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Abstract: Among Alberto Isidori’s many seminal contributions, his solution
of the nonlinear tracking problem and the underlying concept of zero dynam-
ics have had the widest and strongest impact. Here we use these results to
investigate and quantify the limit to tracking performance posed by unsta-
ble zero dynamics. While some aspects of this limit are nonlinear analogs of
Bode’s T-integral formula, the dependence on the exosystem dynamics is an
added complexity of nonlinear tracking.

1 Introduction

The concept of nonlinear zero dynamics is now firmly placed at the foundation
of control theory. Its ability to reveal input-output properties and feedback
limitations continues to stimulate many researchers to gain deeper insights
and develop new design methods.

The foundational and pioneering role of Alberto Isidori in this area is
well known. Some quarter of a century ago he captured the attention of most
of active researchers in the field by the astonishing novelty of his ideas and
brilliant clarity with which he presented them. Any one of his papers and
talks was enough to convert his listeners to his way of thinking and motivate
them to ask for his preprints and notes, which he most generously shared
with his colleagues.

We use this opportunity to express our gratitude to Alberto Isidori and
illustrate how his concepts of non-minimum phase nonlinear systems influ-
enced our research. Isidori and coworkers introduced this concept in the
1980’s, within the broader framework of input-output linearization theory
[11–13,15–17]

Difficulties with non-minimum phase linear systems have been known in
classical feedback theory for many decades, especially in tracking and dis-
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turbance rejection problems. For linear transfer functions Bode has char-
acterized the limitations of feedback connections via his seminal results on
integral invariants in frequency domain. Bode showed that integrals of log-
arithmic sensitivities are constrained by unstable poles and zeros. Over the
last several decades Bode-like results have been obtained for wider classes of
linear time-invariant systems (see [4, 9, 21–23] and references therein.)

The frequency domain form of Bode integrals makes it unclear whether
such constraints apply to nonlinear systems. Occasionally one would even
hear conjectures that, by introducing nonlinearities in the controller, Bode’s
constraints may be avoided.

A few years ago we approached the nonlinear feedback limitations problem
using Isidori’s work on nonlinear zero dynamics and normal forms. For this we
first had to give a state space interpretation of Bode’s integrals. We focused
on the T-integral and followed a path which started with the 1972 “cheap
control” result of Kwakernaak and Sivan [21]. This led us through the singular
perturbation analysis [18,26] to the explicit formulas of Qiu and Davison [23].
For a special case a nonlinear analog of the Bode T-integral was obtained by
Seron et al. [24] while our general result is presented in [3]. The purpose of
this text is to present a brief review on this line of research.

2 Bode T-Integral and Cheap Control

For single input-single output linear time invariant systems, the best attain-
able tracking performance is constrained by Bode’s T-integral
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with T = GK(1 + GK)−1 where G is the plant, K is a minimum phase
controller, Kv is the velocity constant and α1, . . . , αp are the unstable zeros.
Clearly, perfect tracking of a reference input that would result from T (jω) = 1
for all ω, is impossible in the presence of unstable zeros of plant G.

With a singular perturbation time scale decomposition of the cheap con-
trol tracking problem into the slow minimum energy stabilization of the zero
dynamics and a rapid output regulation, Seron et al. [24] showed that the
Bode T-invariant is, in fact, the minimum amount of output energy needed
to stabilize the zero dynamics. This insight is gained from the linear normal
form in which the output is the input into the zero dynamics subsystem and
must be used for its stabilization. The amount of energy the output needs to
stabilize the unstable zeros is therefore not available for tracking and appears
as the energy of the tracking error which remains nonzero even when the gain
is allowed to tend to infinity. In other words
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Seron et al. have shown that this interpretation of Bode T-constraint applies
to nonlinear systems having a normal form in which the system output is
the sole input into the zero dynamics subsystem and plays the role of the
stabilizing control in the corresponding nonlinear minimum energy problem.

The results and expressions summarized in the above discussion are for
the tracking of a step input. To prepare for more general nonlinear results
discussed in the next section, we briefly review the tracking problem for linear
systems

ẋ = Ax + Bu, y = Cx + Du,

x ∈ R
n, u ∈ R

m, y ∈ R
q, and reference signals r(t) ∈ R

q generated by a
known exosystem

ẇ = Sw, r = Qw.

Davison [7] and Francis [8] have shown that it is possible to design a feedback
controller such that the closed-loop system is asymptotically stable and the
output y(t) converges to r(t), if and only if (A,B) is stabilizable, (C,A) is
detectable, the number of inputs is at least as large as the number of outputs
(m ≥ q), and the zeros of (A,B,C,D) do not coincide with the eigenvalues
of S. The internal model approach, [8, 10], designs the tracking controller

u(t) = Kx(t) + (Γ − KΠ)w(t),

where A + BK is Hurwitz, and Π and Γ satisfy

ΠS = AΠ + BΓ,

0 = CΠ + DΓ − Q.

Then, the tracking error e(t) := y(t) − r(t) converges to zero, and the tran-
sients

x̃ := x − Πw, ũ := u − Γw

are governed by ˙̃x = (A + BK)x̃, ũ = Kx̃.
Kwakernaak and Sivan [21] were the first to consider the cheap control

problem

Jε := min
ũ

∫ ∞

0

[‖y(t) − r(t)‖2 + ε2‖ũ(t)‖2
]
dt

and to demonstrate that in the presence of non-minimum phase zeros dy-
namics the limit Jε → J as ε → 0 is strictly positive.

Qiu and Davison [23] showed that for r(t) = η1 sin ωt + η2 cos ωt, η =
col(η1, η2), the non-minimum phase zeros z1, z2, . . . , zp determine the limit J
as follows:
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J = η′Mη, trace M =
p∑

i=1

(
1

zi − jω
+

1
zi + jω

)
.

For more general reference signals, Su, Qiu, and Chen [25] give explicit for-
mulas which show the dependence of J on the non-minimum phase zeros and
their frequency-dependent directional information.

3 Performance Limits in Nonlinear Feedback Systems

The analogous nonlinear tracking problem

ẋ = f(x, u), y = h(x, u), (1)
ẇ = s(w), r = q(w), (2)

where f(0, 0) = 0, s(0) = 0, h(0, 0) = 0, has been analyzed by Isidori and
Byrnes [14]. They proved that this problem is solvable if and only if there
exist smooth maps Π(w) and c(w), satisfying

∂Π

∂w
s(w) = f(Π(w), c(w)), Π(0) = 0, (3a)

h(Π(w), c(w)) − q(w) = 0, c(0) = 0. (3b)

In [3] we consider the class of nonlinear systems which are locally diffeo-
morphic to systems in strict-feedback form (see for example [20, Appendix
G])3:

ż = f0(z) + g0(z)ξ1, (4a)

ξ̇1 = f1(z, ξ1) + g1(z, ξ1)ξ2,

...

ξ̇rd
= frd

(z, ξ1, . . . , ξrd
) + grd

(z, ξ1, . . . , ξrd
)u, (4b)

y = ξ1, (4c)

where z ∈ R
nz , ξ := col(ξ1, . . . , ξrd

), ξi ∈ R
m, ∀i ∈ {1, . . . , rd}, u ∈ R

m,
and y ∈ R

m. fi(·) and gi(·) are Ck functions of their arguments (for some
large k), fi(0, . . . , 0) = 0, and the matrices gi(·), ∀i ∈ {1, . . . , rd} are always
nonsingular. We assume that initially the system is at rest, (z, ξ) = (0, 0).

When the tracking problem is solvable, that is, when it is possible to
design a continuous feedback law that drives the tracking error to zero, there
exist maps Π = col(Π0, . . . , Πrd

), Π0 : R
p → R

nz , Πi : R
p → R

m, ∀i ∈
3When convenient we use the compact form (1) for (4). In that case, f(·) denotes

the vector field described by the right-hand-side of (4a)–(4b), h(·) the output map
described by (4c), and x = col(z, ξ1, . . . , ξrd).
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{1, . . . , rd}, and c : R
p → R

m that satisfy (3). The locally diffeomorphic
change of coordinates

z̃ = z − Π0(w), (5a)

ξ̃ := col(ξ̃1, . . . , ξ̃rd
), (5b)

ξ̃i = ξi − Πi(w), i = 1, . . . , rd (5c)
ũ = u − c(w), (5d)

transforms the system (4) into the error system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)e,
˙̃
ξ1 = f̃1(z̃, ξ̃1, w) + g̃1(z̃, ξ̃1, w)ξ̃2,

...
˙̃
ξrd

= f̃rd
(z̃, ξ̃1, . . . , ξ̃rd

, w) + g̃rd
(z̃, ξ̃1, . . . , ξ̃rd

, w)ũ,

e = ξ̃1, (6)

where

f̃0 := f0(z̃ + Π0(w)) − f0(Π0(w)) +
[
g0(z̃ + Π0(w)) − g0(Π0(w))

]
q(w),

g̃0 := g0(z̃ + Π0(w)),

f̃0(0, w) = 0, g̃0(z̃, 0) = g0(z̃), and f̃i(·), g̃i(·), ∀i ∈ {1, . . . , rd} are appropri-
ately defined functions that satisfy f̃i(0, . . . , 0, w) = 0 and g̃i(z̃, . . . , ξ̃i, 0) =
gi(z̃, . . . , ξ̃i).

As in the work of Seron et al. [24], the singular perturbation separation
of time scales gives rise to the following two optimal control problems:

Cheap control problem: For the system consisting of the error sys-
tem (6) and the exosystem (2) with initial condition

(
z̃(0), ξ̃(0), w(0)

)
=(

z̃0, ξ̃0, w0

)
, find the optimal feedback law ũ = αcc

δ,ε(z̃, ξ̃, w) that minimizes
the cost functional

1
2

∫ ∞

0

(‖e(t)‖2 + δ‖z̃(t)‖2 + ε2rd‖ũ(t)‖2
)
dt

for δ > 0, ε > 0. We denote by Jcc
δ,ε(z̃0, ξ̃0, w0) the corresponding optimal

value. The best-attainable cheap control performance for tracking is then

J := lim
(δ,ε)→0

Jcc
δ,ε(z̃0, ξ̃0, w0).

As shown by Krener [19], in some neighborhood of (0, 0, 0) and for every
δ > 0, ε > 0, the value Jcc

δ,ε(·, ·, ·) is Ck−2 under the following assumption:
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Assumption 1 The linearization around (z, ξ) = (0, 0) of system (4) is sta-
bilizable and detectable, and the linearization around w = 0 of the exosystem
(2) is stable.

The fast part of the cheap control problem describes the rapid transient
of e(t) to its slow part represented by the minimum energy problem for the
stabilization of zero dynamics:

Minimum-energy problem: For the system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)e, z̃(0) = z0, (7a)
ẇ = s(w), w(0) = w0, (7b)

with e viewed as the input, find the optimal feedback law e = αme
δ (z̃, w) that

minimizes the cost
1
2

∫ ∞

0

(
δ‖z̃(t)‖2 + ‖e(t)‖2

)
dt,

for δ > 0. We denote by Jme
δ (z̃0, w0) the corresponding optimal value. Under

Assumption 1, Jme
δ (·, ·) is Ck−2 in some neighborhood of (0, 0).

Our analysis reveals that the best-attainable cheap control performance
J is equal to the least control effort (as δ → 0) needed to stabilize the
corresponding zero dynamics system (7) driven by the tracking error e.

Theorem 1. Suppose that Assumption 1 holds and that (3) has a solution in
some neighborhood of w = 0. Then, for any (z̃(0), ξ̃(0), w(0)) = (z̃0, ξ̃0, w0)
in some neighborhood of (0, 0, 0) there exists a solution to the cheap control
problem and the limit to tracking performance is

J = lim
δ→0

Jme
δ

�

A more detailed analysis leading to this theorem and its proof are soon
to appear in [3].

For linear systems we obtain the following:

Corollary 1. For linear systems with unstable zero-dynamics subsystem de-
scribed by

ż = F0z + G0y,

the limit to tracking performance is

J = lim
δ→0

1
2
ω′

0Π
′
0P0(δ)Π0ω0, (8)

where ω0 = ω(0), and Π0 and P0 > 0 satisfy
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Π0S = F0Π0 + G0Q, (9a)
F ′

0P0 + P0F0 + δI = P0G0G
′
0P0. (9b)

�
Formula (8) follows from the fact that the equations for the minimum-energy
problem are

˙̃z = F0z̃ + G0e,

ẇ = Sw

where z̃ = z − Π0ω, and Π0 is the solution of (9a). In this case the optimal
feedback law for the minimum energy problem is e = −G′

0P0z̃ where P0 > 0
is the solution of (9b), and 1

2 z̃′0P0(δ)z̃0 the corresponding optimal value. Note
that z̃0 = z(0) − Π0ω(0) = −Π0ω0.

4 Illustrative Example

To illustrate the above results and show how the limits of tracking perfor-
mance for nonlinear systems depend on the exosystem dynamics, we consider
the following system

ż = −z + z2 + ξ1, (10a)

ξ̇1 = ξ2, (10b)

ξ̇2 = u, (10c)
y = ξ1,

which is already in normal form. The zero-dynamics subsystem given by (10a)
with ξ1 ≡ 0 has an asymptotically stable equilibrium at z = 0. Suppose that
the tracking task is to asymptotically track any reference r(t) generated by
the exosystem

ω̇1 = aω2, (11a)
ω̇2 = −aω1, (11b)

r(t) = q(ω1, ω2), (11c)

where a > 0 and q(ω1, ω2) is to be chosen later. When the maps Π(w) and
c(w) satisfying (3) exist, we apply (5) and obtain the error system

˙̃z =
(
2Π0(ω) − 1

)
z̃ + z̃2 + e, (12a)

˙̃
ξ1 = ξ̃2, (12b)
˙̃
ξ2 = ũ, (12c)

e = ξ̃1.
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Fig. 1. State z, tracking error e, and
� t

0
‖e(τ)‖2 dτ for (a) ω(0) = (0.1, 0)′ and (b)

ω(0) = (1, 0)′ (Note the 10−5 scale factor !).

The zero-dynamics of the error system are governed by (12a) with e ≡ 0
and (11a)–(11b). Clearly, the stability of the zero dynamics and hence the
limits of tracking performance depend on the exosystem. In particular, the
zero-dynamics are unstable for 2Π0(ω) > 1. To illustrate this we let

Π0(ω1, ω2) = ω2
1 + ω2

2

and then evaluate the corresponding q(ω1, ω2) from

∂Π0

∂ω1
aω2 − ∂Π0

∂ω2
aω1 = −Π0(ω1, ω2) + Π0(ω1, ω2)2 + q(ω1, ω2)
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as dictated by (3). We use this q(ω1, ω2) in (11c) and perform a series of
simulations. To compare the transient errors with different initial conditions
ω(0) = ω0, we define the normalized transient error J̄ := J

‖ω0‖2 .
Fig. 1 displays the simulation results obtained with a = 1 rad/s and

using a feedback law of the form u = c(ω)+k0(z−Π0(ω))+k1(ξ1−Π1(ω))+
k2(ξ2 − Π2(ω)). The initial conditions are (z, ξ1, ξ2) = 0, ω(0) = (0.1, 0)′. In
this case Π0(ω1, ω2) = 0.01, so that the subsystem (12a) is locally input-to-
state stable and the convergence to the desired reference signal is achieved
with a negligibly small transient error J � 7.2 × 10−5 and J̄ � 7.2 × 10−3.

In contrast, Fig. 1(b) shows the simulation results obtained with the
same controller but with initial condition ω(0) = (1, 0)′ which implies that
Π0(ω1, ω2) = 1 and, hence, the error zero-dynamics are not input-to-state
stable. As it can be seen, the transient error and its normalized version have
increased by several orders of magnitude to J = J̄ � 1.1.

5 Concluding Remarks

We have shown that, analogous to the tracking problem for linear time-
invariant non-minimum phase systems, the tracking performance for nonlin-
ear non-minimum phase systems cannot be improved beyond a limit deter-
mined by the least amount of energy required to stabilize the zero dynamics
of the tracking error system. In the nonlinear problem, these zero dynamics
depend on the dynamics of the exosystem, which may destabilize them for
some reference signals, as illustrated on an example.

Since non-minimum phase phenomena create a fundamental limit to the
tracking performance that can not be removed by any controller redesign,
a direction of practical interest would be to search for reformulations of the
tracking problem that would be free of limitations, but still meaningful for
applications. One such reformulation, pursued in our work [1, 2, 5, 6] is to
replace the tracking problem by a less demanding path following problem,
in which the speed along the prescribed geometric path is used as a free
design parameter. As shown in [3], for a class of path following problems the
limitations of the tracking problems can be avoided.
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