, θ)p(wi) (19c)

such that xt+1 can be expressed as
f
(
...f(x0, u0, w0; θ), ut, wt; θ

)
where the first argument is

taken to mean that the state is recursively defined given
an initial state x0, input sequence, and w0, ..., wt ∼ p(w).
Define this recursion as in (18) by X = g(W ;U, x0, θ)
where W ∼ p(W ) to get the desired result.

Lemma 1: The linear system (6) has a change of variable
G(W ;U, x0, θ), such that the tth column of X in (18) is
given by

xt = Atx0 +

t−1∑
l=0

At−1−l(Bul + wl), (20a)

wl ∼ p(w), the process noise distribution.
Proof: See Appendix VII-A.

Lemma 2: The change of variable (20a) and LQR exper-
iment criteria (7), with KCE(D), yields an estimator of the
form (17):

∇̂U =
1

L

L∑
l=1

∇UJ
(
K
(
D|X=G(W (l);U,x0,θ(l))

)
; θ(l)

)
,

(20b)

with W (l) ∼ p(W ).
Proof: See Appendix VII-B.

A. Algorithm for Experiment Design Problem

In the LQR setting we derived a pathwise estimator (20).
For more general problems as in (4), if we assume the
exchange of integral and gradient is valid, we can express
the pathwise gradient estimate as

∇̂U =
1

L

L∑
l=1

∇UJ
(
K
(
D|X=G(W (l);U,x0,θ(l))

)
; θ(l)

)
. (21)

For each sample, l, we obtain a single experiment realization
under sampled noise W for a sampled system, θ. For this
realization, we compute an a-posteriori system estimate,
θ̂, and compute the control, π, as in (3). Computing the
gradient ∇UJ can be done analytically in some cases.
Given the structure of J , it may be easier to use automatic
differentiation as we go on to do in Section V.

Algorithm 1 Control-Oriented Experiment Design

Input pθ (prior on θ), U0 (initialization), L (batch size),
U (feasible set), x0 (initial condition), pW (noise dist.)
Output U∗

function CONSTRUCTCONTROL(D, pθ)
θ̂ ← estimate system given D, pθ
K ← Solve control problem given θ̂

end function
function SAMPLEGRAD(U, θ,W, pθ, x0)

X ← G(W ;U, x0, θ)
D ← X,U
K ← CONSTRUCTCONTROL(D, pθ)
∇UJ ← Compute gradient of J(K; θ)

end function
while not converged do

for i=1 to L do
θ ∼ pθ,W ∼ pW
∇UJi ← SAMPLEGRAD(Uj , θ,W, pθ, x0)

end for
Uj+1 ← ProjU

(
Uj − ηj

1
L

∑L
l=1∇UJl

)
end while

V. NUMERICAL EXPERIMENTS

A. Car String

Fig. 1. We focus on a scenario in which cars need to regulate to a specified
gap L̄ at a desired reference velocity v. Deviations from the desired position
are ∆w(n) and deviations from the reference velocity are ∆v(n).

We consider the problem of maintaining a fixed distance,
L̄, between n cars at a desired velocity v as depicted in
Figure 1. We adapt the continuous-time dynamics for relative



position as given in [19] to discrete-time dynamics with
sampling time Ts:

∆v
(n)
t+1 =

(
− α(n)Ts

m(n)
+ 1

)
∆v

(n)
t +

Ts

m(n)
∆u

(n)
t , (22)

∆w
(n)
t+1 = Ts(∆v

(n)
t −∆v

(n+1)
t ) + ∆w

(n)
t , (23)

where ∆v(n) is the deviation from the reference velocity at
car n and ∆w(n) is the deviation of the gap between cars
n+1 and n from the desired gap L. ∆u is a change in force
input for each car. This leads to an n car state-vector xt+1 :=

[∆v
(1)
t+1,∆w

(1)
t+1,∆v

(2)
t+1, ...,∆v

(n)
t+1]

T . As such A and B are
given by:

A =


−α(1)Ts

m(1) + 1 0 0 0 . . .
Ts 1 −Ts 0 . . .

0 0 −α(2)Ts

m(2) + 1 0 . . .
0 0 Ts 1 . . .
...

...
...

...
. . .

 (24)

B =


Ts

m(1) 0 . . .
0 0 . . .
0 Ts

m(2) . . .
0 0 . . .
...

...
. . .

 . (25)

While there is a specific structure to (A,B) here, we assume
we do not know the structure and estimate all (2n−1)(3n−1)
entries. We specify the noise covariance in the dynamics (6)
as Σw = 1e−2 × I5. The prior on the parameters (9) is
Θ0 = [A,B] with m(1) = m(2) = m(3) = 1, α(1) = α(2) =
α(3) = 1, Ts = 0.1; Λ−1

0 = 1e−2× I8. Horizon N = 30.

B. Experiment Design Setup

In the results that follow, we use an experiment horizon of
M = 20 time steps, and batch size L = 1000 in Algorithm
1. As in [19], for the criteria in (7) Q includes penalties
of magnitude 10 on the positions ∆w and zero on the
velocity ∆v. R is the identity matrix. The weight matrix
S has parameters α1 = 103, α2 = 106. U is initialized with
ut ∼ U [10−3, 10−2] and is fixed across experiments.

To solve the A-optimal experiment design in (5), we use
a pathwise gradient estimator of the same form as (17) to
perform stochastic gradient descent, where the objective is
to minimize the trace of the posterior error covariance (9).

C. Results and Discussion

We start by comparing the performance of our method
against A-optimal design (5) in terms of post-experiment
LQR control performance (7). For the experiment design
(4), we consider a feasible input set U where the Frobenius
norm of the input sequence, U , is bounded by a design
parameter β such that U = {U | ∥U∥F ≤ β}. We vary
the allowed magnitude, β, in Figure 2 and observe our
method outperforms the A-optimal design uniformly. For any
experiment design, we have a lower and upper bound on the
performance. If we knew the values of (A,B), we would
achieve the lowest possible control cost such that this is a

lower bound on achievable performance. The upper bound
comes from the expected control performance associated
with using a controller that uses the a-priori system estimate
instead of the a-posteriori as in (3). Intuitively, as the budget
β for an experiment increases, so should the experiment
performance as the experiment can “explore more”. For
small β the methods are nearly comparable as the additional
information in minimal, but as β increases the performance
of our method approaches that of the perfect knowledge case.
The A-optimal design only slowly decreases even though in
the limit it should reach the lower bound.

Fig. 2. We compare the performance of our control-oriented system iden-
tification against A-optimal experiment design for a system with five states
and three inputs, and known initial condition x0 = [0.,−4.3, 0., 2.1, 2.5]T

as in [19]. Any experiment design performance is lower-bounded by the
optimal control given knowledge of (A,B) and upper bounded by the
performance of the controller given the a-priori system estimate. We include
95% confidence intervals using 105 samples.

In Figure 3, we observe the optimal experiment inputs
(∆u) for a three-car system. The experiment inputs for
our control-oriented approach exhibit more excitation over
the time horizon than the A-optimal design, which has a
relatively smooth experiment input sequence, suggesting our
method would perform better, which is verified by Figure 2.
We also consider what the input sequence would look like
if the controller given the a-priori system estimate is used
during an experiment trial. Since the controller is closed-
loop (11), we show the average input sequence. Using the
optimal control may seem like a natural way to conduct an
experiment, but the norm bound β on the input is not active
in this case, indicating that simply performing the optimal
control leaves experiment budget unused.

Figure 4 shows how the problem scales with the system
dimension. In the first subplot we see the convergence of
the experiment criteria in (4) as a function of iterations.
The criteria is normalized by the lower bound (given by
the performance if we knew A,B) for illustrative purposes.
The number of iterations until the criteria stabilizes is
roughly constant across problem dimension suggesting that
the number of iterations required is independent of the



system size in this case. In the second subplot, the time
to compute each gradient sample is shown as a function
of the state dimension. The compute time is dominated
by “control solution”–the time to solve the LQR problem–
thus suggesting that the time-complexity is dominated by
the control problem. “Overhead” refers to the remainder
of the compute tasks such as automatic differentiation and
initialization of objects in the python library JAX [20].

Fig. 3. The experiment input sequences for each car in a 3 car system are
compared under the proposed method, A-optimal experiment design, and
by conducting the experiment with a feedback controller given the prior.

Fig. 4. In the upper subplot, the number of iterations to converge for
the car string problem is essentially the same regardless of system size
suggesting good scaling properties of our method. In the lower subplot, we
observe the average time to compute a single gradient sample. The time is
dominated by solving the control problem and “overhead” refers to tasks
such as automatic differentiation, initial compile time, etc.

VI. CONCLUSION

We proposed a control-oriented identification approach
that in expectation improves any data-driven controller by
construction. Our solution method via stochastic gradient
descent is shown in the LQR setting to provide solutions
that outperform a typical experiment design objective in the

sense that the post-experiment control performance is better
with our method.

Our experiment design approach extends beyond the LQR
setting, and it would be interesting to apply this to more gen-
eral parametric problems. Establishing analytical results on
the convergence rate and sample complexity of the stochastic
gradient descent is an important direction for future research.
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VII. APPENDIX

A. Change of variable for linear system

We want to find a change of variable for the linear system
(6). We start by showing the case for t = 2 such that

x1 = Ax0 +Bu0 + w0 (26a)
x2 = Ax1 +Bu1 + w1 (26b)

and expressing x1 in terms of x0

= A2x0 +ABu0 +Aw0 +Bu1 + w1 (26c)

Then assuming this holds for time t:

xt = Atx0 +

t−1∑
l=0

At−1−l(Bul + wl), (26d)

at time t+ 1

xt+1 = Axt +But + wt (26e)

substituting the recursion (26d)

xt+1 = A(Atx0 +

t−1∑
l=0

At−1−l(Bul + wl)) +Bt + wt,

(26f)

xt+1 = At+1x0 +

t∑
l=0

At−l(Bul + wl), (26g)

the desired result, where wt is distributed according to the
process noise and is independent of ut.

B. Differentiability of the value function

Here we show the value function is differentiable with
respect to the decision variable U . In particular, with π :=
{K0, ...,KN−1} we write the gradient as

∂J

∂uij
=
∑ ∂J

∂Kt,k,l

∂Kt,k,l

∂Θ̂m,n

∂Θ̂m,n

∂uij
(27)

1) Gradient of J with respect to Kt: First, we observe
that the gradient of (12a) at t = 0 is given by

∂J

∂K0
= 2
(
(R+BTP1B)K0 +BTP1A

)
x0x

T
0 (28a)

and for t > 0 as
∂J

∂Kt
= 2
[
(R+BTPt+1B)Kt +BTPt+1A

]
×
(
Πt−1

i=0(A+BKi)x0x
T
0 Π

0
i=t−1(A+BKi)

T +Σw

+

t−1∑
j=1,t>1

Πt−1
i=j (A+BKi)ΣwΠ

j
i=t−1(A+BKi)

T

)
(28b)

For a finite horizon, the entries of Pt are finite even if the
cost grows exponentially in time such that the gradient itself
will be finite. Furthermore, the the gradient is polynomial
in the Gaussian random variables (A,B) such that there
exists a polynomial function of the random variables, which
is integrable.

2) Derivation: Gradient of J with respect to Kt: We want
to take the gradient of the value function

J(Θ, π) := xT
0 P0x0 +

N−1∑
t=0

tr(Pt+1ΣW ) (29a)

with respect to Kt. For K0 we expand P0 to see the
dependence

∂J(Θ, π)

∂K0
=

∂

∂K0

(
xT
0 (Q+KT

0 RK0+

(A+BK0)
TP1(A+BK0)x0 +

N−1∑
t=0

tr(Pt+1ΣW )

)
.

(29b)

Evaluting this, we get

∂J(Θ, π)

∂K0
= (2RK0 + 2BTP1BK0)x0x

T
0 + 2BTP1Ax0x

T
0 ,

(29c)

which can be rearranged to give the desired result. For t >
0, there is dependence in both the initial condition and the
process noise term. For the initial condition term, recursively
expand Pi until i = t, and then take the gradient as for K0.
If we define the current state as xt := Πt−1

i=0(A + BKi)x0,
then we can express this relationship as

∂(xT
0 P0x0)

∂Kt
= 2
[
(R+BTPt+1B)Kt +BTPt+1A

]
xtx

T
t .

(29d)

This gives us the first part of the gradient. The second part is
due to the process noise and follows a similar pattern. Start
by expanding Pt+1 to get terms of Kt+1:

tr(PtΣw) =

tr
(
(Q+KT

t RKt + (A+BKt)
TPt+1(A+BKt))Σw

)
(29e)

Expanding Pt+1, we need to take gradients of the following
terms (here given at t):

∂

∂Kt
tr(KtΣK

T
t R) = 2RKtΣw. (29f)

∂

∂Kt
tr(KtΣwK

T
t B

TPt+1B) = 2BTPt+1BKtΣw. (29g)

∂

∂Kt
2 tr(ΣwA

TPt+1BKt) = 2BTPt+1AΣw. (29h)

Using these gradients and algebraic manipulations, we get
the desired result for one step for the process noise term.
This can be repeated for all time steps to get the overall
result. Combining the initial condition terms with the noise
terms gives us the gradient for t > 0.

3) Gradient of Kt with respect to estimate Θ: Next, we
examine the gradient of the data-driven control with respect
to the estimated system, denoted above as (Â, B̂) as we
use certainty equivalence in the dynamics parameters. The
gradient of

Kt = −(R+ B̂TPt+1B̂)−1B̂TPt+1Â (30a)



with respect to Θ̂ is most easily written in terms of the
elements of Â, B̂.

The gradient is recursively computed as

∂Kt

∂Aij
= (R+BTPt+1B)−1BT ∂Pt+1

∂Aij
B(R+BTPt+1B)−1

− (R+BTPt+1B)−1

(
BT ∂Pt+1

∂Aij
A+BTPt+1eij

)
(30b)

∂Kt

∂Bij
= (R+BTPt+1B)−1

(
2eTijPt+1B +BT ∂Pt+1

∂Bij
B

)
× (R+BTPt+1B)−1

− (R+BTPt+1B)−1

(
BT ∂Pt+1

∂Bij
B + 2eTijPt+1B

)
(30c)

with

∂Pt

∂Aij
= 2

∂Kt

∂Aij

T

RKt +AT ∂Pt+1

∂Aij
A

+ 2eTijPt+1A+ 2eTijPt+1BKt

+ 2AT ∂Pt+1

∂Aij
BKt + 2ATPt+1B

∂Kt

∂Aij

+ 2
∂Kt

∂Aij

T

BTPt+1BKt +KT
t B

T ∂Pt+1

∂Aij
BKt

(30d)

∂Pt

∂Bij
= 2

∂Kt

∂Bij

T

RKt +AT ∂Pt+1

∂Bij
A+ 2ATPt+1eijKt

+ 2AT ∂Pt+1

∂Bij
BKt + 2ATPt+1B

∂Kt

∂Bij

+ 2
∂Kt

∂Bij

T

BTPt+1BKt +KT
t B

T ∂Pt+1

∂Bij
BKt

+ 2KT
t e

T
ijPt+1BKt.

(30e)

with PN = QN . Again, we appeal to the fact that the
elements of Pt as governed by (11) will be finite for a finite
horizon, leading to finite values for the gradients. Further-
more, the gradient is again polynomial in the parameters such
that there exists a polynomial function that upper bounds the
gradient and is integrable.

4) Derivation: Gradient of Kt with respect to estimate Θ:
For a posterior distribution with mean Θ̂ = [Â, B̂], and the
controller defined by the Riccati difference equations:

Kt = −(R+ B̂TPt+1B̂)−1B̂TPt+1Â, (31a)

Pt = Q+KT
t RKt − (Â+ B̂Kt)

TPt+1(Â+ B̂Kt),
(31b)

we want to find the gradient with respect to elements of Â
and B̂. Starting with Kt:

∂Kt

∂Âij

=
∂

∂Âij

(
− (R+ B̂TPt+1B̂)−1B̂TPt+1Â

)
(32a)

=
∂

∂Âij

(
− (R+ B̂TPt+1B̂)−1

)
B̂TPt+1Â

+
(
− (R+ B̂TPt+1B̂)−1

) ∂

∂Âij

(
B̂TPt+1Â

) (32b)

For the gradient of the first component:

∂

∂Âij

(
− (R+ B̂TPt+1B̂)−1

)
= (32c)

(R+ B̂TPt+1B̂)−1 ∂(R+ B̂TPt+1B̂)

∂Âij

(
(R+ B̂TPt+1B̂)−1

)
(32d)

= (R+ B̂TPt+1B̂)−1B̂T ∂Pt+1

∂Âij

B̂
(
(R+ B̂TPt+1B̂)−1

)
(32e)

and the second

∂

∂Âij

(
B̂TPt+1Â

)
= B̂T

(
∂Pt+1

∂Âij

Â+ Pt+1eij

)
. (32f)

The results for the partial with respect to Bij follows
similarly. In each case, we need to compute the partial of
Pt:

∂Pt

∂Âij

=

∂

∂Âij

(
Q+KT

t RKt − (Â+ B̂Kt)
TPt+1(Â+ B̂Kt)

)
.

(32g)

Q is independent of Â (and B̂). The rest of terms are:

∂

∂Âij

(
KT

t RKt

)
= 2

∂Kt

∂Âij

T

RKt, (32h)

∂

∂Âij

(
(Â+ B̂Kt)

TPt+1(Â+ B̂Kt)
)
= (32i)

2eTijPt+1Â+ ÂT ∂Pt+1

∂Âij

Â+
∂

∂Âij

(
ÂTPt+1B̂Kt

)
, (32j)

and

∂

∂Âij

(
ÂTPt+1B̂Kt

)
= 2eTijPT+1B̂Kt

+ 2ÂT ∂Pt+1

∂Âij

B̂Kt + 2ÂTPt+1B̂
∂Kt

∂Âij

,

(32k)

A similar derivation follows with respect to B̂ij .



5) Gradient of estimate Θ with respect to U with deriva-
tion: Finally, to address the gradient of the estimated value
with respect to the design variable U ∈ Rnu×T with entries
uij , we first rewrite the estimator in (9) using sums as

Θ̂ = (Θ0Λ0 +

T−1∑
t=0

ytstz
T
t )(Λ0 +

T−1∑
t=0

ztstz
T
t )

−1, (33a)

=: Ψ∆, (33b)

where

yt = xt+1 = Axt +Bγt, (33c)

xt = Atx0 +

t−1∑
l=0

At−1−l(Bul + wl), (33d)

zt = [xt;ut]. (33e)

yt, st, zt all depend on U . We use the vec () operator,
which stacks the columns on tops of each other, to simplify
the derivation. As such,

vec

(
∂Θ̂

∂uij

)
= (∆T ⊗ I)vec

(
∂Ψ

∂uij

)
+ (I ⊗Ψ)vec

(
∂∆

∂uij

)
,

(33f)

where

vec

(
∂Ψ

∂uij

)
=

vec

(
∂
∑T−1

t=0 ytstz
T
t

∂uij

)
=

T−1∑
t=0

vec

(
∂ytstz

T
t

∂uij

)
,

= (zts
T
t ⊗ I)vec

(
∂yt
∂uij

)
+ (zt ⊗ yt)vec

(
∂st
∂uij

)
+ (I ⊗ ytst)vec

(
∂zTt
∂uij

)
.

(33g)

Each gradient in the above expression is

vec

(
∂yt
∂uij

)
= vec

(
∂

∂uij
At+1x0 +

t∑
l=0

At−l(Bγl + wl)

)
,

=

t∑
l=0

(I ⊗At−lB)vec

(
∂γl
∂uij

)
,

= (I ⊗At−iB)vec (eij) , (t ≥ i)
(33h)

vec

(
∂st
∂uij

)
= vec

(
∂

∂uij
atan((∥xt∥ − α1)α2)/π + 0.5

)
= vec

(
1

πα2
2

1

1/α2
2 + (∥xt∥ − α1)2

∂

∂uij

(
(∥xt∥ − α1)

2
))

∂

∂uij

(
(∥xt∥ − α1)

2
)
= 2(∥xt∥ − α1)

xt

∥xt∥
∂xt

∂uij

(33i)

vec

(
∂zTt
∂uij

)
=

vec

(
∂

∂uij

[
Atx0 +

∑t−1
l=0 A

t−1−l(Bul + wl)
ut

]T)

=

[
(I ⊗At−1−iB)vec

(
∂ui

∂uij

)
, (t ≥ i) else 0

vec (eij) , (i = t), else 0

]T (33j)

Going to the second term, ∆, in the estimator, we obtain

vec

(
∂∆

∂uij

)
= −(∆⊗∆)vec

(
∂

∂uij

T−1∑
t=0

ztstz
T
t

)
(33k)

= −(∆⊗∆)

T−1∑
t=0

(
(zts

T
t ⊗ I) (33l)

×
[
(I ⊗At−1−iB)vec (eij) , (t ≥ j), else 0

vec (eij) , (j = t), else 0

]
(33m)

+ (zt ⊗ zt)vec

(
∂st
∂γi

)
+ (I ⊗ ZT st) (33n)

×
[
(I ⊗At−1−iB)vec (eij) , (t ≥ j), else 0

vec (eij) , (i = t), else 0

]T )
(33o)

The gradient is then well-defined except if ∆ were to be
ill-defined due to lack of invertibility; however, the prior Λ0

is chosen to be non-singular and obviates this possibility.
The resulting expression contains a rational and polynomial
term, such that there exists a polynomial bounding function.
Overall then, for each term in the gradient, there exists
an integrable bounding function such that the dominated
convergence can be applied and the exchange of gradient
(limit) and integral is valid.
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