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Abstract—Moment closure is a technique used to construct sys- (1) depends on the moments in which are not part of the
tems of differential equations to approximately compute mans, statep. When all chemical reactions are elementary (i.e., with

standard deviations, and correlations between molecule cots ot st 2 reactants), then all momentgiare exactly of order
of species involved in chemical reactions. These techniguiare kil

especially useful when the number of molecules exhibit largy

stochasticity, which is not uncommon in bio-chemical readons. Moment closure is a procedure by which one approximates
We discuss several approaches to moment closure that have

been proposed in the literature and that have been recently the exact (but open) mqment dynamics (1) by an approximate
implemented in a Matlab toolbox. (but now closed) equation of the form

I. INTRODUCTION TOMOMENT CLOSURE V=Av+Bp(v), veRK 2

Consider a set of chemical speci¥g Xy, ..., Xy involved whereg¢(v) is a column vector that approximates the moments
in a set of chemical reactions and let us denotextay= in 1. The functiong (v) is called the moment closure function
(X1,X2,...,Xy) @ vector containing their molecule countsgng (2) is called thepproximate kth order moment dynamics.
Given a vector of integers:= (my, My, ...,My), we use the The goal of any moment closure method is to constst)

notationu(™ to denote the following uncentered moment ofg that the solutiow to (2) is close to the solutiop to (1).
X:
. Some moment closure methods approximate the exact mo-
pm = EDG™G2 - X ments dynamics (1) by a closed equation of larger order, such

Such moment if said to be of ordgr;m. With n species asin

there are exactly first order moments [, vi € {1,2,...,n}, ¢: P(p), e RN, (3a)
which are just the meansi(n—1)/2 second order moments - K

E[x?], Vi and Exx;], Vi # j, which can be used to compute V=Av+Bo(gv), VER (30)
variances and covarianca{n—1)(n—2)/6 third order mo- where one now approximatgsby the functiong (¢, v) that is

ments; and so on. allowed to also depend on the stgtef an additional dynamic
system. Oftenp(¢,v) can be made linear im. In this case,

It was show in [4], that if we construct a vectprcontaining . :
once @ reaches a steady state, thalynamics became linear
all the uncentered moments af up to some ordek, the o .
and time-invariant.

evolution of u is determined by a differential equation of the

form There are three main approaches to construct the moment
[ =Au+BI peRK e RK (1) closure fungnond;(-): .

B 1) Matching-based methods directly attempt to match the
where A and B are appropriately defined matrices apdis solutions to (1) and (2) [or (3)].
a vector containing moments of order largehan k. The 2) Distribution-based methods construct¢(-) by making
equation (1) is exact and we call it tiexact) k-order moment “reasonable” assumptions on the statistical distribution
dynamics and the integek is called theorder of truncation. of the molecule counts vector
Note that the dimensioK of (1) is always larger thak since 3) Large volume methods construct (-) by assuming that
there are many moments of each order. In fact, in gertéral reactions take place on a large volume.

is of ordern®. It is important to emphasize that this classification is abou

When all chemical reactions have only one reactant, theethods toconstruct moment closure. It turns out that some-
term Bi does not appear in (1) and we say that the exdéhes different methods lead to the same moment closure
moment dynamics arelosed. However, when at least onefunction¢().
chemical reaction has 2 or more reactants, then the Bum
appears and we say that the moment dynamic®jgee since I[I. METHODS FORMOMENT CLOSURE

. In this section we discuss several methods to construct
This research was supported by the NSF. . .
1When one does not include ia the zero-order momemu® — 1, this e moment closure function. We shall see that the choice

term will appear infl. of which method to use depends on the type of system



TABLE |
WHICH MOMENT CLOSURE TO USP

distributions have low variability (i.e., low| distributions have large standard deviations wherpopulations can become zerf
standard deviations when compared to thecompared to the mean, but populations do nowith high probability
mean) or are fairly symmetric become zero with high probability
accuracy zero cumulant closure derivative matching closure no good solution (yet)
simple dynamics|| quasi-deterministic closure or Van Kampen(s derivative matching closure (but will not be very no good solution (yet)
linear noise approximation simple)

(e.g., how population means compare with standard dewniticC. Low Dispersion

for the system considered) and also on the primary goal in|_ oy dispersion is a distribution-based method for moment
constructing the approximate moment dynamics (€.g., hQ4syre that finds the moment closure functipf) in (2) by
important is accuracy versus simplicity of the equationsjssyming that the distributions of the populations aretligh
Table | summarizes some rules of thumb on the choice @f;stered around their means, with standard deviationshmuc
which approximation to use. smaller than the means. Specifically, for #ile order moment
closure one assumes that the normalized centered moments
of order larger thark are much smaller than one. We recall

Derivative matching is a matching-based method for mothat given a vector of integerm := (m,mp,...,my,), the
ment closure described in [4]. It uses moment closure funearrespondingiormalized centered moment is defined by
tions ¢(+) in (2) whose entries arseparable, i.e., of the form X1 — E[xa]\ ™ /% — E[xp] \ M2
viviz... vl The coefficientsy € R are then computed to n™ = EK Ela] ) ( EDol ) }

Such moment if said to be of ordgf my. For fairly symmetric

A. Derivative Matching

make the relative error

0
‘ % — % distributions the odd-order moments can be quite small and
T dal therefore this technique is especially useful for evereord
‘ at’ moment closures for which the odd-order higher moments can

. be safely neglected.
as small as possible for molecule counts larger than one.

Somewhat surprisingly, this minimization leads to explici To construct low dispersion closures, one uses the fact that
formulas for the moment closure functiogg-) that do not an uncentered momept™ can be expressed in terms of the

depend on the reaction parameters [4]. normalized centered moment as follows
B. Zero Cumulants u(m) = E[x ™ E[xp]™ - - - E[xy]™

Zero cumulants is a distribution-based method for moment (1+ n(m) + z Brﬁn(rﬁ)),
closure that finds th&th order moment closure functiaf(-) 2<ym<ym

in (2) by assuming that all multi-variable cumulants of th@nere the summation is over momem&? of order two or
populationx with order larger thark are negligible [2]. This larger and strictly smaller thag m, and theBs are appro-

makes the distribution of “as close as possible” to a Gaussiar&riatdy selected nonnegative constants [3]. When a paatic
distribution, which has all cumulants of order higher thao t |, alized centered moment™ is much smaller than one

equal to zero. we have that

To construct zero cumulant closures, one uses the fact that ) m mp .
the cumulant (™ can be expressed as P~ BDa™ Ee] EDn] S
(1+ Ban™), ()
kM = gy > amp™, 4) ZSZVTHZ<ZYTH
Tm<ym .
which allows one to express the uncentered momelfit

where the summation is over moment&€” of order strictly solely in terms of normalized centered moment® of order
smaller thany m and the an are appropriately selectedstrictly smaller thary my. On the other hand, we can express
constants [3]. This shows that the cumulaf?) depends only all these normalized centered moments as linear combirsatio
on the momeng(™ and lower-order momenis(™, so setting of the uncentered moments of order strictly smaller tlyan
k(™ = 0 one obtains an expression faf™ as a function of as follows

lower-order moments.

n™ =

The procedure to compute theero-cumulants moment
closure functiong(-) consists of setting to zero all cumulants ¥
corresponding to the moments that do not appeau iand + z Y
then solving the equations (4) for the momentsuin IMm<Em




where the summation is over uncentered moment8 of momentsj™ of order strictly smaller thay mi. On the other
order strictly smaller thary m and theys are appropriately hand, we can express all these quasi-deterministic nazethli
selected constants [3]. centered moments as linear combinations of the uncentered

The procedure to compute tHew dispersions moment moments of order strictly smaller thghm as follows

closure functiong(-) in (2) thus consists of using (5) and . 5 p(m ) () 9
(6) to approximate any moment that does not appear as - m +zﬁ1§zm me, ©)
a linear combination of the moments jin Note however that

the coefficients of these linear combinations will depend omhere the summation is over uncentered momerif8 of
monomials of the form ;™ E[x,]™ .. E[x,]™, with all the order strictly smaller thary m and theys are appropriately
M > 0 and therefore the moment closure functipf) will  selected constants [3].

be polynomial but nonlinear opr. The procedure to compute tlyeiasi-deterministic moment

Relationship with zero-cumulants closure: For second closure functiorg(-) in (3) thus consists of using (5) and (6) to
order moment closurek(= 2) one sets to zero 3th-orderapproximate any moment that does not appear as a linear
normalized centered moments, which is equivalent to getticombination of the moments ip. The coefficients of these
to zero the 3th-order cumulants. Therefore for 2nd-ordinear combinations will depend on monomials of the form
closures, zero cumulant and low dispersion coincide. @M@y - @™, with all them > 0 and therefore the moment
closure function will be linear op for a fixed ¢. This means

that the approximate dynamics in (3) are of the form
Quasi-deterministic is a distribution-based method for mo-

D. Quasi Deterministic

ment closure that finds the moment closure funcidr) in @ = Adet® + Baetl(9), @ER", (10a)
(3) by assuming that the distributions of the populatiors ar v=A(@)v+cy (@), veRK, (10b)
tightly clustered around the solutiop to the deterministic

dg/na)rlnics on and, wheng reaches a steady state value, thedynamics

become linear.

. n
0= Adet@+Bae(9), 9= (@@ ) ERT, - (7) Relationship with low dispersion closure: In general
which are obtained by assuming that eagh= x is deter- the normalized centered moment are smaller than their
ministic and therefore guasi-deterministic version and therefore whenever quasi
deterministic moment closure provides a good approximatio
Elap]=EalEql=ae. one should expect Iow-dispersiF(J)n momentgclosurgpt)o do atlea
Specifically, for thekth order moment closure one assumeas well. However, quasi-deterministic moment closure has t
that the quasi-deterministic normalized centered momehtsadvantage that it results in moment dynamics that are “almos
order larger thark are much smaller than one. Given a vectdinear and therefore generally easier to analyze.
of integersm:= (my,my,...,m,), the correspondingjuasi-

deterministic normalized centered moment is defined by E. Van Kampen's Linear Noise Approximation

Van Kampen'd.inear Noise Approximation is developed in

AM.=E [(Xl_ qol)ml(xz— qoz)mzm (M)%} [5, Chapter X] and can be applied when the matrideB in
o 2 *h (1) depend on some parame¥érthat can be assumed large,
Such moment if said to be of ordgy m. i.e., when we have
To construct quasi-deterministic closures, one uses fite fa p=AM)u+B\V)u, He RK,

that an uncentered momept™ can be expressed in terms

of the quasi-deterministic normalized centered moment ¥4V large. This form of moment closure results in a system
follows of the form (3) and is exact in the limit a8 — c. Typically,

A . V is the volume on which the chemical reactions take place.
pm — (plml(pzrm...(,,nnh(Hn(m)Jr S ﬁrﬁn@)’

1<shesm To construct (3), one starts by choosi@to satisfy the

o deterministic large-volume dynamics
where the summation is over momemt&” of order one or

larger and strictly smaller thay m, and thefy are appro- = Adet®@+ Baet)(0), 0= (@1, ,...,h) €R",  (11)

priately selected nonnegative constants [3]. When a paatic

quasi-deterministic normalized centered monmgt

smaller than one, we have that o o

L g . g (1+ 5 Brﬁﬁ“ﬁ)), ®) E[w] ElalElp] = a9
2<ym<ym and also by makiny — oo.

) h which are obtained by assuming that eaah:: Xi/V is
ISMUCN " qeterministic and therefore

which allows one to express the uncentered momelfit Regarding the vecto«ﬁin (11) as a deterministic approx-
solely in terms of quasi-deterministic normalized cerderémation to the stochastic vectoyV, motivates defining the



following stochastic perturbation vectar:= (X1, X2,-..,Xn), zero, without ignoring other terms that would also disappea

with asV — . Since we are keeping more terms of the exact
X —Vfﬁ _ N equations, with quasi-deterministic closure one ofteraivist
Xi = V3 < X=Va+Vay, (12) more accurate results then with Van Kampen’s linear noise

approximation.

where the normalization by’% will be needed to keep the
moments ofy bounded a§ — . Given a vector of integers 1. STOCHDYNTOOL S TOOLBOX
m:= (Mg, mp,...,My), we use the notatio§ ™ to denote the  |n  this section we illustrate how to use the
following uncentered moment of: St ochDynTool s Matlab toolbox to compute different
gm._ X xS ™). moment closu_re dyqamics for the network of chemical
reactions considered in [5, p. 263]:
The moments ok and x are related by

aVgn

A YX(X—1)/V

o . X, 22X v, vE.B (0
p™ = E[(V@L+V2x0)™ - (Vh+V 2 xn)™) _ _ .
where the population of is assumed constant with a con-

. am
=v2im > ¢ ™ (13) centrationg, V is the volume on which the reactions take

o 2 . .
Imszm place, and the expressions above the arrows in (16) comdspo
where the summation is over momer&§" of order up to !0 the rates at which the different reactions take placehWit
Em and thearﬁ are appropriate|y selected constants. some abuse of notation we will use the Symbxl&indY

) ) _ to denote both the names of the species and their molecular
Computing the (exact) moment dynamics &rone obtains ¢qynts. WithinSt ochDynTool s, this network of chemical

) _ _— K . . . ; e
E=A:(V, Q)& +Bs(V,0)§, &eRK, (14) reactions is described by the followingriet file
— A A speci es:
where ¢ and & contain the moments gf corresponding to X stochastic; 9% number of X molecules
the moments ok in u and [1, respectively. For elementaryparlnzi ochastic; % number of 'Y molecules
reactions with reaction rates that depend on the volume asv = 20; % volume
follows: phi A "\phi _A"= 5; 9% concentration of A (fixed )
' al "\al pha" = 10;
rate=cVvV rate=cX be "\beta" = 20;
D —— X —— ga "\gamm" = 30;
X(X—1) XY reactions:
rate=c=~y,—~ rate=c%y- rate = al *phi A+V; (X >{X+1}; %A —>X
— YV % X+Y —— rate = gasXs(X-1)/V: {X Y}>{X-2, Y+1}: %2X —> Y
rate = bexV; {r >{v-1}; %Y —->B

the open system (14) converges\as- o to a closed system
of the form Providing a detailed discussion ofet files syntax is beyond

; —~ — 7 Voo — K the scope of this paper and the reader is referred to [3] for

E=A (V0L +B:(V.0)d — Ag(2.9)¢, LeR details. Assuming that the above file is callip263. net ,

(15) the exact 2nd-order moment dynamics for this system can be

Since the momentg andé are related through (13), one carcomputed using the following Matlab commands:
use (15) to obtain a closed equation foms in (3). Moreover, |~ o qnet (' vkp263. net ') :
this equation will be linear inu, leading to approximate mdyn=noment Dynani cs(net, 2);
dynamics similar to (10).

from which one obtains (after conversion gX):
Relationship with quasi-deterministic closure: The de-

terministic equations (7) and (11) differ by two facts: (ijet E[X] 2y 0 -2 0 0 E[X]
: : S d | Ev -V -8 ¢y 0 0 E[Y]
state in (11) was normalized through a division by the volume d EX2 | — |2a0v-4 0 8 o o XY
and (i) in (11) we took the limit a¥ — . For elementary  dt | gxv] 20 agV —3% —p+2y 0 | | EXY]
reactions with molecule counts much larger than one, taking EY?] -y B¢ -2y -—2p] LEY
the limit asV — « has almost no effect and we essentially agv 0 0
have =V ¢. In this case, L |amv -4y o E[>1<3] )
m M M 0 ¢ -2¢| LEX?Y]
m @ % pm o o0 2
¢~ Tim .
VT The different moment closure approximations could then be

In view of this, setting a quasi-deterministic momept™  obtained using the following Matlab commands:
to zero is equivalent to setting to zero the correspondiRgyn dm =nonent O osur e(net, mdyn, * deri vati veMat chi ng’ ) ;
uncentered momer&(™ of x. This means that we can viewnyn_zc =monent O osure(net, ndyn, * zer oCunul ant s’ ) ;

. L. . mdyn_| d =nonent C osur e( net, ndyn, ' | owDi spersion’);
the quasi-deterministic closure as taking the Van Kampe{njn_qd =noment O osur e( net , mdyn, * quasi Det er i ni stic');

equations (11) and (15) and simply settidgin (15) to rdyn_Ina=nonent d osure(net, mdyn, {* VanKanpen'," V'});




From these commands we would obtain the different approx-
imate moment dynamics listed below.
Derivative matching:

Ex?°
{ E[X3] } ~ Ex3
E[X2Y] E[X?E[XY]2
EXIZELY]

Zero cumulants andlow dispersion:

{ E[X3] } - [ 3E[X?E[X]—2E[X]3 }
EX2Y] | 7 | EX2EY]+2EX] E[XY]—2EX]2 E]Y]

Quas deterministic:
d [@(} B 2%72%2+a%v
- 2
dt L X B+ 1%
{ E[X?] } ~ [ B3 -3pPE[X]+3x E[X?]
EX2Y]] ™ Lo or+ov EIX?—20x oy EIX] - EIY ]+ 20 EIXY]
Van Kampen's linear noise approximation:

(&)= [2mran)

E[X] — Ay 0 0 0 0 E[X]
d | Ev 2y -B 0 0 0 E[Y]
— | EXY | & | VeE+2a@V 0 —8yax 0 0 E[X?
dt | Exy) “WaE 2NeE+agV 2y —B-4ygx O E[XY]
E[Y?] 0 2N 0 4ygc -28d LE[Y?

2NV @ +a gV

-Wad

+ | 4w pl+amv

-2V o?

WaZ+BY ¢y

Figure 1 compares the accuracy of the different moment
closure methods for a low volum¥ & 2) and a high volume
(V = 20). For the larger volume all moment closure techniques
provide a very good match with Monte Carlo results, but for
the smaller volume derivative matching produces the most
accurate results even with only a second order truncation.
These results are fairly typical.
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Fig. 1. Comparison of accuracy between different momergurk methods for the example described in Section Il with tlifferent volumes. The legends
show (i) the values of the meat one standard deviation at the final time (ii) a two-charasteing indicating the moment closure method, and (iii) an
integer indicating the order of truncation. The distribns, means and standard deviations in the right-most plete wbtained using 20,000 Monte Carlo

(b) volumeV =20

simulations produced by [1]. The left-most plots includeypi¢al Monte Carlo run.



