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Abstract— We consider the problem of estimating vector-
valued variables from noisy “relative” measurements. The
measurement model can be expressed in terms of a graph,
whose nodes correspond to the variables being estimated and
the edges to noisy measurements of the difference between
the two variables associated with the corresponding nodes (i.e.,
their relative values). This type of measurement model appears
in several sensor networks problem.

We take the value of one particular variable as a reference
and consider the Unbiased Minimum Variance (UMV) estima-
tors for the differences between the remaining variables and
the reference. We establish upper and lower bounds on the
estimation error variance of a node’s variable as a function
of the Euclidean distance in a drawing of the graph between
the node and the reference one. These bounds result in a
classification of graphs : civilized and dense, based on how
the variance grows with distance: at a rate greater than or
less than linearly, logarithmically, or bounded.

In deriving these results, we establish and exploit an
analogy between the UMV estimator variance and the effective
resistance in a generalized electrical network that is significant
on its own.

I. INTRODUCTION

We consider the estimation of n vector-valued variables
x1, x2, . . . , xn ∈ R

k based on several noisy “relative mea-
surements” ζij . The measurement indexes (i, j) take values
in some set E of pairs of values from V := {1, 2, . . . , n}.
The term “relative” comes from the measurement model
considered:

ζij = xj − xi + εij , ∀(i, j) ∈ E, (1)

where the εij are uncorrelated zero-mean noise vectors
with covariance matrices R̃ij = E[εijε

′
ij ]. Just with relative

measurements, determining the xi’s is only possible up to
an additive constant. To avoid this ambiguity, we assume
that a particular variable (say xo, o ∈ V) is used as the
reference and therefore xo = 0.

The measurement equations (1) can be expressed in terms
a directed graph G = (V,E) with |V| = n vertices (nodes)
and |E| = m edges, with an edge between two nodes i and
j if the measurement ζij is available. The vector xi is called
the ith node variable. In this paper we investigate how the
structure of the graph G affects the “quality” of the optimal
estimate x̂i of xi, measured in terms of the covariance
of the estimation error Σi. Optimal estimate refers to the

Best paper award at the 2nd Int. Conf. on Intelligent Sensing and
Information Processing.

classical Unbiased Minimum Variance Estimator (UMV),
which achieves the minimum variance among all linear
unbiased estimators.

We investigate asymptotic bounds on the error variance of
the estimate of a node’s variable as a function of the node’s
distance from the reference node. When G is a tree, there is
a single path between the ith and the reference node and one
can show that the covariance matrix of the estimation error
is the sum of the covariance matrices associated with this
path. Thus, for trees, the variance of the UMV estimation
error of xi, i.e., xi − x̂i grows linearly with the graphical
distance from the ith to the reference node. By the graphical
distance between two nodes we mean the minimum number
of edges one has to traverse in going from one node to the
other. It turns out that for graphs “denser” than trees, the
variance of the UMV estimation error can grow less than
linearly with distance.

The graph theoretical concept of drawing allows one to
develop a suitable notion of graph “density/sparsity.” The
drawing of a graph is simply a function that maps its nodes
to points in R

d, d ≥ 1. A graph is said to be civilized1

if its nodes can be drawn in R
d such that (i) there is a

minimum distance between every two nodes and (ii) there
is a maximum distance r between nodes connected by an
edge. Intuitively, the nodes and edges of civilized graph
are “sufficiently sparse to be drawn in R

d without too
much clutter.” A graph is said to be dense in R

d if its
nodes can be drawn in R

d such that (i) every ball in R
d

with diameter γ contains at least one node and (ii) any
two nodes with distance smaller than ρ are connected by
an edge. Intuitively, dense graphs with sufficiently large ρ
compared to γ have “sufficiently many nodes and edges
to cover R

d without holes.” The two concepts above allow
one to characterize precisely how the variance of the UMV
estimation error grows with distance. Table I summarizes
the main results of this paper.

A crucial step in proving the results in Table I, is to
establish that the covariance matrices of the UMV estima-
tion errors are numerically equal to effective resistance in a
suitably defined electrical circuit. Such equivalence was first
noted by Karp et al. [7] for scalar measurements (k = 1).

1Civilized graphs appeared in Doyle and Snell [3] in connection with
random walks, but with the terminology “G can be drawn in a civilized
manner in R

d” that we shorten to “G is civilized in R
d”.



TABLE I
VARIANCE Σu,o OF THE UMV ESTIMATION ERROR OF xu WITH RESPECT TO THE REFERENCE xo = 0 VERSUS THE EUCLIDEAN DISTANCE df (u, o)

BETWEEN THE DRAWING OF u AND o. FOR FUNCTIONS g AND p, WHERE g, p : R → R
k×k , AND p : R → R, THE NOTATION g(y) ≥ Ω(p(y))Ik

MEANS THAT THERE EXISTS POSITIVE SCALARS yo, α SUCH THAT g(y) ≥ αp(y)Ik ∀y > yo , AND g(y) ≤ O(p(y))Ik MEANS THAT ∃ yo, α > 0

SUCH THAT g(y) ≤ αp(y)Ik ∀y > yo .

Graph civilized in R
d Graph dense in R

d with ρ > 2γ

d = 1 Ω(df (u, o)/r)Ik ≤ Σu,o Σu,o ≤ O(df (u, o)/γ)Ik

d = 2 Ω
`

log(df (u, o)/r)
´

Ik ≤ Σu,o Σu,o ≤ O
`

log(df (u, o)/γ)
´

Ik

d = 3 Ω(1)Ik ≤ Σu,o Σu,o ≤ O(1)Ik

Here, we prove that this also holds for vector measurements,
provided that one considers a generalized electric circuits
in which currents and voltages are vectors and resistances
are matrices.

A. Relevance to Sensor Networks

This estimation problem addressed in this paper has
multiple applications in the area of sensor networks. Some
of these are summarized below:

Position estimation: suppose that in a region where
a sensor network is deployed, there are n “nodes” whose
positions we want to estimate. These nodes can be
events/objects/sensors whose unknown positions are of in-
terest. We assume that every sensor is capable of measuring
relative positions (with some error) between itself and its
neighboring nodes. Relative position measurements can be
obtained from measurements of range and bearing, provided
sensors have on-board compasses so that their local coor-
dinate systems have the same orientation, differing only in
the shifts of the origins. Measurements of range and bearing
can be done using RF techniques such as RSS, TDOA, TOA
and AOA [2, 6]. We are of course assuming that each node
does not have, or does not want to rely upon, GPS. In this
problem, k = 2 if the nodes are located in a plane and
k = 3 if they are located in three-dimensional space.

Time synchronization: Suppose that the internal clocks
of n sensor nodes exhibit time shifts x1, x2, . . ., xn with
respect to a reference clock. A pair of neighboring sensors
can measure their clock offsets with some error, by trans-
mitting their local clock times to each other, resulting in a
measurement model of the form eq. (1) [7]. The goal would
then be to estimate the time-shifts between all nodes and a
reference clock to synchronize the clocks of all n nodes.

Motion consensus: Suppose that n mobile nodes are
moving in the plane with unit velocity and directions
specified by angles xi. Each node is only able to measure,
with some error, the difference in angle of its own heading
with respect to the headings of their neighboring agents. The
goal is to estimate the headings of the agents in a consistent
coordinate system and use that to reach a consensus in the
direction of motion [4].

For most problems that arise in the context of sensor
networks there are “natural drawings” that are physically
meaningful and for which one would expect the graphs to
be civilized and/or dense in appropriate Euclidean spaces.

Indeed, in all the examples discussed above, the variables xi

refer to properties of objects, so the measurement graph G
could be “drawn” by associating to each node the Cartesian
position of the corresponding object (either in R, R

2, or
R

3 depending on the problem). Such a drawing would
be civilized as long as (i) there is a minimum distance
between each two objects and (ii) the sensors used to obtain
the relative measurements ζij have limited range. In this
case, the formulas in the second column of Table I provide
explicit lower-bounds on the variance of the estimation
error for xu as a function of the distance between the
corresponding object and the reference one. Note that even
if the objects are in 3d-space, it may be possible to obtain
a civilized drawing in R

2 (or even R) provided that they
essentially lie in a 2-D surface (or in a line).

The natural drawing considered above would be dense if
(i) every ball in with a given diameter γ contains at least
one object and (ii) a relative measurement is available for
every two objects with distance smaller than ρ. In this case,
the formulas in the third column of Table I provide upper-
bounds on the variances of the estimation errors. Formally,
dense graphs must be infinite. However, in practice all that
matters is that both the reference object and the object
whose variable one wants to estimate fall spatially within
the remaining objects.

B. Related Work

Among the applications cited above, the problem of node
position estimation has received considerable attention in
recent times. The problem formulation usually assumes
the availability of relative range measurements and the
existence of a small number of “beacons” that precisely
know their own positions (by use of GPS etc.)[10], or
the availability of range and angle measurements with
beacons that know their locations imprecisely [9]. When
the relative measurements considered are distances and the
measurement model becomes nonlinear. For this case, both
Maximum Likelihood [10] and Maximum A-Posteriori [9]
estimators have been considered, resulting in a nonlinear
optimization problem. In time synchronization, quite a lot of
work has been done on the algorithmic side, but only Karp
et, al. considered the UMV estimator with a measurement
model of the type given by eq. (1). In motion consensus,
the emphasis so far has been in deriving control laws
to achieve a certain flocking behavior assuming relative



angular position measurements [5], but not on estimation
of headings from relative angular position measurements.

To the best of our knowledge, the effect of the graph
structure on the estimation accuracy has not been studies
before for any of the applications mentioned.

The remainder of the paper is organized as follows: In
section II, we provide the complete problem formulation
and review the UMV estimator. In section III we describe
the analogy between the UMV estimator covariance matrix
and effective resistance in a suitably defined generalized
electrical network. We also establish bounds on the effective
resistance bounds for special graphs and other useful tools
needed in subsequent sections. In Section IV we discuss
graph drawings and formally introduce the concepts of
dense and civilized graphs. The main results of the paper
are stated and proved in Section V. Section VI contains
some final conclusions and directions for future work.

II. UMV ESTIMATION FROM RELATIVE
MEASUREMENTS

Let X be a vector in R
(n−1)k obtained by stacking

together all the unknown node variables xi, i ∈ V \ o, i.e.,
X := [xT

1 , xT
2 , . . . , xT

o−1, x
T
o+1, . . . , x

T
n ]T . Let the edges

of the graph are E = {e1, e2, ...em}, then define Z :=
[ζT

e1
, ζT

e2
, ...., ζT

em
]T ∈ R

km and Υ := [εT
e1

, εT
e2

, ..., εT
em

]T ∈
R

km. Eq. (1) can now be rewritten as follows:

Z = HX + Υ (2)

where H is an appropriately defined measurement matrix.
The covariance matrix of the measurement error vector Υ is
a symmetric positive definite block diagonal matrix which
has the edge error covariances along the diagonal: R̃ :=
E[ΥΥT ] = diag(R̃e1

, R̃e2
, . . . , R̃em

) ∈ R
km×km.

We seek an estimate for X as a linear combination
of the available measurements Z that yields an unbiased
estimate and achieves minimum estimator error variance.
The solution to this problem is the Unbiased Minimum
Variance (UMV) Estimator. For the measurement model (2),
the UMV estimate of X is given by [8]

X̂ = (HT R̃−1H)−1HT R̃−1Z (3)

and the covariance Σ of the estimation error is given by

Σ := E[(X − X̂)(X − X̂)T ] = (HT R̃−1H)−1 (4)

For a connected graph, the estimation error covariance
matrix in (4) always exists and is of finite norm [1].

III. ANALOGY WITH ELECTRICAL NETWORK

To establish our main result we will use the fact that the
error variance of the UMV estimator is equivalent to the
effective resistance in an appropriately defined generalized
resistive electrical network where edge currents and poten-
tial drops are vectors in R

k (called generalized currents and
generalized potential drops) and resistances are matrices in
R

k×k (called generalized resistances).

A generalized electrical network consists of a connected
graph G = (V,E) together with a matrix-resistance func-
tion R : E → R

k×k such that R(e) = R(e)T > 0, ∀e ∈ E.
For such a network, a flow from node p ∈ V to node q ∈ V

with vector-intensity J ∈ R
k is a function j : E → R

k with
the property that

∑

(u,v)∈E

u=ū

ju,v −
∑

(v,u)∈E

u=ū

jv,u =





J ū = p

−J ū = q

0 otherwise
(5)

∀ū ∈ V ; and a current from p ∈ V to q ∈ V with vector-
intensity I ∈ R

k is a flow i : E → R
k for which there

exists a function V : V → R
k such that

Ru,viu,v = Vu − Vv , ∀(u, v) ∈ E . (6)

The function V is called a potential associated with i.
Theorem 1 (Linearity): [1] Assume that G is connected

when regarded as an undirected graph and that R(e) > 0,
∀e ∈ E. For a given vector-intensity I ∈ R

k, there is
a unique current i from p ∈ V to q ∈ V and the
corresponding potential V is also unique when one enforces
the normalization constraint Vq = 0. Moreover, i and V are
linear functions of I .

Since V is a linear function of the vector intensity I from
p ∈ V to q ∈ V, for each v ∈ V, there must exist a matrix
Rcross

p,v;q such that

Vv − Vq = Rcross
p,v;qI, ∀I ∈ R

k.

We call such matrix the cross matrix-resistance from p to
v with respect to q. When p = v, we call it the effective
matrix-resistance from p to q, i.e.,

Vp − Vq = Reff
p,qI, ∀I ∈ R

k,

For k = 1, generalized electrical networks are the usual
electrical networks with scalar currents, potentials, and
resistors.

From the measurement graph G = (V, E), we form the
generalized electrical network N(G) = (V̄, Ē, R) in the
following way. N(G) has the same nodes and edges as in
G, and the generalized electrical resistance R(ē) of every
edge ē ∈ Ē is set equal to the covariance matrix R̃(e) of the
measurement error vector associated with the corresponding
edge e ∈ E.

The following is the main result of this section:
Theorem 2: Consider an generalized electrical network

N(G) = (V̄, Ē, R) constructed from the measurement
graph G = (V,E) with matrix-resistances R(ē) assigned
as described above. Then,

1) The covariance matrix of the estimation error of xu

is numerically equal to Reff
u,o, where o is the reference

node.
2) The covariance matrix between the estimation errors

of xu and xv is numerically equal to Rcross
u,v;o, where o

is the reference node.



The proof is omitted for lack of space; the interested
reader may consult [1]. A proof of the first statement of the
theorem above, for the special case k = 1 was provided by
Karp et. al. [7], who considered the problem of estimating
time differences among clocks in a network of sensors.
Theorem 2 above provides an electrical analogy also for the
covariances and more importantly, generalizes this result to
estimation of vector valued parameters.

A. Effective Resistance Bounds for Lattices

With the equivalence between effective resistance and
UMV estimator variance established, we present bounds on
effective resistances for lattices and their h-fuzzes (to be
defined soon) and a few key results relevant for the analysis
of generalized electrical networks. These results will be
useful in establishing variance bounds in the subsequent
sections. Proofs are omitted for lack of space, the interested
reader may consult [1]. For the purpose of brevity, from now
on we refer to generalized resistances as simply resistances.

We recall that a graph G = (V,E) can be embedded in
another graph Ḡ = (V̄, Ē), if there is an injective map η :
V → V̄ such that (η(u), η(v)) ∈ Ē for every (u, v) ∈ E.
The map η is called the embedding.

Theorem 3 (Generalized Rayleigh’s Monotonicity Law):
[1] Consider two generalized electrical networks with

graphs G = (V,E) and Ḡ = (V̄, Ē) and matrix-resistances
R and R̄, respectively. If G can be embedded in Ḡ with
an embedding η and R(e) ≥ R̄(η(e)), ∀e ∈ E, then

Reff
p,q ≥ R̄eff

η(p),η(q), ∀p, q ∈ V.

Now we formally define lattices. A d-D lattice in R
d is

a graph that has a vertex at every point in R
d with integer

coordinates and an edge between every two vertices with
an Euclidean distance of 1 between them. We denote the
d-D lattice in Rd by Zd.

For any integer h, the h- fuzz G(h) of a graph G is the
graph obtained from G by adding an edge (u, v) whenever
the graphical distance between the nodes u and v is less
than or equal to h [3].

Theorem 4: [1] Consider the electrical network
N(Z

(h)
d ), with equal generalized resistance R(e) =

R(e)T > 0 for every edge e of Z
(h)
d . We denote by

dZd
(u, v) the graphical distance between two nodes u and

v in the lattice Zd. The effective resistance Reff
u,v between

two nodes u and v in Z
(h)
d satisfies the following relations:

1) For d = 1, Reff
u,v(dZ1

(u, v)) = Θ(
dZ1

(u,v)

h
)R, 2

2) For d = 2, Reff
u,v(dZ2

(u, v)) = Θ(log(
dZ2

(u,v)

h
))R.

3) For d = 3, Reff
u,v(dZ3

(u, v)) = Θ(1)R.

IV. DRAWING GRAPHS

An Euclidean drawing function for a graph G = (V, E)
is a function f : V → R

d, d ≥ 1. Given two nodes u, v ∈
V we call df (u, v) := ‖f(v)−f(u)‖ the Euclidean distance

2g(y) = Θ(p(y))Ik means that g(y) ≥ Ω(p(y))Ik and g(y) ≤
O(p(y))Ik .

between them induced by f . Drawing functions can be used
to “measure” the density of nodes and edges in a graph as
follows.

For a pair (G, f), the minimum node distance is defined
by

s := inf
v,u∈V
v 6=u

df (u, v), (7)

and the maximum connected range by

r := sup
(u,v)∈E

df (u, v). (8)

A graph G can be drawn in a civilized manner in
Euclidean space R

d if there exists a drawing function
f : V → R

d with a positive minimum node distance and
finite maximum edge length.

Intuitively, the nodes and edges of civilized graph are
“sufficiently sparse to be drawn in R

d without too much
clutter.” The definition above is essentially a refinement
of the definition given by Doyle and Snell [3], with the
quantities r and s made to assume precise values for
a particular drawing. For short, we say the graph G is
civilized in R

d if it can be drawn in a civilized manner in
R

d. Any finite graph is civilized in R
d, ∀d ≥ 1 but the same

is not true for infinite graphs. For example, an infinite 2-D
lattice is only civilized in R

d, ∀d ≥ 2 whereas an infinite
3-D lattice is only civilized in R

d, ∀d ≥ 3. Note that there
is no requirement of edges not intersecting. It follows from
the definition that a civilized graph is always of bounded
degree.

For a pair (G, f), the minimum disconnected range is
defined by

ρ := inf
(u,v)6=E

v,u∈V, v 6=u

df (u, v).

and the maximum uncovered diameter by3

γ := sup
{
δ : f(V ) ∩ Bδ 6= ∅, ∀Bδ}, (9)

where the universal quantification spans over all balls Bδ

with diameter δ. Note that γ is the diameter of the largest
open ball that can be placed in R

d not containing the
drawing of any node, and ρ is the maximum range that
if the two nodes are within a Euclidean distance ρ of each
other in the drawing of G, they are guaranteed to have an
edge between them in G.

A graph G is dense in R
d if there exists a drawing

function f with positive minimum disconnected range ρ
and finite maximum uncovered diameter γ.

Intuitively, dense graphs have “sufficiently many nodes
and edges to cover R

d without holes.” A finite graph can
never be dense in R

d, d ≥ 1; an infinite 2-D lattice is only

3The definition in eq. (7) could also be written as s := sup
˘

δ : |f(V )∩
Bδ | ≤ 1,∀Bδ}, and the definition in eq. (9) as γ := inf

˘

δ : |f(V ) ∩
Bδ | ≥ 1, ∀Bδ}, which emphasizes their parallelism.



dense in R
d, d ≤ 2; and an infinite 3-D lattice is only dense

in R
d, d ≤ 3.

It turns out that graphs that are civilized/dense in R
d can

be bounded by d-D lattices with respect to the partial order
induced by the embedding relation.

Lemma 1: [1] If G = (V, E) is civilized in R
d then

G can be embedded in the h-fuzz of a d-D lattice with
h := dd(r+s)

s
e, where s > 0 and r < ∞ are the minimum

node distance and maximum connected range, respectively,
for some Euclidean drawing f of G. Moreover, ∀u, v ∈ V,

√
d(

df (u, v)

s
− 1) ≤ dZd

(η(u), η(v)) (10)

where η denotes the embedding and dZd
the graphical

distance in the d-D lattice Zd.
Lemma 2: [1] If (V, E) is dense in R

d with minimum
disconnected range ρ > 0 and maximum uncovered diam-
eter γ < ∞ satisfying 2γ < ρ for some Euclidean drawing
function f , then the d-D lattice can be embedded in G.
Moreover, ∀u, v ∈ V,

dZd
(η(u), η(v)) ≤

√
d(

df (u, v)

γ
+ 1) (11)

where η denotes the embedding and dZd
the graphical

distance in the d-D lattice Zd = (V̄, Ē).

V. VARIANCE VS. DISTANCE FOR CIVILIZED AND
DENSE GRAPHS IN R

d

For graphs that can be drawn in a civilized/dense manner
in R

d with some drawing function f , we are able to bound
the UMV estimator variance Σu,o := E[(xu − x̂u)(xu −
x̂u)T ] of a node variable xu as a function of the Euclidean
distance between node u and the reference node o induced
by f . When measurement error covariance matrices are of
bounded norm, for civilized graphs we can establish lower
bounds and for dense graphs with ρ ≥ 2γ, upper bounds.
The two theorems presented here are the main results of
the paper. Again, “resistance” is used to denote generalized
resistance for brevity.

Let G be a connected graph when it is regarded as undi-
rected and let Σuo denote the UMV estimator variance of
xu’s estimate with node o as the reference. Suppose that the
maximum and minimum eigenvalues of the measurement
error covariance matrices associated with the edges in G
are upper and lower bounded between two positive numbers
σ2

max and σ2
min, respectively.

Theorem 5: If G is civilized in R
d, 1 ≤ d ≤ 3,

and the conditions stated above are satisfied, the following
statements hold:

1) If G can be drawn in a civilized manner in
R with some drawing function f , then Σu,o ≥
Ω(df (u, o)/r)σ2

minIk .
2) If G is civilized in R

2, then Σu,o ≥
Ω(log(df (u, o)/r))σ2

minIk.
3) If G is civilized in R

3, then Σu,o ≥ Ω(1)σ2
minIk .

Proof. We will prove the second statement (for R
2). The

statements for graphs that are civilized in R and R
3 can be

proved in a similar way.
From the equivalence of effective-resistance and esti-

mator variance (theorem 2), we know that Σu,o is equal
to the generalized effective resistance between nodes u
and o in the electric network N(G) where the generalized
resistances on the edges are set equal to the measurement
error variances associated with the corresponding edges
in G. Since G (and therefore N(G)) can be drawn in a
civilized manner in R

2, it can be embedded in the ho-
fuzz of the 2-D lattice, Z

(ho)
d (lemma 1). From theorem

3, we know that the effective resistance between u and o
in N(G) is higher than the effective resistance between the
corresponding nodes ū and ō in N(Z

(ho)
2 ), where N(Z

(ho)
2 )

is an electrical network constructed by assigning equal
resistances σ2

minIk to every edge in Z
(ho)
2 . Denote this

effective resistance by Reff
ū,ō. Therefore, Σu,o ≥ Reff

ū,ō. We
now determine a lower bound on Reff

ū,ō.
From theorem 4, Reff

ū,ō ≥ Ω(log(dZ2
(ū, ō)/ho))σ

2
minIk.

From lemma 1, ho ≤ 2(r + s)/s + 1 and dZ2
(ū, ō) ≥√

2(df (u, o)/s − 1). Therefore,

dZd
(u, o)

ho

≥
√

2(df (u, o)/s − 1)

2(r + s)/s + 1
≥

√
2(df (u, o) − s)

2r + 3s

>
df (u, o)

5r
,

where the last inequality follows from the fact that
s ≤ r for a connected graph. Hence, Reff

ū,ō ≥
Ω(log(df (u, o))/r)σ2

minIk. Since Σu,o ≥ Reff
ū,ō, we get the

desired result.

Theorem 6: If G is dense in R
d, 1 ≤ d ≤ 3, and the

conditions stated for theorem 5 are satisfied, the following
statements hold:

1) If G can be drawn in a dense manner in R with some
f with ρ ≥ 2γ, where ρ and γ are the minimum dis-
connected range and the maximum uncovered diam-
eter in G induced by f , then Σu,o ≤ O(df (u, o)/γ).

2) If G is dense in R
2 with ρ ≥ 2γ, then Σu,o ≤

O(log(df (u, o)/γ))σ2
maxIk.

3) If G is dense in R
3 with ρ ≥ 2γ, then Σu,o ≤

O(1)σ2
maxIk.

Moreover, the estimator variance has the following upper
bound:

Σu,o ≤ dG(u, o)σ2
maxIk ,

where dG(u, o) is the graphical distance between u and o
in G.

Proof. We will prove only the second statement (for R
2)

among the first three statements of the theorem, the state-
ments for R or R

3 can be proved in an analogous fashion.
In this case, we are interested in upper bounds on Reff

u,o

in N(G). Since G (and therefore N(G)) can be drawn in
a dense manner in R

2 with ρ > 2γ, the 2-D lattice Zd



can be embedded in G (from lemma 2). If we construct the
electrical network N(Zd) from Zd by assigning generalized
resistances of σ2

maxIk to each edge, we get an embedding of
N(Zd) in N(G) where the resistances associated with the
edges in N(Zd) are greater than or equal to the resistances
associated with the corresponding edges in N(G). Hence,
the effective resistances in N(G) are lower than the corre-
sponding effective resistances in N(Zd) (from Generalized
Rayleigh’s Monotonicity Law). So, Σu,o ≤ Reff

ū,ō where ū
and ō in N(Z2) are the nodes corresponding to u and o in
G.

The graphical distance between ū and ō in the lattice
Z2 satisfies dZ2

(ū, ō) ≤
√

2(df (u, o) + γ)/γ (from lemma
2). Therefore, from theorem 4, with h = 1, after some
manipulation we get

Reff(ū, ō) ≤ O(log(df (u, o)/γ))σ2
maxIk .

Since Σu,o ≤ Reff(u, o), the desired result follows.

To obtain the upper bound in terms of the graphical
distance dG, consider the scenario when the graph G is a
tree and the node u is at a graphical distance dG(u, o) from
the reference in G. From Rayleigh’s monotonicity law, the
effective resistance in this case would be lower than or equal
to that if all edge resistances were equal to the maximum
possible value σmaxIk , which, with the electrical analogy
gives us Σu,o ≤ dG(u, o)σ2

maxIk.

VI. CONCLUSIONS & FUTURE WORK

For two classes of graphs - civilized and dense in
R

d, 1 ≤ d ≤ 3, we established asymptotic lower and
upper bounds on the variance of a node variable xu’s
optimal linear estimate as a function of the node’s Euclidean
distance from the reference node in a drawing of the graph.
The main results are summarized in table I. Although the
drawing of a graph is not unique, in practice this distance-
in-the-drawing can be directly related to the distance in
physical space where the objects in the network are located.
It is reasonable to expect that real sensor networks will
satisfy the criteria for being civilized and hence the lower
bounds derived here will hold in practice. The criteria for
dense graphs under which the upper bounds hold may be
conservative. Future research will concentrate on improving
these bounds.

Although only order estimates were presented here in
the interest of clarity, they can be easily made tighter by
keeping all the terms in the derivation. Such bounds can
be a useful tool in designing networks, since they establish
fundamental limits on what level of estimation accuracy can
be achieved as the size of network increases.

The question of how the variance of the optimal estimator
for a node variable grows with distance from the reference is
answered in terms of the Euclidean distance in a drawing of
the graph. How the variance varies with graphical distance
for graphs that are not trees is still an open question.

It may not be feasible in practice to directly employ the
UMV estimator due to its centralized processing. However,

our focus is on investigating fundamental limits of estima-
tion accuracy, hence we consider the UMV estimator since
it achieves the minimum possible variance among all linear
estimators. Future research directions include considering
constraints on energy consumption and routing complexity
in developing estimation procedures.

REFERENCES

[1] P. Barooah and J. P. Hespanha. Linear opti-
mal estimation from relative measurements: Electri-
cal analogy and error bounds. Technical report,
E.C.E. Dept., University of California, Santa Bar-
bara, 2003. URL http://www.ccec.ece.ucsb.
edu/˜pbarooah/research_PB.html.

[2] J. Caffery and G. Stber. Overview of radiolocation in
CDMA cellular systems. IEEE Communications Mag.,
36(4):38–45, April 1998.

[3] P. G. Doyle and J. L. Snell. Random walks and electric
networks. Math. Assoc. of America, 1984.

[4] T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur,
and B. D. Anderson. Sensor and network topologies
of formations with direction, bearing and angle infor-
mation between agents. In Proceedings of the 42nd
IEEE Conference on Decision and Control, December
2003, 2003.

[5] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination
of groups of mobile autonomous agents using nearest
neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988–1001, June 2003.

[6] A. Kalis and T. Antanakopolous. Direction finding
in IEEE802.11 wireless networks. IEEE Transactions
on Instrumentation and Measurement, 51(5):940–948,
October 2002.

[7] R. Karp, J. Elson, D. Estrin, and S. Shenker. Op-
timal and global time synchronization in sensornets.
Technical report, Center for Embedded Networked
Sensing,Univ. of California, Los Angeles, 2003.

[8] J. M. Mendel. Lessons in Estimation Theory for Signal
Processing, Communications and Control. Prentice
Hall P T R, 1995.

[9] R. Moses and R. Patterson. Self-calibration of sensor
networks. SPIE vol. 4743: Unattended Ground Sensor
Technologies and Applications IV, 4743, 2002.

[10] N. Patwari, A. O. H. III, and M. Perkins. Relative
location estimation in wireless sensor networks. IEEE
Transactions in Signal Processing, 51(8):2137–2148,
August 2003.


