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Abstract
We address the problem of finding a local solution to a nonconvex–nonconcave min-
max optimization using Newton type methods, including primal-dual interior-point
ones. The first step in our approach is to analyze the local convergence properties
of Newton’s method in nonconvex minimization. It is well established that Newton’s
method iterations are attracted to any point with a zero gradient, irrespective of it
being a local minimum. From a dynamical system standpoint, this occurs because
every point for which the gradient is zero is a locally asymptotically stable equilib-
rium point. We show that by adding a multiple of the identity such that the Hessian
matrix is always positive definite, we can ensure that every non-local-minimum equi-
librium point becomes unstable (meaning that the iterations are no longer attracted
to such points), while local minima remain locally asymptotically stable. Building on
this foundation, we develop Newton-type algorithms for minmax optimization, con-
ceptualized as a sequence of local quadratic approximations for the minmax problem.
Using a local quadratic approximation serves as a surrogate for guiding the modi-
fied Newton’s method toward a solution. For these local quadratic approximations to
be well-defined, it is necessary to modify the Hessian matrix by adding a diagonal
matrix. We demonstrate that, for an appropriate choice of this diagonal matrix, we can
guarantee the instability of every non-local-minmax equilibrium point while main-
taining stability for local minmax points. Using numerical examples, we illustrate the
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importance of guaranteeing the instability property. While our results are about local
convergence, the numerical examples also indicate that our algorithm enjoys good
global convergence properties.

Keywords Minmax optimization · Robust optimization · Newton method ·
Interior-point method · Local minmax

1 Introduction

In minmax optimization, one minimizes a cost function which is itself obtained from
the maximization of an objective function. Minmax optimization is a powerful mod-
eling framework, generally used to guarantee robustness to an adversarial parameter
such as accounting for disturbances in model predictive control [1, 2], security-related
problems [3, 4], or training neural networks to be robust to adversarial attacks [5]. It
can also be used as a framework to model more general problem such as sampling
from unknown distributions using generative adversarial networks [6], reformulating
stochastic programming as minmax optimization [7–9], or producing robustness of
a stochastic program with respect to the probability distribution [10]. Minmax opti-
mization is also known as minimax or robust optimization. Minmax optimization is
related to bilevel optimization [11–13], as minmax optimization can sometimes be
used to find solutions to bi-level optimization when the inner and outer maximization
have antisymmetric criteria.

Finding a global minmax point for nonconvex–nonconcave problems is generally
difficult, and one has to settle for finding a local minmax point. Surprisingly, only
recently a first definition of unconstrained local minmax was proposed in [14], and
the definition of constrained local minmax in [15].

In optimization, Newton’s method consists of applying Newton’s root finding algo-
rithm to obtain a point for which the gradient is equal to zero. In convex minimization,
the only such points are (global) minima [16, Theorem 2.5]. Likewise, in convex–
concave minmax optimization (meaning that the function is convex in the minimizing
variable and concave in the maximizing variable), Von Neumanns’ Theorem [17]
states that the min and the max commute, which implies that the only points for which
the gradient is zero are solutions to the optimization. This means that both in convex
minimization and convex–concave minmax optimization, using Newton’s root finding
method to obtain a point for which the gradient is zero is a good strategy to solve the
optimization problem.

In contrast, for nonconvex minimization or nonconvex–nonconcave minmax opti-
mization, the gradient can be zero at a point even if such point is not a solution to
the optimization. So using Newton’s root finding method to obtain a point for which
the gradient is equal to zero is not a good strategy to find a (local) solution to the
optimization. The foundation of our work involves examining Newton’s method iter-
ations through the lens of dynamical systems. By analyzing the linearization of the
dynamics, we deduce that every equilibrium point (i.e., a point with a zero gradient) is
locally asymptotically stable, which is why the iterations of the Newton’s method are
attracted to them. The key contribution of this article is to study how to modify the
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Newton’s method such that it is only attracted to (local) solutions of the optimization,
and repelled by any equilibrium points that are not (local) solutions.

Our paper’s initial contribution is an examination of the local convergence proper-
ties of amodifiedNewton’smethod forminimization inwhich amultiple of the identity
matrix is added to the Hessian such that the resulting matrix is positive definite [16,
Chapter 3.4 “Newton’s method with Hessian modification”]. This modified Newton
has two crucial properties. First, it can be shown to be equivalent to a sequence of
local quadratic approximations to the minimization problem. Second, we demonstrate
that incorporating this additive matrix renders every non-local-minimum equilibrium
point unstable while maintaining stability for local minima. This simple modification
ensures that the modified Newton’s method has the property we refer to in the previ-
ous paragraph that the iterations are only attracted to equilibrium points that are local
minima, and repelled by other equilibrium points. Utilizing analogous techniques, we
establish similar results for primal-dual interior-point methods in constrained mini-
mization. These findings (outlined in Sect. 2) directly inspire the development of new
Newton-type algorithms for minmax optimization.

Drawing inspiration from the Newton’s method for minimization, we develop
Newton-type algorithms for minmax optimization, conceptualized as a series of local
quadratic approximations of the minmax problem. For convex–concave functions,
this quadratic approximation is just the second-order Taylor expansion, which leads
to the (unmodified) Newton’s method, accompanied by its well-established local con-
vergence properties. However, for nonconvex–nonconcave functions, it is necessary
to add scaled identity matrices to ensure that the local approximations possess finite
minmax solutions (without mandating convex-concavity). Additive terms meeting
this criterion are said to satisfy the local quadratic approximation condition (LQAC).
Employing a sequence of local quadratic approximations acts as a surrogate for guid-
ing the modified Newton’s method toward a solution at each step. Nevertheless, we
demonstrate that, unlike minimization, local quadratic approximation-based modifi-
cations are not enough to ensure that the algorithm can only converge toward local
minmax points. Our minmax findings reveal that additional conditions are required
on the modification to unsure the algorithm’s convergence to an equilibrium point is
guaranteed only if that point is a local minmax. To streamline the presentation, we
first introduce this result in Sect. 3.1 for unconstrained minmax and then expand it to
primal-dual interior-point methods for constrained minmax in Sect. 3.2.

The conditions described above to establish the equivalence between local minmax
and local asymptotic stability of the equilibria to a Newton-type iteration are directly
used to construct a numerical algorithm to find local minmax. By construction, when
this algorithm converges to an equilibrium point, it is guaranteed to obtain a local
minmax. One could be tempted to think that the issue of getting instability for the
equilibria that are not local minima (in Theorems 1 and 2) or that are not local minmax
(in Theorems 3 and 4) is just a mathematical curiosity, which in practice makes little
difference. However, our numerical examples in Sects. 4.1 and 4.2 show otherwise.
Most especially the pursuit-evasion MPC problem in Sect. 4.2, where finding a local
minmax (rather than an equilibrium that is not local minmax) leads to a completely
different control. Specifically, if the instability property is not guaranteed, the evader
is not able escape from the pursuer. It is important to emphasize that our results fall shy
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of guaranteeing global asymptotic convergence to a local minmax, as the algorithm
could simply never converge. However, our numerical examples also show that our
algorithm seems to enjoy good global convergence properties in practice. Using the
results of this paper, we have created a solver for minmax optimization and included
it in the solvers of TensCalc1 [18]; this solver was used to generate the numerical
results we present.

NotationThe set of real numbers is denoted byR. Given a vector v ∈ Rn , its transpose
is denoted by v′. The operation diag(v) creates a matrix with diagonal elements v and
off-diagonal elements 0. The matrix I is the identity, 1 is the matrix of ones and 0 the
matrix of zeros; their sizes will be provided as subscripts whenever it is not clear from
context. If a matrix A only has real eigenvalues, we denote by λmin(A) and λmax (A)

its smallest and largest eigenvalues. The inertia of A is denoted by in(A) and is a
3-tuple with the number of positive, negative and zero eigenvalues of A.

Consider a differentiable function f : Rn ×Rm �→ Rp. The Jacobian (or gradient
if p = 1) at a point (x̄, ȳ) according to the x variable is a matrix of size n × p and is
denoted by ∇x f (x̄, ȳ), and analogously for the variable y. When p = 1 and f (·) is
twice differentiable, we use the notation ∇yx f (x̄, ȳ) := ∇y

(∇x f
)
(x̄, ȳ) which has

sizesm×n.We use analogous definition for∇xy f (x̄, ȳ),∇xx f (x̄, ȳ) and∇yy f (x̄, ȳ).

1.1 Literature Review

Traditionally, robust optimization focused on the convex–concave case, with three
main methods. The first type of method is based on Von Neumann’s minmax theorem
[17] that states that the min and the max commute when the problem is convex–
concave and the optimization sets are convex and compact. Solving the minmax then
simplifies to finding a point that satisfies the first-order condition.While there aremany
different methods to achieve this, many of them can be summarized by the problem of
finding the zeros of a monotone operator [19]. The second type of methods consists on
reformulating the minmax as a minimization problem which has the same solution as
the original problem. This is generally done using either robust reformulation through
duality theory or tractable variational inequalities [12, 20–22]. The third, cutting-set
methods, solves a sequence ofminimizationwhere the constraint of eachminimization
is based on subdividing the inner maximization [23].

Motivated by some of the shortcomings of these methods and the necessities
of machine learning, research on minmax optimization started to study first-order
methods based on variations of gradient descent-ascent. The results tend to focus on
providing convergence complexity given different convexity/ concavity assumptions
on the target function. We can divide these first-order methods in three families. The
first family solves the minmax by (approximately) solving themaximization each time
the value of the minimizer is updated.When this is done using first-order methods, it is
generally referred to as multi-step gradient descent ascent, unrolled gradient descent
ascent or GDmax, and the minimizer is updated by a single gradient descent whereas
the maximizer is updated by several gradient ascent steps. A second family uses single

1 https://github.com/hespanha/tenscalc.
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step, where the minimizer and maximizer are updated at each iteration. For both of
these two first families, the gradient iterations can include variations such as using
different step sizes for the minimization and maximization, or using momentum. A
third family, which is completely different from what is described for other ones, is
to include the gradient from different time steps in the computation, such as the past
one (as in optimistic gradient descent-ascent), the midpoint between the current and
future points (as in extra gradient descent-ascent) and at future point (as in proximal
point). The literature on first-order methods is very extensive, and we refer to [14,
24–31] and the references within for the exposition on some of these methods and
their convergence properties.

In recent years, researchers have also started to work on algorithms that use second-
order derivatives to determine the directions. These algorithm, in their major part, have
not attracted as much attention as first-order methods. In the learning with opponent
learning awareness (LOLA), theminimizer anticipates the play of themaximizer using
the Jacobian of themaximizer’s gradient [32, 33]. In competitive gradient descent, both
minimizer and maximizer use the cross derivative of the Hessian to compute their
direction [34]. Following the ridge, the gradient ascent step is corrected by a term
that avoids a drift away from local maxima [35]. In the total gradient descent-ascent,
similarly to LOLA, the descent direction is computed by taking to total derivative of
a function which anticipates the maximizer’s response to the minimizer [36]. Finally,
the complete Newton borrows ideas from follow the ridge and total gradient to obtain
a Newton method which prioritizes steps toward local minmax [37]. These three last
algorithms are shown to only converge toward local minmax under some conditions,
but in none of them it is addressed the issue of how to adjust the Hessian far away
from a local minmax point.

Recently, some second-order methods have been proposed for the nonconvex–
strongly concave case, where the minimizer update is a descent direction of the
objective function at its maximum. They either use cubic regularization [38, 39] or
randomly perturb the Hessian [40]. Because of some of the assumptions these work
make, most important the strong-concavity of the objective function with respect to
the maximizer, they are able to establish complexity analysis and guarantee. It is also
worth mention that these algorithms are all multi-step based, meaning they (approx-
imately) solve the maximization between each update of the minimizer, whereas our
algorithm updates both the minimizer and the maximizer simultaneously.

2 Minimization

Let f : X → R be a twice continuously differentiable cost function defined in a set
X ⊂ Rnx where nx is a positive integer,2 and consider the minimization problem

min
x∈X

f (x). (1)

2 The subscript x is used to indicate that nx refers to the size of the variable x . We introduce this notation
now in anticipation of Sect. 3 where we have both minimization and maximization variables.
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We recall that a point x∗ is called a local minimum of f (·) if there exist δ > 0 such
that f (x∗) ≤ f (x) for all x ∈ {x ∈ X : ‖x − x∗‖ < δ}. We will study the property of
Newton type algorithms to solve (1) in two distinct cases, when X = Rnx and when
X is defined by equality and inequality constraints.

2.1 Unconstrainedminimization

Let X = Rnx , which is referred to as unconstrained minimization in the literature, in
which case (1) simplifies to

min
x∈Rnx

f (x). (2)

If f (·) is twice continuously differentiable in a neighborhood of a point x and
∇x f (x) = 0 and ∇xx f (x) 
 0, then x is a local minimum of f (·) [16, Chapter
2].

An extremely popular method to solve a minimization problem is to use Newton’s
root finding method to obtain a point x such that ∇x f (x) = 0. In its most basic form,
the algorithm’s iterations are given by

x+ = x + dx = x − ∇xx f (x)
−1∇x f (x). (3)

where we use the notation x+ to designate the value of x at the next iteration. Newton’s
method biggest advantage is that it converges very fast near any point that satisfies the
first-order condition ∇x f (x) = 0: at least linearly but possibly superlinearly when
the function is Lipschitz [16, Theorem 3.6]. However, this is also precisely Newton’s
method biggest limitation for nonconvexminimization, because it does not distinguish
a localminimum fromany other point satisfying the first-order condition. Let us further
illustrate this limitation with an example.

Example 1 Consider the optimization,

min
x∈R x3 − 3x, (4)

for which ∀x ∈ R,

f (x) := x3 − 3x, ∇x f (x) = 3x2 − 3, ∇xx f (x) = 6x .

The corresponding Newton iteration (3) is of the form

x+ = x − 3x2 − 3

6x
,
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for which both the local minimum xmin := 1 and the local maximum xmax := −1 are
locally asymptotically stable equilibria with superlinear convergence. Specifically,

⎧
⎪⎨

⎪⎩

x0 > 0 ⇒ xk → xmin := 1, (local minimum),

x0 < 0 ⇒ xk → xmax := −1, (local maximum),

x0 = 0 ⇒ iteration fails since ∇xx f (x) = 6x is not invertible.

Moreover, the iteration never actually “converges” to the global “infimum” x → −∞.

In order to address this limitation, a widely used modification of Newton’s method
for unconstrained nonconvex optimization [16, Chapter 3.4], is obtained bymodifying
the basic Newton method such that dx is obtained from solving the following local
quadratic approximation to (1)

dx = arg min
d̄x

f (x) + ∇x f (x)
′d̄x + 1

2
d̄x∇xx f (x)d̄x + εx (x)

2
‖dx‖2

= arg min
d̄x

f (x) + ∇x f (x)
′d̄x + 1

2
d̄x (∇xx f (x) + εx (x)I )d̄x

= −(∇xx f (x) + εx (x)I )
−1∇x f (x) (5)

with εx (x) ≥ 0 chosen such that (∇xx f (x) + εx (x)I ) is positive definite. For twice
differentiable strongly convex functionswe can choose εx (x) = 0 and this corresponds
to the classical Newton’s method. However, when f (·) is not strongly convex, the
minimization in (5) is onlywell-defined if∇xx f (x)+εx (x)I is positive definite, which
requires selecting a strictly positive value for εx (x), leading to a modified Newton’s
method. Regardless of whether f (·) is convex, the positive definiteness of∇xx f (x)+
εx (x)I guarantees that d ′

x∇x f (x) = −∇x f (x)(∇xx f (x) + εx (x)I )−1∇x f (x) < 0
and therefore dx is a descent direction at x [16]. The corresponding Newton iteration
to obtain a local minimum is then given by

x+ = x + dx = x − (∇xx f (x) + εx (x)I )
−1∇x f (x). (6)

Let us analyze how thismodification impacts the convergence in our previous example.

Example 1 (Continuation) For the optimization in (4), the modified Newton step in (6)
becomes x+ = x − 3x2−3

6x+εx (x)
with εx (·) such that

{
εx (x) ≥ 0 x > 0,

εx (x) > −6x x ≤ 0.
(7)

In this case,

⎧
⎪⎨

⎪⎩

x0 > xmax := −1 ⇒ xk → xmin := 1(local minimum),

x0 < xmax := −1 ⇒ xk → −∞ (global “infimum”),

x0 = xmax := −1 ⇒ xk = xmax,∀k(unstable equilibrium).
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Selecting the function εx (·) with εx (·) = 0 around xmin results in superlinear conver-
gence to xmin, but if εx (·) > 0, the convergence is only linear. For example, picking
εx (x) = −6x + η with η > 0, (7) holds for all x , but the modified Newton step in (6)
becomes x+ = x − 3x2−3

η
, which is just a gradient descent.

The following result generalizes the conclusion from the previous example by
establishing that the positive definiteness of ∇xx f (x) + εx (x)I not only guarantees
that dx is a descent direction, but also that every locally asymptotically stable (LAS)
equilibrium point of the Newton iteration (6) is a local minimum.

Theorem 1 (Stability and instability of modified Newton method for unconstrained
minimization) Let x be an equilibrium point in the sense that ∇x f (x) = 0. Assume
that∇xx f (x) is invertible and that∇xx f (·) is differentiable in a neighborhood around
x. Then, for any function εx (·) that is constant in a neighborhood around x and satisfies
∇xx f (x) + εx (x)I 
 0 one has that if:

i) x is a local minimum of (2), then it is a LAS equilibrium of (6).
ii) x is not a local minimum of (2), then it is an unstable equilibrium of (6).

The theorem’s first implication is that if the modified Newton iteration starts suffi-
ciently close to a strict local minimum, it will converge at least linearly fast to it. One
could think that it would always be preferable to have εx (x) = 0 if ∇xx f (x) 
 0,
in which case not only stability can be trivially obtained but also that the Newton
method has superlinear convergence if f (·) is Lipschitz [16, Theorem 3.6]. However,
in practice, there are situations for which one might want to take εx (x) > 0. A typical
case happens if the smallest eigenvalue of ∇xx f (x) is positive but very small, which
might bring numerical issues when computing the Newton step ∇xx f (x)−1∇x f (x).
This issue can be fixed by taking εx (x) > 0, and Theorem 1 guarantees that doing so
will not impair (at least locally) the algorithm’s capacity to converge toward a local
minimum.

The theorem’s second implication is, in a way, even more relevant than the first one.
As we mentioned earlier, the regular Newton’s method (meaning, with εx (x) = 0) is
infamously known to be attracted to any point that satisfies∇x f (x) = 0, regardless of
whether it is a local minimum, a saddle point, or a local maximum. What Theorem 1
is essentially saying is that the modified Newton is only attracted to local minima,
and that any other equilibrium point repels the iteration. In essence, this means that
the modified Newton’s method cannot converge toward a point that is not a local
minimum, thus fixing one of the biggest drawbacks of the regular Newton’s method.

While it goes beyond the point of this article, notice that for large values of εx (x),

x+ = x − (∇xx f (x) + εx (x)I )
−1∇x f (x) ≈ x − εx (x)

−1∇x f (x)

which shows that the modified Newton’s step (6) essentially becomes a gradient
descent step with a small step size εx (x)−1. This also shows that, by keeping εx (x)−1

sufficiently large, the iteration (6) could be made descent with respect to the cost.
However, this would be achieved at the cost of losing superlinear convergence.
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Proof of Theorem 1 From our assumption that ∇xx f (x) is invertible, x is a local min-
imum if and only if ∇xx f (x) 
 0. This comes from the second-order necessary
condition for minimization [16, Chapter 2].

Let us now prove the stability and instability properties. The first step in our analysis
is to calculate the Jacobian of (∇xx f (x)+ εx (x)I )−1∇x f (x) that appears in (6) at an
equilibrium point x . Using the differentiability of ∇xx f (·) and that εx (·) is constant
in a neighborhood of x , we obtain that

∇x

(
(∇xx f (x) + εx (x)I )

−1∇x f (x)
)

= (∇xx f (x) + εx (x)I )
−1∇xx f (x)

+
N∑

i=1

∇x [(∇xx f (x) + εx (x)I )
−1]i∇x f (x)

(i)

where ∇x f (x)(i) is the ith element of ∇x f (x) and [(∇xx f (x) + εx (x)I )−1]i is the
ith column of (∇xx f (x) + εx (x)I )−1. Since (∇xx f (x) + εx (x)I ) is positive definite,
∇x [(∇xx f (x) + εx (x)I )−1]i is well defined and since x is an equilibrium point,
∇x f (x)(i) = 0 for i ∈ {1 . . . N } and therefore the Jacobian of right-hand side of (6)
is given by

∇x

(
x − (∇xx f (x) + εx (x)I )

−1∇x f (x)
)

= I − (∇xx f (x) + εx (x)I )
−1∇xx f (x).

(8)

The main argument of the proof is based on the following result. Let v be an
eigenvector associated to an eigenvalue ρ of (8). Then,

(
I − (∇xx f (x) + εx (x)I )

−1∇xx f (x)
)
v = ρv

⇔ (1 − ρ)v = (∇xx f (x) + εx (x)I )
−1∇xx f (x)v

⇔
(
ρ∇xx f (x) + (ρ − 1)εx (x)I

)
v = 0 (9)

Therefore, ρ is an eigenvalue of (8) if and only if ρ∇xx f (x) + (ρ − 1)εx (x)I is
singular.

We remind the reader that given a dynamical system, if the system’s dynamic
equation is continuously differentiable, a point is a LAS equilibrium point if all the
eigenvalues of the linearized system are inside the unit circle. Conversely, if at least
one of the eigenvalues of the linearized system is outside the unit circle, then the
system is unstable [41, Chapter 8].

From (9), ρ = 0 is an eigenvalue if and only if εx (x) = 0, which, by construction,
can only happen if x is a local minimum, in which case x is a LAS equilibrium point
of (6), as expected.

For ρ �= 0, let us rewrite this expression as ∇xx f (x) + μεx (x)I with μ := 1 −
1/ρ. We conclude that x is a LAS equilibrium point of (6) if ∇xx f (x) + μεx (x)
is nonsingular ∀μ ∈ [0, 2]. Conversely, x is an unstable equilibrium point of (6) if
∇xx f (x) + μεx (x) is singular for some μ ∈ [0, 2].
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If x is a local minimum, then λmin(∇xx f (x)) > 0. As εx (x) > 0, we conclude that
λmin(∇xx f (x)+μεx (x)I ) > 0 for every μ ≥ 0 and therefore x is a LAS equilibrium
point of (6). Conversely, if x is not a local minimum then λmin(∇xx f (x)) < 0. By
construction of εx (x), we have that λmin(∇xx f (x) + μεx (x)I ) > 0, which, by conti-
nuity of the eigenvalue, implies ∃μ ∈ (0, 1) such that λmin(∇xx f (x)+μεx (x)I ) = 0.
Therefore, x is an unstable equilibrium point of (6). ��

2.2 Constrainedminimization

Our results from the previous section can also be extended to consider the case with
more general constraint with the minimization setX involving equality and inequality
constraints of the form

X = {x ∈ Rn : Gx (x) = 0, Fx (x) ≤ 0}

where the functionsGx : Rnx → Rlx and Fx : Rnx → Rmx are all twice continuously
differentiable.3 It will be convenient for the development of the primal-dual interior-
point method to use slack variables and rewrite (1) as

min
x,sx :Gx (x)=0,Fx (x)+sx=0,sx≥0

f (x). (10)

where sx ∈ Rmx .
Similar to what we have in the unconstrainedminimization, wewant a second-order

conditions to determine whether a point is a local minimum. Consider the function

L(z) = f (x) + ν′
xGx (x) + λ′

x (Fx (x) + sx ),

where we use the shorthand notation z := (x, sx , νx , λx ). L(z) is essentially the
Lagrangian of (10). In order to present the second-order conditions, we need to define
two concepts, the linear independence constraint qualification and strict complemen-
tarity [16, Definitions 12.4 and 12.5].

Definition 1 (LICQ and strict complementarity) Let the set of active inequality con-
straints for the minimization be defined by

Ax (x) = {i = 1, . . . ,mx : F (i)
x (x) = 0}

where F (i)
x (x) denote the ith element of Fx (x). Then,

• The linear independence constraint qualification (LICQ) is said to hold at z if the
vectors in the set

{∇xG
(i)
x (x), i = 1, . . . , lx }

⋃
{∇x F

(i)
x (x), i ∈ Ax (x)}

3 Similar to nx , the subscript x is used to indicate that the functions Gx (·) and Fx (·) are associated to
the minimization variable x . We introduce this notation now in anticipation of Sect. 3 where we have both
minimization and maximization variables.
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are linearly independent.
• Strict complementarity is said to hold at x if λ

(i)
x > 0 ∀i ∈ Ax (x)

We have almost all the ingredients to present the second-order condition for con-
strained minimization. For unconstrained minimization, a sufficient condition for a
point x to be a local minimum is that ∇x f (x) = 0 and ∇xx f (x) 
 0. If it were
not for the inequality constraints in (10), we would be able to state the second-order
conditions using gradients and Hessians of L(z). The inequality constraints make the
statement a bit more complicated. The role of the gradient will be played by

g(z, b) :=

⎡

⎢⎢
⎣

∇x L(z)
λx � sx − b1

Gx (x)
Fx (x) + sx

⎤

⎥⎥
⎦ (11)

with � denoting the element wise Hadamard product of two vectors and b ≥ 0 the
barrier parameter (its role will be explained shortly). The role of ∇xx f (x) in the
unconstrained minimization will be played by the matrix

Hzz f (z) =

⎡

⎢⎢
⎣

∇xx L(z) 0 ∇xGx (x) ∇x Fx (x)

0 diag(λx ) 0 diag(s1/2x )

∇xGx (x)′ 0 0 0
∇x Fx (x)′ diag(s1/2x ) 0 0

⎤

⎥⎥
⎦ . (12)

We also remind the reader that the inertia in(A) of a symmetric matrix A is a 3-tuple
with the number of positive, negative and zero eigenvalues of A.

Proposition 1 (Second-order sufficient conditions for constrained minimization) Let
z be an equilibrium point in the sense that g(z, 0) = 0 with λx , sx ≥ 0. If the LICQ
and strict complementarity hold at z and

in(Hzz f (z)) = (nx + mx , lx + mx , 0) (13)

then x is a local minimum of (10).

While this result is relatively well known, we present its proof in Appendix A.
The proof also makes it easier to understand the proof of the second-order sufficient
conditions for constrained minmax optimization.

2.2.1 Primal-dual interior-point method

Let dz := (dx , ds, dν, dλ) be the update direction for z, which will play an equivalent
role to dx in the unconstrained case. A basic primal-dual interior-point method finds
a candidate solution to (10) using the iterations

z+ = z + αdz = z − α∇zg(z, b)
′ −1g(z, b) (14)
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where the barrier parameter4 b is slowly decreased to 0, so that z converges to a root of
g(z, 0) = 0 while α ∈ (0, 1] is chosen at each step such that the feasibility condition
λx , sx > 0 hold [16, Chapter 19]. This basic primal-dual interior-point has similar
limitation as a (non-modified) Newton method for unconstrained minimization: it
might converge toward an equilibrium point that is not a local minimum and∇zg(z, b)
might not be invertible. Similar to what we have done in the unconstrained case, we
can modify this basic primal-dual interior-point method such that the update direction
dz is obtained from a quadratic program that locally approximates (10). The rest of
this section will be spent mostly constructing such quadratic program.

Let us start with X described only by equality constraints (i.e., no Fx (x) and no
sx ), in which case L(z) = f (x) + ν′

xGx (x). Consider the optimization

min
d̄x :Gx (x)+∇xGx (x)′d̄x=0

L(z) + d̄ ′
x∇x L(z) + 1

2
d̄ ′
x (∇xx L(z) + εx (z)I )d̄x

= min
d̄x :Gx (x)+∇xGx (x)′d̄x=0

L(z) + d̄ ′
x∇x L(z) + 1

2
d̄ ′
x∇xx L(z)d̄x + εx (z)

2

∥∥d̄x
∥∥2 ,

(15)

which locally approximates (10) around (x, νx ).5 If ∇xGx (x) is full column rank,
we can choose εx (z) large enough such that the solution of (15) is well defined and
unique. To show that, let us look at (15) as an optimization in its own right. Let d̄ν be
the Lagrange multiplier and define the function ḡ(d̄x , d̄ν)which is the function g(z, b)
defined in (11) but now for problem (15):

ḡ(d̄x , d̄ν) :=
[ ∇x L(z) + (∇xx L(z) + εx (z)I )d̄x + ∇xGx (x)d̄λ

Gx (x) + ∇xGx (x)′d̄x

]
. (16)

So if one takes any εx (z) ≥ 0 large enough such that

in
([∇xx L(z) + εx (z) ∇xGx (x)

∇xGx (x)′ 0

])
= (nx , lx , 0), (17)

then we guarantee that any point d̄x , d̄ν that satisfies ḡ(d̄x , d̄ν) = 0will be a strict local
minimum of (15) (see Proposition 1). Moreover, this choice of εx (z) also guarantees
that (15) is a strongly convexquadratic optimization,which,with the fact that∇xGx (x)

4 The term “barrier parameter” comes from the connection between primal-dual and (log) barrier interior-
point methods. This connection will become more clear bellow around (18) as we deduce a local second-
order approximation of (10).
5 Notice that we use the second-order linearization of the Lagrangian L(z) as the cost function in (15),
not the one of f (x). The justification is that, if x∗ is a local minimum of (10) with associated Lagrange
multiplier ν∗, then x∗ is also a local minimum of

min
x :Gx (x)=0

f (x) + ν∗
x

′Gx (x).

Evidently, ν∗
x is not know in advance, so instead one uses the value of νx at the current iteration, which

leads to the local approximation (15).
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is full column rank, means that the solution (d̄x , d̄ν) is unique. Therefore, we will take
the update directions (dx , dν) to be the solution (d̄x , d̄ν). Moreover, with some algebra,
one can show that the solution to (15) is given by

[
dx
dν

]
= −

[∇xx L(z) + εx (z) ∇xGx (x)
∇xGx (x)′ 0

]−1 [∇x L(z)
Gx (x)

]

= −(∇zg(x, b)
′ + diag([εx (z)1nx , 0lx ]))−1g(x, b).

Let us now address the case in which there are inequality constraints. The challenge
is to take into account the constraint sx ≥ 0. To address this, let us start by relaxing
the inequality constraint from (10) and including it in the cost as the barrier function
−b1′ log(sx ) (the log(·) is element wise).

min
x,sx :Gx (x)=0,Fx (x)+sx=0

f (x) − b1′ log(sx ). (18)

This is a relaxation because −b1′ log(sx ) only accepts s ≥ 0 and goes to +∞ if
sx → 0. The optimization (18) only has equality constraints, so similar to what we
did in (15), let us construct a local second-order approximation of (18) around z:

min
d̄x ,d̄s :

Gx (x)+∇xGx (x)′d̄x=0,
Fx (x)+sx+∇x Fx (x)′d̄x+d̄s=0

L(z) − b1′ log(sx ) + d̄ ′
x∇x L(z) + d̄ ′

s(λx − b1 � sx )

+1

2
d̄ ′
x (∇xx L(z) + εx (z)I )d̄x + 1

2
d̄ ′
s diag(λx � sx )d̄s

(19)

where � designates the element wise division of two vectors. Equation (19) is not
exactly a second-order approximation because instead of using as quadratic term
for d̄s the matrix b diag(sx )−2 (which is the actual matrix given by second-order
approximation of −b1′ log(sx + ds) around sx ), we used the matrix diag(λx � sx ).
This is a relatively well-known substitutions for interior-point methods, and is what
makes it be a primal-dual interior-point method instead of a barrier interior-point
method. The technical justification is that if we were at a point such that g(z, b) = 0,
the two would be equivalent as λx � sx −b1 = 0. In practice, it has been observed that
this modified linearization tends to perform better because it provides directions ds
that also take into account the current value of λx in the quadratic form, which helps
to get a direction dz that does not violate the constraints λx , sx > 0 [16, Chapter 19.3].

Because (19) is a quadratic program with linear equality constraints, just as it was
the case for (15), we can use the exact same reasoning to choose εx (z). Let us define
the matrices

Jzz f (z) =

⎡

⎢⎢
⎣

∇xx L(z) 0 ∇xGx (x) ∇x Fx (x)
0 diag(λx � sx ) 0 I

∇xGx (x)′ 0 0 0
∇x Fx (x)′ I 0 0

⎤

⎥⎥
⎦ (20)
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and E(z) := diag(εx (z)1nx , 0mx+lx+mx ). If εx (z) is chosen large enough such that
in(Jzz + E(z)) = (nx + mx , lx + mx , 0), then the solution (d̄x , d̄s) of (19) and
associated Lagrange multipliers (d̄ν, d̄λ) are unique. With some algebra, one could
show that the solution of (19) is

dz = −(Jzz f (z) + E(z))−1S−1g(z, b)

= −(∇zg(z, b)
′ + E(z))−1g(z, b)

where S := diag(1nx , sx , 1lx+mx ). Putting it all together, the modified primal-dual
interior-point is governed by the equation

z+ = z + αdz = z − α(∇zg(z, b)
′ + E(z))−1g(z, b), (21)

where α ∈ (0, 1] is chosen such that λx , sx > 0. Conveniently, because we used
diag(λx � sx ) for the second-order linearization of the barrier, when εx (x) = 0,
we recover the basic primal–dual interior-point method from (14). We refer to [16,
Chapter 19] for a complete description of an algorithm using (21), including a strategy
to decrease the barrier parameter b. Alternatively, we describe such strategy in Sect. 4
for the minmax optimization case.

We can now state a result connecting the stability/instability of any equilibrium
point of the modified primal-dual interior-point method to such point being or not a
local minimum. The theorem says essentially the same thing as Theorem 1: On the one
hand, even if in(Jzz f (z)) = (nx + mx , lx + mx , 0), taking εx (z) > 0 will not impair
the algorithm’s capacity to converge toward a local minimum; this can be useful, for
instance, if in(Jzz f (z)) has an eigenvalue close to 0. On the other hand, using the
modified primal-dual interior-point method essentially guarantees that the algorithm
can only converge toward an equilibrium point if such point is a local minimum, thus
fixing the issue of primal-dual interior-pointmethods being attracted to any equilibrium
point, regardless of whether such point is a local minimum.

Theorem 2 (Stability and instability of modified primal-dual interior-point method
for constrained minimization) Let α = 1 and (z, b) with b > 0, be an equilibrium
point in the sense that g(z, b) = 0. Assume the LICQ and strict complementarity hold
at z, that Jzz f (z) is invertible, and that Jzz f (·) is differentiable on a neighborhood
around z. Then for any function εx (·) that is constant in a neighborhood around z and
satisfies in(Jzz + E(z)) = (nx + mx , lx + mx , 0) one has that if:

i) z is a local minimum of (10), then it is a LAS equilibrium of (21).
ii) z is not a local minimum of (10), then it is an unstable equilibrium of (21).

Proof (Proof sketch) First, using the same arguments as in the proof of Theorem 1,
we conclude that the Jacobian of the dynamic system (21) around a point z for which
g(z, b) = 0 is

I − α
(
Jzz f (z) + E(z)

)−1
S−1∇zg(z, b)

′ = I − α
(
Jzz f (z) + E(z)

)−1
Jzz f (z)

(22)
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Second, it is straightforward to check that Hzz f (z) = S1/2 Jzz f (z)S1/2 which,
using Sylvester’s law of inertia [42, Theorem 1.5], means that in(Hzz f (z)) =
in(Jzz f (z)). This means that one can check the second-order conditions in (13) by
using Jzz f (z).

Let us define the matrix

R(μ) = Zx (z)
′
[∇xx L(z) + μεx (z)I 0

0 diag(λx � sx )

]
Zx (z)

where Zx (z) ∈ Rnx+mx ,nx−lx is a matrix with full column rank such that

[∇xGx (x)′ 0
∇x Fx (x)′ I

]
Zx (z) = 0. (23)

Using the same arguments as in the proof of Proposition 1, we conclude that

in(Jzz f (z) + E(z)) = in(R(μ)) + (lx + mx , lx + mx ),

which implies that in(Jzz f (z)+E(z)) = (nx +mx , lx +mx ) is equivalent to R(1) 
 0
and that the second-order sufficient condition is equivalent to R(0) 
 0. This means
that the rest of the theorem’s proof is analogous to the one of Theorem 1, but instead
of looking at the sign of the smallest eigenvalue of ∇xx f (x) + μεx (z)I , one looks at
the sign of the smallest eigenvalue of the matrix R(μ).

If z is a local minimum, then λmin(R(0)) > 0. As εx (z) ≥ 0, we conclude that
λmin(R(μ)) > 0 for every μ ≥ 0 and therefore z is a LAS equilibrium point of (14).

Conversely, if z is not a local minimum, λmin(R(0)) < 0. By construction, εx (z)
is such that λmin(R(1)) > 0, therefore, by continuity of the eigenvalue, there is a
μ ∈ (0, 1) such that λmin(R(μ)) = 0 and therefore z is an unstable equilibrium point
of (14). ��

3 Minmax optimization

Consider the minmax optimization problem

min
x∈X

max
y∈Y(x)

f (x, y) (24)

where f : Rnx ×Rny → R is a twice continuously differentiable objective function,
X ⊂ Rnx is the feasible set for x andY : X ⇒ Rny is a set-valued map that defines an
x dependent feasible set for y; we do not make any convexity or concavity assumption
on f (·), X and Y(·). We chose Y(·) to be dependent on x because this describes the
most general application. Moreover, having the constraints of the inner maximization
to depend on the value of outer maximization is often necessary in problems such as
robust model predictive control or in bi-level optimization. Furthermore, notice that
we do not make any assumption on whether the min and the max commute (and this
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would not be well defined as Y(·) depends on x). A solution (x∗, y∗) to (24) is called
a global minmax and satisfies

f (x∗, y) ≤ f (x∗, y∗) ≤ max
ỹ∈Y(x)

f (x, ỹ) ∀(x, y) ∈ X × Y(x∗).

Wewill look at two representations ofX and Y(·): first whenX = Rnx andY = Rny ,
which is known in the literature as the unconstrained case; second a more general rep-
resentation in which X and Y(·) are defined using equality and inequality constraints.

A point (x∗, y∗) is said to be a local minmax of (24) if there exist a constant
δ0 > 0 and a positive function h(·) satisfying h(δ) → 0 as δ → 0, such that for
every δ ∈ (0, δ0] and for every (x, y) ∈ {x ∈ X : ‖x − x∗‖ ≤ δ} ×{y ∈ Y(x∗) :
‖y − y∗‖ ≤ h(δ)} we have

f (x∗, y) ≤ f (x∗, y∗) ≤ max
ỹ∈Y(x):‖ỹ−y∗‖≤h(δ)

f (x, ỹ)

[14, 15]. Inspired by the properties of the modified Newton and primal-dual interior-
point methods for minimization in Sect. 2, we want to develop a Newton-type iterative
algorithm of the form

[
x+
y+

]
=

[
x
y

]
+

[
dx
dy

]
. (25)

where dx and dy satisfy the following properties:

P1: At each time step, (dx , dy) is obtained from the solution of a quadratic program that
locally approximates (24) and therefore (x+, y+) can be seen as an improvement
over (x, y). This acts as a surrogate for guiding the modified Newton’s method
toward a solution at each step.

P2: The iterations of (25) can converge toward an equilibrium point only if such point
is a local minmax. Similar to what was the case in minimization (see Example 1),
a pure Newton method will be attracted to any equilibrium point. This makes sure
that the iterations will not be attracted to equilibrium points that are not local
minmax.

P3: The iterations of (25) can converge to any local minmax. This property means that
any modification to Newton’s method needs to keep local minmax as attractor.

3.1 Unconstrainedminmax

We start by considering the case where X = Rnx and Y(·) = Rny such that (24)
simplifies to

min
x∈Rnx

max
y∈Rny

f (x, y). (26)
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For this case, [14] establishes second-order sufficient conditions to determine if a point
(x, y) is a local minmax which can be stated in terms of the inertia of the matrix

∇zz f (x, y) :=
[∇xx f (x, y) ∇xy f (x, y)
∇yx f (x, y) ∇yy f (x, y)

]
.

We recall that the inertia in(A) of a symmetric matrix A is a 3-tuple with the number
of positive, negative and zero eigenvalues of A.

Proposition 2 (Second-order sufficient condition for unconstrained minmax) Let
(x, y) be an equilibrium point in the sense that ∇x f (x, y) = 0 and ∇y f (x, y) = 0.
If

in(∇yy f (x, y)) = (0, ny, 0) and in(∇zz f (x, y)) = (nx , ny, 0) (27)

then (x, y) is a local minmax.

The second-order conditions in [14] are:

in(∇yy f (x, y)) = (0, ny, 0) and

in(∇xx f (x, y) − ∇xy f (x, y)∇yy f (x, y)
−1∇yx f (x, y)) = (nx , 0, 0),

which turn out to be equivalent to the inertia conditions in Proposition 2 in view
of Haynsworth inertia additivity formula [42, Theorem 1.6]. Notice that the second-
order sufficient conditions are not symmetric. A point might be a local minmax even
if ∇xx f (x, y) � 0 as long as −∇xy f (x, y)∇yy f (x, y)−1∇yx f (x, y) (which is posi-
tive) is large enough. So the second-order conditions are what allow one to distinguish
between an equilibriumpoint being a localminmax and aminmin,maxmaxormaxmin.
One can interpret the second-order sufficient conditions as saying that y �→ f (x, y) is
strongly concave in a neighborhood around (x, y) and x �→ max ỹ:‖y−ỹ‖<δ f (x, ỹ) is
strongly convex in a neighborhood around (x, y) for some δ > 0. Notice that these are
only local properties around local minmax, as f (·) may be nonconvex–nonconcave
away from local minmax points.

In order to obtain property P1, we propose to obtain the Newton direction (dx , dy)
for (25) by solving the following local quadratic approximation to (26)

min
d̄x

max
d̄y

f (x, y) + ∇x f (x, y)
′d̄x + ∇y f (x, y)

′d̄y + d̄ ′
x∇xy f (x, y)d̄y

+1

2
d̄ ′
x

(
∇xx f (x, y) + εx (x, y)I

)
d̄x + 1

2
d̄ ′
y

(
∇yy f (x, y) − εy(x, y)I

)
d̄y

(28)

with εx (·) and εy(·) chosen so that the minmax problem in (28) has a unique solution,
which means that the inner (quadratic) maximization must be strictly concave and that
the outer (quadratic) minimization of the maximized function must be strictly convex,
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which turns out to be precisely the second-order sufficient conditions in Proposition 2,
applied to the approximation in (28), which can be explicitly written as follows:

in
(
∇yy f (x, y) − εy(x, y)I

)
= (0, ny, 0) and

in
(
∇zz f (x, y) + E(x, y)

)
= (nx , ny, 0)

(LQAC)

where E(x, y) = diag(εx (x, y)1nx ,−εy(x, y)1ny ). We call these condition the Local
Quadratic Approximation Condition (LQAC). It is straightforward to show that the
Newton iterations (25) with (dx , dy) obtained from the solution to (28) is given by

[
x+
y+

]
=

[
x
y

]
+

[
dx
dy

]
=

[
x
y

]
−

(
∇zz f (x, y) + E(x, y)

)−1
[∇x f (x, y)
∇y f (x, y)

]
. (29)

Toobtain properties P2 andP3,weneed all locally asymptotically stable equilibrium
points of (28) to be local minmax of (26) and that all other equilibrium points of (28) to
be unstable. For the unconstrained minimization in Sect. 2.1, to obtain the equivalent
of properties P2 and P3 it was sufficient to simply select εx (·) such that the local
quadratic approximation (5) has a well-defined minimum (Theorem 1). However, for
minmax optimization the (LQAC) does not suffice to guarantee that P2 and P3 hold.
Our first counter example bellow show how the (LQAC) are not enough to ensure that
P2 holds; our second counter example show how they are not enough to guarantee that
P3 holds.

Example 2 Consider f (x, y) = 1.5x2 − 4xy + y2 for which the unique equilibrium
point x = y = 0 is not a local minmax point. Take εy(0, 0) = 4 and εx (0, 0) = 0
which satisfy (LQAC). The Jacobian of the dynamics is

I −
( [

3 −4
−4 2

]
+

[
0 0
0 −4

])−1 [
3 −4

−4 2

]
≈

[
0 0.72
0 0.54

]

which has eigenvalues approximately equal to (0, 0.54). Therefore (0, 0) is a LAS
equilibrium point of (29) even though it is not a local minmax point.

Example 3 Consider f (x, y) := −0.25x2 + xy−0.5y2, for which the unique equilib-
rium point x = y = 0 is a local minmax point. Take εy(0, 0) = 3 and εx (0, 0) = 0.2
which satisfy (LQAC). The Jacobian of the dynamics is

I −
([−0.5 1

1 −1

]
+

[
0.3 0
0 −3

])−1 [−0.5 1
1 −1

]
=

[
6 −15
1.5 −3

]
,

for which the eigenvalues are 1.5 ± 1.5i . Therefore, (0, 0) is an unstable equilibrium
point of (29) even though it is a local minmax point.

Themain contribution of this section is a set of sufficient conditions that, in addition
to (LQAC), guarantee P2 and P3 hold.
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Theorem 3 (Stability and instability of modified Newton’s method for unconstrained
minmax) Let (x, y) be an equilibrium point in the sense that ∇x f (x, y) = 0 and
∇y f (x, y) = 0. Assume that ∇zz f (x, y) and ∇yy f (x, y) are invertible and that
∇zz f (·) is differentiable on a neighborhood around (x, y). Then there exist functions
εx (·) and εy(·) that are constant in a neighborhood around (x, y), satisfy the (LQAC)
at (x, y) and guarantee that if:

i) (x, y) is a local minmax of (26), then it is a LAS equilibrium of (29).
ii) (x, y) is not a local minmax of (26), then it is an unstable equilibrium of (29).

The theorem’s implications are similar to those of Theorem 1. On the one hand, if
(x, y) is a local minmax, then it is possible to construct functions εx (·) and εy(·) that
guarantee that the modified Newton method can converge toward a local minmax. A
natural choice for such function near a localminmax is to take εy(·) = εx (·) = 0,which
not only provides the stability result, but can also achieve superlinear convergence if
f (·) is Lipschitz. On the other hand, if (x, y) is an equilibrium point but not a local
minmax, it is possible to construct functions εx (·) and εy(·) such that the algorithm’s
iterations cannot converge toward it. This means that the modified Newton’s method
for minmax can only converge toward an equilibrium point if such point is a local
minmax.

While the statement of Theorem 3 is about existence, the proof is actually construc-
tive. The functions εx (·) and εy(·) are not unique, and have to satisfy the following
conditions:

i) For the stability result, if εy(x, y) = 0, then the stability property is guaranteed by
any εx (x, y) ≥ 0. If εy(x, y) > 0, then εx (x, y) needs to be taken large enough to
satisfy the condition in equation (32) of the proof.

ii) For the instability result:

• unless in(∇yy f (x, y)) �= (0, ny, 0) and in(∇zz f (x, y)) = (nx , ny, 0), then
it is sufficient for εx (x, y) and εy(x, y) to satisfy the (LQAC) to guarantee
instability.

• if in(∇yy f (x, y)) �= (0, ny, 0) and in(∇zz f (x, y)) = (nx , ny, 0) then for a
given εy(x, y), εx (x, y) needs to be large enough such that for someμ ∈ (0, 1),
in(∇zz f (x, y) + μE(x, y)) �= (nx , ny, 0).

We use these results in Sect. 4 to present an efficient way to numerically construct
these functions.

Proof of Theorem 3 The fact that the (LQAC) can always be satisfied is straightforward:
as∇zz f (x, y) is differentiable, its eigenvalues are bounded and can bemade to have the
desired inertia by taking sufficiently large (but finite) values of εx (x, y) and εy(x, y).
Moreover, from our assumption that∇zz f (x, y) and∇yy f (x, y) are invertible, (x, y)
is a local minmax point if and only if (x, y) satisfy the second order sufficient in (27);
this is implied by the second-order necessary conditions for local minmax in [14].

Using the same reasoning as in Theorem 1, as the (LQAC) hold then (∇zz f (x, y)+
E(x, y)) is nonsingular and the Jacobian of the dynamical system (29) at (x, y) is

I − (∇zz f (x, y) + E(x, y))−1∇zz f (x, y). (30)

123



Mathematics of Control, Signals, and Systems

Therefore, we can also use the same reasoning as in the proof of Theorem 1 to conclude
that (x, y) is a LAS equilibrium point of (29) if∇zz f (x, y)+μE(x, y) is nonsingular
∀μ ∈ [0, 2]. Conversely, (x, y) is an unstable equilibriumpoint of (29) if∇zz f (x, y)+
μE(x, y) is singular for some μ ∈ (0, 2).

For the rest of the proof, it will be useful to have defined the function

R(μ) = ∇xx f (x, y) − ∇xy f (x, y)(∇yy f (x, y)

−μεy(x, y)I )
−1∇yx f (x, y) + μεx I (31)

and to drop the inputs (x, y) from the expressions in order to shorten them.
Let us start by proving the statement for the case when (x, y) is a local minmax, in

which case the (LQAC) hold with εy = εx = 0. We will prove that if

εx ≥ λmin(εy∇xy f ∇yy f
−2∇yx f ). (32)

then (x, y) is a LAS equilibrium point of (29). To prove it, we will show (32) ensures
that ∇zz f + μE is nonsingular ∀ μ ≥ 0. First, as ∇yy f ≺ 0, μ ≥ 0, and εy ≥ 0, we
have∇yy f −μεy I ≺ 0 and is thus nonsingular. Second, let us show that the condition
(32) implies that for any vector v

min
μ∈[0,2] v

′R(μ)v = v′R(0)v. (33)

Taking the derivative of v′R(μ)v with respect to μ we obtain

v′(εx I − εy∇xy f (∇yy f − μεy I )
−2∇yx f

)
v 
 v′(εx I − εy∇xy f ∇yy f

−2∇yx f
)
v

in whichwe use the fact that∇yy f −2 � (∇yy f −μεy I )−2 for allμ ≥ 0 as∇yy f ≺ 0,
and εy ≥ 0. Therefore, if (32) holds, the derivative of v′R(μ)v with respect to μ is
non-negative, thus the cost does not decrease withμ, which implies that the minimum
is obtained for μ = 0, which proves (33). Therefore, if εx and εy are chosen to satisfy
(32), then ∀μ ∈ [0, 2] it holds that R(μ) � R(0) 
 0I , where the second inequality
comes from the second-order sufficient conditions for unconstrained minmax (27).
As neither ∇yy f − μεy I ≺ 0 nor R(μ) are singular for μ ∈ [0, 2], Haynsworth
inertia additivity formula [42, Theorem 1.6] implies that ∇zz f + μE is nonsingular
∀μ ∈ [0, 2], and therefore (x, y) is a LAS equilibrium point of (29).

Now the second part, let us prove the statement for the case in which (x, y) is not a
local minmax. We will show that for every εy such that ∈ (∇yy f − εy I ) = (0, ny, 0)
for any large enough εx , the (LQAC) are satisfied and

∇zz f + μ diag(εx1nx ,−εy1ny ) = ∇zz f + μE (34)

is singular for some μ ∈ (0, 1), which in turn guarantees that (x, y) is an unstable
equilibrium point of (29) (see discussion in the beginning of the proof).
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If in(∇zz f ) �= (nx , ny, 0), then any large enough value of εx such that (LQAC)
holds is enough to guarantee that∇zz f +μE is singular for someμ ∈ (0, 1). The proof
is straightforward: If in(∇zz f ) �= (nx , ny, 0) and in(∇zz f + E) = (nx , ny, 0) (from
the (LQAC)), then, by continuity of the eigenvalue ∃μ ∈ (0, 1) such that ∇zz f + μE
is singular.

If in(∇zz f ) = (nx , ny, 0) but in(∇yy f ) �= (0, ny, 0), then the (LQAC) is not
enough to guarantee that (x, y) is an unstable equilibrium point. However, it is possible
to guarantee instability. The proof is the following.

Let μ∗ be the largest μ ∈ (0, 1) such that ∇yy f − μεy I is singular. We know
that this point exists because, on the one hand, by assumption ∇yy f is invertible
(and therefore μ∗ > 0), and on the other hand, we know that ∇yy f ⊀ 0 and that
∇yy f − εy I ≺ 0 by construction (and therefore μ∗ < 1).

Now take any μ̄ ∈ (0, μ∗) such that ∇yy f − μ̄εy I is invertible (there are uncount-
able many). Suppose there exists ε̄ such that for any εx ≥ ε̄, the (LQAC) hold and
in(∇zz f + μ̄E) �= (nx , ny, 0). If such ε̄ exists, then, by the continuity of the eigen-
values, if in(∇zz f + μ̄E) �= (nx , ny, 0) this means that ∇zz f + μE is singular for
some μ ∈ (0, μ̄].

So, to conclude the proof, we just need to show the existence of such ε̄. Take any
εx such that in(∇zz f + μ̄E) = (nx , ny, 0) (otherwise the proof is tautological). From
Haynsworth inertia additivity formula, we have that

in(∇zz f + μ̄E) = in(R(μ̄)) + in(∇yy f − μ̄εy I )

with in(R(μ̄)) = (nx − k, k, 0) and in(∇yy f − μ̄εy I ) = (k, ny − k, 0) for some
k ∈ {1, . . . ,min(nx , ny)}. On the one hand, it is straightforward to establish that ∃ε̄1
such that if εx ≥ ε̄1, then in(R(μ̄)) �= (nx − k, k, 0), which means that in(∇zz f +
μ̄E) �= (nx , ny, 0). On the other hand, ∃ε̄2 such that if εx ≥ ε̄2, then in(∇zz f +μE) =
(nx , ny, 0). Therefore, we can define ε̄ = max(ε̄1, ε̄2), which concludes the proof ��

3.2 Constrainedminmax

We now consider the case with more general constraint sets involving equality and
inequality constraints of the form

X = {x ∈ Rnx : Gx (x) = 0, Fx (x) ≤ 0} and

Y(x) = {y ∈ Rny : Gy(x, y) = 0, Fy(x, y) ≤ 0} (35)

where the functions Gx : Rnx → Rlx , Fx : Rnx → Rmx , Gy : Rnx × Rny → Rly

and Fy : Rnx × Rny → Rmy are all twice continuously differentiable. Similar to
what we did in Sect. 2.2, it will be convenient for the development of the primal-dual
interior-point method to use slack variables and rewrite the constrained minmax (24)
as

min
x,sx :Gx (x)=0,Fx (x)+sx=0,sx≥0

max
y,sy :Gy(x,y)=0,Fy(x,y)+sy=0,sy≥0

f (x, y). (36)
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where sx ∈ Rmx and sy ∈ Rmy .
Similar to what we have done in the unconstrained case, we want to present second-

order conditions to determine if a point is a constrained local minmax. In order to do
so, we need to extend some fundamental concepts of constrained minimization to
constrained minmax optimization. The function

L(z) := f (x, y) + ν′
xGx (x) + λ′

x (Fx (x) + sx ) + ν′
yGy(x, y) − λ′

y(Fy(x, y) + sy),

will play an equivalent role as the Lagrangian with (νx , νy, λx , λy) as the equivalent of
Lagrange multipliers; we use the shorthand notation z = (x, sx , y, sy, νy, λy, νx , λx ).
Furthermore, we use the following definition of linear independence constraint qual-
ifications (LICQ) and of strict complementarity for minmax optimization:

Definition 2 (LICQ and strict complementarity for minmax) Let the sets of active
inequality constraints for the minimization and maximization be defined, respectively,
by

Ax (x) = {i = 1, . . . ,mx : F (i)
x (x) = 0} and

Ay(x, y) = {i = 1, . . . ,my : F (i)
y (x, y) = 0}

where F (i)
x (x) and F (i)

y (x, y) denote the ith element of Fx (x) and Fy(x, y). Then:

• The linear independence constraint qualification (LICQ) is said to hold at z if the
vectors in the sets

{∇xG
(i)
x (x), i = 1, . . . , lx }

⋃
{∇x F

(i)
x (x), i ∈ Ax (x)} and

{∇yG
(i)
y (x, y), i = 1, . . . , ly}

⋃
{∇y F

(i)
y (x, y), i ∈ Ay(x, y)}

are linearly independent.
• Strict complementarity is said to hold at z if λ

(i)
y > 0 ∀i ∈ Ay(x, y) and λ

(i)
x >

0 ∀i ∈ Ax (x)

We have almost all the ingredients to present the second-order conditions for con-
strained minimization. For the unconstrained minmax optimization, the second-order
condition in Proposition 2 required that gradients (∇x f (x, y) and ∇y f (x, y)) were
equal to zero and that Hessians (∇zz f (x, y) and ∇yy f (x, y)) had a particular inertia.
Analogously to what was the case for the constrained minimization in Sect. 2.2, if it
were not for the inequality constraints in (35), we would be able to state the second-
order conditions using gradients andHessians of L(z). The inequality constraintsmake
the statement a bit more complicated. The role of the gradient will be played by
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g(z, b) :=

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

∇x L(z)
λx � sx − b1

∇y L(z)
−λy � sy + b1

Gy(x, y)
−Fy(x, y) − sy

Gx (x)
Fx (x) + sx

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

where � denotes the element wise Hadamard product of two vectors and b ≥ 0 the
barrier parameter, which is the extension to minmax of the function g(·) defined in
(11) for the minimization. The role of ∇yy f (x, y) will be played by

Hyy f (z) =

⎡

⎢⎢
⎣

∇yy L(z) 0 ∇yGy(x, y) −∇y Fy(x, y)

0 − diag(λy) 0 − diag(s1/2y )

∇yGy(x, y)′ 0 0 0
−∇y Fy(x, y)′ − diag(s1/2y ) 0 0

⎤

⎥⎥
⎦ , (37a)

while the role of ∇zz f (x, y) will be played by

Hzz f (z) =
⎡

⎣
Hxx f (z) Hxy f (z) Hxλ f (z)
Hxy f (z)′ Hyy f (z) 0
Hxλ f (z)′ 0 0

⎤

⎦ (37b)

with blocks defined by

Hxy f (z) =
[∇xy L(z) 0 ∇xGy(x, y) −∇x Fy(x, y)

0 0 0 0

]

Hxx f (z) =
[∇xx L(z) 0

0 diag(λx )

]
Hxλ f (z) =

[∇xGx (x) ∇x Fx (x)

0 diag(s1/2x )

] (37c)

Proposition 3 (Second-order sufficient conditions for constrained minmax) Let z be
an equilibrium point in the sense that g(z, 0) = 0 with λy, λx , sy, sx ≥ 0. If the LICQ
and strict complementarity hold at z and

in(Hyy f (z)) = (ly + my, ny + my, 0) and

in(Hzz f (z)) = (nx + mx + ly + my, lx + mx + ny + my, 0)
(38)

then (x, y) is a local minmax of (24).

Similar to what was the case for the second-order sufficient conditions for
unconstrained minmax in Proposition 2, the conditions in (38) are not symmet-
ric, highlighting that there is a distinction between the minimizer and maximizer.
Moreover, similar to the second-order sufficient conditions for unconstrained min-
max in Proposition 2, one can interpret the second-order sufficient conditions for
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constrained minmax as saying that the optimization maxy∈Y(x) f (x, y) is strongly
concave in a neighborhood around (x, y) and that the optimization minx∈X φ(x) with
φ(x) := max ỹ∈Y(x):‖y−ỹ‖<δ f (x, ỹ) is strongly convex in a neighborhood around
(x, y) for some δ > 0.

The conditions for Proposition 3 are slightly stricter than the ones in [15] as we
require strict complementarity and LICQ both for the max and the min. However, our
conditions allowus to verifywhether a point is a localminmax using the inertia, instead
of having to compute solution cones. We prove that given these stricter assumptions
our conditions are equivalent to those in [15] in Appendix A.

3.2.1 Primal-dual interior-point method

Let dz = (dx , dsx , dy, dsy , dνy , dλy , dνx , dλx ) be a shorthand notation to designate the
update direction of the variables z = (x, sx , y, sy, νy, λy, νx , λx ). Similar to the basic
primal-dual interior-point method introduced in Sect. 2.2, a basic primal-dual interior-
point method for minmax finds a candidate solution to (36) using the iterations

z+ = z + αdz = z − α∇zg(z, b)
′ −1g(z, b) (39)

where the barrier parameter b is slowly decreased to 0, so that z converges to a root of
g(z, 0) = 0 while α ∈ (0, 1] is chosen at each step such that the feasibility conditions
λy, λx , sy, sx > 0 hold. We want to modify this basic primal-dual interior-point so it
satisfies the properties P1, P2 and P3.

In order to obtain property P1, we propose to obtain dz from the solution of a
quadratic program that locally approximates (36). Using equivalent arguments as in
the development of the quadratic program (19) for the constrained minimization in
Sect. 2.2, we obtain that the objective function should be

K (dx , dsx , dy, dsy ) = L(z) + ∇x L(z)′dx + (λx − b1 � sx )
′dsx + ∇y L(z)′dy

−(λy − b1 � sy)
′dsy + d ′

x∇xy L(z)dy + 1

2
d ′
x (∇xx L(z) + εx (z)I )dx

+1

2
d ′
sx diag(λx � sx )dsx + 1

2
d ′
y(∇yy L(z) − εy(z)I )dy − 1

2
d ′
sy diag(λy � sy)dsy ,

where εx (z) ≥ 0 and εy(z) ≥ 0 are scalar and � designates the element wise division
of two vectors. The feasible sets dX for (dx , dsx ) and the set-valued map that defines
a feasible set dY(dx ) for (dy, dsy ) are obtained from the first-order linearization of the
functions in X and Y(dy) and are given by

dX = {(dx , dsx ) ∈ Rnx × Rmx : Gx (x) + ∇xGx (x)
′dx = 0,

Fx (x) + sx + ∇x Fx (x)
′dx + dsx = 0}

dY(dx ) = {(dy, dsy ) ∈ Rny × Rmy : Gy(x, y) + ∇xGy(x, y)
′dx + ∇yGy(x, y)

′dy
= 0, Fy(x, y) + sy + ∇x Fy(x, y)

′dx + ∇y Fy(x, y)
′dy + dsy = 0}.
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If∇xGx (x) and∇yGy(x, y) have linearly independent columns, we propose to obtain
(dx , dsx , dy, dsy ) as the optimizers and (dνy , dλy , dνx , dλx ) the associated Lagrange
multipliers of the minmax optimization

min
d̄x ,d̄sx ∈dX

max
d̄y ,d̄sy∈dY(d̄x )

K (d̄x , d̄sx , d̄y, d̄sy ) (40)

where εx (z) and εy(z) are chosen such that the solution to (40) is unique.We can apply
to (40) the second-order condition from Proposition 3 and obtain that εx (z) and εy(z)
need to be chosen to satisfy

in(Jyy f (z) − Ey(z)) = (ly + my, ny + my, 0) and

in(Jzz f (z) + E(z)) = (nx + mx + ly + my, lx + mx + ny + my, 0)
(ConsLQAC)

where Ey(z) := diag(εy(z)1ny , 0ly+2my ) and E(z) := diag(εx (z)1nx , 0mx ,−εy(z)
1ny , 0ly+2my+lx+mx ); Jzz f (z) is the equivalent of the matrix defined in (37b) for the
problem (40) and can be shown to be equal to

Jzz f (z) = S−1/2Hzz f (z)S
−1/2 = S−1∇zg(z, b)

′. (41)

with S = diag(1nx , sx , 1ny , sy, 1ly+my+lx+mx ); Jyy f (z) is the equivalent partition of
Jzz f (z) as Hyy(z) is of Hzz(z). We will call these conditions the Constrained Local
Quadratic Approximation Conditions (ConsLQAC). In this case, it is straightforward
to show that modifying the basic primal-dual interior-point iterations in (39) by taking
dz from the solution of (40) leads to the iterations

z+ = z + αdz = z − α(Jzz f (z) + E(z))−1S−1g(z, b). (42)

Analogously to what was the case in unconstrainedminmax optimization, choosing
εx (z) and εy(z) such that the (ConsLQAC) hold is not sufficient to guarantee that P2
and P3 hold for themodified primal-dual interior-point method (a counter example can
be found in Sect. 4.2). Our next theorem is the extensions of Theorem 3 to the modi-
fied primal-dual interior-point and has the equivalent consequences: For property P3 to
hold, as long as εx (z) is large enough, taking εy(z) > 0 will not impair the algorithm’s
capacity to converge toward a local minmax; this can be useful, for instance, if in(Jzz)
has an eigenvalue close to 0. For property P2 to hold, in order to guarantee that themod-
ified primal-dual interior-point method cannot converge toward an equilibrium point
that is not local minmax, the (ConsLQAC) are sufficient only whenever in(Jzz f (z)) �=
(nx +mx + ly +my, lx +mx + ny +my, 0). Otherwise, εx (z) needs to be taken large
enough such that in(Jzz f (z)+μE(z)) �= (nx +mx + ly +my, lx +mx +ny +my, 0)
for some μ ∈ (0, 1).

Theorem 4 (Stability and instability of modified primal-dual interior-point method
for constrained minmax) Let α = 1 and (z, b) with b > 0, be an equilibrium point in
the sense that g(z, b) = 0. Assume the LICQ hold at z, that Jzz f (z) and Jyy f (z) are
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invertible, and that Jzz f (·) is differentiable in a neighborhood around z. Then there
exists functions εx (·) and εy(·) that are constant in a neighborhood around z, satisfy
the (ConsLQAC) at z and guarantee that if:

i) z is a local minmax of (36), then it is a LAS equilibrium of (42).
ii) z is not a local minmax of (36), then it is an unstable equilibrium of (42).

Proof Let us define the partitions, Jxx f (z), Jyx f (z), and Jxλ f (z) of Jzz f (z) analo-
gously to the partitions Hxx f (z), Hyx f (z), and Hxλ f (z) of Hzz f (z).

Using the same arguments as in the proof of Theorem 1, we conclude that the
Jacobian of the dynamic system (42) around a point z such that g(z, b) = 0 is

I − α
(
Jzz f (z) + E(z)

)−1
S−1∇zg(z, b)

′ = I − α
(
Jzz f (z) + E(z)

)−1
Jzz f (z)

(43)

Moreover, from (41) we have that in(Hzz f (z)) = in(S1/2 Jzz f (z)S1/2). Using
Sylvester’s law of inertia [42, Theorem 1.5], this simplifies to in(Hzz f (z)) =
in(Jzz f (z)). If a point z is such that g(z, b) = 0, then one can check (38) using
Jzz f (z) and Jyy f (z).

Let us define the matrices

Ry(μ) = Zy(z)
′
[∇yy L(z) − ε(z)μI 0

0 − diag(λy � sy)

]
Zy(z) (44a)

Rx (μ) = Zx (z)
′(Jxx f (z) − Jxy f (z)(Jyy f (z) − μEy(z))

−1 Jyx f (x, y) + μEx (z)
)
Zx (z)

(44b)

where Zy(z) ∈ Rny+my ,ny−ly and Zx (z) ∈ Rnx+mx ,nx−lx are any full column rank
matrices such that

[∇yGy(x, y) −∇y Fy(x, y)
−I 0

]
Zy(z) = 0 and Jxλ f (z)

′ Zx (z) = 0. (45)

Using the same reasoning as in the proof of Proposition 3, one can conclude that

in(Jyy f (z) − μEy(z)) = in(Ry(μ)) + (ly + my , ly + my, 0)

in(Jzz f (z) + μE(z)) = in(Rx (μ)) + in(Jyy f (z) − μEy(z)) + (lx + mx , lx + mx , 0),

which implies that the (ConsLQAC) can be stated as

Ry(1) ≺ 0 and Rx (1) 
 0.
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This means that the exact same arguments used in the proof of the unconstrained
minmax in Theorem 3 can be used for the constrained case. More specifically, each
argument with

∇yy f (x, y) − εy(x, y)μI

and

∇xx f (x, y) − ∇xy f (x, y)(∇yy f (x, y) − μεy(x, y)I )
−1∇yx f (x, y) + μεx (x, y)I .

has an analogous statement with Ry(μ) and Rx (μ), respectively. For the sake of
completeness, we highlight the main points of the analogy.

First, when z is such that (38) holds, the sufficient condition for z to be a LAS
equilibrium point of (42) is that

∇μRx (0) = Zx (z)
′(Ex (z) − Jxy f (z)Jyy f (z)

−1Ey(z)Jyy f (z)
−1 Jyx f (z)

)
Zx (z) � 0.

(46)

The only extra argument needed is to show that condition (46) is always feasible for
some εx (z) large enough. This is not evident as the matrix

M := −Jxy f (z)Jyy f (z)
−1Ey(z)Jyy f (z)

−1 Jyx f (z)

has size (nx + mx ) × (nx + mx ) while Ex (z) only has nx nonzero elements in the
diagonal.However, because of the structural zeros in Jxy f (z) and Ey(z), one canverify
with some algebraic manipulation that rank (M) := r ≤ min(nx , ny). Let 
 be the
matrix with eigenvalues of M in decreasing order and V its associated eigenvectors
such that M = V
V ′. We can partition V into V1 of size (r , r) associated to the
nonzero eigenvalues of M and V2 = Inx+mx−r . This partition means that Ex (z) =
V ′Ex (z)V , which means on can conclude that

∇μRx (μ) = Zx (z)
′V ′(Ex (z) + 


)
V Zx (z),

which implies that one can always take εx large enough such that for each negative
diagonal entries of 
, the equivalent diagonal element of (Ex (z) + 
) is positive.

Now the second part, let us prove the statement when z is such that the second-order
conditions in (38) do not hold. We need to prove that

Jzz f (z) + μE(z) (47)

is singular for someμ ∈ (0, 1). On the one hand, using the same analysis as in the proof
of Theorem 3, we conclude that the (ConsLQAC) are sufficient to guarantee that z is an
unstable equilibrium point of (42) if in(Jzz f (z)) �= (nx +mx +ly+my, lx +mx +ny+
my, 0). On the other hand, if in(Jzz f (z)) = (nx +mx +ly+my, lx +mx +ny+my, 0),
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than we can guarantee that by taking εx sufficiently large, there is a μ ∈ (0, 1) such
that in(Jzz f (z) + μE) �= (nx +mx + ly +my, lx +mx + ny +my, 0), which means
that z is an unstable equilibrium point of (42). This concludes the proof. ��

4 Algorithmic development and numerical examples

The following algorithm combines the result of the previous section to propose a
method for selecting εx (z) and εy(z) that satisfies the (ConsLQAC) and guarantees
the stability properties of Theorem 4. We only state the algorithm for the constrained
case, its specialization to the unconstrained case is straightforward. In order to keep
the algorithm more simple and to highlight the instability property, we chose to use
the functions εy(·) = εx (·) = 0 whenever the algorithm is near a local minmax.

Algorithm 1 Primal-dual interior-point method for minmax
Require: An initial point z = (x, sx , y, sy , νy , λy , νx , λx ), an initial barrier parameter value b, a barrier

reduction factor σ ∈ (0, 1), a stopping accuracy δs ≥ 0, a δε > 0 that defines a neighborhood for
stopping to adjust εx and εy .

1: while ‖g(z, b)‖∞ > δs do
2: if ‖g(z, b)‖∞ > δε then
3: εx ← 0, εy ← 0
4: if ConsLQAC cannot be satisfied with εy = εx = 0 then
5: Increase εy until

in(Jyy f (z) − Ey) = (ly + my , ny + my , 0)

6: Increase εx until

in(Jzz f (z) + E) = (nx + mx + ly + my , lx + mx + ny + my , 0)

7: if in(Jzz f ) = (nx + mx + ly + my , lx + mx + ny + my , 0) then
8: Increase εx until, for some value of μ ∈ (0, 1),

in(Jzz f (z) + μE(z)) �= (nx + mx + ly + my , lx + mx + ny + my , 0)

9: end if
10: end if
11: end if
12: Compute a new z using the equation

z ← z − α
(
Jzz f (z) + E

)−1
S−1g(z, b)

where α ∈ (0, 1] is selected such that the feasibility conditions
λy , λx , sy , sx > 0 hold.

13: if ‖g(z, b)‖∞ ≤ b then
14: b ← σ b
15: end if
16: end while
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Proposition 4 (Construction of themodified primal-dual interior-point method) Algo-
rithm 1 generates functions εx (·) and εy(·) that satisfy the conditions of Theorem 4
in the neighborhood of any equilibrium point z∗ that satisfy the assumptions of Theo-
rem 4.

Proof For each z, Algorithm 1 produces values of εx and εy that only depend on z,
therefore it implicitly constructs functions εx (·) and εy(·).Moreover, εx (·) and εy(·) are
such that either the stability condition (46) or the instability condition (47) are satisfied
for each z, therefore they are satisfied in the neighborhood of any equilibrium point
z∗. Finally, εx (·) and εy(·) are constant in a neighborhood around each equilibrium
point as the values of εx and εy are not adjusted when ‖g(z, b)‖∞ ≤ δε . ��

In Algorithm 1, for each z, (εx , εy) is chosen to satisfy the conditions of Theo-
rem 4, and therefore generate the desired stability and instability. This means that the
algorithm essentially guarantees that the modified primal-dual interior-point method
can only converge to an equilibrium point if such point is a local minmax. A key point
of the algorithm is that it only uses the inertia of matrices, which can be efficiently
computed using either the LBLt or LDLt decomposition, as we further detail in the
following remark.

Remark 1 (Computing the inertia) It is not necessary to actually compute the eigen-
values of Jzz f (z) in order to determine the inertia. A first option is to use the lower-
triangular-block-lower-triangular-transpose (LBLt) decomposition [16, Appendix A],
which decomposes Jzz f (z) into the product LBL ′ where L is a lower triangularmatrix
and B a block diagonal one, the inertia of B is the same as the inertia of Jzz f (z).

Let � = diag(γ 1nx+mx ,−γ 1ny+my , γ 1ly+my ,−γ 1lx+mx ), with γ a small positive
number. A second approach is to use the lower-triangular-diagonal-lower-triangular-
transpose (LDLt) decomposition, to decompose Jzz f (z) + � into the product LDL ′
where L is a lower triangular matrix and D is a diagonal matrix; the inertia of D, which
is given by the number of positive, negative and zero elements of the diagonal of D,
gives the inertia of Jzz f (z)+�. Thematrix� introduces a distortion in the inertia but it
helps to stabilize the computation of the LDLt decomposition, which tends to be faster
than the LBLt decomposition. This is the approach we use in our implementation; it
has been studied in primal-dual interior-point algorithms for minimization and the
distortion introduced by � tends to be compensated by a better numerical algorithm
[43, 44]. �

4.1 Benchmark example for unconstrainedminmax

Consider the following functions

f1(x, y) = 2x2 − y2 + 4xy + 4/3y3 − 1/4y4

f2(x, y) = (4x2 − (y − 3x + 0.05x3)2 − 0.1y4) exp(−0.01(x2 + y2))

f3(x, y) = (x − 0.5)(y − 0.5) + exp(−(x − 0.25)2 − (y − 0.75)2)

f4(x, y) = xy.
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Table 1 Comparing the performance of pure Newton’s method, gradient descent ascent and Algorithm 1.
We randomly generated 1000 initializations and used them to start the algorithms from different locations.
“eq” refers to the number of times the algorithm converged to an equilibrium point, i.e., a point that satisfy
the first-order condition (but not necessarily the second-order ones), “minmax“ refers to the number of
times the algorithm converged to a local minmax, “iter” refers to the number of iterations it took for the
algorithm to converge to a minmax point

Pure Newton GDA Algorithm 1
eq minmax iter eq minmax iter eq minmax iter

f1 1000 1000 4.1 1000 1000 485 1000 1000 5.7

f2 1000 665 7.3 976 976 18,195 996 996 8.1

f3 954 485 4.8 373 373 40,936 709 709 7.1

f4 1000 1000 1 0 0 – 1000 1000 1

The first three have been used as examples in [31, 35, 45], respectively, whereas the
fourth one is a well-known case for a simple but challenging function to find the
local minmax. These problems all satisfy the assumption of Theorem 3 and have
local minmax points. We have chosen these functions because, as we will show, they
illustrate some interesting behaviors.

Our goal is to compare the performance of Algorithm 1 to the performance of two
well established algorithms. On the one hand, we look at the performance of a “pure”
Newton algorithm, i.e., using εx (·) = εy(·) = 0. On the other hand, we look into the
convergence of a gradient descent ascent (GDA), i.e.,

x+ = x − αx∇x f (x, y)

y+ = y + αy∇y f (x, y)

where αx and αy are constant and different for each problem; we did our best to select
the best values αx and αy for each problem.

Each algorithm is initialized 1000 times, using the same initialization for the three of
them each time. We compare their convergence properties according to three criteria:
the number of times the algorithm converged to an equilibrium point (eq.), the number
of times it converged to a local minmax point (minmax) and the average number of
iterations to converge to a local minmax point (iter). The algorithm is terminated when
the infinity norm of the gradient is smaller than δs = 10−5 and we declare that they did
not converge if it has not terminated in less than 500 iterations for the pure Newton and
Algorithm 1, and 50 000 for GDA. The result of the comparison is displayed in Table 1.
The key take away from these examples is that Algorithm 1 never converges toward an
equilibrium point that is not a local minmax, in contrast with the pure Newton method
which is attracted to any equilibrium point. Here is a detailed observation from this
comparison.

• The pure Newton algorithm has good overall convergence for all the problems,
but it also tends to often converge toward an equilibrium point that is not a local
minmax problems. On the other hand, when the pure Newton converges to a local
minmax, it does so in less iterations than the other two methods. This is expected
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when comparing to the GDA, as it is a first-order method. Pure Newton algorithm
converges in (slightly) less iterations than Algorithm 1 because taking εx and εy
different than 0 hinders the superlinear convergence property of Newton’s method.

• The GDA algorithm seems to enjoy the property of always converging toward a
local minmax, and except for f3(·) and f4(·), it has good rate of convergence.
However, GDA takes an exceptionally long number of iterations to converge. This
is somehow expected from the fact that it is a first-order method, and it is partially
compensated by each iteration being more simple to compute. However, one must
keep in mind that none of this takes into account the time that needs to be spent
adjusting the step sizes until a good convergence rate can be obtained.

• At last, Algorithm 1 is across the board the algorithm with better convergence
toward local minmax, and it does so in the smallest number of iterations. As it was
expected from the theory,Algorithm1never converges toward an equilibriumpoint
that is not a local minmax. From a numerical perspective, the biggest takeaway is
that while our results are only about local convergence, the algorithm still enjoys
good global convergence properties; only in f3(·) it does not converge essentially
100% of the time.

• Function f4(·) is particularly interesting example. First, notice that the pure New-
ton converges in one iteration. This is expected as the iterations are given by

[
x+
y+

]
=

[
x
y

]
−

[
0 1
1 0

]−1 [
y
x

]
=

[
x
y

]
−

[
0 1
1 0

]−1 [
0 1
1 0

] [
x
y

]
=

[
0
0

]
.

This is in stark contrast with GDA which, as it is well known, diverges away from
the local minmax. As for Algorithm 1, it converges even though it does not satisfy
the assumptions of Theorem 3, further emphasizing that these are sufficient but not
necessary conditions. Notice that Algorithm 1 is not the same as the pure Newton
as the Hessian will be modified with an εy(x, y) > 0 to guarantee that the portion
of the Hessian associated to the maximization is negative definite.

4.2 The homicidal chauffeur example for constrainedminmax

In the homicidal chauffeur problem, a pursuer driving a car is trying to hit a pedestrian,
who (understandably) is trying to evade it. The pursuer is modeled as a discrete time
Dubins’ vehicle with equations

x+
p =

⎡

⎢
⎣
x (1)
p + v cos x (3)

p

x (2)
p + v sin x (3)

p

x (3)
p + u

⎤

⎥
⎦ =: φp(xp, u)

where x (i)
p designates the ith element of the vector xp, v is a constant forward speed

and u is the steering, over which the driver has control. The pedestrian is modeled by
the accumulator

x+
e = xe + d =: φe(xe, d)
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where d is the velocity vector. Given a time horizon T , and initial positions xe(t) and
xp(t), we want to solve

min
U∈U max

D∈D

T−1∑

i=0

∥
∥
∥x (1,2)

p (t + i + 1) − xe(t + i + 1)
∥
∥
∥
2

2
+γuu(t + i)2 − γd ‖d(t + i)‖22

(48)

where x (1,2)
p designates the first and second elements of the vector xp; γu and γd are

positive weights; and U , U , D and D are defined for i = 0, . . . , T − 1

U := u(t + i), xp(t + i + 1)

U := {u(t + i), xp(t + i + 1) : u(t + i)2 ≤ u2max ,

xp(t + i + 1) = φp
(
xp(t + i), u(t + i)

)}
D := d(t + i), xe(t + i + 1)

D := {d(t + i), xe(t + i + 1) : ‖d(t + i)‖22 ≤ d2max ,

xe(t + i + 1) = φe
(
xe(t + i), d(t + i)

)}.

Instead of explicitly computing the solution of the trajectory of the pursuer and evaders,
we are implicitly computing them by setting the dynamics as equality constraints; we
will show shortly that this has an important impact on the scalability of the algorithm.

Each player is controlled using model predictive control (MPC), meaning that at
each time step t we solve (48) obtaining controls u(t) and d(t), which are then used
to control the system for the next time step. The problem satisfies the assumptions of
Theorem 4, as it is differentiable and has local minmax points for which the LICQ and
strict complementarity hold.

The importance of guaranteeing instability
It is natural to ask whether it is important to enforce the instability guarantee,

specially in the case where the (ConsLQAC) is not enough, meaning one needs to use
line 7 of Algorithm 1. In Fig. 1, we show what can happen if they are not enforced.
We take the homicidal chauffeur problem with a horizon of T = 20 and we run the
MPC control for t = 1, . . . , 50. In one case we enforce the instability guarantee,
meaning that we use line 7 of Algorithm 1, on the second case we only enforce the
(ConsLQAC), and on the third case we only enforce the instability guarantees after
t = 25. In all cases, we start the system with the exact same initial conditions.

In the first case, the evader (which is the maximizer), is able to find a control
that allows it to get further from the pursuer. The average cost for all the time steps
(t = 1, . . . , 50) ends up being around 0.2. In the second case, the solver keeps being
attracted toward a point that is not a local minmax (and more precisely, not a local
maximum), which means that the evader is not capable of escaping the pursuer; as a
consequence, the average cost for all the time steps ends up being around 0.05, which
is lower, as expected. Finally, in the third case, at t = 25 the solver starts to be able to
converge toward a local minmax, and the evader is able to escape from the pursuer.
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Fig. 1 Trajectory for Homicidal Chauffeur problemwith andwithout guaranteeing instability at equilibrium
points that are not a local minmax
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Fig. 2 Scaling of homicidal chauffeur with horizon length and sparsity pattern of the Hessian when using
the sequential approach

This example illustrates how crucial it is to enforce instability. By doing it, we
guarantee that the algorithm can only converge toward an equilibrium point that is a
local minmax, and this can completely change the numerical solution.

Exploiting sparsity
Instead of setting the dynamics as equality constraints in (48), one could simply

find the solution of the trajectory equation at each time step. This means to explicitly

calculate xp(t + i + 1) = φp

(
φp

(
. . . , u(t + i − 1)

)
, u(t + i)

)
. In the MPC literature,

this is known as the sequential approach, versus the simultaneous approach we used in
(48) [46, Chapter 8.1.3].We want to study the scalability of the algorithm by enlarging
the horizon T , both when using the sequential and the simultaneous approaches.

The sequential approach solves an optimization problem in a smaller state
space, because it only needs to solve the optimization for u(t), . . . , u(t + T ) and
d(t), . . . , d(t + T ) and it does not have to handle equality constraints. However, as
we can see from the sparsity pattern in Fig. 2b, the Hessian is rather dense, with large
parts of it containing nonzero entries. As it can be seen in Fig. 2a, the algorithm scales
rather poorly as the horizon length (and hence, the number of variables) increases; it
no longer converges reliably after T = 80.

123



Mathematics of Control, Signals, and Systems

0 20 40 60 80 100 120 140

Length horizon T

0

50

100

150

200

250
A

ve
ra

ge
 n

um
be

r 
of

 it
er

at
io

n 
(d

ot
s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 ti
m

e 
pe

r 
ite

ra
tio

n 
in

 m
s 

(li
ne

)

(a) Computational scaling for solving homi-
cidal chauffeur per horizon length

(b) Structural sparsity pattern of
Jzzf(z)

Fig. 3 Scaling of homicidal chauffeur with horizon length and sparsity pattern of the Hessian

The simultaneous approach on the other hand solves the optimization problem in a
much larger space state, because not only it needs to also solve for u(t), . . . , u(t + T )

and d(t), . . . , d(t + T ), but also for xp(t), . . . , xp(t + T ) and xe(t), . . . , xe(t + T )

and it also needs to handle equality constraints. Fortunately, as we can see from
the sparsity pattern in Fig. 3b, most of the entries in the Hessian are actually struc-
turally zero (meaning they are always zero).TensCalc’s implementation of the LDLt
factorization exploits sparsity patterns and scales roughly in O(T ), which makes it
substantiallymore efficient than standard LDLt decomposition, which scales in O(T 3)

[16, Appendix A]. At each step of Algorithm 1, most of the time is spent computing
the LDLt decomposition, either for adjusting εx and εy or to invert Hzz f (z). As a con-
sequence, we can see in Fig. 3a that both the number of iterations necessary to solve
the optimization and the time per iteration scale roughly linear, the first being multi-
plied by about 1.7 while the second by 3.5 while the horizon length T is multiplied
by roughly 30.

Remark 2 (Minmax problems with shared dynamics) In the homicidal chauffeur, the
control of the pursuer does not impact the dynamics of the evader, and vice versa. This
is why in (48) the dynamics can be set as equality constraints independently for the
min and for the max.

Now consider the problem

x+ = f (x, u, d)

whereu is the control andd is the disturbance andonewants tominimize a cost function
V (x(1), . . . , x(T ), u(0), . . . , u(T − 1)) given the worst disturbance d(1), . . . , d(T ).
Because both the control and the disturbances influence the dynamics, we need to
include the dynamics as equality constraints for the maximization, leading to the
optimization problem

min
u(i)∈U ,i=0,...,T−1

max
d(i)∈D,x(i+1),i=0,...,T−1:
x(i+1)= f (x(i),u(i),d(i))

V
(
x(1), . . . , x(T ), u(0), . . . , u(T − 1)

)
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where U ,D are the feasible sets for the control and disturbances. It is important to
notice that x just acts as a latent/dummy variable that allows us to avoid solving the
trajectory equation. Setting it as a maximization variable does not changes the result
as x is always exactly determined by the value of u and d. It does, however, improve
the numerical efficiency of the algorithm as now the Hessian matrices are sparse and
their LDL decomposition can be efficiently computed. �

5 Conclusion

The main contribution of this article is the construction of Newton and primal-dual
interior-point algorithm for nonconvex–nonconcave minmax optimization that can
only converge toward an equilibrium point if such point is a local minmax. We estab-
lished these results by modifying the Hessian matrices such that the update steps can
be seen as the solution of quadratic programs that locally approximate the minmax
problem. While our results are only local, using numerical simulations we see that the
algorithm is able to make progress toward a solution even if it does not start close to it.
We also illustrated using numerical examples how important it is to have a formulation
of the minmax problem such that the Hessian matrix is sparse.

The main future direction would be to develop non-local convergence results. We
believe that the best approach to obtain such results would be to develop a type of
Armijo rule which could be used to obtain similar results to those from minimization.
Developing filters and merit function could also play an important role in coming up
with ways to improve the algorithm’s convergence.
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Appendix A Second-order sufficient conditions for constrained mini-
mization andminmax optimization

A.1 Proof of Proposition 1 (constrainedminimization)

The first step is to show that g(z, 0) = 0 is equivalent to the Karush–Kuhn–Tucker
(KKT) conditions [16,Chapter 12].Consider the “full"Lagrangian L̃(x, sx , νx , λx , τx )

= f (x) + ν′
xGx (x) + λ′

x (Fx (x) + sx ) − τ ′
x sx for the optimization (10). The KKT

condition would then be that
⎡

⎢⎢⎢⎢
⎣

∇x L̃(x, sx , νx , λx , τx )

∇sx L̃(x, sx , νx , λx , τx ) = λx − τx
Gx (x)

Fx (x) + sx
τx � sx

⎤

⎥⎥⎥⎥
⎦

= 0 (A1)

and sx , τx ≥ 0. The second equation can be used to substitute τx by λx , which gives
the equality g(z, 0) = 0.

Now the second-order sufficient conditions. Let us start by rewriting the minimiza-
tion (1) but instead of using as slack variables sx with the constraint sx ≥ 0, using the
slack variable wx � wx (where � is the element wise product):

min
x,wx :Gx (x)=0,Fx (x)+wx�wx=0

f (x). (A2)

Consider now the solution cone

Cx (z) := {(dx , dw) ∈ Rnx+mx \{0} : ∇xGx (x)
′dx = 0,

∇x Fx (x)dx + 2 diag(wx )dw = 0}

Let (x, wx , νx , λx ) be a point such that the KKT conditions for (A2) hold. As, by
assumption, the LICQ and strict complementarity conditions hold, if

[
dx
dw

]′ [∇xx L(z) 0
0 2 diag(λx )

] [
dx
dw

]′
> 0 ∀(dx , dw) ∈ Cx (z) (A3)

then (x, wx , νx , λx ) is a local minimum of (A2). The proof can be found in [16,
Theorem 12.5].

We now need to prove that (A3) is equivalent to the condition (13) from the propo-
sition. Because the LICQ and strict complementarity hold, the set Cx (z) is given by
the null space (a.k.a. the kernel) of the matrix

H̃xλ f (z) =
[∇xGx (x) ∇x Fx (x)

0 2 diag(wx ).

]
(A4)

This result can be found in [16, Chapter 12.5], in the subsection “Second-order con-
ditions and projected Hessian". Let Zx ∈ Rnx+mx ,nx+mx−mx−lx be a matrix with full
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column rank such that H̃xλ f (z)′ Zx = 0. Then, the condition (A3) can be rewritten
as

Z ′
x

[∇xx L(z) 0
0 2 diag(λx )

]
Zx 
 0

which is equivalent to say that

in
(
Z ′
x

[∇xx L(z) 0
0 2 diag(λx )

]
Zx

)
= (nx − lx , 0, 0)

Now consider the matrix

H̃zz f (z) =

⎡

⎢⎢
⎣

∇xx L(z) 0 ∇xGx (x) ∇x Fx (x)
0 2 diag(λx ) 0 2 diag(w)

∇xGx (x)′ 0 0 0
∇x Fx (x)′ 2 diag(w) 0 0

⎤

⎥⎥
⎦ . (A5)

As the LICQ conditions hold, according to [16, Theorem 16.3]

in(H̃zz f (z)) = in
(
Z ′
x

[∇xx L(z) 0
0 2 diag(λx )

]
Zx

)
+ (lx + mx , lx + mx , 0).

Therefore, (A3) holds if and only if in(H̃zz f ) = (nx + mx , lx + mx , 0).
We have almost finished the proof, we now just need to prove that in(H̃zz f (z)) =

in(Hzz f (z)). Using the equality condition Fx (x) + wx � wx = 0, we obtain the
relation wx = (−Fx (x))1/2 = s1/2x . If we substitute back this result in H̃zz f (z), we
almost have that H̃zz f (z) is equal to Hzz f (z) except for the 2 in front of diag(λx ) and
diag(s1/2). Take the matrix � defined by

� = diag([1nx , [a(1), a(2), . . . , a(mx )], 1lx+mx ])

where

a(i) =
{

1
2 if λ

(i)
x = 0 and s(i)

x �= 0
1√
2

if λ
(i)
x �= 0 and s(i)

x = 0

with λ
(i)
x and s(i)

x denoting the i th elements of λx and sx . Then, �H̃zz f (z)� =
Hzz f (z) which, according to Sylvester’s law of inertia [42, Theorem 1.5], implies
that inertia(H̃zz f (z)) = inertia(Hzz f (z)), which finishes the proof. �

A.2 Proof of Proposition 3 (constrainedminmax optimization)

First, using the exact same reasoning as in the proof of Proposition 1, one can show
that g(z, 0) = 0 is equivalent to the first-order necessary condition in [15].
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Similarly to what we did in the proof of Proposition 1, let us start by rewriting the
constrained minmax optimization (36) using the slack variables w � w:

min
x,wx :Gx (x)=0,Fx (x)+wx�wx=0

max
y,wy :Gy(x,y)=0,Fy(x,y)+wy�wy=0

f (x, y).

Consider the solution cones

Cy(z) := {(dy, dwy ) ∈ Rny+my\{0} : ∇yGy(x, y)dy = 0,

∇y F(x, y)dy + 2 diag(wy)dwy = 0}

and

Cx (z) := {(dx , dwx ) ∈ Rnx+mx \{0} : ∇xGx (x)
′dx = 0

∇x Fx (x)dx + 2 diag(wx )dwx = 0}

Let z be a point such that g(z, 0) = 0. As, by assumption, the LICQ and strict
complementarity hold, if

[
dy
dwy

]′ [∇yy L(z) 0
0 −2 diag(λy)

] [
dy
dwy

]
< 0 ∀ (dy, dwy ) ∈ Cy(z) (A6a)

and

[
dx
dwx

]′ (
Hxx L(z) − Hxy f (z)Hyy f (z)

−1Hxy f (z)
′)

[
dx
dwx

]
>0 ∀ (dx , dwx ) ∈ Cx (z)

(A6b)

then (x, wx , νx , λx ) is a local minimum of (A2). The proof can be found in [15,
Theorem 3.2].

The proof between the equivalence of the condition (A6a) and in(Hyy f (z)) =
(ly + my, ny + my, 0) is almost identical to the proof of Proposition (1).

The condition on the inertia of in(Hzz f (z)) requires somemore development. In an
analogous way to the proof of Proposition (1), let Zx be a matrix with full column rank
such that Hxλ f (z)′ Zx = 0. Then, the sufficient conditions (A6b) for the reformulated
outer minimization is

Z ′
x

(
Hxx f (z) − Hyx f (z)

′Hyy f (z)
−1Hyx f (z)

)
Zx 
 0. (A7)

We want now to define a new partition of Hzz f (z) which we will use to finish the
proof. Consider the matrices

H̄zz f (z) =
[
Hxx f (z) Hxy f (z)
Hxy f (z)′ Hyy f (z)

]
and H̄xλ f (z) =

[
Hxλ f (z)

0ny+my+ly+my ,lx+mx

]
.
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such that

Hzz f (z) =
[
H̄zz f (z) H̄xλ f (z)
H̄xλ f (z)′ 0lx+mx

]

Let the matrix

Z̄x :=
[

Zx 0nx+mx ,ny+my+ly+my

0ny+my+ly+my ,nx−lx Iny+my+ly+my .

]

One can show that Z̄x is full column rank and such that H̄xλ f (z)′ Z̄x = 0. Therefore,
if we apply [16, Theorem 16.3] to Hzz f (z) (with the new partitioning) gives

in(Hzz f (z)) = in
(
Z̄ ′
x H̄zz f (z)Z̄x

) + (lx + mx , lx + mx , 0)

In turn, in
(
Z̄ ′
x H̄zz f (z)Z̄x

)
can be simplified using Haynsworth inertia additivity

formula [42, Theorem 1.6]:

in
(
Z̄ ′
x H̄zz f (z)Z̄x

)

= in
([

Z ′
x Hxx f (z)Zx Z ′

x Hxy f (z)
Hxy f (z)′Zx Hyy f (z)

])

= in
(
Z ′
x

(
Hxx f (z) − Hxy f (z)Hyy f (z)

−1Hxy f (z)
′)Zx

)
+ in(Hyy f (z)).

Therefore, if (A6a) holds, (A6b) is equivalent to

in(Hzz f (z)) = (nx − lx , 0, 0) + (ly + my, ny + my, 0) + (lx + mx , lx + mx , 0)

which finishes the proof. ��
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