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Stochastic Programming Using
Expected Value Bounds

Raphael Chinchilla and João P. Hespanha

Abstract—We address the problem of minimizing an expected
value with stochastic constraints, known in the literature as
stochastic programming. Our approach is based on computing
and optimizing bounds for the expected value that are obtained
by solving a deterministic optimization problem that uses the
probability density function to penalize unlikely values for the
random variables. The sub-optimal solution obtained through
this approach has performances guarantees with respect to
the optimal one, while satisfying stochastic and deterministic
constraints.

We illustrate this approach in the context of three different
classes of optimization problems: finite horizon optimal stochastic
control, with state or output feedback; parameter estimation with
latent variables; and nonlinear Bayesian experiment design.

By the means of several numerical examples, we show that our
sub-optimal solution achieves results similar to those obtained
with Monte Carlo methods with a fraction of the computational
burden, highlighting the usefulness of this approach in real-time
optimization problems.

I. INTRODUCTION

Optimization of an expected value, also called stochastic
programming, appears in countless areas of applied probability
and engineering. In optimal stochastic control, a dynamical
system is subject to stochastic disturbances, and one wants
to find the control that minimizes the expected value of the
trajectory tracking error. In maximum likelihood estimation,
unobserved variables may need to be integrated out through
an expected value, to obtain the likelihood of the observed
variables. In machine learning, training a neural network
means finding the weights that best classify the expected value
of a random variable.

Given a scalar function V p¨q and a random vector D, the
expected value of V pDq can be lower and upper bounded,
respectively, by the minimum and maximum values that V p¨q
takes over the support of D. Our first result in Section II shows
how these very crude bounds can be improved by including
information encoded in the probability density function (pdf )
of D. In essence, we solve an optimization over the support
of D that includes terms that penalize unlikely realizations for
D. This means that we need to compute and solve optimality
conditions — and therefore essentially compute derivatives
and solve algebraic equations — rather than compute integrals.

The results in Section II actually define a family of bounds.
Two instances of this family, which we call the additive
and multiplicative bounds, are particularly useful. The first is
more appropriate to problems where the cost function V p¨q
is polynomial, while the second one is more appropriate
when the cost function is exponential. Both the additive and
multiplicative bounds are parameterized by a scalar parameter

ε, which can itself be optimized. To guide the design of
the bounds and select ε, we develop necessary and sufficient
conditions with respect to ε that can be used to make sure that
the additive and multiplicative bounds are finite.

Borrowing ideas from robust optimization, the bounds de-
veloped in Section II are used in Section III to compute ap-
proximate solutions to stochastic programming optimizations:
Instead of minimizing an expected value subject to stochastic
constraints, we minimize upper/lower bounds for the criterion
subject to constraints on pessimistic/optimistic bounds for the
stochastic constraints. For the lower bound, this leads to a
minimization on an extended variable space; for the upper
bound, it leads to a minmax problem.

In Section IV, we discuss three applications for our bounds.
The first relates to finite-horizon stochastic optimal control,
with either state feedback or output feedback. In the former
case, the initial state is assumed known, but an expectation
is needed over the realization of future disturbances. In the
latter case, the initial state is unknown, and the expectation is
taken with respect to a conditional distribution, given known
realizations of past noisy measurements. Our approach can
include stochastic constraints on the trajectory of the system,
which we illustrate through a constraint on the final state.

The second application is related to Maximum Likelihood
or Maximum a Posteriori estimation involving latent variables
that cannot be measured [1]. These problems require the latent
variables to be marginalized by an expectation that can be
upper/lower bounded using the results from Section III.

The third application is in the area of Bayesian experiment
design [2]–[4]. The goal is to optimize the values of exper-
imental parameters to facilitate the estimation of unknown
variables. Experiment design criteria typically involve taking
expectations with respect to unknown variables, including the
ones that need to be estimated. Also here, optimal experiment
design can be performed by replacing expectations by bounds.

In the context of feedback control, all three applications
discussed above typically need to be performed in real-time
with limited computation, and benefit from the availability of
bounds on how the approximate solution compares with the
true optimum. It is in such scenarios that the approach pro-
posed here is most attractive. In contrast, when computation is
unlimited, Monte Carlo based methods can achieve arbitrarily
accurate solutions to stochastic optimization problems as long
as one uses a sufficiently large number of samples, and will
thus eventually out-perform in accuracy the approach proposed
here.

Related Work: Stochastic Programming has been an
active area of research for the last 60 years, therefore a
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complete overview of the literature is infeasible. Instead, we
provide a brief overview of the most fundamental methods,
some recent developments and how these relate to our work.
We discuss separately four approaches: deterministic methods,
stochastic methods, methods based on robust optimization and
distributionally robust optimization .

Deterministic methods rely on computing the expected value
using a numerical integration method such as Gauss-Kronrod
[5], [6]. Since numerical integration is computationally infeasi-
ble for large problems, deterministic approximations of the ex-
pected value are often used. Common approximations include
minimizing the truncated Taylor expansion of the expected
value [7]–[9] and the Laplace and saddle-point approximations
[10], [11]. A weakness of these methods is that they generally
do not provide guarantees regarding how the solution found
compares to the true optimum.

Stochastic optimization methods rely on some form of
Monte Carlo sampling. These methods generally scale well
and provide confidence intervals on the solutions. The most
intuitive method is the Sample Average Approximation (SAA)
(also known as Empirical Risk Minimization) [12]–[14], where
the expected value is approximated by the empirical aver-
age obtained through sampling. Stochastic Gradient Descent
(SGD) [2] is an easy to implementation and versatile alter-
native. The core idea of SGD is to directly draw samples
of the gradient of the expected values, rather than using the
gradient of the empirical mean to do gradient descent. Under
appropriate assumptions, both SAA and SGD are guaranteed
to converge to a (possibly local) minimum as the number of
sample grows [14], but accurate results may require a very
large number of samples, making these methods not suitable
for real time applications.

The Scenario Approach approximately solves chance-
constrained optimizations by sampling the constraints [15]–
[17]. This approach guarantees constraint satisfaction with
high probability. While the number of samples increases
only logarithmically with the confidence parameter (usually
denoted by β), it is also proportional to the dimensions of
the optimization variables and inversely proportional to the
risk parameter (usually denoted by ε). As a result, Scenario
Approach may require many samples which can lead to high
computational complexity. Moreover, while tight requirements
on the confidence parameter β have a moderate impact in the
number of samples, it typically also lead to more conservative
results.

In robust optimization one minimizes for the worst pos-
sible perturbation, while guaranteeing some base level of
performance [18], [19]. Robust optimization has been gaining
popularity in recent years, for examples in fields such as
Model Predictive Control [20] and Machine Learning [21]–
[23]. Some new developments have also been made in numer-
ical aspects, notably in [24], where the authors provide first
and second order optimality conditions for minmax when the
criteria is nonconvex on the minimization variable and noncon-
cave on the maximization variable. Robust optimization was
traditionally not regarded as an approach to solve stochastic
programming problems, but in the last decade some articles
have connected the two areas, for instance [25]–[27].

At the intersection between robust and stochastic optimiza-
tion lies distributionally robust optimization (DRO), where
the objective is to minimize an expected value for the worst
probability distribution within a set of admissible distributions.
This set, called the ambiguity set, is often constructed from
samples of the true distribution and its selection tries to
balance between expressiveness (how rich is the information
in the set) and tractability (how easy it is to solve the DRO). In
[28], [29] the authors use the Wasserstein metric to construct
the ambiguity set and show that for some classes of problem,
the complexity of solving the associated DRO is similar to that
of Sample Average Approximation. In [30]–[33] the ambiguity
sets are constructed using sample statistics, such as mean,
covariance and entropy. The DRO is reformulated into a
minimization on a larger set of variables using tools from
duality theory and convex optimization. When the ambiguity
set is constructed to guarantee (with high probability) that
it contains the true distribution, DRO can also be seen as a
method to bound the true expected values, which can be used
to solve stochastic programs. For a broader exposition on DRO
we refer to [34] and the references within.

This paper expands in several ways the work reported in
the conference paper [35]: We introduce a family of bounds,
while the earlier paper considered only additive bound; we
generalize the stochastic programming problem to include
stochastic inequalities constraints; and we include applications
to estimation and experiment design.

Notation: Given an underlying probability space
pΩ,F ,Pq, a random variable X and a scalar x P R, we
denote by PpX ď xq the probability measure of the set
tω P Ω : Xpωq ď xu P F and by ErXs the expected value
of X . Given a measurable event E P F with PpEq ą 0, we
define conditional essential infimum and supremum by

ess infrX
ˇ

ˇ Es “ suptx P R : PpX ě x
ˇ

ˇ Eq “ 1u

ess suprX
ˇ

ˇ Es “ inftx P R : PpX ď x
ˇ

ˇ Eq “ 1u.

Unconditional essential infimum and supremum are denoted
simply by ess inf X and ess supX and correspond to the case
E “ Ω. The essential supremum and infimum relax the usual
supremum and infimum by excluding sets of measure zero.
One can informally think of them as supxPX x and infxPX x
where X is the support of X .

Given two random variables X,Y we use the notation
X

wpo
ď Y when PpX ď Y q “ 1 and analogously for

wpo
ě ,

wpo
ă ,

wpo
ą .

II. BOUNDS ON AN EXPECTED VALUE

Given a random vector D taking values in D Ă RM and
a scalar measurable function V : D Ñ R, the monotonicity
of the expected value ErV pDqs provides the following basic
bound

ess inf V pDq ď ErV pDqs ď ess supV pDq. (1)

The core idea of this section is to improve upon this crude
bound by including information about D, for example, coming
from its probability density function (pdf ). To present our first
result, we introduce the following terminology. Consider a
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right-ordered group G – pP,‘q defined on a set P Ă R

for which the group operation ‘ satisfies the usual group
properties of closure, associativity, existence of an identity
element, and existence of inverse elements (which we denote
using  ); as well as the right-ordered property

a ď b ñ a‘ c ď b‘ c, @a, b, c P P

[36]. We say that G – pP,‘q is distributive with respect to
integration (or E-distributive for short) if it is right-ordered
and, for every random variable X taking values on P , we
have that

a‘ ErXs “ Era‘Xs, @a P P.

Theorem 1 (Bounds on an expected value): Consider an E-
distributive group G – pP,‘q, a random vector D taking
values in D Ă RM , and measurable functions V, α : D ÞÑ P .
If ErV pDqs and Er αpDqs are finite, then

ess inf JpDq ď ErV pDqs ď ess sup JpDq (2)

where the function J : D Ñ R is defined by

Jpdq– V pdq ‘ αpdq ‘ Er αpDqs. l

Proof. We prove the upper bound, the proof for the lower
bound can be obtained analogously. For every scalar v ě
ess sup V pDq ‘ αpDq, we have that

PpV pDq ‘ αpDq ď vq “ 1,

by the definition of essential supremum. From the monotonic-
ity of the expected value, we thus conclude that

E
“

V pDq ‘ αpDq
‰

ď v.

Since Er αpDqs is finite, we can use the right-ordered prop-
erty of pP,‘q to conclude that

E
“

V pDq ‘ αpDq
‰

‘ Er αpDqs ď v ‘ Er αpDqs

and then the E-distributed property to obtain

E
“

V pDq ‘ αpDq ‘  αpDqs “ ErV pDqs ď v ‘ Er αpDqs.

The upper bound then follows by taking an infimum on
the right-hand side over the set of such scalars v ě

ess sup V pDq ‘ αpDq.

The key idea of Theorem 1 is to improve upon (1) by
including in Jp¨q terms that reduce the essential supremum and
increase the essential infimum. To reduce the supremum, for
example, one should select αpdq so that it is strongly negative
(in the sense that  αpdq should be strongly positive) when
V pdq is large and while keeping Er αpDqs relatively small.
In the remainder of the paper we mostly use two E-distributive
groups G and associated functions α that achieve this for our
applications of interest. Both bounds assume that D has a
probability density function (pdf ) that we denote by pDp¨q.
Additive Bound: The E-distributive group pP,‘q “ pR,`q

with the usual addition of reals, and αpdq “ ε log pDpdq
with ε P R, leads to

Jpd, εq– V pdq ` ε log pDpdq ` εHD, (3)

where HD – Er´ log pDpDqs is the differential entropy.
Multiplicative Bound: The E-distributive group pP,‘q “

pRą0,ˆq with the usual multiplication of positive reals,
and αpdq “ pDpdq

ε with ε P R, leads to

Jpd, εq– V pdq pDpdq
ε IDpεq (4)

where IDpεq– ErpDpDq
´ε
s.

The functions J in (3) and (4) are not necessarily well defined
on the measure zero set where pDpDq “ 0, but the value of
J on such set is irrelevant, as it does not affect the value of
the essential supremum or infimum in (2).

The key idea behind the additive bound is that unlikely
values d for D will lead to a large negative value for log pDpdq
and reduce the value of Jpdq. These unlikely values will
contribute with a strong positive value in ´ log pDpDq, but
precisely because they are unlikely, they will not increase
HD – Er´ log pDpDqs very much. Overall, this should thus
decrease the supremum of Jpdq over D to create a tighter
bound. A similar reason can be used to justify the function α
proposed for the multiplicative bound.

In Appendix A, we derive expressions for log pDpdq `HD

and pDpdq
εIDpεq for the Gaussian and for the uniform distri-

butions.
Remark 1 (Bounds for conditional expectation): Theorem 1

can also be stated for conditional expectations, provided that
the E-distributive property holds for the conditional expec-
tation with probability one. In this case, the additive and
multiplicative bounds should involve conditional pdf . l

A. Selection of bound and ε

It is possible to establish necessary and sufficient conditions
such that the additive and multiplicative bounds lead to non-
trivial results, which are presented in Appendix C. Here, we
present a corollary of those results that includes the sufficient
conditions which, in practice, are the most useful in deciding
which bounds to use. We require the following definition to
present the corollary. Given a constant γ ą 0 sufficiently small
so that P

`

pDpDq ą γ
˘

ą 0, we say that a measurable function
fp¨q is γ-essentially upper bounded if

ess sup
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ă 8,

γ-essentially lower bounded if

ess inf
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ą ´8,

and γ-essentially bounded if it is both γ-essentially upper
and lower bounded. γ-essential boundedness is a much milder
requirement than the usual notion of boundedness, as it allows
functions to become very large (growing all the way to infinity)
as long as the pdf becomes sufficiently small.

Corollary 1 (Sufficient conditions for finite bounds): Assume
that pDp¨q is γ-essentially upper bounded and consider finite
constants ε P R and c P p0, 1{γq such that

ess sup
“

pDpDq | pDpDq ą γ
‰

ď 1{c.

When V p¨q is γ-essentially bounded, we have that
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pDpDq
wpo
ą γ or ess inf

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ε

ñ ess inf
`

V pDq ` ε log pDpDq
˘

ą ´8.

and

pDpDq
wpo
ą γ or ess sup

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ε

ñ ess sup
`

V pDq ` ε log pDpDq
˘

ă `8

Alternatively, when log V p¨q is γ-essentially bounded, we have
that

pDpDq
wpo
ą γ or ess inf

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ε

ñ ess inf
`

log V pDq ` ε log pDpDq
˘

ą ´8.

and

pDpDq
wpo
ą γ or ess sup

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ε

ñ ess sup
`

log V pDq ` ε log pDpDq
˘

ă `8. l

The first two implications in Corollary 1 involve V pDq and
are relevant for the additive bound, while the remaining ones
involve log V pDq and the multiplicative bound.

Specifically, this result establishes that for the additive and
multiplicative bounds to be non trivial (i.e., finite), it suffices
to pick an ε such that log c pDpDq dominates either V pDq
or log V pDq, respectively. Therefore, which bound to use
essentially depends on the rates of growth of V p¨q, log V p¨q,
and log pDp¨q. When both bounds have a finite value, we have
observed that the approximations seems to be better when V p¨q
(or log V p¨q) has roughly the same magnitude as log pDp¨q.

Among the values of ε that lead to a finite upper bound, the
conservativeness of the bound can be minimized by selecting
the value of ε P R that minimizes

inf
εPR

J˚pεq, J˚pεq– ess sup JpD, εq (5)

with Jpd, εq as in (3) or (4). It turns out that such minimization
over the scalar parameter ε is well-behaved as the function
J˚pεq in (5) has appropriate convexity properties, as noted in
the following result proved in Appendix B:

Proposition 1 (Optimization over ε): The function J˚pεq in
(5) is convex for Jpd, εq in (3) and log-convex for Jpd, εq in
(4). Moreover, J˚pεq is finite on a convex set. l

Remark 2 (Beyond the additive and multiplicative bounds):
Most of the discussion in this section and the application
examples discussed in Section IV make use of the additive
and multiplicative bounds. However, these do not necessarily
provide the tightest bounds. Consider for example a chi-square
random variable D with 1 degree of freedom, whose pdf is
given by pχ2pdq “ e´

d
2

?
2πd

, @d ą 0 and is known to have an
expected value ErDs equal to 1. The additive upper bound
from (3) is not useful as it leads to @ε P R

sup
dą0

´

d` ε log
´ e´

d
2

?
2πd

¯¯

` εHχ2 “ `8,

where Hχ2 is the entropy of D. In contrast, the multiplicative
upper bound from (4) leads to the following finite bound

inf
εPR

sup
dą0

d

˜

e´
d
2

?
2πd

¸ε
ˆ

1

2π

˙

1´ε
2
ˆ

2

1´ ε

˙

1`ε
2

Γ

ˆ

1` ε

2

˙

« 1.478.

However, a tight bound can be obtained using the multiplica-
tive group pP,‘q “ pRą0,ˆq together with the function
αpdq “ d´ε, which leads to

inf
εPR

sup
dě0

´

d d´ε
2ε Γp0.5` εq

Γp0.5q

¯

“ 1.

While either the additive or the multiplicative bound typically
lead to reasonable bounds, this example shows that it may be
worth it to explore alternatives. l

Remark 3 (Unknown pdf): When the pdf pDp¨q of D is
not explicitly known, it is not easy to use the additive and
multiplicative bounds in (3)–(4), because both include pDpdq
in the criteria to be optimized over d P D. In such cases, one
can still use the bounds in Theorem 1, but with functions αpdq
that do not explicitly include the pdf of D. We recall from the
discussion right after Theorem 1, that the key to get a tight
upper bound is to select for αpdq a function that is strongly
“negative” when V pdq is large, and yet Er αpDqs is relatively
small. For the additive group, the function αpdq– log pDpdq
typically has this property when large values for V pdq have
low probability. When the pdf is unknown, tight bounds can
still be obtained as long as one selected for αpdq values that
are strongly negative when V pdq is large and yet D “ d is
unlikely. l

B. Connection to distributionally robust optimization

Distributionally robust optimization (DRO) can provide an
alternative approach to compute bounds for an expected value
by noting that

inf
P̄PP

EP̄rV pDqs ď EPrV pDqs ď sup
P̄PP

EP̄rV pDqs, (6)

where the subscript in the expected value operator refers to the
probability measure used for the computation of the expected
value and P denotes some class of probability measures
that contains the actual measure P. From a computational
perspective, such bounds can be useful when the minimum and
maximum over P are achieved for measures P̄ for which the
expectation EP̄rV pDqs is easier to compute than the original
EPrV pDqs. For example, if we include in P every distribution
for which D is measurable, we essentially get the trivial
bounds in (2).

It turns out that (6) can lead to bounds closely related
to those obtained in Theorem 1: Suppose for simplicity
that we focus our attention on a discrete random variable
D P td1, d2, . . . , dKu and pick for P the set of all distributions
with entropy larger than or equal to the entropy HrPs of the
actual probability distribution P. In this case, the upper bound
in (6) is of the form
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EPrV pDqs ď max
p̄1,...,p̄K

!

K
ÿ

k“1

V pdkqp̄k

: ´
K
ÿ

k“1

logpp̄kqp̄k ě HrPs
)

, (7)

where the maximization is taken over the simplex of prob-
ability distributions. Because the entropy is a strictly con-
cave function, as long as P is not the uniform distribution,
p̄k “ 1{K, k P t1, . . . ,Ku is a Slater point and strong duality
holds, which allow us to replace the right-hand side of (7) by
its dual problem:

EPrV pDqs ď inf
εď0

max
p̄1,...,p̄K

K
ÿ

k“1

V pdKqp̄k

` ε
K
ÿ

n“1

logpp̄kqp̄k ` εHrPs. (8)

For the same expected value, the additive upper bound pro-
vided by Theorem 1 is of the form

EPrV pDqs ď inf
εPR

max
k

V pdkq ` ε logppkq ` εHrPs, (9)

where, as in (5), we pick the least conservative upper bound
over the range of parameters ε P R. It turns out that the
maximum over k in (9) has the same numerical value as the
following maximization over the simplex of distributions:

EPrV pDqs ď inf
εPR

max
p̄1,...,p̄K

K
ÿ

n“1

V pdkqp̄k

` ε
K
ÿ

k“1

logppkqp̄k ` εHrPs, (10)

leading to a bound strikingly similar to (8). However, the two
bounds generally lead to different numerical values:

i) For distributions with large entropy, the DRO inequalities
(7) and (8) lead to a tighter bound, because the family of
distributions that satisfy the constraint in (7) becomes fairly
small. In fact, for the uniform distribution pk “ 1{K, @k with
maximal entropy HrPs “ logK, only the true distribution
satisfies the constraint in (7) and the bound is exact.

ii) For distributions with small entropy, (10) leads to a
tighter bound, which is exact for the extreme cases of mini-
mum entropy HrPs “ 0. Note that when HrPs “ 0, all but
one of the pk is nonzero and a single value of k leads to a
value of V pdkq` ε logppkq with ε ą 0 in (10) that is not ´8.

Even though the DRO-based approach in (7)–(8) can often
lead to a tighter bound than (9)–(10), an expected value
řK
k“1 V pu, dkqp̄k still appears in (7)–(8) and therefore this

bound is only helpful in simplifying computations if the
optimal distribution p̄1, . . . , p̄k has some particular structure
that makes the computation of

řK
k“1 V pu, dkqp̄k easier than

the original computation EPrV pDqs “
řK
k“1 V pu, dkqpk.

Remark 4: We focused this section on a discrete random
variable D to avoid the technicalities that would arise from
optimizations over general probability measures in (7) and
(10), but all the key observations made in this section remain
unchanged for a continuous random variable D. l

III. STOCHASTIC PROGRAMMING

We define the following stochastic programming problem
with a single scalar constraint, but the approach proposed can
easily be extended to multiple constraints: Let D be a random
vector taking values in D Ă RM . Given measurable functions
V : U ˆD ÞÑ R and G : U ˆD ÞÑ R, with U Ă RN we want
to solve

V ˚ – inf
uPU

!

ErV pu,Dqs : ErGpu,Dqs ď 0
)

. (11)

The following results provides bounds on V ˚, based on the
bounds from Theorem 1.

Theorem 2 (Bounds to Stochastic Programming): Con-
sider three E-distributive groups pPV ,‘V q, pPG,‘Gq, pP,‘q;
functions αV : D ÞÑ PV , αG : D ÞÑ PG, α : D ÞÑ P and
define

JV pu, dq– V pu, dq ‘V αV pdq ‘V Er αV pDqs

JGpu, dq– Gpu, dq ‘G αGpdq ‘G Er αGpDqs

Jpu, d, λq– pV pu, dq ` λGpu, dqq ‘ αpdq ‘ Er αpDqs,

@u P U , d P D, λ ě 0. If Er αV pDqs, Er αGpDqs,
Er αpDqs are finite, then V O ď V ˚ ď V M and V ˚ ď V ;,
with

V O – inf
uPU

!

`

ess inf JV pu,Dq
˘

: ess inf JGpu,Dq ď 0
)

(12)

V M – inf
uPU

!

`

ess sup JV pu,Dq
˘

: ess supJGpu,Dq ď 0
)

(13)

V ; – inf
uPU

sup
λě0

ess sup Jpu,D, λq. (14)

Furthermore, if the infimum in the definition of V M is achieved
at some u “ uM that is feasible for (13), then uM is also
feasible for (11). Additionally, if the infimum in the definition
of V ; is finite and achieved at some u “ u; then u; is also
feasible for (11). l

Theorem 2 guarantees that a solution uM to the optimization
(13) is feasible for the original stochastic program in (11) and
provides performances guarantees for uM, in the sense that the
expected value ErV puM, Dqs obtained using uM will be away
from the optimal V ˚ by no more than V M´V O, which can be
computed by solving the optimizations (12)–(13). Similarly, a
solution u; to the optimization (14) is also guaranteed to be
feasible and the expected value ErV pu;, Dqs obtained using u;

will be away from the optimal V ˚ by no more than V ;´V O,
which can be computed by solving the optimizations (12),
(14).

It is important to note that Er αV pDqs and Er αpDqs are
constants that do not depend on either u nor d, and therefore
their values do not affect the optimizations in (12)–(14).
This means that, if one is not able to determine analytically
Er αV pDqs or Er αpDqs, any errors in estimating these
quantities will not introduce errors in determining uM or
u;. This is specially relevant in large scale problems where
obtaining accurate numerical estimates of Er αV pDqs and
Er αpDqs might be challenging.

As was the case for Theorem 1, the tightness of the bounds
in Theorem (2) depends strongly on the choice of the groups,
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the functions α¨, the cost function, and the underlying random
variable. Nevertheless, as we will see in the next section,
the value of u that minimizes (11) and the value of u that
minimizes (13) or (14) are often very close.

Proof of Theorem 2. In view of from Theorem 1, we have that
ess inf JGpu,Dq ď ErGpu,Dqs ď ess sup JGpu,Dq, which
guarantees that if u “ uM is feasible for (13), then uM is also
feasible for (11). Moreover,

inf
uPU

!

ErV pu,Dqs : ess inf JGpu,Dq ď 0
)

ď inf
uPU

!

ErV pu,Dqs : ErGpu,Dqs ď 0
)

ď inf
uPU

!

ErV pu,Dqs : ess sup JGpu,Dq ď 0
)

.

From Theorem 1, we can also conclude that
ess inf JV pu,Dq ď ErV pu,Dqs ď ess sup JV pu,Dq,
from which it follows that V O ď V ˚ ď V M.

To establish that V ; is also an upper bound on V ˚, assume
by contradiction that V ; ă V ˚, which means that there
exists some u P U such that ess sup Jpu,D, λq ă V ˚,
@λ ě 0. In view of Theorem 1, this would mean that
ErV pu,Dq`λGpu,Dqs ă V ˚, @λ ě 0, which is only possible
if ErGpu,Dqs ď 0 and consequently ErV pu,Dqs ă V ˚. The
existence of such an u violates (11).

Finally note that if the infimum in the definition of V ;

is finite and achieved at some u “ u;, then we must
have ess sup Jpu,D, λq ď V ˚ ă 8, @λ ě 0. Reasoning
as in the paragraph above, this allow us to conclude that
ErGpu;, Dqs ď 0 and therefore u; is feasible.

A. Combination with Monte Carlo methods

Any point ufeasible that is feasible for the optimization (11)
can be used to construct an upper bound by using Monte Carlo
averaging to compute

V ˚ ď ErV pufeasible, Dqs «
1

K

K
ÿ

k“1

V pufeasible, dkq, (15)

where the dk are independent samples of D. Moreover, it is
possible to control the error introduced by the Monte Carlo
averaging by using a sufficiently large number of samples
K. Essentially, to have an error smaller than δ with high
probability we need

K ě cVarrV pufeasible, Dqs{δ
2, (16)

where the constant c is typically small and depends on the
desired confidence for the bound [10].

Any point uM that achieves V M and in feasible for (13) is
also feasible for (11) and can be used in (15) to construct an
upper bound that is typically tighter than V M, provided that
K is sufficiently large; the same reasoning is true for u; and
V ;. In fact, one can use Theorem 1 to compute other feasible
points that may provide tighter upper bounds. For example,
an alternative feasible point can be obtained by minimizing a

lower bound on the criterion constrained by an upper bound
on the constraints, which leads to

V K – inf
uPU

!

`

ess inf JV pu,Dq
˘

:
`

ess sup JGpu,Dq ď 0
˘

)

.

(17)

Unlike V M and V O in Theorem 2, V K neither provides an
upper nor a lower bound on V ˚. However, any point that
achieves the infimum and is feasible for (17) is also feasible
for (11) and therefore can be used to construct the upper
bound in (15). An alternative method to combine the results
in Theorem 1 with Monte Carlos methods is obtained by
replacing the optimization in (14) by

inf
uPU

ess sup Jpu,D, λq

for some fixed λ ě 0. Rather than taking the supremum
over λ ě 0 that appears in (14), one could simply adjust
λ and/or artificially tightening the constraint until a Monte
Carlo estimate for ErGpu,Dqs guarantees that the constraint
is satisfied with a sufficiently large confidence.

Remark 5 (Contrast with Sample Average Approximation): It
is important to emphasize the difference between using Monte
Carlo averaging to estimate the value of the expected value
for a given value of ufeasible P U , as in (15), and optimizing
a Monte Carlo approximation of the criterion, as in

min
uPU

1

K

K
ÿ

k“1

V pu, dkq, (18)

which is typically referred to as the Sample Average Approxi-
mation (SAA). We can see in (16) that the number of samples
required to achieve a desired error δ ą 0 depends mostly on
the variance of V pu,Dq at the point ufeasible. However, the
sample complexity required to obtain the same error in (18)
is typically much larger as the numerator of (16) would be
determined by the Vapnik-Chervonenkis (VC) dimension of
the family of functions u ÞÑ ErV pu,Dqs [37], [38]. l

B. Numerically computing the bounds

We show next that under appropriate regularity assumptions,
the essential infima and suprema in (12) and (13) are achieved
at minima and maxima, respectively, and can be computed
using numerical solvers. To formalize this observation we
recall that a function f : X Ñ R, X Ă Rn is said to have
compact sublevel sets if its sublevel sets tx P X : fpxq ď λu
are compact for every finite λ P R and it is said to have
compact suplevel sets if ´f has compact sublevel sets. For
the remainder of this section we assume that U Ă RN and
that D Ă RM is the support of the random variable D, i.e.,
the smallest subset of RM for which Ppd P Dq “ 1.

Theorem 3: Assume that the functions JV , JG : UˆD Ñ R

are continuous and that U is compact. If JV and JG have
compact sublevel sets and (12) is feasible, then V O can be
obtained by solving

V O “ min
uPU,d,d̃PD

!

JV pu, dq : JGpu, d̃q ď 0
)

. (19)
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If JV pu, dq and JGpu, dq have compact suplevel sets and (13)
is feasible, then V M “ limµÑ8 V

M
µ , with

V M
µ “ min

uPU
max
d,d̃PD

JV pu, dq ` µ
´

max
!

0, JGpu, d̃q
)¯2

. (20)

Whenever the minimum and maxima in (20) are achieved
for values uM P U and dM, d̃M P D, respectively, for which
JGpu

M, d̃Mq ď 0, then uM is feasible and V M
µ is an upper

bound for V ˚. l

The minimization in (19) is a regular constrained opti-
mization and can be solved using commercial products like
Knitro [39] or open-source solvers like IPOPT [40] and
TensCalc [41]. For the sequence of minmax problem in
(20), different algorithms are applicable depending on the
convexity assumptions (convex-concave, nonconvex-concave,
convex-nonconcave, nonconvex-nonconcave). These include
methods based on robust counterpart [18], [42]–[44], cutting-
set [45], and variations of gradient descent-ascent methods
such as [46]–[56] among many others. For the examples in
Section IV, we used TensCalc, which is based on a variation
of interior point methods for gradient descent ascent.

Regardless of the solver used, for nonconvex problem like
the ones typically arising in (19)–(20), it is generally hard to be
certain that a local minimum or a local minmax [24] found by
a numerical solver is actually a global optimum. An approach
that can be used to obviate this problem is to replace the non-
convex optimization that arises from our bounds by pessimistic
or optimistic convex relaxation, depending on whether we are
interested in an upper or lower bound on the expected value,
respectively. An alternative approach relies on analyzing the
consequences of a solver getting stuck at a local optima and
responding to the specific problems encountered: Theorem 3
essentially proposes to replace the stochastic optimization in
(11) by the sequence of deterministic robust optimizations V M

µ .
A numerical solver for (20) can typically be “fooled” in three
ways:

i) The solver could converge to a value dM for d that is a
local but not a global extremum to the inner maximization.
This would mean that the value V M

µ returned by the solver is
actually not an upper bound on ErV puM, Dqs. If it is important
to obtain a high-confidence bound for this expected value and
the inner maximization is not concave (or known to only have
a unique local/global maximum), then one can use a Monte
Carlo method to get an accurate estimate for ErV puM, Dqs,
which is typically computationally much easier than solving
(11), as discussed in Section III-A.

ii) The solver may converge to a value uM for u for which
JGpu

M, d̃Mq ď 0 holds for a local maximum d̃M that is
not global and the expected value ErGpuM, Dqs is actually
positive. Again here, once the optimization finishes, we can
use a Monte Carlo method to obtain an accurate estimate for
ErGpuM, Dqs and reject the solution uM if the constraint is
violated. Hopefully, different initialization for the solver would
resolve this, but one could also tighten the constraint by asking
maxd̃PD JGpu, d̃q to actually be negative.

iii) Finally the solver, may return a value uM for u that
satisfies the constraint but is a local (rather than a global)
extremum of the outer minimization. In this case, it may

be possible to get a better solution, but the solver was
unable to find it. In practice, for nonconvex problems there
is little protection against this, rather than trying a different
initialization for the solver.
It should be noted that any approach based on constructing
(non-exact) convex relaxations to (20) will have very similar
issues: pessimistic relaxations may overlook better solutions
(as in iii), whereas optimistic relaxations may accept solutions
that violate constraints (as in ii).

Lemma 1 (Equivalent compact subset): Consider a contin-
uous function J : U ˆ D Ñ R with U compact. If J has
compact sublevel sets, there exists a compact set D: Ă D
such that

J infpuq– ess inf
dPD

Jpu, dq “ min
dPD:

Jpu, dq, @u P U

and the function J inf is continuous. Similarly, if J has compact
suplevel sets, there exists a compact set D: Ă D such that

J suppuq– ess sup
dPD

Jpu, dq “ max
dPD:

Jpu, dq, @u P U

and the function J sup is continuous.

Proof of Lemma 1. First note that because D is the support
of the random variable D and J is continuous, the essential
infimum of Jpu,Dq is equal to the usual infimum of Jpu, dq
over d P D. The same is true for the supremum,

We prove the result only for the minimization, as the proof
for the maximization is analogous. Take an arbitrary point
d: P D and define

λ: – max
uPU

Jpu, d:q, S: – tpu, dq P U ˆD : fpu, dq ď λ:u.

The constant λ: is finite because J is continuous and U ˆ̂̂ td:u
is a compact set, and the set S: is compact because J has
compact sublevel sets. The desired set D: is then given by the
closure of

Do –
ď

uPU

!

d P D : pu, dq P S
)

.

Note that Do is bounded because S is bounded and therefore
its closure D: is compact. To show that the infimum of
Jpu, dq over D is achieved at some point in D:, assume
by contradiction that there exists some d˚ R D: such that
Jpu, d˚q ă Jpu, dq, @d P D:. Since d: P D:, we conclude that
Jpu, d˚q ă Jpu, d:q ď λ:. This establishes a contradiction,
because it would mean that pu, d˚q P S: and therefore
d˚ P Do Ă D:. Continuity of J inf then follows from Berge’s
Maximum Theorem [57, Chapter E.3].

Proof of Theorem 3. In view of Lemma 1, all the essential
infima and suprema in (12)–(13) are achieved at some point
inside a compact subset D: of D and

V O “ inf
uPU

 

J inf
V puq : J inf

G puq ď 0
(

(21)

for the continuous functions

J inf
V puq– min

dPD
JV pu, dq, J inf

G puq– min
dPD

JGpu, dq. (22)

Since J inf
G puq is continuous and U is compact, the feasible

set tu P U : J inf
G puq ď 0u is compact and nonempty by
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assumption. Weierstrass Theorem [58, Proposition A.8] then
allow us to conclude that the inf is actually achieved at some
point uO P U of the feasible set. Denoting by dOV and dOG points
in D at which the minima in (22) are achieved for u “ uO,
we conclude that

V O “ JV pu
O, dOV q, JGpu

O, dOGq ď 0,

which shows that the right-hand side of (19) cannot be larger
than V O. By contradiction, assume that it is actually strictly
smaller than V O. This would mean there exist u P U and
d, d̃ P D such that

Jvpu, dq ă V O, JGpu, d̃q ď 0.

The right-hand side inequality shows that J inf
G puq ď 0 and

therefore such u is feasible for (21) and the left-hand side
inequality shows that J inf

V puq ă V O, which contradicts the
fact that the infimum in (21) is equal to V O.

Again using Lemma 1, we conclude that

V M “ inf
uPU

!

J sup
V puq : J sup

G puq ď 0
)

(23)

for the continuous functions

J sup
V puq– max

dPD
JV pu, dq, J sup

G puq– max
dPD

JGpu, dq. (24)

In view of [58, Proposition 4.2.1], limµÑ8 V̄
M
µ “ V M, with

V̄ M
µ – min

uPU
J sup
V puq ` µ

´

max
 

0, J sup
G puq

(

¯2

.

The result then follows by noting that

max
 

0, J sup
G puq

(

“ max
d̃PD

max
 

0, JGpu, d̃q
(

.

and therefore V̄ M
µ “ V M

µ for positive µ.

IV. SELECTED APPLICATIONS

A. Stochastic control
Consider the dynamical system

xt`1 “ f
`

xt, θ, ut, dt
˘

(25a)

yt “ h
`

xt
˘

` nt, (25b)

where xt denotes the state of the system at time t, ut
the controlled input, dt a random disturbance input, yt the
measured output, nt measurement noise, and θ a random
vector of parameters.

Our goal to select control inputs u0, . . . , uT´1 to minimize
a finite-horizon criterion of the form

E
“

W px1, . . . , xT , u0, . . . , uT´1q
‰

, (26)

subject to a constraint of the form

E
“

Upx1, . . . , xT , u0, . . . , uT´1q
‰

ď 0. (27)

We consider two versions of this problem: First a state-
feedback scenario in which the initial state x0 is known and the
expectation (26) is with regard to the random parameters θ and
the disturbances d0, . . . , dT´1. We then consider an output-
feedback scenario in which the initial state is not known, but
one has available past measurements y´K , . . . , y0. In this case,
the expectation in (26) is conditioned to these past measure-
ments and it regards the measurement noise n´K , . . . , n0, the
initial state x´K , and the past disturbances d´K , . . . , d´1.

a) State Feedback: The state-feedback control problem
can be viewed as an instance of (11), with the following
associations

u–
`

u0, . . . , uT´1

˘

,

D –
`

θ, d0, . . . , dT´1

˘

,

V pu,Dq–W px1, . . . , xT , u0, . . . , uT´1q,

Gpu,Dq– Upx1, . . . , xT , u0, . . . , uT´1q,

with the understanding that the states x1, . . . , xT that appear
in the definitions of V pu,Dq and Gpu,Dq are obtained along
solutions to (25a) for the control input in u and the parameters
and input disturbances in D.

Assuming that the disturbances dt are independent and
identically distributed with pdf pdp¨q and differential entropy
Hd, and that the parameter θ has pdf pθp¨q and differential
entropy Hθ, we have that

HD “ Hθ ` THd, log pDpθ, dq “ log pθpθq `
T´1
ÿ

t“0

log pdpdtq,

and the optimization in (13) with additive upper bounds for
‘G and ‘V takes the form

V M “min
uPU

!

Xpuq : Upx̄1, . . . , x̄T , u0, . . . , uT´1q ` ε̄HD`

` ε̄ log pDpθ̄, d̄q ď 0, @θ̄, d̄
)

Xpuq– max
θPΘ,dPD

W px1, . . . , xT , u0, . . . , uT´1q`

εHD ``ε log pDpθ, dq,

where U denotes the set of admissible controls; Θ and D the
supports of the distributions for the random parameter and
disturbance, respectively; x̄1, . . . , x̄T the solution to (25a) for
the control u– pu0, . . . , uT´1q, parameter θ̄ and disturbance
d̄ – pd̄0, . . . , d̄T´1q; x1, . . . , xT the solution to (25a) for
the same control u – pu0, . . . , uT´1q, but parameter θ and
disturbance d– pd0, . . . , dT´1q; and ε, ε̄ the scalar parameters
associated with additive upper bounds used for ‘G and ‘V ,
respectively. An equivalent formulation of the optimization in
(12) gives V O.

b) Output Feedback: The output-feedback problem can
also be viewed as an instance of (11), but now with the
following associations

u–
`

u0, . . . , uT´1

˘

,

D –
`

θ, x´K , d´K , . . . , dT´1q,

V pu,Dq–W px1, . . . , xT , u0, . . . , uT´1q,

Gpu,Dq– Upx1, . . . , xT , u0, . . . , uT´1q,

with the understanding that the states x1, . . . , xT that appear
in the definition of V pu,Dq and Gpu,Dq are obtained along
solutions to (25a) for the control input in u and the parameters,
initial state, and input disturbances in D. In addition, the
expectation in (11) is now a conditional expectation, given
measurements Y “ py´K , . . . , y0q defined by (25b).

In this case, the optimization in (13) with additive upper
bounds for ‘V and ‘G takes the form

V M “min
uPU

!

Xpuq : Upx̄1, . . . , x̄T , u0, . . . , uT´1q`
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Fig. 1: Linear system with unknown dynamics, comparison of
the controls uM obtained from Theorem 2 and uSAA obtained
using Sample Average Approximation. Using Monte Carlo
integration, we obtain that ErV puM, Dqs “ 1.79 ˆ 103 and
ErV puSAA, Dqs “ 1.62ˆ 103.

ε̄ log pD|Y pθ̄, d̄, x̄kq ` ε̄HD|Y py´K , . . . , y0q ď 0,@θ̄, d̄, x̄k

)

Xpuq– max
θPΘ,dPD,x´KPX´K

W px1, . . . , xT , u0, . . . , uT´1q`

ε log pD|Y pθ, d, x´Kq ` εHD|Y py´K , . . . , y0q, (28)

where we use the version of the bounds for conditional
expectation mentioned in Remark 1. The conditional pdf that
appears in (28) can be computed using the following result.

Lemma 2 (Conditional pdf of a dynamical system): In
addition to the assumptions made for the state feedback case,
also assume that the observation noises nt are independent
and identically distributed with pdf pnp¨q and that the initial
state x´K has pdf px´K p¨q. If pY py´K , . . . , y0q ‰ 0, the
conditional probability density function pD|Y p¨q is given by

ś0
t“´K pn

´

yt ´ h
`

xt
˘

¯

śT´1
t“´K pdpdtqpx´K px´Kq pθpθq

pY py´K , . . . , y0q

with the understanding that xt is obtained along the solutions
to (25a). l

Proof of Lemma 2. Using the independence of nt, one de-
duces that the observations yt are conditionally independent:

pY |Dpy´K , . . . , y0 | x´K , . . . , x0q “

0
ź

t“´K

pYt|Dpyt | xtq.

As the noise nt is additive in (25b), a change of variable gives
pYt|Dpyt | xtq “ pn

´

yt ´ h
`

xt
˘

¯

. Using Bayes’ theorem and
the independence of dt, θ, and x´K finishes the proof.

The differential entropy HD|Y py´K , . . . , y0q that appears
in (28) is typically difficult to compute (or even to estimate,
e.g., through Monte Carlo integration); especially for a long
sequence of past measurements y´K , . . . , y0. However, this
entropy is not affected by the optimization variable u “

pu0, . . . , uT´1q, which only includes future controls. This
means that we can determine the optimal value for u in (28)
without actually computing HD|Y py´K , . . . , y0q.

Example 1 (Linear system with unknown dynamics): Con-
sider a linear system, i.e., a system with dynamics

xt`1 “ Axt `B ut ` dt

yt “ C xt ` nt

with dt and nt independent zero mean standard Gaussian
processes. The system is time-invariant, C is an identity
matrix, but the matrices A and B are unknown stochastic
parameters of the form

A “

»

–

A11 A12 0
0 A22 A23

0 0 A33

fi

fl B “

»

–

0
0
B31

fi

fl ,

where A11, A12, A22, A23, A33, B31 are independent Gaussian
random variables with mean 1 and standard deviation 0.25. We
chose a quadratic cost

W pu0, . . . uT´1, x0 . . . xT q “
T´1
ÿ

t“0

0.5‖ut‖2
2 ` 0.5‖xt‖2

2 ` 0.5‖xT ‖2
2

with a future horizon T “ 10 and constraints on the control
that ‖u‖8 ď 1. We suppose access to past measurements
y´K , . . . , y0 with K “ 20.

The value of the upper bound V M is 5.04 ˆ 105 and
the value of the lower bound V O is 28. We compare our
results with an approximate solution obtained using Sample
Average Approximation (SAA) (i.e., minimizing an empirical
mean of the cost). Solving the upper bound and lower bound
optimizations (Theorem 2) takes about 0.1 seconds, while
solving the Sample Average Approximation takes about 5
minutes. In Figure 1 one can see that the controls match each
other fairly closely until t “ 6, when they start to slightly
diverge. We also use Monte Carlo integration, as discussed in
Section III-A, to estimate the expected value of the cost for
the two controls, obtaining that they differ by about 10%.

Example 2 (Dubins vehicle): Consider a discrete time Du-
bins vehicle [59], [60] with dynamics
»

–

xt`1

yt`1

ωt`1

fi

fl“

»

–

xt
yt
ωt

fi

fl`Ts

»

–

v cospωtq
v sinpωtq

ut

fi

fl`
T 2
s

2

»

–

´v sinpωtqut
v cospωtqut

0

fi

fl` dt

where Ts “ 0.1 is the sampling period, v “ 1 is a constant
forward speed. The initial state is known to be rx0, y0, ω0s

1 “

r0, 0, 0s, and we want to optimize for a future horizon T “
50. The controls are constrained such that ‖u‖8 ď π{2. The
disturbance dt “ rd

pxq
t , d

pyq
t , d

pωq
t s1 is such that dpxqt , d

pyq
t are

zero mean Gaussian random variables with variance Ts, and
d
pωq
t is a von Mises random variable, with probability density

function eκ cospxq{p2πI0pκqq with κ “ 5{Ts and where I0pκq
is the modified Bessel function of order 0. The cost function
is

W pu0, . . . uT´1, x0 . . . xT q “
T´1
ÿ

t“0

0.5‖ut‖2
2 `

T
ÿ

t“0

0.5‖xt‖2
2 ` 0.5‖yt‖2

2
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(a) Expected value of the trajectory without constraints on the final state;
the expected value of the cost for this control is EpV puM, Dqq “ 189.
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(b) Expected value of the trajectory with constraints on the final state; the
expected value of the cost for this control is EpV pu;, Dqq “ 250.

Fig. 2: Expected value of the trajectory of the Dubins vehicle given two different controls estimated using Monte Carlo
integration. Without constraints (a), the control brings the expected value of the trajectory back to near the origin. With the
inclusion of constraints (b), the control drives the expected value of the final state towards the correct region.

We present two cases, one with no constraints on the states
and one with a constraint on the final state. For both of them,
we use the additive bounds.

The first case, without constraints, takes about 1 second
to solve, the value of the upper bound V M is 1.25 ˆ 105 the
lower bound V O only provides the trivial value of 0. However,
using a Monte Carlo integration we compute the expected
value of the cost given the control and obtain 189. We use a
Stochastic Gradient Descent to solve (26), which takes about
15 seconds, the optimal cost is 187 and the error between
the solution obtained using the Stochastic Gradient Descent
uSGD and the solution obtained using the upper bound uM is
‖uSGD ´ uM‖8 “ 0.029, suggesting that uM approximately
finds the optimal solution to (26)

For the second case, we include the constraint

E

„
∥∥∥∥„xTyT



´

„

1
1


∥∥∥∥

2



ď 0.25 (29)

i.e., we want to find a control such that the expectation of
the final value of the trajectories of px, yq be in neighborhood
around the point p1, 1q (look at Figure 2b for a visualization of
the constraints). As the problem now has stochastic constraint,
we have to choose between using the upper bound V M from
(13) which requires u to satisfy the constraint

max
d

∥∥∥∥„xTyT


´

„

1
1


∥∥∥∥

2

` ε log pDpdq ` εHD ď 0.25, (30)

or the upper bound V ; from (14). Unfortunately the bound
(30) of (29) is too conservative, and renders the problem
infeasible. The upper bound V ; does not suffer from this
problem. It takes about 30 seconds to solve the optimization
for which we obtain a value for the upper bound V ; of

1.25ˆ 108 and the lower bound V O provides only the trivial
value of 0. However, using Monte Carlo integration, we obtain
that the expected value of the cost is 250.

B. Maximum Likelihood and Maximum a Posteriori with la-
tent variables

Consider an observation x of a random vector X taking
values in RM whose distribution depends on an unknown
parameter θ P RP that one wants to estimate. The Maximum
Likelihood Estimation (MLE) [1] of θ is a vector θ˚ P RP

such that

θ˚ P arg max
θ

pXpx; θq. (31)

where the pdf of X is pXpx; θq. The Maximum a Posteriori
(MAP) is the analogous of the MLE in Bayesian estimation,
i.e., when one regards θ as a realization of a random variable
Θ, called the prior, which has pdf pΘp¨q. In this case, the MAP
estimation of θ is a vector θ˚ P RP such that

θ˚ P arg max
θ

pX|Θpx | θqpΘpθq. (32)

In many cases, constructing the model requires including
latent variables that cannot be directly observed. This means
that one does not know pXpx; θq but does know pX|Dpx |
d; θqpDpdq, where D is a "latent" random vector taking values
in RN . In this case, the MLE θ˚ is given by

θ˚ P arg max
θ

pXpx; θq “

ż

D
pX|Dpx | d; θqpDpdqdd

“ arg max
θ

ErpX|Dpx | D; θqs.
(33)
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For the MAP, the analogous deduction leads to

θ˚ P arg max
θ

E
“

pX|Dpx | D; θq
‰

pΘpθq. (34)

Computing the expected values in (33) or in (34) is normally
intractable. The standard approach is to use the Expectation
Maximization (EM) algorithm [61]. An issue with EM, in
addition to a rate of convergence that might be very slow, is
that it requires computing in closed form the expected value
ED|X;θ̃rlog pX,DpX,D; θqs, which is often not possible. In
some cases, one can use Monte Carlo EM [61] to compute it,
but with rates of convergence even slower.

The MLE optimization (33) can be viewed as an uncon-
strained form of (11), which using the multiplicative upper
bound in (13) leads to

θO P arg max
θ

min
d
pX|Dpx |d; θqpDpdq

ε IDpεq (35)

or equivalently,

θO Parg max
θ

min
d

log
`

pX|Dpx |d; θq pDpdq
ε IDpεq

˘

, (36)

which is numerically more stable. For the MAP, one would
add log pΘpθq to the right hand side of (36). The multiplicative
bound is more amenable for the optimization than the additive
as it allows to solve (35) in its logarithmic form (36).

Example 3 (Linear measurements with additive Gaussian
noise): Let D „ N p0, σDq, N „ N p0, σN q. Consider T
observations of the random variable Xt “ θ`Dt`Nt where
θ is the parameter to be estimated. This problem has a closed
form solution, which is the empirical average of xt. Applied
to this problem, equation (36) reduces to 1

θO P arg max
θ

min
d1:T

T
ÿ

t“1

´‖xt ´ dt ´ θ‖2
2σ
´1
N ´ ε‖dt‖2

2σ
´1
D

´ T logp1´ εq ´ T logp2πσN q. (37)

If we take any ε such that ε ă ´σ´1
N {σ

´1
D , then the solution

is 1
T

řT
t“1 xt which is the same as the exact solution.

Example 4 (Norm measurements with Gaussian distur-
bances and noise): We have T observations of the random
variable Xi “ ‖θ `Di‖2 ` Ni where θ is the parameter to
be estimated, D „ N p0,ΣDq and N „ N p0, σN q. We also
have a prior distribution Θ „ N pθ̄,ΣΘq on θ. Applied to this
problem, equation (36) reduces to

θO P arg max
θ

min
d1:T

T
ÿ

t“1

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
xt ´ ‖θ ` dt‖2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

σ´1
N

´ ε‖dt‖2
Σ´1
D

´
∥∥θ ´ θ̄∥∥2

Σ´1
Θ

´ 2T logp1´ εq ´ T logp2πσN q (38)

where we use the notation ‖v‖2
Q – v1Qv. We take the

numerical values T “ 20, ΣD “
“

2 ´1
´1 1

‰

, σN “ 1 θ̄ “
“

1.8
1.8

‰

,
ΣΘ the identity matrix.

The result of (38) is shown in Table I where we compare it
with three other estimators. The first one is what we call naive

1We refer the reader to Appendix A for the deduction of the penalizing
term.

θ (actual value) θO naive MAP MC MMSE MC MAP

„

2
2

 „

1.95
2.37

 „

2.8
0.21

 „

1.82
1.62

 „

2.13
1.70



TABLE I: Comparison between the actual value of θ, of θO

obtained from (38) and three other estimators.

MAP, where one treats D1, . . . , DT not as a latent variable,
but as a regular variable that one wants to estimate, i.e.,

arg max
θ,d1:T

T
ÿ

t“1

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
xt´‖θ ` dt‖2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

σ´1
N

´‖dt‖2
Σ´1
D
´
∥∥θ ´ θ̄∥∥2

Σ´1
Θ

.

The second and third are Monte Carlo methods, where we
use a Markov Chain Monte Carlo to obtain 106 samples from
Θ | X , which takes about 30 minutes. Using these sample, the
second estimator is the Monte Carlo estimate of the Minimum
Mean Square Error (MC MMSE) estimator (i.e., the empirical
average of the samples). The third estimator, we use the sample
based estimator of the mode described in [62] to compute a
Monte Carlo estimate of the MAP (MC MAP).

Our estimator θO is significantly closer to real θ and to the
MCMC estimate of the MAP than the naive MAP. θO is also
approximately as distant to the true value of θ as the MMSE
estimate. Although none of them is the real MAP, these results
suggest that θO accurately captures the estimation problem and
provides a better result than naively trying to estimate d1:T as
in the naive MAP.

C. Bayesian Optimal Experiment Design

The goal in experiment design is to find inputs for an
estimation problem that will yield samples that provide "more
information per sample". Consider a random vector X with
pdf pXpx;u, θq where θ is a vector of unknown parameters
and u a vector of control decision taking values in U Ă RN .
The Fisher Information Matrix is

FIpu, θq “ E
„

d log pXpX;u, θq

dθ

d log pXpX;u, θq

dθ

1

,

where the expected value is taken with respect to X and
where we use the denominator-layout notation for the deriva-
tives (producing column vectors). The Cramer-Rao lower
bound states that, given any unbiased estimator θ̂pu,Xq of
θ, its covariance E

”

pθ̂pu,Xq ´ θqpθ̂pu,Xq ´ θq1
ı

is lower
bounded (in the positive definite matrix sense) by FIpu, θq´1.
Therefore, if one minimizes (according to some criteria)
FIpu, θq´1, one will decrease the covariance of any estimator
achieving the Cramer-Rao bound.

In Bayesian optimal experiment design one assumes that θ
is a realization of an underlying random vector Θ, with pdf
pΘp¨q, and select u˚ to minimize the Bayesian D-optimality
(the D stands for determinant), criteria:

u˚ P arg min
uPU

Erlog det
`

FIpu,Θq´1
˘

s, (39)

where the expected value is taken with respect to Θ. It is
shown in [4] that (39) optimizes the gain in the Shannon
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information of the experiment when θ̂pu,Xq is a Gaussian
distribution with mean θ and covariance FIpu, θq´1. In other
words, it designs an experiment that brings more information
on average. Alternative Bayesian criteria include A-optimality
(the A stands for average), where one wants to find a u˚ such
that

u˚ P arg min
uPU

ErtrpFIpu,Θq´1qs. (40)

In this case, (40) minimizes the mean square error of any
estimator θ̂pu,Xq that is unbiased and achieves the Cramer-
Rao bound.

The experiment design in (39) and (40) is an unconstrained
form of (11). Using the additive upper bound in (13) leads to

V M “ min
uPU,ε

max
θPΩ

´ log detpFIpu, θqq ` ε log pΘpθq ` εHΘ

V O “ max
ε

min
uPU,θPΩ

´ log detpFIpu, θqq ` ε log pΘpθq ` εHΘ.

(41)

For Bayesian A-optimality (40), we obtain

V M “ min
uPU,ε

max
θPΩ

trpFIpu, θq´1q ` ε log pΘpθq ` εHΘ

V O “ max
ε

min
uPU,θPΩ

trpFIpu, θq´1q ` ε log pΘpθq ` εHΘ.

(42)

Example 5 (Optimal trajectories for thermal air wind de-
tection):

A glider is an air vehicle that flies without propellers, using
only wind forces to change its altitude. In order to move up,
a glider needs to estimate the location and intensity of the
thermal vertical wind that would push it [63]–[65].

Given an air column, a common model for the intensity of
the vertical wind speed at position z “ px, yq is

wpw̄, γ, z̄, zq “ w̄e´γ‖z´z̄‖
2
2

where z̄ “ px̄, ȳq denotes the position of the thermal center,
w̄ the wind speed at the thermal center and 1{γ the thermal
radius. Our goal is to estimate the thermal parameters θ “
pw̄, γ, z̄q based on noisy measurements of the vertical air speed
of the form

Vt “ wpw̄, γ, z̄, ztq `Nt

where zt is the location where the measurement is taken and
Nt are independent zero mean Gaussian distribution with vari-
ance σ2. The probability density function for T measurements
v “ pv1, ..., vT q is given by

pV pv; θq “
1

p2πqT {2σT
e´

řT
t“1pvt´wtq

2

2σ2

where wt “ wpw̄, γ, z̄, ztq. The Fisher Information matrix
associated to the estimation of θ is given by,

FIpz1:T , θq “E

„

d log pV pV ; θq

dθ

d log pV pV ; θq

dθ

1

“
1

σ4
E

«

T
ÿ

t“1

T
ÿ

l“1

pVt ´ wtqpVl ´ wlq
dwt
dθ

dwl
dθ

1
ff

“
1

σ2

T
ÿ

t“1

dwt
dθ

dwt
dθ

1
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Fig. 3: Optimal trajectory for the Bayesian experiment design
for detecting the parameters of a vertical thermal air flow

where

dwt
dθ

“

„

Bwt
Bw̄

,
Bwt
Bγ

,
Bwt
Bz̄

1

“ e´γ‖zt´z̄‖
2
”

1,´w̄‖zt ´ z̄‖2
,´w̄γpzt ´ z̄q

1
ı1

.

Given prior distributions on w̄, γ and z̄, we want to find the
measurement points z1, z2, . . . , zT that minimize (39) subject
to the constraint that the distance between two consecutive zt
should be no larger than ∆z. As the problem is rotationally
symmetric, we fix the y coordinate of the first point to be 0.

We assign the following prior distributions. Both w̄ and
γ follow a Gamma distribution with parameters respectively
pαw̄, βw̄q and pαγ , βγq and the thermal center z̄ follows a zero
mean Gaussian distribution with covariance Σz̄ .

We take the following numerical values. The number of
measurements is T “ 20. The parameters of the priors are
αw̄ “ αγ “ 1.25, βw̄ “ βγ “ 0.25 and Σz̄ “ 0.1I .
The maximum displacement between two sampling points
is ∆z “ 0.05. The problem is highly nonconvex, requiring
multiple initializations. For the lower bound, it takes about
6.56 seconds to run 100 optimizations with a random walk
initialization, obtaining the lower bound V O “ ´14.27. For
the upper bound it takes about 8.92 seconds to run 100
optimizations with random walk initialization, obtaining the
upper bound V M “ 95.41. Using Monte Carlo integration, as
discussed in Section III-A, we obtain that the expected value
of the log determinant of the Fisher Information Matrix given
the trajectory is 1.203. The optimal trajectory can be seen in
Figure 3.

V. CONCLUSIONS AND FUTURE WORK

We presented a general method to bound the expected
value of any random variable with known probability density
function. Stochastic programming is the main application of
the bounds, where they can be used to determine an optimizer
which has performance guarantees and satisfies inequality
constraints. We illustrate the results with applications to finite-
horizon stochastic control, estimation with latent variables and



13

experiment design. The numerical results in theses applications
show that optimizing the bound lead to solutions close to the
optimal. They also suggest that even when the bounds are not
tight, the argument that minimizes the upper bound is close to
the one that minimizes the stochastic programming problem.

There are many future work directions to be considered. On
the bounds themselves, most of the properties were determined
for the additive and multiplicative bound, but other versions
of the bounds could unlock other applications. The connection
between the bounds we developed and distributionally robust
optimization remains to be further understood, in particular
for which kind of problem which approach is more suited. On
obtaining solutions to the minmax optimization, an area for
future research motivated by [15]–[17] arises from replacing
the essential suprema used in the upper bound in (13) by
maxima over independent samples of the random variable D
and establishing sample complexity bounds to guarantee that
the resulting optimization still provides an upper bound with
high probability.

In terms of stochastic control, an evident extension would be
stochastic model predictive control. In the estimation section,
it would be interesting to study the asymptotic properties of
the bound. As for new applications, machine learning is an
area of significant potential. In particular, this method could
either be used to accelerate the training of Neural Networks
when there is a partial knowledge of the underlying model or
in adversarial training.
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APPENDIX

A. Penalization term for common distributions

a) Gaussian distribution: The probability density func-
tion of a Gaussian Distribution with mean µ and covariance
matrix Σ is

pDpdq “ detp2πΣq
´1{2

exp

ˆ

´
1

2
‖d´ µ‖2

Σ´1

˙

where we use the notation ‖v‖2
Q – v1Qv.

For the additive bound, HD – Er´ log pDpDqs “
1
2 log detp2πeΣq, therefore the penalization term simplifies to

log pDpdq `HD “ ´
1

2
‖d´ µ‖2

Σ´1 `
1

2
M

where M is the dimension of D.
For the multiplicative bound, IDpεq – ErpDpDq

´ε
s “

detp2πΣq
ε{2
p1´εq´M{2 if ε ă 1 and `8 otherwise, therefore

for ε ă 1 the penalization terms simplifies to

pDpdq
εIDpεq “ exp

ˆ

´
1

2
ε‖d´ µ‖2

Σ´1

˙

p1´ εq´M{2

.

b) Uniform distribution: If D is a Uniform distribution
over a bounded support D, its pdf is pDpdq “ V´1

D 1Dpdq
where 1Dp¨q is the indicator function of D and VD “

Er1DpDqs is the volume of D.
For the additive bound, HD “ Er´ logp1DpDqqs `

logpVDq “ Er0s ` logpVDq, therefore the penalization terms
simplifies to log pDpdq `HD “ 0 @d P D.

For the multiplicative bound, IDpεq “

ErpVDq
ε1DpDq

´εs “ pVDq
ε, therefore the penalization

term simplifies to pDpdq
εIDpεq “ 1 @d P D.

B. Proofs of Section II

To prove the results that follow, we need the following
properties of the essential supremum and infimum which we
state without a proof.

Lemma 3: Given two random variables X and Y then

X
wpo
ě Y ñ ess inf X ě ess inf Y

X
wpo
ě Y ñ ess supX ě ess supY

ess infpX ` Y q ě ess inf X ` ess inf Y

ess suppX ` Y q ď ess supX ` ess supY l

Proof of Proposition 1. Take ε1, ε2 P R such that J˚pε1q,
J˚pε2q ă `8 and λ P r0, 1s

J˚pλ ε1 ` p1´ λqε2q

“ ess supV pDq ` pε1λ` ε2p1´ λqq log pDpDq

“ ess suppλ` 1´ λqV pDq ` pε1λ` ε2p1´ λqq log pDpDq

ď λ ess supV pDq ` ε1 log pDpDq

`p1´ λq ess supV pDq ` ε2 log pDpDq ă 8

where the inequality follows from Lemma 3. This establishes
that the additive upper bound is convex in ε and that J˚pεq is
finite on a convex set.
For the multiplicative bound, it remains to show that IDpεq is
log convex: take ε1, ε2 P R such that IDpε1q, IDpε2q are finite
and λ P r0, 1s. By applying Hölder’s inequality we obtain

ErpDpDq
´λε1pDpDq

´p1´λqε2s

ď

´

ErpDpDq
´λε1{λs

¯λ ´

ErpDpDq
´p1´λqε2{p1´λqs

¯p1´λq

“

´

ErpDpDq
´ε1s

¯λ ´

ErpDpDq
´ε2s

¯p1´λq

which establishes log convexity.

C. Necessary and sufficient conditions for finite bounds

Consider a constant γ ą 0 sufficiently small so that
P
`

pDpDq ą γ
˘

ą 0. We say a measurable function fp¨q
is γ-essentially upper bounded if

ess sup
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ă 8,

γ-essentially lower bounded if

ess inf
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ą ´8,

and γ-essentially bounded if it is both γ-essentially upper and
lower bounded.
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Theorem 4 (Finite bounds): Suppose that pDp¨q is γ-
essentially upper bounded and let c P p0, 1{γq be any constant
for which

ess sup
“

pDpDq | pDpDq ą γ
‰

ď 1{c, (43)

and ε an arbitrary finite constant. Regarding the additive
bound: Assuming that V p¨q is γ-essentially lower bounded,
then

pDpDq
wpo
ą γ or ess inf

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ε

ñ ess inf
`

V pDq ` ε log pDpDq
˘

ą ´8. (44)

Conversely,

ess inf
`

V pDq ` ε log pDpDq
˘

ą ´8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess inf
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ě ε`
L

log cγ
. (45)

Assuming that V p¨q γ-essentially upper bounded, then

pDpDq
wpo
ą γ or ess sup

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ε

ñ ess sup
`

V pDq ` ε log pDpDq
˘

ă `8 (46)

Conversely,

ess sup
`

V pDq ` ε log pDpDq
˘

ă 8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess sup
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ď ε´
L

log cγ
. (47)

Regarding the multiplicative bound: Assuming that log V p¨q is
γ-essentially lower bounded, then

pDpDq
wpo
ą γ or ess inf

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ε

ñ ess inf
`

log V pDq ` ε log pDpDq
˘

ą ´8.

Conversely,

ess inf
`

log V pDq ` ε log pDpDq
˘

ą ´8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess inf
”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ě ε`
L

log cγ
. (48)

Assuming that log V p¨q is γ-essentially upper bounded, then

pDpDq
wpo
ą γ or ess sup

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ε

ñ ess sup
`

log V pDq ` ε log pDpDq
˘

ă `8

Conversely,

ess sup
`

log V pDq ` ε log pDpDq
˘

ă 8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess sup
”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ď ε´
L

log cγ
. (49)

l

Proof. We will prove the theorem for the additive lower bound
[i.e., (44) and (45)]. The proof for the other bounds can be
obtained in an analogous way.

To prove (44), we note that since V p¨q is γ-essentially lower
bounded there exists a finite constant L such that

ess inf
“

V pDq | pDpDq ą γ
‰

ě L.

In view of this and (43), we have that

P
`

V pDq ě L, pDpDq ď 1{c | pDpDq ą γ
˘

“ 1. (50)

Since

V pDq
wpo
ě L, pDpDq

wpo
ď 1{c, pDpDq

wpo
ą γ

ñ V pDq ` ε log c pDpDq
wpo
ě L˚ ą ´8,

with L˚ – L´ |ε| | log cγ|, we conclude from (50) that

P
`

V pDq ` ε log c pDpDq ě L˚
ˇ

ˇ pDpDq ą γ
˘

“ 1. (51)

In case pDpDq
wpo
ą γ, we conclude that the corresponding

unconditional probability satisfies the same bound and (44)
follows. Otherwise,

ess inf
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ε

implies that

P
´

´V pDq

log c pDpDq
ě ε

ˇ

ˇ pDpDq ď γ
¯

“ 1. (52)

Since

pDpDq ď γ
wpo
ùñ log c pDpDq ď log c γ ă 0, (53)

we also conclude from (52) that

P
`

V pDq ` ε log c pDpDq ě 0
ˇ

ˇ pDpDq ď γ
˘

“ 1. (54)

Combining (54) and (51), we conclude that the corresponding
unconditional probability satisfies

P
`

V pDq ` ε log c pDpDq ě mint0, L˚u
˘

“ 1,

from which (44) follows.

To prove (45), we use the fact that ess inf
`

V pDq `
ε log pDpDq

˘

ą ´8 implies that there exists some finite scalar
L ą 0, for which

PpV pDq ` ε log c pDpDq ě ´Lq “ 1. (55)

When pDpDq
wpo
ą γ the implication in (45) is tautologically

true, so we focus our attention on the case PppDpDq ď γq ą 0,
for which (55) implies that

P
`

V pDq ` ε log c pDpDq
˘

ě ´L
ˇ

ˇ pDpDq ď γ
˘

“ 1. (56)

Using (53), we conclude that

V pDq ` ε log c pDpDq, pDpDq ď γ

wpo
ñ

´V pDq

log c pDpDq
ě ε`

L

log c γ
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and therefore (56) implies that

P
´

´V pDq

log c pDpDq
ě ε`

L

log c γ

ˇ

ˇ pDpDq ď γ
¯

“ 1. (57)

This shows that

ess inf
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ě ε`
L

log cγ
,

which completes the proof of the implication in (45).
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