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Abstract—Moment closure is a technique used to construct sys-
tems of differential equations to approximately compute means,
standard deviations, and correlations between molecule counts
of species involved in chemical reactions. These techniques are
especially useful when the number of molecules exhibit large
stochasticity, which is not uncommon in bio-chemical reactions.
We discuss several approaches to moment closure that have
been proposed in the literature and that have been recently
implemented in a Matlab toolbox.

I. I NTRODUCTION TOMOMENT CLOSURE

Consider a set of chemical speciesX1,X2, . . . ,Xn involved
in a set of chemical reactions and let us denote byx :=
(x1,x2, . . . ,xn) a vector containing their molecule counts.
Given a vector of integersm := (m1,m2, . . . ,mn), we use the
notationµ (m) to denote the following uncentered moment of
x:

µ (m) := E[xm1
1 xm2

2 · · ·xmn
n ].

Such moment if said to be of order∑i mi. With n species
there are exactlyn first order moments E[xi], ∀i ∈ {1,2, . . . ,n},
which are just the means;n(n−1)/2 second order moments
E[x2

i ], ∀i and E[xix j], ∀i 6= j, which can be used to compute
variances and covariance;n(n−1)(n− 2)/6 third order mo-
ments; and so on.

It was show in [4], that if we construct a vectorµ containing
all the uncentered moments ofx up to some orderk, the
evolution of µ is determined by a differential equation of the
form

µ̇ = Aµ + Bµ̄, µ ∈ R
K , µ̄ ∈ R

K̄ (1)

where A and B are appropriately defined matrices and̄µ is
a vector containing moments of order larger1 than k. The
equation (1) is exact and we call it the(exact) k-order moment
dynamics and the integerk is called theorder of truncation.
Note that the dimensionK of (1) is always larger thank since
there are many moments of each order. In fact, in generalK
is of ordernk.

When all chemical reactions have only one reactant, the
term Bµ̄ does not appear in (1) and we say that the exact
moment dynamics areclosed. However, when at least one
chemical reaction has 2 or more reactants, then the termBµ̄
appears and we say that the moment dynamics areopen since
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1When one does not include inµ the zero-order momentµ(0) = 1, this

term will appear inµ̄.

(1) depends on the moments in̄µ , which are not part of the
stateµ . When all chemical reactions are elementary (i.e., with
at most 2 reactants), then all moments inµ̄ are exactly of order
k +1.

Moment closure is a procedure by which one approximates
the exact (but open) moment dynamics (1) by an approximate
(but now closed) equation of the form

ν̇ = Aν + Bϕ(ν), ν ∈ R
K (2)

whereϕ(ν) is a column vector that approximates the moments
in µ̄ . The functionϕ(ν) is called the moment closure function
and (2) is called theapproximate kth order moment dynamics.
The goal of any moment closure method is to constructϕ(ν)
so that the solutionν to (2) is close to the solutionµ to (1).

Some moment closure methods approximate the exact mo-
ments dynamics (1) by a closed equation of larger order, such
as in

φ̇ = ψ(φ), φ ∈ R
N , (3a)

ν̇ = Aν + Bϕ(φ ,ν), ν ∈ R
K , (3b)

where one now approximates̄µ by the functionϕ(φ ,ν) that is
allowed to also depend on the stateφ of an additional dynamic
system. Oftenϕ(φ ,ν) can be made linear inν. In this case,
onceφ reaches a steady state, theν dynamics became linear
and time-invariant.

There are three main approaches to construct the moment
closure functionϕ(·):

1) Matching-based methods directly attempt to match the
solutions to (1) and (2) [or (3)].

2) Distribution-based methods constructϕ(·) by making
“reasonable” assumptions on the statistical distribution
of the molecule counts vectorx.

3) Large volume methods constructϕ(·) by assuming that
reactions take place on a large volume.

It is important to emphasize that this classification is about
methods toconstruct moment closure. It turns out that some-
times different methods lead to the same moment closure
function ϕ(·).

II. M ETHODS FORMOMENT CLOSURE

In this section we discuss several methods to construct
the moment closure function. We shall see that the choice
of which method to use depends on the type of system



TABLE I
WHICH MOMENT CLOSURE TO USE?

distributions have low variability (i.e., low
standard deviations when compared to the
mean) or are fairly symmetric

distributions have large standard deviations when
compared to the mean, but populations do not
become zero with high probability

populations can become zero
with high probability

accuracy zero cumulant closure derivative matching closure no good solution (yet)
simple dynamics quasi-deterministic closure or Van Kampen’s

linear noise approximation
derivative matching closure (but will not be very
simple)

no good solution (yet)

(e.g., how population means compare with standard deviations
for the system considered) and also on the primary goal in
constructing the approximate moment dynamics (e.g., how
important is accuracy versus simplicity of the equations).
Table I summarizes some rules of thumb on the choice of
which approximation to use.

A. Derivative Matching

Derivative matching is a matching-based method for mo-
ment closure described in [4]. It uses moment closure func-
tions ϕ(·) in (2) whose entries areseparable, i.e., of the form
νγ1

1 νγ2
2 · · ·νγn

n . The coefficientsγi ∈ R are then computed to
make the relative error

∥

∥

∥

dℓν
dtℓ

− dℓµ
dtℓ

∥

∥

∥

∥

∥

∥

dℓµ
dtℓ

∥

∥

∥

as small as possible for molecule counts larger than one.
Somewhat surprisingly, this minimization leads to explicit
formulas for the moment closure functionsϕ(·) that do not
depend on the reaction parameters [4].

B. Zero Cumulants

Zero cumulants is a distribution-based method for moment
closure that finds thekth order moment closure functionϕ(·)
in (2) by assuming that all multi-variable cumulants of the
populationx with order larger thank are negligible [2]. This
makes the distribution ofx “as close as possible” to a Gaussian
distribution, which has all cumulants of order higher than two
equal to zero.

To construct zero cumulant closures, one uses the fact that
the cumulantκ (m) can be expressed as

κ (m) = µ (m) + ∑
∑m̄i<∑mi

αm̄ µ (m̄), (4)

where the summation is over momentsµ (m̄) of order strictly
smaller than∑mi and the αm̄ are appropriately selected
constants [3]. This shows that the cumulantκ (m) depends only
on the momentµ (m) and lower-order momentsµ (m̄), so setting
κ (m) = 0 one obtains an expression forµ (m) as a function of
lower-order moments.

The procedure to compute thezero-cumulants moment
closure functionϕ(·) consists of setting to zero all cumulants
corresponding to the moments that do not appear inµ and
then solving the equations (4) for the moments inµ̄ .

C. Low Dispersion

Low dispersion is a distribution-based method for moment
closure that finds the moment closure functionϕ(·) in (2) by
assuming that the distributions of the populations are tightly
clustered around their means, with standard deviations much
smaller than the means. Specifically, for thekth order moment
closure one assumes that the normalized centered moments
of order larger thank are much smaller than one. We recall
that given a vector of integersm := (m1,m2, . . . ,mn), the
correspondingnormalized centered moment is defined by

η(m) := E
[(x1−E[x1]

E[x1]

)m1
(x2−E[x2]

E[x2]

)m2
· · ·

]

.

Such moment if said to be of order∑i mi. For fairly symmetric
distributions the odd-order moments can be quite small and
therefore this technique is especially useful for even-order
moment closures for which the odd-order higher moments can
be safely neglected.

To construct low dispersion closures, one uses the fact that
an uncentered momentµ (m) can be expressed in terms of the
normalized centered moment as follows

µ (m) = E[x1]
m1 E[x2]

m2 · · ·E[xn]
mn

(

1+ η(m) + ∑
2≤∑m̄i<∑mi

βm̄ η(m̄)
)

,

where the summation is over momentsη(m̄) of order two or
larger and strictly smaller than∑mi, and theβm̄ are appro-
priately selected nonnegative constants [3]. When a particular
normalized centered momentη(m) is much smaller than one,
we have that

µ (m) ≈ E[x1]
m1 E[x2]

m2 · · ·E[xn]
mn

(

1+ ∑
2≤∑m̄i<∑mi

βm̄ η(m̄)
)

, (5)

which allows one to express the uncentered momentµ (m)

solely in terms of normalized centered momentsη(m̄) of order
strictly smaller than∑mi. On the other hand, we can express
all these normalized centered moments as linear combinations
of the uncentered moments of order strictly smaller than∑mi

as follows

η(m̄) =
µ (m̄)

E[x1]m̄1 E[x2]m̄2 · · ·E[xn]m̄n

+ ∑
∑m̃i<∑mi

γm̃
µ (m̃)

E[x1]m̃1 E[x2]m̃2 · · ·E[xn]m̃n
, (6)



where the summation is over uncentered momentsµ (m̃) of
order strictly smaller than∑ m̄i and theγm̃ are appropriately
selected constants [3].

The procedure to compute thelow dispersions moment
closure functionϕ(·) in (2) thus consists of using (5) and
(6) to approximate any moment that does not appear inµ as
a linear combination of the moments inµ . Note however that
the coefficients of these linear combinations will depend on
monomials of the form E[x1]

m̂1 E[x2]
m̂2 · · ·E[xn]

m̂n , with all the
m̂i ≥ 0 and therefore the moment closure functionφ(·) will
be polynomial but nonlinear onµ .

Relationship with zero-cumulants closure: For second
order moment closure (k = 2) one sets to zero 3th-order
normalized centered moments, which is equivalent to setting
to zero the 3th-order cumulants. Therefore for 2nd-order
closures, zero cumulant and low dispersion coincide.

D. Quasi Deterministic

Quasi-deterministic is a distribution-based method for mo-
ment closure that finds the moment closure functionϕ(·) in
(3) by assuming that the distributions of the populations are
tightly clustered around the solutionφ to the deterministic
dynamics

φ̇ = Adetφ + Bdetψ(φ), φ := (φ1,φ2, . . . ,φn) ∈ R
n, (7)

which are obtained by assuming that eachφi := xi is deter-
ministic and therefore

E[φiφ j] = E[φi]E[φ j] = φiφ j.

Specifically, for thekth order moment closure one assumes
that the quasi-deterministic normalized centered momentsof
order larger thank are much smaller than one. Given a vector
of integersm := (m1,m2, . . . ,mn), the correspondingquasi-
deterministic normalized centered moment is defined by

η̂(m) := E
[(x1−φ1

φ1

)m1
(x2−φ2

φ2

)m2
· · ·

(xn −φn

φn

)mn
]

.

Such moment if said to be of order∑i mi.

To construct quasi-deterministic closures, one uses the fact
that an uncentered momentµ (m) can be expressed in terms
of the quasi-deterministic normalized centered moment as
follows

µ (m) = φm1
1 φm2

2 · · ·φmn
n

(

1+ η̂(m) + ∑
1≤∑m̄i<∑mi

βm̄ η̂(m̄)
)

,

where the summation is over momentsη(m̄) of order one or
larger and strictly smaller than∑mi, and theβm̄ are appro-
priately selected nonnegative constants [3]. When a particular
quasi-deterministic normalized centered momentη̂(m) is much
smaller than one, we have that

µ (m) ≈ φm1
1 φm2

2 · · ·φmn
n

(

1+ ∑
2≤∑m̄i<∑mi

βm̄ η̂(m̄)
)

, (8)

which allows one to express the uncentered momentµ (m)

solely in terms of quasi-deterministic normalized centered

momentsη̂(m̄) of order strictly smaller than∑mi. On the other
hand, we can express all these quasi-deterministic normalized
centered moments as linear combinations of the uncentered
moments of order strictly smaller than∑mi as follows

η̂(m̄) =
µ (m̄)

φ m̄1
1 φ m̄2

2 · · ·φ m̄n
n

+ ∑
∑m̃i<∑mi

γm̃
µ (m̃)

φ m̃1
1 φ m̃2

2 · · ·φ m̃n
n

, (9)

where the summation is over uncentered momentsµ (m̃) of
order strictly smaller than∑m̄i and theγm̃ are appropriately
selected constants [3].

The procedure to compute thequasi-deterministic moment
closure functionϕ(·) in (3) thus consists of using (5) and (6) to
approximate any moment that does not appear inµ as a linear
combination of the moments inµ . The coefficients of these
linear combinations will depend on monomials of the form
φ m̂1

1 φ m̂2
2 · · ·φ m̂n

n , with all the m̂i ≥ 0 and therefore the moment
closure function will be linear onµ for a fixedφ . This means
that the approximate dynamics in (3) are of the form

φ̇ = Adetφ + Bdetψ(φ), φ ∈ R
n, (10a)

ν̇ = Aν(φ)ν + cν(φ), ν ∈ R
K , (10b)

and, whenφ reaches a steady state value, theν dynamics
become linear.

Relationship with low dispersion closure: In general
the normalized centered moment are smaller than their
quasi-deterministic version and therefore whenever quasi-
deterministic moment closure provides a good approximation,
one should expect low-dispersion moment closure to do at least
as well. However, quasi-deterministic moment closure has the
advantage that it results in moment dynamics that are “almost”
linear and therefore generally easier to analyze.

E. Van Kampen’s Linear Noise Approximation

Van Kampen’sLinear Noise Approximation is developed in
[5, Chapter X] and can be applied when the matricesA,B in
(1) depend on some parameterV that can be assumed large,
i.e., when we have

µ̇ = A(V )µ + B(V)µ̄ , µ ∈ R
K ,

with V large. This form of moment closure results in a system
of the form (3) and is exact in the limit asV → ∞. Typically,
V is the volume on which the chemical reactions take place.

To construct (3), one starts by choosinḡφ to satisfy the
deterministic large-volume dynamics

˙̄φ = Adetφ̄ + Bdetψ(φ̄), φ̄ := (φ̄1, φ̄2, . . . , φ̄n) ∈ R
n, (11)

which are obtained by assuming that each̄φi := xi/V is
deterministic and therefore

E[φ̄iφ̄ j] = E[φ̄i]E[φ̄ j] = φ̄iφ̄ j

and also by makingV → ∞.

Regarding the vector̄φ in (11) as a deterministic approx-
imation to the stochastic vectorx/V , motivates defining the



following stochastic perturbation vectorχ := (χ1,χ2, . . . ,χn),
with

χi :=
xi −V φ̄i

V
1
2

⇔ xi = V φ̄i +V
1
2 χi, (12)

where the normalization byV
1
2 will be needed to keep the

moments ofχ bounded asV → ∞. Given a vector of integers
m := (m1,m2, . . . ,mn), we use the notationξ (m) to denote the
following uncentered moment ofχ :

ξ (m) := E[χm1
1 χm2

2 · · ·χmn
n ].

The moments ofx and χ are related by

µ (m) = E[(V φ̄1 +V
1
2 χ1)

m1 · · ·(V φ̄n +V
1
2 χn)

mn ]

= V ∑i mi ∑
∑ m̄i≤∑mi

αm̄

V
m̄
2

ξ (m̄) (13)

where the summation is over momentsξ (m̄) of order up to
∑mi and theαm̄ are appropriately selected constants.

Computing the (exact) moment dynamics forξ , one obtains

ξ̇ = Aξ (V, φ̄ )ξ + Bξ (V, φ̄)ξ̄ , ξ ∈ R
K , (14)

whereξ and ξ̄ contain the moments ofχ corresponding to
the moments ofx in µ and µ̄ , respectively. For elementary
reactions with reaction rates that depend on the volume as
follows:

/0
rate=cV
−−−−−→ ∗ X

rate=cX
−−−−−→ ∗

2X
rate=c X(X−1)

V−−−−−−−−→ ∗ X +Y
rate=c XY

V−−−−−−→ ∗

the open system (14) converges asV → ∞ to a closed system
of the form

ξ̇ = Aξ (V, φ̄)ξ + Bξ (V, φ̄)ξ̄ V→∞
−−−→ Aξ (∞, φ̄ )ξ , ξ ∈ R

K .
(15)

Since the momentsµ andξ are related through (13), one can
use (15) to obtain a closed equation forµ as in (3). Moreover,
this equation will be linear inµ , leading to approximate
dynamics similar to (10).

Relationship with quasi-deterministic closure: The de-
terministic equations (7) and (11) differ by two facts: (i) the
state in (11) was normalized through a division by the volume,
and (ii) in (11) we took the limit asV → ∞. For elementary
reactions with molecule counts much larger than one, taking
the limit asV → ∞ has almost no effect and we essentially
haveφ = V φ̄ . In this case,

ξ (m) ≈
φm1

1 φm2
2 · · ·φmn

n

V
∑i mi

2

η̂(m).

In view of this, setting a quasi-deterministic momentη̂(m)

to zero is equivalent to setting to zero the corresponding
uncentered momentξ (m) of χ . This means that we can view
the quasi-deterministic closure as taking the Van Kampen
equations (11) and (15) and simply settinḡξ in (15) to

zero, without ignoring other terms that would also disappear
as V → ∞. Since we are keeping more terms of the exact
equations, with quasi-deterministic closure one often obtains
more accurate results then with Van Kampen’s linear noise
approximation.

III. STOCHDYNTOOLS TOOLBOX

In this section we illustrate how to use the
StochDynTools Matlab toolbox to compute different
moment closure dynamics for the network of chemical
reactions considered in [5, p. 263]:

A
αVφA−−−→ X , 2X

γX(X−1)/V
−−−−−−−→Y, Y

βY
−→ B, (16)

where the population ofA is assumed constant with a con-
centrationφA, V is the volume on which the reactions take
place, and the expressions above the arrows in (16) correspond
to the rates at which the different reactions take place. With
some abuse of notation we will use the symbolsX and Y
to denote both the names of the species and their molecular
counts. WithinStochDynTools, this network of chemical
reactions is described by the following “.net file:”

species:
X stochastic; % number of X molecules
Y stochastic; % number of Y molecules

parameters:
V = 20; % volume
phiA "\phi_A"= 5; % concentration of A ( fixed )
al "\alpha" = 10;
be "\beta" = 20;
ga "\gamma" = 30;

reactions:
rate = al*phiA*V; {X} >{X+1}; % A −> X
rate = ga*X*(X-1)/V; {X,Y}>{X-2,Y+1};%2X −> Y
rate = be*Y; {Y} >{Y-1}; % Y −> B

Providing a detailed discussion of.net files syntax is beyond
the scope of this paper and the reader is referred to [3] for
details. Assuming that the above file is calledVKp263.net,
the exact 2nd-order moment dynamics for this system can be
computed using the following Matlab commands:

net=readNet(’VKp263.net’);
mdyn=momentDynamics(net,2);

from which one obtains (after conversion to LATEX):

d
dt







E[X ]
E[Y ]

E[X2]
E[XY ]

E[Y 2]






=









2 γ
V 0 −2 γ

V 0 0
− γ

V −β γ
V 0 0

2αφAV−4 γ
V 0 8 γ

V 0 0
2 γ

V αφAV −3 γ
V −β+2 γ

V 0
− γ

V β γ
V −2 γ

V −2β















E[X ]
E[Y ]

E[X2]
E[XY ]

E[Y 2]







+







αφAV 0 0
0 0 0

αφAV −4 γ
V 0

0 γ
V −2 γ

V

0 0 2γ
V







[ 1
E[X3]

E[X2Y ]

]

.

The different moment closure approximations could then be
obtained using the following Matlab commands:

mdyn_dm =momentClosure(net,mdyn,’derivativeMatching’);
mdyn_zc =momentClosure(net,mdyn,’zeroCumulants’);
mdyn_ld =momentClosure(net,mdyn,’lowDispersion’);
mdyn_qd =momentClosure(net,mdyn,’quasiDeterministic’);
mdyn_lna=momentClosure(net,mdyn,{’VanKampen’,’V’});



From these commands we would obtain the different approx-
imate moment dynamics listed below.
Derivative matching:

[

E[X3]

E[X2Y ]

]

≈





E[X2]
3

E[X ]3

E[X2]E[XY ]2

E[X ]2 E[Y ]





Zero cumulants and low dispersion:
[

E[X3]

E[X2Y ]

]

≈
[

3E[X2]E[X ]−2E[X ]3

E[X2]E[Y ]+2E[X ]E[XY ]−2E[X ]2 E[Y ]

]

Quasi deterministic:

d
dt

[

φX
φY

]

=

[

2 γφX
V −2 γφX

2

V +αφAV

−
γφX

V −β φY +
γφX

2

V

]

[

E[X3]

E[X2Y ]

]

≈
[

φX
3−3φX

2 E[X ]+3φX E[X2]

φX
2φY +φY E[X2]−2φX φY E[X ]−φX

2 E[Y ]+2φX E[XY ]

]

Van Kampen’s linear noise approximation:

d
dt

[

φX
φY

]

=
[

−2γφX
2+αφA

−βφY +γφX
2

]

d
dt







E[X ]
E[Y ]

E[X2]
E[XY ]

E[Y 2]






≈







−4γφX 0 0 0 0
2γφX −β 0 0 0

4γV φX
2+2αφAV 0 −8γφX 0 0

−γV φX
2 2γV φX

2+αφAV 2γφX −β−4γφX 0
0 −2γV φX

2 0 4γφX −2β













E[X ]
E[Y ]

E[X2]
E[XY ]

E[Y 2]







+









2γV φX
2+αφAV

−γV φX
2

4γV φX
2+αφAV

−2γV φX
2

γV φX
2+βV φY









Figure 1 compares the accuracy of the different moment
closure methods for a low volume (V = 2) and a high volume
(V = 20). For the larger volume all moment closure techniques
provide a very good match with Monte Carlo results, but for
the smaller volume derivative matching produces the most
accurate results even with only a second order truncation.
These results are fairly typical.
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Fig. 1. Comparison of accuracy between different moment closure methods for the example described in Section III with two different volumes. The legends
show (i) the values of the mean± one standard deviation at the final time (ii) a two-characterstring indicating the moment closure method, and (iii) an
integer indicating the order of truncation. The distributions, means and standard deviations in the right-most plots were obtained using 20,000 Monte Carlo
simulations produced by [1]. The left-most plots include a typical Monte Carlo run.


