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Abstract

Most of the work in robotic manipulation and visual
servoing has emphasized how to specify and perform
particular tasks. Recent results have formally shown
what tasks are possible with uncalibrated imaging sys-
tems. This paper extends those results by character-
izing in a constructive manner the set of tasks which
can be performed with different types of uncalibrated
camera models. The tasks’ resulting structure pro-
vides a principled foundation both for a specification
language and for automatic execution monitoring in
uncalibrated environments.

1 Introduction

At a broad level, the goal of vision-guided robotics is
to support both general and robust manipulation of
objects using information acquired from images. His-
torically, however, much of the research in the area of
vision-based control has focused on showing how very
specific tasks can be achieved from measured features
under visual control. In particular, a great deal of
research has been devoted to developing feedback con-
trol systems which can accomplish specific positioning
tasks without accurate estimates of camera calibra-
tion {1, 2, 6, 9, 14, 16, 25, 26, 27].

What is interesting in this case is the strong rela-
tionship between our knowledge about the underlying
camera system and the structure of tasks which can
be accomplished with precision. For example, it is
clear that, given a perfectly calibrated hand/eye sys-
tem, any task specified with respect to observed infor-
mation can be accomplished with absolute precision.
Yet in some cases tasks as simple as positioning to the
midpoint of two observed points cannot be performed
accurately if system calibration is not perfect.

This dichotomy led us to develop a a formal, com-
plete characterization of what tasks can be accom-
plished under different camera model assumptions [12].
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In this article, we extend these results in two ways:

e We provide a concise and provably complete task
specification language for two families of uncali-
brated two-camera systems and also derive a re-
lated family of image-based task encodings which
can be used to implement vision-based control
systems.

e We develop a canonical form which makes it pos-
sible to characterize the fundamental geometric
structure of a given task.

The first characterization can be viewed as the basis
for a feature-level “programming language” for manip-
ulation systems. The second characterization is use-
ful for implementing run-time monitoring of hand/eye
task performance. We see both of these points as es-
sential prerequisites for moving toward general, robust
object-level manipulation systems.

Notation Throughout this paper, ' denotes matrix
transpose, {e;} is the canonical basis of R™, and P™
is m-dimenstional projective space. If a point p € P™
is written in homogeneous coordinates, then norm(p)
is the same point with its coordinates scaled so that
its last nonzero coordinate is a 1. V™ denotes the
Cartesian product of a set V with itself n times. If
C :V — )Y, we mildly abuse notation by continuing
to use the function name C to denote the function
mapping V™ to Y™ which uses C' componentwise.

2 Background

In this paper we restrict attention to the interaction
of point features within a robot’s workspace W. A
stereo camera rig with a viewspace ¥V C W provides
measurements of the image positions’ of these features.
We first describe precisely the camera models we are
considering.

2.1 Camera Models

We denote by Caetuar the actual stereo rig or two-
camera model observing W. We assume that the com-
ponent cameras within Chctyal have a joint field of view
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V containing an open subset of P3. C,eual then maps
points from V to four-vectors of coordinates in the joint
image space ) C P? x P? (the two image planes). Be-
cause we are not assuming a calibrated environment,
Clactual 1s unknown. However, Cyctual is assumed to be
one of a known set, C, of possible camera models.

We consider four general classes of two-camera mod-
els: injective cameras, uncalibrated projective cam-
eras, weakly calibrated projective cameras, and per-
spective cameras. Here, we summarize these models
and refer to [12] for more details on how these classes
are defined.

Let Cin;[V] denote the class of all injective functions
C such that C : V — Y. This class is broad enough to
include stereo rigs with lens distortions or panoramic
cameras, as long as the cameras’ baseline is outside V.

A common and more geometrically meaningful case
is the set of uncalibrated projective camera pairs. We
define CyncallV] to be the set of all projective two-
camera models which are injective on V. Thus, each
component camera of a two-camera model in Cyncai[V]
can be modeled by a 3 x 4 matrix which maps points
in V to points in P2 and is full-rank.!

It is possible from measured image information to
compute a constraint on the parameters of an uncali-
brated projective two-camera model. This constraint,
the epipolar geometry, can be summarized by a fun-
damental matrix F' [18]. An uncalibrated, projective
two-camera model for which F' is known is said to be
weakly calibrated [10, 22]. We use the symbol Cyi [V, F
to represent a set of two-camera models which are
weakly calibrated, i.e., each two-camera model shares
the same fundamental matrix F' (up to a scale factor).

Another set of stereo rigs of interest are weakly
calibrated perspective camera models, CpersplV, F, A].
These are weakly calibrated projective models for
which the internal camera parameters are known, i.e.,
the affine transformation A from pixel coordinates to
camera-centered image coordinates is fixed.

In the sequel we will assume that the cameras’ view-
space V, an arbitrary fundamental matrix F', and a set
of internal camera parameters A are understood and
will suppress those parameters. We can then write
relationships such as the following hierarchy:

Cactual € Cpersp C ka C Cuncal C Cinj- (1)

2.2 Tasks

By a positioning task or simply a “task” is meant,
roughly speaking, the objective of bringing the pose of
a robot to a “target” in W. Both the pose of the robot
under consideration and the target to which it is to

1For technical reasons discussed in [12], P®\ V must include
at least one plane (in P3). This is a very weak requirement,
however, as the “plane at infinity” will never intersect W.

be brought are determined by a list of simultaneously
observed point features {fi, fa,..., fn} in V. We use
an un-subscripted symbol such as f to denote each
such list and we refer to f as a feature. The admissible
feature space is the set F = V" of all such lists of
interest.

As in [7, 16], tasks are represented mathematically
using a given task function T from F to {0,1}. The
task specified by T is the constraint

T(f)=0. )

If (2) holds we say that the task is accomplished
or satisfied at f. Note that this definition of a
task function — operating on points in the robotic
workspace — differs from some of the visual servoing lit-
erature [4, 5, 9, 11, 16, 23], in which task functions take
image information as input. In addition, the codomain
{0,1} abstracts the binary notion of satisfying or not
satisfying a task specification, applications of which
are this work’s primary concern. In fact, only weak
conditions on V and ) are needed to create a continu-
ous task function in the sense of [9] from this abstrac-
tion [12].

2.3 Task Decidability

We seek to perform a task using information from
cameras. As described in Section 2.1, the uncertainty
in the actual camera configuration is represented by
positing a set of two-camera models C within which the
actual imaging system Cactyal is known to lie. Thus,
the information available to perform a task consists of
the set C, the task function 7', and the measured data
in the images:
y £ Cactuar(f). ®

If, on the basis of this information, it can be deter-
mined whether or not task (2) has been accomplished,
then we say that the task is decidable on C. To de-
fine decidability formally, we introduce the notion of
an encoded task function {3] as a function Er : Y = R.
The equation Er(y) = 0 is then called an image-based
encoding of the task T'(f) = 0. This function of image
data, Er, closely resembles the prevailing use of the
term “task function” in the literature.

We say that an encoding Er(y) = 0 verifies a task
T(f)=0onCif

VCeC VfeF Er(y)=T(f), (4)

where y = C(f). In turn, we say that a task is de-
citdable on a set of camera models C, if there exists
some encoding which verifies that task on C. Thus,
the notion of decidability singles out precisely those
tasks whose accomplishment (or lack thereof) can be
deduced from measured data, without regard to par-
ticular encodings which verify them. Put another way,
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the essential characteristic of tasks decidable on C is
the ability of the camera models in C to distinguish
task success from task failure.

Using the notation 7y to represent the set of tasks
decidable on Cx, we can conclude from (1) and the
universal quantifier in (4) that

7;nj C 7:mcal - 7;vk C 71-3ersp- (5)
2.4 Example Tasks

To make this formalism more concrete and provide a
basis for our goal of characterizing decidable tasks in
terms of primitive skills, we present several basic tasks.
To be concise, we indicate where tasks are satisfied (0);
for other configurations they are unsatisfied (1).

Point-to-point taslA( Let Ty, be the task func-
tion defined on Fpp = V2 by the rule

{fi,f2}—0 if i =fin P>

Collinezgity Task Tpy is a task function defined
on Fape = V3 by the rule

{f1, f2, fa} —> 0 if the f;’s are collinear in P2,

Midpoint Task A Let Tigpt be the task function
defined on Fiapt = V* by the rule

{f1, f2, f3} —> 0 if f; is the midpoint of f, and f3.

Coplanarity ’AI‘ask Teopt is a task function de-
fined on Feop = V* by the rule

{f1, f2, f3, fa} — O if the f;’s are coplanar in P2

Cross-ratio Task AFinawlly, let Tero be the task
function defined on F,. = V* by the rule

{f1, f2, f3, fa} — O if f1, fo, f3, f4 are collinear in
IP® with cross ratio a [19].

In fact, the set of tasks specifying point configurations
with each possible cross-ratio a € R constitute a gen-
eral ability to position metrically with respect to three
collinear points; we term this set the cross-ratio prim-
itive. A three-dimensional analog to this primitive can
also be defined: let the 3d Cross-ratio Primitive be
the set of tasks defined on V® by the rule

{fi, > fe} —> 0 if fi,..., f5 are in general po-
sition and fy, ..., f¢ have pro-
jective invariants a, 8, [21].

Similarly, [8] defines a three-dimensional version of
the midpoint task, a 3d Euclidean ratio Primitive,
in which arbitrary Euclidean ratios of observed coor-
dinates are attained by a fifth point with respect to
the first four.

Some or all of these example tasks are a part of most
implemented hand/eye systems; Section 3 pins down
precisely the imaging systems required to ensure their
decidability.
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3 Characterizing Decidable
Tasks

We employ the formalism of Section 2 to characterize
completely the tasks decidable under different camera
models. This characterization enables the specification
of any decidable task using only a few task primitives
and operators on those primitives. To be useful within
this framework, operators on tasks must preserve de-
cidability, and we next present a set of five such oper-
ators. We then demonstrate two sets of tasks spanned
by these operators from a single primitive task.

3.1 Operators on Tasks

Let T, T1, T» be task functions which take n-lists of fea-
ture points, i.e., f € V. We then define five operators
on tasks and on task encodings, arranged in Figure 1.

Task Operators

¢ Complement
Task: -T(f)=1-T(f)
Encoding: E_7(y) =1— Er(y)
provided T is a task

¢ Permutation
Task: aT'(f) = T(xf)
Encoding: Err(y) = Ev(ny)
with 7 a permutation of {1,2,...,n}
¢ Disjunction
Task: (Th v T2)(f) = Tu(f)Ta(f)
Encoding: E(tyvr,)(y) = E1,(y)Er, (y)
provided T and T» are tasks
¢ Expansion
Task: eTH{gr1---9m}) =T{g1---9n})

Encoding: Ecr({y1---Ym}) = Er({y1...yn})
with 7" a task and n <m

¢ Contraction
Task: T({fr--- i) =T{f..-fa})

Encoding: E.v({y1...-wi}) = Er({v1---yn})
with T a task, [ < n, and ¢T" well-defined

Figure 1: Five operators on tasks, along with corre-
sponding encodings and conditions on the definitions.

With any operator on tasks, a natural first question
is whether or not it preserves verifiability and thus
decidability. The following propositions are straight-
forward to verify [8].

Proposition 1 For any tasks Ty and Ts, verified by
Er, and Er, respecitvely, 6 Er, verifies 0Ty for each
unary 6 in Figure 1 and Er,0Er, verifies T10T2 for
each binary operator in Figure 1.

Proposition 2 The five operators of Figure 1 pre-
serve task decidability on any set (C) of two-camera
models.



We call the output (namely 8Ty or T10T3) of such
operations composite task functions. This result al-
lows us to proceed to generate tasks with the con-
fidence that these composite tasks will not somehow
“break” the imaging system’s ability to distinguish
success from failure.

3.2 Generating Tasks

The task hierarchy in (5) expresses the relative sizes
of the sets of tasks decidable with different “uncali-
brated” stereo rigs. This section grounds those relative
relationships in terms of task families defined without
recourse to camera models.

Injective Cameras The family 7,c of point-
coincidence tasks can be defined as the smallest set
of tasks that contains the task Tpp(f) = 0 and that
is closed under task complement, permutation, dis-
junction, expansion, and contraction. In short, the
family of point-coincidence tasks on V* contains any
task that can be fully specified by point-coincidence
(or non-coincidence) relationships on n feature points.
Point-coincidence tasks are the most commonly used
specifications of visual servoing goals [4, 11, 15, 17].
To show that tasks in 7. are decidable on injective
camera models, let C be an arbitrary set of injective
two-camera models and take a pair of features f,g € F
and a pair of two-camera models Cy, Cy € C such that

Ci(f) = Ca(9)- (6)

Suppose first that T,p(f) = 0 and therefore that f; =
f2- In this case (6) implies that C2(¢1) = Ci(f1) =
Ci(f2) = Ca(g2). This and the injectivity of Cs guar-
antee that g; = go and therefore that Tpc(g9) = 0.
Similarly one can conclude that Tpp(g) = 1 whenever
Tpp(f) = 1. Thus, the task Tpp(f) = 0 is decidable
on C. The following proposition then follows from this
and Proposition 2.

Proposition 3 Any point-coincidence task is decid-
able on any family of injective two-camera models.

Point-coincidence tasks are, in fact, the only tasks de-
cidable on injective camera models, since for any other
task it is possible to contrive an injective camera model
on which success and failure are indistinguishible.

Weakly Calibrated Cameras The following re-
sults [8, 12] show how additional knowledge about
a hand/eye system’s cameras can increase the set of
tasks decidable by that system.

Proposition 4 Let Cyx be a set of injective, weakly
calibrated camera models. A task T(f) = 0 is decidable
on Cyik if and only if it is projectively invariant.

Here, a projectively invariant task is one which yields
the same output for any two projectively equivalent
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inputs: if A is a projective transformation (extended
to operate on lists of points) and ¢ = Af, then f
and g are projectively equivalent features and we write
f ~ g. Thus, the statement T(g) = T(f) & f~ g
characterizes projectively invariant tasks.

This result allows us to characterize tasks per-
formable on weakly calibrated systems in a con-
structive manner similar to the point-coincident tasks
above. In order to generate all decidable tasks on Cyy,
it is necessary to span the set of projectively invari-
ant tasks, denoted 7pi. In light of the fundamental
role the cross-ratio plays in constructing projective in-
variants [19], the following proposition, proved in [8],
combining the cross-ratio primitive with subspace-
coincidence primitives, seems natural:

Proposition 5 7, is the closure of the 3d cross-
ratio primitive, coplanarity task, collinearity task, and
point-to-point task under the operations depicted in
Figure 1.

Perspective Cameras Let scaled-FEuclidean trans-
formations be those elements of GL(4) of the form
[*Et]suchthat A #0, A € R, ¢t € R3, and R € SO(3).
It is demonstrated in [8] that if we consider forward-
looking cameras, i.e., those which image only points in
one half-space as determined by their image planes,
then decidable tasks on Cpersp have task functions
invariant to scaled-Euclidean transformations. From
this characterization proposition 6 follows [8].

Proposition 6 Tpesp is the closure of the 3d Fu-
clidean ratio primitive, coplanarity task, collinearity
task, and point-to-point task under the operations de-
picted in Figure 1.

Results (4), (5), and (6) imply that, for example,
the task T3p is decidable when weak calibration is
known and the task Tpigpt is decidable when observed
by perspective cameras.

3.3 Summary

The results of this section have provided a constructive
approach to characterizing the task hierarchy of (5):

7;)(: = 7-i'nj C Tuncal C Twk = 7—];i - 7;;ersp-

Although we do not have a complete characterization
of Tuncal, we do have, in effect, “bounds” on the capa-
bilities of systems with uncalibrated projective cam-
eras.

Propositions 3 and 5 yield a concise and provably
complete language for specifying the tasks performable
by a hand/eye system with injective, weakly cali-
brated, and perspective imaging systems, respectively.
This provides a basis for constructing a programming
interface to such systems. In addition, these charac-
terizations allow a system to compose task encoding



functions into encodings for composite tasks. Details
on composing encodings are included in {8].

4 Geometric Properties of 7y

The fact that weakly calibrated hand/eye systems can
decide projectively invariant tasks suggests a connec-
tion between projective coordinate systems and per-
formable tasks. This section exploits this connection.
In particular, we show how to use the structure of Tk
in order to evaluate a system’s capabilities even when
the feature points are lost or occluded visually. The
result is the basis for an automatic task monitor which
balances between a task’s need for information and a
vision system’s ability to provide it.

4.1 Canonical Representatives of
Elementary Tasks

Put another way, (4) states that the task T'(f) = 0 is
decidable on Cyx exactly when T is constant on each
equivalence class of V" (under projective equivalence
of feature lists). It can be shown that as long as V" is
an open set in (P?)™, the set of equivalence classes of
V™ is identical to the equivalence classes of (P?)™ [13].
Thus, we can investigate the structure of the set 7k
by examining the set of equivalence classes of (P3)".
A natural subset of Ty to consider are those tasks
satisfied on exactly one feature equivalence class. We
call these elementary tasks.

Each equivalence class of (P3)” (or elementary task)
can be represented by a “simplest” list of features,
which we take to be that list in the class whose feature
points’ homogeneous coordinates consist of as many
zeros, and then ones, as possible. We insist on this for
each feature point, in order from left to right, and its
coordinates, written from bottom to top. Each result-
ing canonical representative of an equivalence class of
(P3)" exposes the projective structure of the individ-
ual points comprising its feature list.

For concreteness, consider four feature lists f1... f*
for which n = 3:

o 1 3 5 2 8 1 0 1 0 2 0
0O 0 0 0 0 0 o 1 1 0 0 2
0 0 o0 3 6 0 0 0 0 0 0 0
1 1 1 1 1 1 o 0 0 1 1 1
I 72 Is 7t .

Assuming the usual embedding of R® within P%, the
points in f! are three points along a single axis in R?,
and those in f? satisfy the midpoint task Tpidps. Both
are projectively equivalent to the canonical representa-
tive 2 which expresses that its three feature points lie
in a single line and no two are coincident. Put another
way, f° can be considered the elementary task which
is satisfied exactly when three points are collinear but
none coincident. Because Tiqpt is satisfied for fea-
ture f2 but not f! and both features are projectively
equivalent to f3, Proposition 4 implies that Tiiaps is
not decidable on a weakly calibrated set of cameras.
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4.2 Properties of the

Classes

Equivalence

One fundamental attribute of features f € (P3)" is
the number of dimensions spanned by their consituent
feature points when considered vectors in R*. We use
dim(f) to denote this quantity. Thus, 1 < dim(f) < 4,
as long as there is at least one feature point in the
list. For the features f!,f%, and f3, dim(f) = 2.
Because projective transformations are invertible, they
preserve dimensionality, so that dim(f) is a constant
for all features in a given equivalence class of (P%)™.
From this, we can conclude that since dim(f%) = 3
and dim(f3) = 2, f* and f3 are members of distinct
equivalence classes of (P3)", i.e., they represent two
distinct task specifications decidable on Cyy.

One property of rows of a list of feature points f
which will turn out to be important is whether or not
two rows have been “measured” with respect to one
another. To define this property, we first define the
relation ~, on the set {1,...,4}, which is the set of
row indices of f. We specify that ¢ ~y, j in f if and
only if there is a feature point in f which contains a
component of 1 both in row 7 and in row j (1 <4,57 <
4). An example from the above features is that for f3,
1 ~m 2 and 2 ~, 2. Though the ~, relation depends
on a particular feature f, when it is clear from context
we will suppress writing that feature.

Let ~n, be the transitive closure of ~y (within a
particular feature f). Then we will say that two rows
i and j are measured in f if and only if ¢ ~,, j. For
example, 2 ~, 4 in f5 above, although 2 %, 4. We
use the word “measured” because measured rows in a
canonical list f have sufficient feature-point structure
to admit general positioning within the dimension(s)
corrseponding to those rows. Hence, the feature points
involved form a basis for “measuring” those dimen-
sions.

The relation ~, is an equivalence relation on the
set {1,...,4}. Thus, it induces a partition on that set.
We will call that partition the row-partition of f under
~m and denote it generally by {P1,...,Pn}, where
the P; are mutually disjoint and each P; C {1,...,4}.

A complete list of the elementary tasks reduces to
a list of canonical representatives for the equivalence
classes of (P3)". The following rules provide a means
for generating all such representatives of size n from
those of size n — 1.

If f= =[f1-.- fn-1] € (P*)* ! is in canonical form,
then f = [f1 ... fn] € (P3)" is in canonical form if and
only if f, is a legal successor of f—, i.e., f, satisfies
one of the following properties:

Rule 0 The only feature list of length 1 in canonical
1

formis f = [8

0



Rule 1 f, =e;, where i = dim(f~) + 1 and i < 4.

Rule 2 f, = norm(v), where dim(f) = dim(f~),v €
RY,v # 0, and v contains nonzero entries only in
rows in P; for some i € {1,... ,N}.

Rule 3 f, =s1+...+sp (M > 2), where each s €
R? is a legal successor of £~ by Rule 2 and each sy
contains nonzero components only in rows in some
ditinct partition set P;, , i.e. j # k = 4 # ix.

In addition, for each =prj-equivalence class of
(P3)", there is a unique representative element formed
by successive application of these rules.

A proof of the validity of this set of rules appears
in [8], resulting in the following proposition.

Proposition 7 If a feature f~ is in canonical form,
then the feature f = {f~; fn} is also in canonical form
if and only if fr, is a legal successor of f~ as defined
above.

Starting from the degenerate task (the always-satisfied
task of size n = 1, whose representative is [1 0 0 0]'),
these rules provide a method for constructing all of
the elementary tasks point by point. Furthermore, all
tasks are disjunctions of some subset of elementary
tasks.

In essence, these rules present constraints on what
kinds of feature points can be specified within a pre-
viously known set of points. If we interpret the latter
as a projective coordinate system, these constraints
determine the extent to which an additional feature
point can be positioned in that coordinate system.

4.3 Monitoring Task Execution

Given an existing projective coordinate system, the
rules of Proposition 7 offer a complete characterization
of the positioning tasks possible with an “additional”
point (or points). Thus, a task monitor — a process
keeping track of the visual information available for a
task — can use these rules to distinguish between those
situations in which lack of visual information prohibits
performing a task and other cases when occlusion or
tracking failure need not affect performance. An ex-
ample is the box-packing task depicted in Figure 2, in
which the goal is to position the bottom of a bottle at
a particular spot (the filled circles) above a box before
performing an insertion.

The coordinates of the box’s feature points (coun-
terclockwise, in cm) and the canonical representative
of this projective coordinate system (the open circles
in the upper right frame), respectively, are

0 43 43 1
o 31} _ |o
o o | ¥ |o
1 0

0 15
34 0
0 O

1

1

»-oog
(== )
O=HOO
O MO
(=N =)
o=+

0
0
1
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Figure 2: (Top Left) An example box-packing task. (Top
Right) A stylized version of the task specification. The
dark circle represents the goal point for the bottle’s base.
Open circles represent reference points with known relative
geometry. (Lower Left) Under partial feature occlusion
the task may not be possible without additional features,
or (Lower Right) may remain possible, depending on the
remaining points’ configuration.

where a and 8 represent the projectively invariant co-
ordinates of the last two points, written in terms of
the coordinate system of the preceding feature points.
Because any point of the form [y § 1 0] is a legal suc-
cessor of the canonical representative for this six-point
projective coordinate system, arbitrary positioning in
the plane formed by those six points is possible.

If, on the other hand, a task-monitoring process de-
tects that some of the box’s feature points have been
occluded, it can regenerate the canonical form for the
remaining visible points in order to determine the ef-
fect of the occlusion on the task at hand. For example,
under the occlusions shown in the lower left and lower
right frames of Figure 2, respectively, the canonical
description of the visible points are

|
1
1
0

0 0 0 O 1
1 0 1 a 0
0 1 1 1 0
0 0 0 O 0
]I

Since [y 6 1 0]’ is not a legal successor in the first case
but is in the second, the task monitor can proceed
with the task in the latter, but must direct the vision
system to seek additional known features in the former
situation.

It is well-known that four planar points are required
to perform metrical positioning with respect to those
points in the plane — with the caveat that no three of
those points may be collinear. This guideline and oth-
ers governing projective coordinate systems are con-
cisely represented by Proposition 7. By maintaining

coo~
OO~ O
or~ooQ



the list of visible object features, converting to canon-
ical form, and employing these rules, a task-monitoring
process can decide to continue with a task or to per-
form another routine to search for additional feature
points.

5 Conclusions

This paper characterizes the tasks performable with
injective cameras and with a weakly calibrated vision
system. The result is a concise specification language
for decidable tasks in terms of a small set of primitive
skills and task operators. A second characterization
of elementary performable tasks leads to a set of rules
for constructing projective coordinate systems. These
rules provide an organizational framework for deter-
mining when the available visual information suffices
to proceed with task execution.

Within this framework, several related questions re-
main unanswered. An accuracy analysis, augment-
ing the decidability analysis of Sections 3 and 4 and
perhaps along the lines of [20, 24], would allow a
task-monitoring process to make decisions based on
the tolerance within which a task must be performed.
Also, characterizations of the tasks decidable on uncal-
ibrated projective cameras are less well understood.

Most important, perhaps, is the issue of incorporat-
ing the capabilities for task specification and analysis
presented here into a higher-level framework. Most
existing hand/eye systems present a feature-centered
interface in which a user must detail the interactions
among visual primitives. We feel that the characteriza-
tions of performable tasks presented here provide two
components required by a more user-friendly, object-
centered system: a simple, complete language for spec-
ifying tasks and a means for automatically overseeing
task execution.
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