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Abstract. A stochastic model for chemical reactions is presented, which represents the population of
various species involved in a chemical reaction as the continuous state of a polynomial Stochastic Hy-
brid System (pSHS). pSHSs correspond to stochastic hybrid systems with polynomial continuous vector
fields, reset maps, and transition intensities. We show that for pSHSs, the dynamics of the statistical
moments of its continuous states, evolves according to infinite-dimensional linear ordinary differential
equations (ODEs), which can be approximated by finite-dimensional nonlinear ODEs with arbitrary
precision. Based on this result, a procedure to build this types of approximation is provided.

This procedure is used to construct approximate stochastic models for a variety of chemical reac-
tions that have appeared in literature. These reactions include a simple bimolecular reaction, for which
one can solve the master equation; a decaying-dimerizing reaction set which exhibits two distinct time
scales; a reaction for which the chemical rate equations have a continuum of equilibrium points; and the
bistable Schögl reaction. The accuracy of the approximate models is investigated by comparing with
Monte Carlo simulations or the solution to the Master equation, when available.

1 Introduction

The time evolution of a spatially homogeneous mixture of chemically reacting molecules is often modeled
using a stochastic formulation, which takes into account the inherent randomness of thermal molecular mo-
tion. This formulation is superior to the traditional deterministic formulation of chemical kinetics and is
motivated by complex reactions inside living cells, where small populations of key reactants can set the stage
for significant stochastic effects [1–3]. Although most of the mathematical modeling of genetic networks
represents gene expression and regulation as deterministic processes, recent observations of gene expression
in individual cells illustrate the stochastic nature of transcription [4, 5]. Furthermore, studies of engineered
genetic circuits designed to act as toggle switches or oscillators have revealed large stochastic effects [2, 6].
Stochastically is therefore an inherent feature of biological dynamics and developing stochastic models which
capture this stochastically have become increasingly important.

In the stochastic formulation, the time evolution of the system is described by a single equation for a
grand probability function, where time and species populations appear as independent variables, called the
Master equation [7]. However, this equation can only be solved for relatively few, highly idealized cases and
generally Monte Carlo simulation techniques are used which are also known as the Stochastic Simulation
Algorithm (SSA) [8–11]. Since one is often interested in only the first and second order moments for the
number of molecules of the different species involved, much effort can be saved by applying approximate
methods to produce these low-order moments, without actually having to solve for the probability density
function. Various such approximate methods have been developed, for example, using the Fokker-Plank ap-
proximation, expanding the Master equation, etc. [7]. In this paper, an alternative approximate method for
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estimating lower-order moments is introduced, by representing the dynamics of a chemical reaction as a
Stochastic Hybrid System (SHS).

Hybrid systems are characterized by a state-space that can be partitioned into a continuous domain (typ-
ically R

n) and a discrete set (typically finite). In Stochastic Hybrid systems (SHS), both components of
the state are stochastic processes, with the evolution of the continuous-state determined by a stochastic
differential equation (SDE) and a transition or reset map. Each time a transition is “activated,” the SHS’s
state is updated according to the reset map. The rate at which these “activations” occur, may depend on
the overall state. A formal definition for this SHS model, which was taken from [12], can be found in Sec. 2.
Polynomial stochastic hybrid systems (pSHSs) arise when the continuous vector fields in the SDE, the reset
maps, and the transition intensities are all polynomial functions of the continuous state.

In this paper we show that the evolution of the populations of several species involved in a set of chemical
reactions can be modelled by a SHS. Each reaction corresponds to a reset map defined by its stoichiometry,
which is activated at a rate determined by the reaction rate. In fact, we show in Sec. 2 that molecular reac-
tions can actually be modelled by pSHSs. An important property of pSHSs is that, if one creates an infinite
vector containing the probabilities of all the statistical moments of the continuous state, the dynamics of
this vector are governed by an infinite-dimensional linear ordinary differential equation (ODE), which we
call the infinite-dimensional moment dynamics and define formally in Sec. 3.

In general, the infinite-dimensional linear ODEs that describe the moment dynamics for pSHSs are still
not easy to solve analytically, and solving them would be essentially equivalent to solving the Master equa-
tion. However, they can be accurately approximated by a finite-dimensional nonlinear ODE, which we call
the truncated moment dynamics. The state of this truncated moment dynamics typically contains the lower-
order moments of interest. We show in Sec. 3 that, under suitable stability assumptions, it is in principle
possible for a finite-dimensional nonlinear ODE to approximate the infinite-dimensional moment dynamics,
up to an error that can be made arbitrarily small. A procedure to actually construct these finite-dimensional
approximations is outlined in Sec. 4.

These finite-dimensional ODE’s provide time evolution of lower order moments for populations of species
involved in a chemical reaction. Apart from providing fast simulation times and lesser computation burden
compared to Monte Carlo simulations these approximate models also open the doors to other types of anal-
ysis tools, for example, sensitivity analysis of chemical master equation [13]. However, they provide lesser
information about the probability distribution as compared to Monte Carlo simulations, for example, these
approximate models do not provide information about time correlations.

To illustrate the applicability of the results we consider several systems that have appeared in the liter-
ature. For each example, we construct in Sec. 5 truncated moment dynamics and evaluate how they compare
with estimates for the moments obtained from a large number of Monte Carlo simulations which are carried
using the SSA. The examples considered here are as follows:

1. A simple bimolecular reaction, for which one can actually compute the first and second order moments
directly from the Master equation [14]. The exact results are compared to their estimates from the
truncated model.

2. A decaying-dimerizing reaction set [9, 15]. This reaction is difficult to simulate due to the existence of
two very distinct time scales and methods that do not require Monte Carlo simulations are of special
interest.

3. A reaction for which the deterministic chemical rate equations have a continuum of equilibrium points.
This reaction was selected as an example because the approximate methods developed in [7], are not
applicable.

4. The Schögl reaction [16]. This reaction is particularly interesting as the deterministic chemical rate
equations are bistable, i.e., have two stable equilibrium points for particularly chosen reaction rates.

2



2 Polynomial Stochastic Hybrid Systems

A SHS is defined by a stochastic differential equation (SDE)

ẋ = f(q,x, t) + g(q,x, t)ẇ, f : Q× R
n × [0,∞) → R

n, g : Q× R
n × [0,∞) → R

n×k, (1)

a family of m discrete transition/reset maps

(q,x) = φℓ(q
−,x−, t), φℓ : Q× R

n × [0,∞) → Q× R
n, ∀ℓ ∈ {1, . . . ,m}, (2)

and a family of m transition intensities

λℓ(q,x, t), λℓ : Q× R
n × [0,∞) → [0,∞), ∀ℓ ∈ {1, . . . ,m}, (3)

where w denotes a k-vector of independent Brownian motion processes and Q a (typically finite) discrete
set. A SHS characterizes a jump process q : [0,∞) → Q called the discrete state; a stochastic process
x : [0,∞) → R

n with piecewise continuous sample paths called the continuous state; and m stochastic
counters Nℓ : [0,∞) → N≥0 called the transition counters. In essence, between transition counter increments
the discrete state remains constant whereas the continuous state flows according to (1). At transition times,
the continuous and discrete states are reset according to (2). Each transition counter Nℓ counts the number
of times that the corresponding discrete transition/reset map φℓ is “activated.” The frequency at which this
occurs is determined by the transition intensities (3). In particular, the probability that the counter Nℓ will
increment in an “elementary interval” (t, t+ dt], and therefore that the corresponding transition takes place,
is given by λℓ(q(t),x(t), t)dt. In practice, one can think of the intensity of a transition as the instantaneous
rate at which that transition occurs. Expectations of the state of a SHS can be computed using the following
result from [12].

Theorem 1. For every function ψ : Q×R
n × [0,∞) → R that is continuously differentiable with respect to

its second and third arguments, we have that

dE[ψ(q(t),x(t), t)]

dt
= E[(Lψ)(q(t),x(t), t)], (4)

where ∀(q, x, t) ∈ Q× R
n × [0,∞)

(Lψ)(q, x, t) :=
∂ψ(q, x, t)

∂x
f(q, x, t) +

∂ψ(q, x, t)

∂t
+

+
1

2
trace

(∂2ψ(q, x)

∂x2
g(q, x, t)g(q, x, t)′

)

+

m
∑

ℓ=1

(

ψ
(

φℓ(q, x, t), t
)

− ψ(q, x, t)
)

λℓ(q, x, t), (5)

and ∂ψ(q,x,t)
∂t

, ∂ψ(q,x,t)
∂x

, and ∂2ψ(q,x)
∂x2 denote the partial derivative of ψ(q, x, t) with respect to t, the gradient of

ψ(q, x, t) with respect to x, and the Hessian matrix of ψ with respect to x, respectively. The operator ψ 7→ Lψ

defined by (5) is called the extended generator of the SHS. �

We say that a SHS is polynomial (pSHS) if its extended generator L is closed on the set of finite-
polynomials in x, i.e., (Lψ)(q, x, t) is a finite-polynomial in x for every finite-polynomial ψ(q, x, t) in x. By a
finite-polynomials in x we mean a function ψ(q, x, t) such that x 7→ ψ(q, x, t) is a (multi-variable) polynomial
of finite degree for each fixed q ∈ Q, t ∈ [0,∞). A pSHS is obtained, e.g., when the vector fields f and g, the
reset maps φℓ, and the transition intensities λℓ are all finite-polynomials in x.

It turns out that sets of chemical reactions can be represented by such a pSHS. To understand why this
is so, consider n species X1, X2, . . . , Xn inside a fixed volume V involved in a system of k reactions R1, R2,
. . . , Rk of the form

R1 : u11X1 + u12X2 + . . .+ u1nXn
c1−−→ v11X1 + v12X2 + . . .+ v1nXn
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Table 1. hi and ci for different reaction types.

Reaction Ri hi ci

Xi −→ reaction products xi ki

Xi +Xj −→ reaction products, (i 6= j) xixj
ki
V

2Xi −→ reaction products 1
2
xi(xi − 1) 2ki

V

Xi + 2Xj −→ reaction products, (i 6= j) 1
2
xixj(xj − 1) 2ki

V 2

3Xi −→ reaction products 1
6
xi(xi − 1)(xi − 2) 6ki

V 2

R2 : u21X1 + u22X2 + . . .+ u2nXn
c2−−→ v21X1 + v22X2 + . . .+ v2nXn

...

Rk : uk1X1 + uk2X2 + . . .+ uknXn
ck−−→ vk1X1 + vk2X2 + . . .+ vknXn,

where uij is the stoichiometry associated with the jth reactant of the ith reaction and vij is the stoichiometry
associated with the jth product of the ith reaction. The reaction parameter ci characterizes the reaction Ri

and, together with the stoichiometry, defines the probability that a particular reaction takes place in an
“infinitesimal” time interval (t, t+ dt]. This probability is given by the product of the following two terms:

1. the number hi of distinct molecular reactant combinations present in V at time t for the reaction Ri,
2. the probability cidt that a particular combination of Ri reactant molecules will actually react on (t, t+dt].

In general, hi depends both on the reactants stoichiometry uij in Ri and on the number of reactant molecules
in V . Table 1 shows the value of hi for different reaction types [8]. In this table and in the sequel, we denote
by xi the number of molecules of the species Xi in the volume V . The reaction parameter ci is related to the
reaction rate ki in the deterministic formulation of chemical kinetics by the formulas shown in the right-most
column of Table 1.

The evolution of the number of molecules x1, x2, . . . , xn can be generated by a pSHS. Since the number
of molecules take values in the discrete set on integers, they can be regarded then as either part of the
discrete or the continuous state of the pSHS. However, since we are interested in computing the statistical
moments of xi, we chose to view them as part of a continuous state. In this case the SHS has a single discrete
mode, which we omit for simplicity. The continuous state consists of a vector x :=

[

x1,x2, . . . ,xn
]′

with
trivial continuous dynamics ẋ = 0. Each one of the k reactions is associated with a reset map defined by the
stoichiometry

x 7→ φ1(x) :=





x1−u11+v11
x2−u12+v12

...
xn−u1n+v1n



 x 7→ φ2(x) :=





x1−u21+v21
x2−u22+v22

...
xn−u2n+v2n



 . . . x 7→ φk(x) :=





x1−uk1+vk1
x2−uk2+vk2

...
xn−ukn+vkn



 ,

with transition intensities given by

λ1(x) := c1h1 λ2(x) := c2h2 . . . λk(x) := ckhk,

respectively. This results in a pSHS because the reset maps and the transition intensities are finite polynomials
in xi.

3 Moment Dynamics

To fully characterize the dynamics of a chemical reaction one would like to determine the evolution of
the probability distribution for x(t), i.e. solve the Master equation. In general, this is difficult and a more
reasonable goal is to determine the evolution of a few low-order moments.
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Given a vector of n integers m = (m1,m2, . . . ,mn) ∈ N
n
≥0, we define the test-function associated with m

to be ψ(m)(x) := x(m), ∀x ∈ R
n and the (uncentered) moment associated with m to be

µ(m)(t) := E
[

ψ(m)
(

x(t)
)]

, ∀t ≥ 0. (6)

Here and in the sequel, given a vector x = (x1, x2, . . . , xn), we use x
(m) to denote the monomial xm1

1 xm2
2 · · ·xmn

n .
pSHSs have the property that if one stacks all moments in an infinite vector µ∞, its dynamics can be written
as

µ̇∞ = A∞(t)µ∞, ∀t ≥ 0, (7)

for some appropriately defined infinite matrixA∞(t). This is because ∀m = (m1, . . . ,mn) ∈ N
n
≥0, (Lψ

(m))(x, t)
is a finite-polynomial in x and therefore can be written as a finite linear combination of test-functions (pos-
sibly with time-varying coefficients). Equation (7) then follows directly from (4), (5), and (6). In the sequel,
we refer to (7) as the infinite-dimensional moment dynamics.

Since we are only interested in computing a few low-order moments, we rewrite (7) as

µ̇ = Ik×∞A∞(t)µ∞ = A(t)µ+B(t)µ̄, µ̄ = Cµ∞, (8)

where µ ∈ R
k contains to the top k elements of µ∞, which correspond to the lower-order moments of

interest. Ik×∞ denotes a matrix composed of the first k rows of the infinite identity matrix, µ̄ ∈ R
r contains

all the moments that appear in the first k elements of A∞(t)µ∞ but that do not appear in µ, and C is the
projection matrix that extracts µ̄ from µ∞. Our goal is to approximate the infinite dimensional system (7)
by a finite-dimensional nonlinear ODE of the form

ν̇ = A(t)ν +B(t)ν̄(t), ν̄ = ϕ(ν, t), (9)

where the map ϕ : Rk × [0,∞) → R
r should be chosen so as to keep ν(t) close to µ(t). We call (9) the

truncated moment dynamics and ϕ the truncation function. We make the following two stability assumptions
to establish sufficient conditions on ϕ, for the approximation to be valid.

Assumption 1 (Boundedness). There exist sets Ωµ ∈ R
∞ and Ων ∈ R

k such that all solutions to (7)
and (9) starting at some time t0 ≥ 0 in Ωµ and Ων , respectively, exist and are smooth on [t0,∞) with all
derivatives of their first k elements uniformly bounded by the same constant. The set Ων is assumed to be
forward invariant under the dynamics of (9). �

Assumption 2 (Incremental Asymptotic Stability). There exists a function1 β ∈ KL such that, for
every solution µ∞ to (7) starting in Ωµ at some time t0 ≥ 0, and every t1 ≥ t0, ν1 ∈ Ων there exists some
µ̂∞(t1) ∈ Ωµ whose first k elements match ν1 and

‖µ(t)− µ̂(t)‖ ≤ β(‖µ(t1)− µ̂(t1)‖, t− t1), ∀t ≥ t1,

where µ(t) and µ̂(t) denote the first k elements of the solutions to (7) starting at µ∞(t1) and µ̂∞(t1),
respectively. �

Let diµ(t)
dti

and diν(t)
dti

represent the ith time derivative of µ(t) and ν(t) along the trajectories of system (7)
and (9) respectively. The following result from [17] shows that if a sufficiently large but finite number of
these derivatives match point-wise, then, the difference between solutions to (8) and (9), i.e. µ(t) and ν(t)
converges to an arbitrarily small ball.

1 A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if β(0, t) = 0, ∀t ≥ 0; β(s, t) is continuous and
strictly increasing on s for each fixed t ≥ 0; and limt→∞ β(s, t) = 0, ∀s ≥ 0.
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Theorem 2. Suppose Assumptions 1 and 2 hold. Then, for every δ > 0, there exists an integer N, sufficiently
large, for which the following result holds: Assuming that for every t0 ≥ 0, µ∞(t0) ∈ Ωµ, ν(t0) ∈ Ων

µ(t0) = ν(t0) ⇒
diµ(t0)

dti
=
diν(t0)

dti
, ∀i ∈ {1, . . . ,N} (10)

where µ is the first k elements of µ∞. Then,

‖µ(t)− ν(t)‖ ≤ δ, ∀t ∈ [t0,∞) (11)

along solutions of (7) and (9). �

For the problems considered in this paper, Assumptions 1 and 2 are hard to verify. Moreover, given a constant
δ > 0 and sets Ωµ, Ων , it is generally difficult to determine the integer N for which the bound (11) holds.
Nevertheless, Theorem 2 is still useful because it provides the explicit conditions (10) that the truncation
function ϕ should satisfy for the solution to the truncated system to approximate the one of the original
system. In the subsequent section we use (10) for N = 2 to explicitly compute ϕ.

4 Construction of Approximate Truncations

In this section, we compute the truncation function ϕ by requiring (10) to hold for N = 2. Using (8) and
(9), equality (10) reduces to

µ(t0) = ν(t0) ⇒ µ̄(t0) = ϕ(µ(t0), t0) (i = 1) (12)

µ(t0) = ν(t0) ⇒
dµ̄(t)

dt
|t=t0 =

∂ϕ(µ(t0), t0)

∂µ
Ik×∞A∞(t0)µ∞(t0) +

∂ϕ(µ(t), t)

∂t
|t=t0 (i = 2). (13)

We look for solutions to the PDE (13) having the following separable form

ϕ(ν, t) = ν(Γ ) :=







ν
γ11
1 ν

γ12
2 ···ν

γ1k
k

ν
γ21
1 ν

γ22
2 ···ν

γ2k
k

...
ν
γr1
1 ν

γr2
2 ···ν

γrk
k






,

for an appropriately chosen constant matrix Γ := [γij ] ∈ R
r×k. In order to compute Γ , we take Ωµ to be the

set that corresponds to the family of deterministic distributions. For this set, µ(m) := x(m) and a necessary
condition determined in [17] for the existence of a matrix Γ that satisfies (12) and (13) is that, for every
moment µ(mℓ) in µ̄, the polynomial

∑∞

i=1
aℓ,i x

(mi) must belong to the linear subspace generated by the
polynomials2

{

∞
∑

i=1

aj,i x
(mℓ−mj+mi) : 1 ≤ j ≤ k

}

, (14)

where aℓ,i denotes the entry in the ℓth row and ith column of A∞.

Although the family of deterministic distributions may seem very restrictive, it provide us with trunca-
tions that are accurate even when the system evolves towards “nondeterministic distributions,” as will be
demonstrated in the next section. When the condition (14) does not hold, one can often drop lower order
terms from the right-hand-side of (5) to form a new matrix Ā∞ that satisfies this condition. This will be
demonstrated in some of the examples in Section 5. When the solution ϕ to (12) and (13) is not unique, a
specific ϕ can be selected by requiring (12) to hold for additional families of distribution, e.g., the family of
lognormal distributions.

2 The polynomials in (14) can have both positive and negative powers.
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Remark 1. For the class of elementary reactions, i.e, uni- or bi-molecular reactions, sufficient conditions for
the existence and uniqueness for the solution ϕ to (12) and (13) will appear in [18]. More specifically, it has
been shown in [18], that given a vector µ containing all the first and second order moments of x, (14) holds,
if one drops some second and all first order moments from the second time derivative of µ. This will be valid,
as long as these moments are dominated by the fourth order moments of x, which also appear in the second
time derivative of µ. Furthermore, explicit formulas for ϕ also appear in [18]. The striking features of these
formulas is that the dependence of higher order moments on lower order as given by ϕ is independent of the
reaction parameters, moreover, this dependance is consistent with x being lognormally distributed. �

5 Examples

We now develop truncated models for the moment dynamics of several chemical reactions and discuss how
they compare with estimates of moments obtained from averaging a large number of Monte Carlo simulations
or the exact solution of the Master equation, when available. All Monte Carlo simulations were carried out
using the algorithm described in [12], which is equivalent to SSA [8]. Since the quantities of interest in the
stochastic approach are often the first and second order moments, we consider truncation models whose state
contains only the first and second order moments for the number of molecules in the species involved in the
reaction.

Example 1. Consider the following bi-molecular irreversible reaction [14]:

2X1
c

−−→ X2.

For the sake of simplicity, we omit moments for the population of X2 from the truncation. The number of
molecules x of X1, can be generated by a SHS with continuous dynamics ẋ = 0 and a reset map

x 7→ φ(x) := x− 2

with intensity λ(x) := c
2x(x− 1). For ψ(m)(x) = xm, ∀m ∈ N≥0 we have

(Lψ(m))(x) =
c

2
x(x− 1)[(x − 2)m − xm] =

c

2

m
∑

i=1

(mi ) (x
m−i+2 − xm−i+1)(−2)i (15)

and (8) can be written as follows:
[

µ̇(1)

µ̇(2)

]

=
[

c −c

−2c 4c

] [

µ(1)

µ(2)

]

+
[

0

−2c

]

µ̄, (16)

where µ̄ := µ(3) evolves according to

µ̇(3) = −3cµ(4) + 9cµ(3) − 10cµ(2) + 4cµ(1).

It can be easily verified that for this system, condition (14) is not satisfied, as the polynomial

∞
∑

i=1

a3,ix
(mi) = −3cx4 + 9cx3 − 10cx2 + 4cx

does not belong to the subspace generated by the polynomials

∞
∑

i=1

a1,ix
(m3−m1+mi) = cx3 − cx4,

∞
∑

i=1

a2,ix
(m3−m2+mi) = −2cx2 + 4cx3 − 2cx4,

due to the first-order term 4cx. However, if we retain only the two highest powers of x in the summation in
the right-hand side of (15), we have the following simplified version of (16)

[

µ̇(1)

µ̇(2)

]

=
[

c −c

0 4c

] [

µ(1)

µ(2)

]

+
[

0

−2c

]

µ̄,
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Table 2. E[x] for the exact and approximate truncated models at different times t for Example 1. E[x] refers to the
exact solution, µ(1) refers to the truncated model (16) and (17) and µ̄(1) refers to the truncated model developed in
[14].

t E[x] µ(1) µ̄(1)

.025 8.15 8.15 8.18

.050 6.86 6.87 6.95

.075 5.93 5.93 6.06

.100 5.21 5.23 5.39

.150 4.21 4.23 4.44

where now µ̄ := µ(3) evolves according to

µ̇(3) = −3cµ(4) + 9cµ(3)

for which condition (14) does hold, allowing us to find a unique solution ϕ to (12) and (13), resulting in a
truncated system given by (16) and

µ̄ = ϕ(µ) =

(

µ(2)

µ(1)

)3

. (17)

Owing to the simplicity of this reaction, one can obtain the exact solution for µ(1) = E[x] and µ(2) = E[x2]
from the Master equation, as has been done in [14]. An alternate approximate truncated model, was also
developed in [14], where µ(3) is approximated as µ(1)µ(2). Table 2 and Figure 1 compare our estimates for the
mean and the coefficient of variation respectively, with that of the exact solution and approximated model
developed in [14], for c = 1 and initial condition x(0) = 10. Our estimates of E[x] are almost identical to
those of the exact solution, while, those of CV [x] are close. One can see that the truncation model yields
good results for fairly small populations, even though to construct it we dropped lower-order powers of x,
which implicitly assumes that the population of the specie X1 is large. It should be noted that if we retain
only the highest powers of x in the summation in the right-hand-side of (15), the unique solution ϕ to (12)
and (13) would have been ϕ(µ) = µ(1)µ(2) as in [14]. As this approximation is obtained by dropping more
terms, it is not surprising to discover that it does not perform as well as (17). �

Example 2. Consider the following decaying-dimerizing reaction set [9, 15]:

X1
c1−−→ 0, 2X1

c2−−→ X2, X2
c3−−→ 2X1, X2

c4−−→ X3.

The number of particles x := (x1,x2,x3) of three species involved in the following set of decaying-dimerizing
reaction can be generated by a SHS with continuous dynamics ẋ = 0 and four reset maps

x 7→ φ1(x) :=
[

x1−1
x2
x3

]

x 7→ φ2(x) :=
[

x1−2
x2+1
x3

]

x 7→ φ3(x) :=
[

x1+2
x2−1
x3

]

x 7→ φ4(x) :=
[

x1
x2−1
x3+1

]

with intensities λ1(x) := c1x1, λ2(x) :=
c2
2 x1(x1 − 1), λ3(x) := c3x2, and λ4(x) := c4x2, respectively. The

generator for this SHS is given by

(Lψ)(x1, x2, x3) = c1x1
(

ψ(x1 − 1, x2, x3)− ψ(x)
)

+
c2

2
x1(x1 − 1)

(

ψ(x1 − 2, x2 + 1, x3)− ψ(x)
)

+ c3x2
(

ψ(x1 + 2, x2 − 1, x3)− ψ(x)
)

+ c4x2
(

ψ(x1, x2 − 1, x3 + 1)− ψ(x)
)

.

Taking ψ(m1,m2,m2)(x) = xm1
1 xm2

2 xm3
3 , ∀m1,m2,m3 ∈ N≥0 we have

(Lψ(m1,m2,m2))(x) = c1x1

(

(x1 − 1)m1 − x
m1
1

)

x
m2
2 x

m3
3 +

c2

2
x1(x1 − 1)

(

(x1 − 2)m1(x2 + 1)m2 − x
m1
1 x

m2
2

)

x
m3
3

+ c3x2

(

(x1 + 2)m1(x2 − 1)m2 − x
m1
1 x

m2
2

)

x
m3
3 + c4x2

(

(x2 − 1)m2(x3 + 1)m3 − x
m2
2 x

m3
3

)

x
m1
1
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Fig. 1. CV [x] =

√
E[x2]−E[x]2

E[x]
for the exact and approximate truncated models at different times t for Example 1.

“+” refers to the exact solution, “×” to the truncated model (16) and (17) and “∗” to the truncated model developed
in [14].

= c1

m1−1
∑

i=0

(m1
i ) (−1)m1−i

ψ
(i+1,m2,m3)(x) +

c2

2

m1,m2
∑

i,j=0
(i,j) 6=(m1,m2)

(m1
i )

(m2
j

)

(−2)m1−i
(

ψ
(i+2,j,m3)(x)− ψ

(i+1,j,m3)(x)
)

+ c3

m1,m2
∑

i,j=0
(i,j) 6=(m1,m2)

(m1
i )

(m2
j

)

2m1−i(−1)m2−j
ψ

(i,j+1,m3)(x) + c4

m2,m3
∑

i,j=0
(i,j) 6=(m2,m3)

(m2
i )

(m3
j

)

(−1)m2−i
ψ

(m1,i+1,j)(x),

(18)

where the summations result from the power expansions of the terms (xi− c)
mi . To keep the formulas short,

we omit from the truncation the second moments of x3, which does not appear as a reactant in any reaction
and therefore its higher order statistics do not affect the first two. In this case, (8) can be written as follows:











µ̇(1,0,0)

µ̇(0,1,0)

µ̇(0,0,1)

µ̇(2,0,0)

µ̇(0,2,0)

µ̇(1,1,0)











=









−c1+c2 2c3 0 −c2 0 0
−

c2
2 −c3−c4 0

c2
2 0 0

0 c4 0 0 0 0
c1−2c2 4c3 0 −2c1+4c2 0 4c3
−

c2
2 c3+c4 0

c2
2 −2c3−2c4 −c2

c2 −2c3 0 −
3c2
2 2c3 −c1+c2−c3−c4



















µ(1,0,0)

µ(0,1,0)

µ(0,0,1)

µ(2,0,0)

µ(0,2,0)

µ(1,1,0)











+







0 0
0 0
0 0

−2c2 0
0 c2
c2
2 −c2






µ̄, (19)

where µ̄ := [ µ(3,0,0) µ(2,1,0) ]
′
evolves according to

µ̇(3,0,0) = (−c1 + 4c2)µ
(1,0,0) + 8c3µ

(0,1,0) + (3c1 − 10c2)µ
(2,0,0) + 12c3µ

(1,1,0)

+ (−3c1 + 9c2)µ
(3,0,0) + 6c3µ

(2,1,0) − 3c2µ
(4,0,0) (20a)

µ̇(2,1,0) = −2c2µ
(1,0,0) − 4c3µ

(0,1,0) + 4c2µ
(2,0,0) + 4c3µ

(0,2,0) + (c1 − 2c2 − 4c3)µ
(1,1,0)

−
5c2µ

(3,0,0)

2
+ (−2c1 + 4c2 − c3 − c4)µ

(2,1,0) + 4c3µ
(1,2,0) +

c2µ
(4,0,0)

2
− 2c2µ

(3,1,0). (20b)

This system also does not satisfy condition (14) because the µ(1,0,0), µ(0,1,0) terms in the right-hand-sides
of (20) lead to monomials in x1 and x2 in

∑∞

i=1 aℓ,i x
(mi) that do not exist in any of the polynomials

{
∑∞

i=1 aj,i x
(mℓ−mj+mi) : 1 ≤ j ≤ 6

}

. These terms can be easily traced back to the lowest-order terms in
power expansions in (18) and disappear if we only keep the three highest powers of x1 in the expansion of
(x1 − 1)m1 that corresponds to the first reaction and the two highest powers of x1 and x2 in the expansions
of (x1 ± 2)m1 and (x2 ± 1)m2 that correspond to the second and third reactions. In practice, this leads to
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Table 3. Comparison between estimates obtained from Monte Carlo simulations and the truncated model for Ex-
ample 2.

Source for the estimates E[x1(0.2)] E[x2(0.2)] StdDev[x1(0.2)] StdDev[x2(0.2)]

10,000 MC. simulations (data from [15]) 387.3 749.5 18.42 10.49
truncated model (19), (22) 387.2 749.6 18.54 10.60

the following simplified version of (19)











µ̇(1,0,0)

µ̇(0,1,0)

µ̇(0,0,1)

µ̇(2,0,0)

µ̇(0,2,0)

µ̇(1,1,0)











=









−c1+c2 2c3 0 −c2 0 0
−

c2
2 −c3−c4 0

c2
2 0 0

0 c4 0 0 0 0
c1 0 0 −2c1+4c2 0 4c3
0 c4 0 0 −2c3−2c4 −c2

c2 −2c3 0 −
3c2
2 2c3 −c1+c2−c3−c4



















µ(1,0,0)

µ(0,1,0)

µ(0,0,1)

µ(2,0,0)

µ(0,2,0)

µ(1,1,0)











+







0 0
0 0
0 0

−2c2 0
0 c2
c2
2 −c2






µ̄, (21)

where now µ̄ := [ µ(3,0,0) µ(2,1,0) ]′ evolves according to

µ̇(3,0,0) = 3c1µ
(2,0,0) + (−3c1 + 3c2)µ

(3,0,0) + 6c3µ
(2,1,0) − 3c2µ

(4,0,0)

µ̇(2,1,0) = 2c2µ
(2,0,0) + (c1 − 4c3)µ

(1,1,0) −
5c2µ

(3,0,0)

2

+ (−2c1 + 2c2 − c3 − c4)µ
(2,1,0) + 4c3µ

(1,2,0) +
c2µ

(4,0,0)

2
− 2c2µ

(3,1,0),

for which condition (14) does hold, allowing us to find a unique solution ϕ to (12) and (13), resulting in a
truncated system given by (19) and

µ̄ = ϕ(µ) =

[

(

µ(2,0,0)

µ(1,0,0)

)3

,
µ(2,0,0)

µ(0,1,0)

(

µ(1,1,0)

µ(1,0,0)

)2
]′

. (22)

We perform simulations for both large and small initial populations. Figures 2 and 3 show a comparison
between Monte Carlo simulations and the truncated model (19), (22). The coefficients used were taken from
[15, Example 1]: c1 = 1, c2 = 10, c3 = 1000, c4 = 10−1. In Fig. 2(a) we used the same initial conditions as
in [15, Example 1]:

x1(0) = 400, x2(0) = 798, x3(0) = 0. (23)

The match is very accurate, as can be confirmed from Table 3. The values of the parameters chosen result in
a pSHS with two distinct time scales, which makes this pSHS computationally difficult to simulate (“stiff”
in the terminology of [15]). The initial conditions (23) start in the “slow manifold” x2 = 5

1000x1(x1 − 1) and
Fig. 2(a) essentially shows the evolution of the system on this manifold. Figure 2(b) zooms in on the interval
[0, 5× 10−4] and shows the evolution of the system towards the manifold when it starts away from it at

x1(0) = 800, x2(0) = 100, x3(0) = 200. (24)

Figure 3 shows another simulation of the same reactions but for much smaller initial populations:

x1(0) = 10, x2(0) = 10, x3(0) = 5. (25)

The truncated model still provides an extremely good approximation, with significant error only in the
covariance between x1 and x2 when the averages and standard deviation of these variables get below one.
This happens in spite of having used (21) instead of (20) to compute ϕ. �
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Fig. 2. Comparison between Monte Carlo simulations (solid lines) and the truncated model (19), (22) (dashed lines)
for Example 2 with large populations.
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Fig. 3. Comparison between Monte Carlo simulations (solid lines) and the truncated model (19), (22) (dashed lines)
for Example 2 with small populations.

Example 3. Consider the following system of chemical reactions:

X1 +X2
c

−−→ X1, X1 +X2
c

−−→ X2,

and let x := (x1,x2) be the number of molecules for X1 and X2, respectively. The deterministic chemical
rate equations for this system are given by

ẋ1 = −cx1x2, ẋ2 = −cx1x2. (26)

Equation (26) does not have a unique equilibrium point, in fact, every vector of the form (x0, 0) or (0,x0),
x0 ∈ R is an equilibrium point for (26). Because of this, general approximate methods based on local
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expansions of the Master equation [7], do not apply. The stochastic dynamics of the number of molecules
x := (x1,x2) can be described by a SHS with continuous dynamics ẋ = 0 and reset maps

x 7→ φ1(x) :=
[

x1
x2−1

]

, x 7→ φ2(x) :=
[

x1−1
x2

]

,

with intensities λ1(x) := cx1x2 and λ2(x) := cx1x2 respectively. For ψ(m1,m2)(x) = x1
m1x2

m2 , ∀m1,m2 ∈
N≥0, it can be verified that (8) can be written as follows:









µ̇(1,0)

µ̇(0,1)

µ̇(2,0)

µ̇(0,2)

µ̇(1,1)









=









0 0 0 0 −c

0 0 0 0 −c

0 0 0 0 c

0 0 0 0 c

0 0 0 0 0

















µ(1,0)

µ(0,1)

µ(2,0)

µ(0,2)

µ(1,1)









+











0 0

0 0

−2c 0

0 −2c

−c −c











µ̄, (27)

where µ̄ := [ µ(2,1) µ(1,2) ]′ evolves according to

µ̇(2,1) = −2cµ(2,2) + cµ(1,2) − cµ(3,1)

µ̇(1,2) = −2cµ(2,2) + cµ(2,1) − cµ(1,3).

This system satisfies condition (14) and any function ϕ of the form

µ̄ = ϕ(µ) =

[

µ(2,0)

(

µ(0,1)
)ν1−1

(

µ(1,1)

µ(1,0)

)ν1

,
µ(0,2)

(

µ(1,0)
)ν2−1

(

µ(1,1)

µ(0,1)

)ν2
]′

(28)

satisfies (12) and (13), where ν1, ν2 ∈ R. Explicit conditions on the stoichiometry of the reaction for which
(12) and (13) yield a unique solution for ϕ will appear in [18]. In order to find a unique function ϕ we now
require (12) to hold for the family of lognormal distribution also. It is straightforward to check that for
bivariate lognormal variables y and z,

E[y2z] =
E[y2]

E[z]

(

E[yz]

E[y]

)2

, (29)

which corresponds to taking ν1 = ν2 = 2 in (28), and hence, a unique function ϕ can be found as

µ̄ = ϕ(µ) =

[

µ(2,0)

µ(0,1)

(

µ(1,1)

µ(1,0)

)2

,
µ(0,2)

µ(1,0)

(

µ(1,1)

µ(0,1)

)2
]′

. (30)

Figure 4 shows a comparison between Monte Carlo simulations and the truncated model (27), (30) for c = 5
and initial conditions, x1(0) = 550 and x2(0) = 500. The match is very accurate especially for the mean and
standard deviation, as can be seen from the zoomed inserts. �

Example 4. Consider the Schögl reaction set [16]:

A + 2X1
c1−−→ 3X1, 3X1

c2−−→ A+ 2X1, X1
c3−−→ B, B

c4−−→ X1,

where the number of molecules nA and nB of species A and B, respectively, are assumed constants. The
deterministic chemical rate equation for this system is

ẋ =
c1

2
nAx

2 −
c2

6
x3 − c3x+ c4nB, (31)

where x denotes the number of molecules of X1. This equation has a unique equilibrium point for some
values of the coefficients ci; while it is bistable, for other values (i.e., it has two stable equilibrium points).
The evolution of x can be described by a SHS with continuous dynamics ẋ = 0 and reset maps

x 7→ φ1(x) := x+ 1, x 7→ φ2(x) := x− 1, x 7→ φ3(x) := x− 1, x 7→ φ4(x) := x+ 1,

12
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Fig. 4. Comparison between Monte Carlo simulations (solid lines) and the truncated model (27), (30) (dashed lines)
for Example 3.

with intensities

λ1(x) :=
c1

2
nAx(x − 1), λ2(x) :=

c2

6
x(x − 1)(x− 2), λ3(x) := c3x, λ4(x) := c4nB,

respectively. For ψ(m)(x) = xm, ∀m ∈ N≥0 we have

(Lψ(m))(x) =
c1

2
nAx(x− 1)[(x + 1)m − xm] +

c2

6
x(x − 1)(x− 2)[(x− 1)m − xm]

+ c3x[(x − 1)m − xm] + c4nB[(x+ 1)m − xm] (32)

and (8) can be written as follows:

[

µ̇(1)

µ̇(2)

]

=

[

− 1
3 c2−

1
2nAc1−c3

1
2 c2+

1
2nAc1

c3+2nBc4−
1
2nAc1+

1
3 c2 − 1

2nAc1−2c3−
7
6 c2

]

[

µ(1)

µ(2)

]

+

[

− 1
6 c2 0

− 1
3 c2 nAc1+

7
6 c2

]

µ̄+

[

nBc4

nBc4

]

, (33)

where µ̄ := [ µ(3) µ(4) ]′ evolves according to

µ̇(3) = −
1

2
c2µ

(5) + (
3

2
nAc1 + 2c2)µ

(4) + (−3c3 −
8

3
c2)µ

(3) + (−nAc1 + 3nBc4 + 3c3 +
3

2
c2)µ

(2)

+ (−
1

3
c2 + 3nBc4 −

1

2
nAc1 − c3)µ

(1) + nBc4

µ̇(4) = −
2

3
c2µ

(6) + (2nac1 + 3c2)µ
(5) + (−5c2 + nAc1 − 4c3)µ

(4) + (−nAc1 + 4nBc4 +
25

6
c2 + 6c3)µ

(3)

13



+ (−
3

2
nAc1 + 6nbc4 − 4c3 −

11

6
c2)µ

(2) + (c3 −
1

2
nAc1 + 4nBc+

1

3
c2)µ

(1) + nBc4.

Condition (14) is not satisfied, however, if we retain only the two highest powers of x in the right-hand-side
of (32), we have the following simplified version of (33)

[

µ̇(1)

µ̇(2)

]

=
[

0 1
2 c2+

1
2nAc1

0 0

] [

µ(1)

µ(2)

]

+

[

− 1
6 c2 0

− 1
3 c2 nAc1+

7
6 c2

]

µ̄,

where µ̄ := [ µ(3) µ(4) ]
′
evolves according to

µ̇(3) = −
1

2
c2µ

(5) + (
3

2
nAc1 + 2c2)µ

(4) µ̇(4) = −
2

3
c2µ

(6) + (2nac1 + 3c2)µ
(5),

for which condition (14) does hold, allowing us to find a unique solution ϕ to (12) and (13), resulting in a
truncated system given by (33) and

µ̄ = ϕ(µ) =

[

(

µ(2)

µ(1)

)3

,

(

µ(2,0)
)6

(

µ(1,0)
)8

]′

. (35)

We perform simulations for two sets of values of coefficients ci. First, the coefficients are taken as c1 = .000002,
c2 = .00006, c3 = 10, c4 = 1, for which (31) has a unique equilibrium point. Figure 5 shows a comparison
between Monte Carlo simulations and the truncated model (33), (35) for x(0) = 300 and nA = nB = 1000.
The match is very accurate as can be confirmed from the figure.
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Fig. 5. Comparison between Monte Carlo simulations (solid lines) and the truncated model (33), (35) (dashed lines)
for population mean (top) and population standard deviation (bottom) for Example 4, when (31) has a unique
equilibrium point.

Next, the coefficients are changed to c1 = .000014, c2 = .00006, c3 = 1.4, c4 = .08, and it can be
verified that for these particular values, (31) is bistable. Figure 6 shows a comparison between Monte Carlo
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simulations and the truncated model for x(0) = 550 and nA = nB = 1000. The truncated model provides
accurate estimates for times less than one second, with some error after that.

We conjecture that the larger errors observed with the truncated model for this reaction are related to
the stoichiometry of this equation with three molecules of X1 needed for the reaction to take place. This
leads to the fact that the dynamics of the mth order moment depend on the (m + 1)th and the (m + 2)th

order moments and therefore the truncation function must provide an estimate of the third and forth order
moments based on the first and second. This seems significantly more challenging than just estimating third
moments from the first two. Fortunately, stoichiometric coefficients larger than two (as in the Schögl reaction)
are not very common. �
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Fig. 6. Comparison between Monte Carlo simulations (solid lines) and the truncated model (33), (35) (dashed lines)
for population mean (top) and population standard deviation (bottom) for Example 4, when (31) is“bistable.”

6 Conclusions and Future Work

An approximate stochastic model for chemically reacting systems was presented in this paper. This was done
by representing the population of various species involved in a set of chemical reactions as the continuous
state of a pSHS. With such a representation, the dynamics of the infinite vector containing all the statistical
moments of the continuous state are governed by an infinite-dimensional linear system of ODEs. We showed
that these infinite-dimensional ODEs can be approximated by finite-dimensional nonlinear ordinary differ-
ential equations with arbitrary precision and provided a procedure to build this type of approximation. The
methodology was illustrate using a variety of examples of chemical reactions that have appeared in literature.
By comparison with Monte Carlo algorithms we showed that these approximate stochastic models indeed
provided very accurate results.

Several observations arise from these examples, which point to directions for future research:
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1. For all the examples considered, it can be seen from equations (17), (22), (28) and (35) that the depen-
dence of ϕ(µ) on lower-order moments, is as if xi, is lognormally distributed. As of now we are unable
to understand this dependance and further investigation is required.

2. As seen from the examples, the approximate truncated models provide accurate time evolution of lower
order moments for the population of species even when the variance is non-zero, i.e., the system has
evolved to a “nondeterministic distribution”, although the approximate truncated model was constructed
assuming a deterministic distribution. As part of our future work we are trying to understand this and
develop explicit error bounds when the system evolves to their “nondeterministic distributions”.

3. In [19, 20], for infinite-dimensional systems that can be partitioned into a finite-dimensional slow sub-
systems and an infinite-dimensional fast one, a finite dimensional system ( whose dimension is equal to
the slow sub-system) can be obtained, that approximates the solution to the infinite-dimensional system,
upto a desired accuracy, for almost all times . Although, the proof of Theorem 2 does not need this kind
of structure for the infinite-dimensional system it is possible that in some of the examples something
similar might be happening which requires further investigation.

4. The truncated models were constructed by requiring (10) to hold for N = 2. A direction of future research
consists of constructing approximations based on (10) but for N > 2.

Many processes in molecular biology involve a large number of molecular species with very low popula-
tions, for which stochastic effect are crucial. Hence, an additional direction for future research is to model
stochastic reactions in molecular biology using the techniques presented in this paper.
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