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Fast Desynchronization Algorithms for
Decentralized Medium Access Control based on

Iterative Linear Equation Solvers
Daniel Silvestre, João Hespanha and Carlos Silvestre

Abstract—We tackle the problem of having multiple trans-
mitters cooperating to be desynchronized using a distributed
algorithm. Although this problem can also be found in surveil-
lance, it has the most impact in achieving a fair access to a
wireless shared communication medium at the Medium Access
Control (MAC) layer in the context of Wireless Sensor Net-
works (WSNs). In this paper, we first theoretically investigate
the convergence rate of various optimization algorithms, giving
closed-form expressions for the parameters achieving the best
worst-case convergence rate. We then show that a recently
proposed time-varying parameters Nesterov algorithm applied to
this problem has worse performance assuming one can determine
the number of sensors in the network. In order to remove such
an assumption, the problem is seen as the solution of a linear
equation corresponding to the first optimality condition. Both
theoretically and in simulation, we show that using the Gauss-
Seidel method improves the speed of convergence, although its
performance degrades for large network sizes. In simulations, it
is shown the behavior for various number of wireless devices,
emphasizing how the algorithms actually perform in comparison
with their worst-case theoretical rates for different network sizes.

Index Terms—Distributed control; Communication networks;
Optimization algorithms.

I. INTRODUCTION

Desynchronization among different agents in a network
plays a role in various tasks including data aggregation, duty
cycling and cooperative communications. In the context of
Wireless Sensor Networks (WSNs), a key aspect to achieve
a fair Time Division Multiple Access (TDMA) scheduling is
the definition of distributed algorithms that perform desyn-
chronization at the Medium Access Control (MAC) layer. The
problem lies in how to devise a distributed algorithm that can
evenly spread the communicating time slots among the nodes
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[1], [2], [3], [4], [5], [6]. This can be seen as the dual of
the consensus problem (see for example [7], [8]) and used in
formation algorithms such as [9], [10].

Although there are centralized solutions to the desynchro-
nization problem that rely on a coordination channel, a central
node or a global clock (for example making use of GPS) [2],
in this paper attention is focused on decentralized solutions. In
the literature, it is common to accept algorithms where nodes
hop between channels of the physical layer so as to avoid chan-
nels with excessive interference. The approach implemented in
the Time-Synchronized Channel Hoping (TSCH) [2] protocol
has been established as state-of-the-art in the IEEE 802.15.4e-
2012 standard [11].

In the literature, various authors [1], [2], [5], [12], [13],
[14], [15], [16], [17], [18], [19], [20] have proposed distributed
desynchronization algorithms for WSN MAC-layer coordina-
tion. The main idea connecting these proposals is in modeling
as Pulse-Coupled Oscillators (PCOs) the actions of biological
agents such as fireflies, where a timing mechanism with a
periodic pulsing is adjusted based on the timings of pulses
sensed from a subset of the remaining nodes.

The seminal work by Mirollo and Strogatz [21] inspired
the distributed desynchronization algorithms using the PCOs
model, with others making advances in generalizing the model
to other relevant WSN characteristics such as: limited listening
[1], [22], [23] enabling power savings in wireless transceivers;
algorithms suitable for multi-hop networks and hidden nodes
[1], [14], [20]; scalability to a large number of nodes [5], [18];
and, fast convergence to steady-state [15], [16], [17], [23].

In [24], the authors established worst-case convergence rates
and made an advancement with respect to the known lower
bounds [17], [22] and order-of-convergence estimates [1], [5],
[22]. The main contribution is in showing that the PCO-based
desynchronization is equivalent to a gradient descent after a
minor modification to a suitable quadratic function. It is then
introduced a fast desynchronization based on the Nesterov
algorithm. In this paper, we show that viewing the problem
as the solution of a linear equation enables a considerable
increase in the convergence rate. We also characterize both
the convergence rate of the novel approach and the ones using
gradient-descent-like methods. The Nesterov method has also
been reformulated in [25][26] to accommodate faults.

In the literature, distributed solvers for linear equations will
typically store an estimate of φ per agent (see an example in a
recent publication in [27]). In this problem, that would require
additional storage and knowledge of size of the state space.
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Opting by traditional methods enables a constant memory
occupation in comparison with the linear growth of recent
decentralized algorithms.

Therefore, the main idea of this paper can be summarized
as applying the Gauss-Seidel algorithm to the first-order opti-
mality equation, inspired by the approach used in [28] for the
PageRank problem, which promoted a considerable speed-up.
The convergence proof of the Gauss-Seidel method has been
provided in [29]. The main contributions of this paper can be
summarized as:
• We provide closed-form expressions for all parameters

that achieve optimal worst-case convergence rate for first-
order optimization algorithms, provided the number of
transmitters is known.

• We show that the proposal in [24] of using a time-varying
parameters version of the Nesterov is outperformed by
selecting optimal fixed parameters.

• Proof of convergence and the respective rate is given for
the Gauss-Seidel algorithm applied to the desynchroniza-
tion problem.

• In simulation, the actual performance of the algorithms
is analyzed with the Gauss-Seidel algorithm being the
best option although scaling poorly for larger networks.
The Heavy Ball method (the best worst-case convergence
rate) is shown to first increase the error and therefore not
being suitable for implementation.

The remainder of the paper is organized as follows. We
introduce the desynchronization problem in Section II and the
optimal first-order optimization algorithms outperforming the
current state-of-the-art in Section III. Section IV describes the
solution using the Gauss-Seidel iterative algorithm to solve
linear equations with initial simulation results in Section V.
Concluding remarks and directions for future work are offered
in Section VI.
Notation : The transpose and the spectral radius of a matrix
A are denoted by Aᵀ and ρ(A), respectively. For vectors ai,
(a1, . . . , an) := [aᵀ1 . . . aᵀn]ᵀ. We let 1n := [1 . . . 1]ᵀ and
0n := [0 . . . 0]ᵀ indicate n-dimension vector of ones and
zeros, and In denotes the identity matrix of dimension n.
Dimensions are omitted when no confusion arises. The vector
ei denotes the canonical vector whose components equal zero,
except component i that equals one. The symbol × denotes
the cartesian product. The Euclidean norm for vector x is
represented as ‖x‖2 :=

√
xᵀx. We also define λi(A) as the

ith largest eigenvalue of the matrix A.

II. DESYNCHRONIZATION PROBLEM

The desynchronization problem assumes agents turn on
periodically in order to conserve battery power. As a con-
sequence of scheduling the uptime to listen to only two
neighbors, the interaction networks forms a ring. The main
activities of each transmitter is to periodically broadcasts a fire
message or a pulse and listen to the medium for the messages
of their neighbors. Each node i ∈ {1, · · · , n} has a phase
variable θi(t), as given in [1], [22].

θi(t) =
t

T
+ φi(t) mod 1,

where φi ∈ [0, 1] is the so-called phase offset of node i and
mod notation stands for the modulo arithmetic. Every node
i broadcasts a pulse when its phase reaches the unity (i.e.,
every T time units) and then resets it to zero. Every time a
node receives a pulse, it will adjust its offset φ according to an
update equation. The work in [24] showed that this problem
can be cast as the minimization of a quadratic function, which
is given in the next proposition for completeness.

Proposition 1 (Desynchronization as an optimization [24]):
Let φ(k) denote the phases of all nodes at updating cycle k.
The state of desynchronization corresponds to the solution of
the following optimization problem:

minimize
φ

g(φ) :=
1

2
‖Dφ− v1n + en‖22 (1)

where v = 1/n, 1n is the vector of ones, en =
(0, 0, · · · , 0, 1)ᵀ, and

D =


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . . . . .
...

0 · · · 0 0 −1 1
1 · · · 0 0 0 −1

 .
In [24], it is proposed a parameter-varying version of

the Nesterov’s method as a fast convergent algorithm. The
objective of this paper is to present results showing that con-
sidering other types of solutions to the optimization problem
in Proposition 1 achieves a higher performance.

III. OPTIMAL FIXED-PARAMETER NESTEROV-BASED
DESYNCHRONIZATION ALGORITHM

As described in the previous section, [24] introduced an op-
timization formulation to the problem and proposed the use of
a time-varying parameter version of the Nesterov method as a
fast algorithm to desynchronize the transmitters, called FAST-
DESYNC. FAST-DESYNC has the advantage of not requiring
knowledge of the number of transmitters in the network at
the expenses of a sub-optimal choice of parameters. In this
section, we present other optimization algorithms and compute
closed-form expressions for the parameters and worst-case
convergence rates.

In [30], it is shown that the Gradient descent, Heavy-ball
and Nesterov methods defined as:

GRADIENT : x(k+1) = x(k) − β∇g(x(k))

HEAVY-BALL :
x(k+1) = x(k) − β∇g(x(k))

+ γ(x(k) − x(k−1))

NESTEROV :
x(k+1) = ξ(k) − β∇g(ξ(k))

ξ(k) = (1 + γ)x(k) − γx(k−1)

can be analyzed as dynamical systems to compute optimal
parameters β and γ. This reformulation allows to use stan-
dard techniques from linear systems theory to compute the
convergence rate in the worst-case trajectory, i.e., the positive
constant λ < 1 such that ‖x(k) − x?‖ ≤ cλk‖x(0) − x?‖, for
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some constant c > 0, where x? corresponds to the steady state
value for the system with initial conditions x(0).

However, the results presented in [30] apply to strongly
convex functions, which, since g is quadratic, means that
matrix Q must satisfy mIn � Q � LIn, which is equivalent
to say that the eigenvalues of Q lie in the interval [m,L]
for m > 0. In the next lemma, the results are generalized to
the case when function g is only convex but the eigenvectors
associated with the zero eigenvalues are part of the minima.
The result translates that the expressions in [30] for the
parameters of the optimization algorithms achieving the best
worst-case convergence rate for strongly convex functions
are valid, provided that we consider the minimum non-zero
eigenvalue as a replacement for the minimum eigenvalue of
Q (which would be zero).

Lemma 2: Consider a convex quadratic function g(x) =
xᵀQx+cᵀx with Hessian matrix 0 � Q � LIn and a subspace
S containing any vector s resulting from a linear combination
of eigenvectors of Q associated with zero eigenvalues. If any
vector s ∈ S is a minimizer of the function, i.e.,

∀s ∈ S : g(s) = g?,

where g? is the global minimum of function g, then, optimal
parameters achieving the best worst-case convergence rate for
linear first-order optimization algorithms depend solely on m
and L, where m is the minimum non-zero eigenvalue of Q.
Proof. Given that any linear first-order algorithm can be
described by a transition matrix T

T = A+BQC,

where A, B and C represent the operation of the particular
algorithm, its convergence rate depends on the spectra of T .
From the statement of the lemma, all vectors in the null space
of Q are global minima of function g. Thus, the error analysis
needs only to consider initial conditions that do not start in S.
Moreover, from the results in [30], the spectra of T is given
by the eigenvalues of A1+B1λi(Q)C1, where A1, B1 and C1

correspond to the matrices A, B, C applied to a function g
with domain in R. Given any eigenvalue λi(Q), we only need
to consider λi(Q) > 0 since the initial conditions aligned
with the eigenvectors of λi(Q) = 0 correspond to minima of
function g, and the conclusion follows.

Using Lemma 2, and assuming a known number of trans-
mitters in the network, allows to compute optimal parameters
for the three optimization algorithms, which is given in the
next theorem. The expressions are given in terms of n which
can be hardcoded in the transmitters software.

Theorem 3: Consider the DESYNC problem in (1) with n
transmitting sources. Then,

GRADIENT descent with parameter:

β =


1

3−cos( 2π
n )
, if n is even
1

2−cos( 2π
n )−cos( (n−1)π

n )
, if n is odd

(2)

achieves worst-case convergence rate ρG:

ρG =


1+cos( 2π

n )
3−cos( 2π

n )
, if n is even

cos( 2π
n )−cos( (n−1)π

n )
2−cos( 2π

n )−cos( (n−1)π
n )

, if n is odd
(3)

HEAVY-BALL with parameters:

β =


1

(1+sin(πn ))
2 , if n is even
1

(sin(πn )+sin( (n−1)π
2n ))

2 , if n is odd
(4)

and

γ =


(

1−sin(πn )
1+sin(πn )

)2

, if n is even(
sin( (n−1)π

2n )−sin(πn )
sin( (n−1)π

2n )+sin(πn )

)2

, if n is odd
(5)

achieves worst-case convergence rate ρH :

ρH =


1−sin(πn )
1+sin(πn )

, if n is even

sin( (n−1)π
2n )−sin(πn )

sin( (n−1)π
2n )+sin(πn )

, if n is odd

(6)

NESTEROV with parameters:

β =


2

7−cos( 2π
n )
, if n is even
2

4−3 cos( (n−1)π
n )−cos( 2π

n )
, if n is odd

(7)

and

γ =
1− 2

√
β sin

(
π
n

)
1 + 2

√
β sin

(
π
n

) (8)

achieves worst-case convergence rate ρN :

ρH = 1− 2
√
β sin

(π
n

)
(9)

Proof. We start by noting that function g has an infinite num-
ber of global minima corresponding to one solution rotated in
the circle, meaning that g is not strongly convex. Therefore,
taking any x? and adding a scaled vector from the null space
of Q results in a global minimum, i.e.,

∀s ∈ R : g(x?) = g(x? + s1n)

Using Lemma 2, the algorithms convergence rates depend on
m = λ2(Q) and L = λn(Q). Given the particular structure of
Q, both m and L have closed-form expressions:

m = 2− 2 cos

(
2π

n

)
(10)

whereas

L =

{
4, if n is even

2− 2 cos
(

(n−1)π
n

)
, if n is odd

(11)

Using the optimal parameter value β = 4
m+L (see [30] or

[29]) makes the convergence rate ρG = κ−1
κ+1 for κ = L/m.

Replacing for the values of m and L from (10) and (11), we
obtain the expressions in (2) and (3).

The HEAVY-BALL parameters can be found when the
eigenvalues of T2 and Tn have equal magnitude, resulting in

β = 4

(
√
L+
√
m)

2 and γ =
(√

κ−1√
κ+1

)2
. Replacing the values of

m and L and using the fact that 1 − cos(x) = 2 sin2(x/2)
yields the values for the parameters in (4) and (5), and the
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worst convergence rate is given by ρH =
√
γ which yields

(6).
The last algorithm corresponding to NESTEROV and solv-

ing such that three of the eigenvalues of T2 and Tn have
equal magnitude results in β = 4

3L+m and γ =
√
3κ+1−2√
3κ+1+2

.
Replacing the values of m and L and using the fact that
1−cos(x) = 2 sin2(x/2), after some algebraic manipulations,
yields the values for the parameters in (7) and (8), and using
the expressions in [29], the worst convergence rate is given by
ρN = 1− 2√

3κ+1
which yields (9).

The main consequence of Theorem 3 is that if the number
of transmitters to be desynchronized is known, it is possible
to achieve optimal worst-case convergence rates. In a sense,
the FAST-DESYNC algorithm in [24] using parameters 0 ≤
β ≤ 1

maxλi
and γ(k) = k−1

k+2 is convergent because it uses the
suboptimal maximum eigenvalue of Q of 4 for the even case
(in the odd case this is a reasonable approximation only as
n � 1) and disregards the minimum eigenvalue. In the next
theorem, we find a novel explicit formula for the convergence
rate of this time-varying parameter version and show that the
convergence rate is governed by 1− 1/κ in comparison with
1−1/

√
κ when selecting the optimal fixed parameters as seen

in Theorem 3. Thus, the current proposal of using the fixed-
parameter Nesterov method for cases of known number of
nodes n outperforms the current state-of-the-art in [24].

Theorem 4: The Nesterov method [24] with β =
1

maxλi(Q) = 1
4 and γ = k−1

k+2 has a worst-case convergence

rate, at time instant k, λ(k)FD given by:

λ
(k)
FD =


1, if k = 0

ϕ, if k = 1∣∣∣ϕ((1 + γ(k−1))λ
(k−1)
FD − γ(k−1)λ(k−2)FD

)∣∣∣ , if k ≥ 2

for ϕ = 1 − 1
κ . Moreover, λ(k)FD is O(1/κ) whereas λN is

O(1/
√
κ).

Proof. The FAST-DESYNC [24] algorithm can be modeled
through the Linear Time-Varying (LTV) model for dynamical
systems using the following matrices:

A(k) =

[
(1 + γ(k))In −γ(k)In

In 0n

]
, B =

[
−βIn
0n

]
,

C(k) =
[
(1 + γ(k))In −γ(k)In

]
.

The transition matrix corresponding to the evolution of
x(k+1) − x? is given by:

T (k) = A(k) +BQC(k).

Writing the error equation results in the relationship:

x(k+1) − x? = T (k+1)(x(0) − x?)

with matrix T (k+1) being the transition matrix from the initial
conditions to the current time instant, i.e.,

T (k) = T (k) · · ·T (1).

All matrices T (k) admit the same eigenvalue decomposition
using orthogonal matrix U , which allows writing T (k) as[
U 0n
0n U

]
(A(k) +BΛC(k)) · · · (A(1) +BΛC(1))

[
U 0n
0n U

]ᵀ
,

since UᵀU = I . Since the spectrum of T (k) is equivalent to
that of (A(k) + BΛC(k)) · · · (A(1) + BΛC(1)), we can study
the spectrum of (A

(k)
1 +B1λiC

(k)
1 ) · · · (A(1)

1 +B1λiC
(1)
1 ) for

all eigenvalues λi(Q), and where matrices with subscript equal
to one correspond to setting n to one.

As a consequence of the previous transformation, the con-
vergence rate at each time instant k is given by the product
of all matrices from 1 to k in the form:

T
(k)
1 =

[
(1 + γ(k))(1− βλi(Q)) −γ(k)(1− βλi(Q))

1 0

]
and, since β = 1/4, we get the worst-case value for 1 −
βλi(Q) = 1− 1

κ = ϕ. In addition, since γ(1) = 0 (by definition
of the algorithm as there is no momentum term at the first
iteration), we get

T
(1)
1 =

[
ϕ 0
1 0

]
which means that any matrix T (k)

1 will have the second column
equal to zeros. As a consequence, the eigenvalues are always
going to be a zero and the first entry of the matrix since it
is a lower triangular. Therefore, the convergence rate for each
time instant k evolves according to the sequence:

λ
(k)
FD = ϕ

(
λ
(k−1)
FD + γ(k−1)(λ

(k−1)
FD − λ(k−2)FD )

)
.

Since the minimum of the eigenvalues is achieved after n
iterations, i.e., when variable λFD goes from 1 to below
zero, then we can propose the lower bound for the rate that
corresponds to:

λ
(k)
FD = ϕ

(
λ
(k−1)
FD − γ(k−1) 1

n

)
which has non-recursive definition given by

λ
(k)
FD = ϕk(1− k

n
)

thus, reaching the conclusion since the optimal fixed parame-
ters achieves convergence rate of 1− 2√

3κ+1
.

Remark 5: The result at Theorem 4 hints that the con-
vergence rate is slower as the size of the network increases.
However, using the expression for the exact convergence rate,
we have depicted in Fig. 1 the comparison between the rates
for three sizes of networks. In each case, the rate achieved
with the optimal fixed parameter is always faster than that
using the time-varying version.

IV. DESYNCHRONIZATION USING GAUSS-SEIDEL
ITERATIONS

In the previous section, we have shown that the current state-
of-the-art underperforms in comparison with setting an optimal
fixed-parameter for the Nesterov method with the expressions
being given in Theorem 3. However, in some scenarios, it will
be infeasible to have all transmitters know the number of nodes
in the entire network. In this section, we present results when
viewing the problem in (1) as the solution of a linear equation.
We first present the Gauss-Seidel algorithm for completeness
and then apply it to ∇g(φ) = 0 in order to obtain a faster
update rule without the need to set up parameters.
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Fig. 1. Logarithmic evolution of the convergence rate for the time-varying
Nesterov (LTVnesterov) and optimal fixed parameter Nesterov for networks
sizes of 20, 100 and 500.

For a general system Ax = b, with A = L + D + U
decomposed in lower, diagonal and upper matrices, the Gauss-
Seidel method has the following update rule:

x(k + 1) = (L+D)−1(b− Ux(k)) (12)

which, by taking advantage of the triangular form of L+D, can
be sequentially updated for each i using forward substitution,
leading to the desynchronization algorithm:

φ
(k+1)
1 =

1

2

(
1− φ(k)2 − φ(k)n

)
φ
(k+1)
i =

1

2

(
−φ(k+1)

i−1 − φ(k)i+1

)
, 2 ≤ i ≤ n− 1

φ(k)n =
1

2

(
−1− φ(k+1)

1 − φ(k+1)
n−1

) (13)

which requires communication with the immediate neighbors
akin the original problem and exploits the inherent sequential
behavior of the DESYNC algorithm. In this setup, nodes use
the most updated values for the phases.

The next theorem provides the exponential rate of conver-
gence of the iteration in (13).

Theorem 6 (Convergence Rate of Gauss-Seidel): The iter-
ative method (13) asymptotically converges to a desynchro-
nization state with exponential convergence rate λGS , i.e.,

φ(k+1) − φ? ≤ λk+1
GS (φ(0) − φ?) (14)

where
λGS = |λ2(TGS)|

and

TGS =

n−1∑
j=0

(
1

2

)j+1

EjEᵀ, (15)

E =

[
0ᵀn−1 0
In−1 0n−1

]
+ ene

ᵀ
1 (16)

with |λn(TGS)| ≤ |λn−1(TGS)| ≤ · · · ≤ |λ1(TGS)|.
Proof. The inequality in (14) comes directly from seeing the
Gauss-Seidel algorithm as a linear time-invariant system where

TGS := −(D + L)−1U is the transition matrix for a general
linear equality Ax = b as in (12).

The first step in the proof consists of writing the matrix TGS
for the DESYNC problem. Given the partition A = L+D+U ,
the matrix TGS has the following expression:

TGS = (2In − E)−1Eᵀ

=
1

2
(In −

1

2
E)−1Eᵀ

(17)

with the strictly lower triangular matrix E being defined as in
(16).

We remark that

(In +N)−1 = In +

n−1∑
k=1

(−1)kNk

for a general strictly lower triangular matrix N . Using the
above equality and after some algebraic manipulations, (17)
simplifies to (15).

The second step is to show stability by proving that the
spectral radius of TGS is within the unit circle, i.e., ρ(TGS) ≤
1. Matrix TGS is row stochastic since its elements are trivially
nonnegative and

TGS1n =

n−1∑
j=0

(
1

2

)j+1

Ej

 (1n +Dᵀen)

=
1

2
(1n +Dᵀen) +

1

22


0
2

1n−3
3

+
1

23

 02
2

1n−3



+
1

24

 03
2

1n−4

+ · · ·+ 1

2n

[
0n−1

2

]

=



1
1
2 + 2

22
2∑
j=1

1

2j
+

2

23

...
n−2∑
j=1

1

2j
+

2

2n−1

3
22 +

n−1∑
j=3

1

2j
+

2

2n



=



1
1
2 + 1

2
1− 1

22 + 1
22

...
1− 1

2n−2 + 1
2n−2

3
22 −

1
2n−1 + 1

22 + 1
2n−1


= 1n.

By noticing that the first row is equal to two times the nth
minus the n− 1th rows, the following equality is true

UTGS =

[
0 0ᵀn−1

0n−1 T subGS

]
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Fig. 2. The convergence rate λ2 for the different algorithms depending on
the number of nodes n.

where

U =

[
1 0ᵀn−3 1 −2

0n−1 In−1

]
and the matrix T subGS is a submatrix of TGS obtained by
removing the first row and column. Since the matrix U
implements elementary row operations, the multiplication has
no effect on the spectra of TGS , meaning that λi(TGS) =
λi(UTGS),∀1 ≤ i ≤ n. In particular, from the format of
UTGS , it follows that

{λi(TGS), 1 ≤ i ≤ n} = {λi(T subGS ), 1 ≤ i ≤ n− 1} ∪ {0}

Similarly, T subGS remains row stochastic and its support graph
is strongly connected since the last row and columns are full
(meaning that the correspondent node would have edges to and
from all the remaining nodes in the graph). As a consequence,
λ1(T subGS ) = 1 and |λ2(T subGS )| < 1 by the Perron-Frobenius
Theorem and the conclusion about the convergence rate also
follows.

V. SIMULATION RESULTS

In this section, simulations are presented using the toolbox
in [31] in order to illustrate whether the theoretical rates
represent an advantage in practical sense. All simulations
have considered an initial starting phase state φ(0) = 1n/n
corresponding to all nodes sharing the same phase and being
completely synchronized.

Figure 2 compares the evolution of the convergence rates
for GRADIENT with β = 1

4 (which is equivalent to the
PCO-based DESYNC when β = α

2 as demonstrated in [24]),
GAUSS-SEIDEL, NESTEROV and HEAVY-BALL for the fixed
parameters β = 1

4 , γ = 1
2 . This hints at the fact that

indeed considering both optimization methods and iterative
algorithms for solving linear equations yields improvements in
performance in comparison with the PCO model. As expected,
as the number of nodes increases, so does the convergence rate,
which is approaching the unity as n grows to infinity.

An important remark is that the version of the Nesterov
method proposed in [24] has time-varying parameters (in
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Fig. 3. Logarithmic evolution of the error norm for the PCO-based, Nesterov
and Gauss-Seidel algorithms.
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Fig. 4. Logarithmic evolution of the error norm for the PCO-based, Nesterov
and Gauss-Seidel algorithms for the 20 node network.

particular γ = k−1
k+2 ) that might contribute to increase the speed

of convergence. In order to compare the method proposed in
[24], a simulation of a n = 5 node network was conducted
and the logarithm of the error norm is presented is Fig. 3.

Figure 3 shows that the Gauss-Seidel iteration achieves a
faster convergence at a fixed rate in comparison with the
algorithm in [24]. Both methods present a clear advantage
when compared to the PCO-based method with parameter
α = 0.2. Additional simulations were conducted to assess
the potential advantage of the Nesterov method with a time-
varying parameter. A network of n = 20 nodes was also
simulated and the results are depicted in Fig. 4.

The main observation from the evolution of the error in
Figs. 3 and 4 is that as n increases, the behavior of the error
norm changes. For small networks, the Gauss-Seidel method
outperforms the Nesterov algorithm. When increasing n, the
error decreases faster using the Gauss-Seidel up to a small
tolerance and then the Nesterov method becomes faster. The
observed oscillations tend to fade for larger n.

The simulations presented so far only considered algorithms
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Fig. 5. Logarithmic evolution of the error norm for the PCO-based (Gradient
Descent), Nesterov, LTV Nesterov, Heavy-Ball and Gauss-Seidel algorithms
for a 6 node network.
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Fig. 6. Logarithmic evolution of the error norm for the PCO-based (Gradient
Descent), Nesterov, LTV Nesterov, Heavy-Ball and Gauss-Seidel algorithms
for a 20 node network.

for which there is no knowledge of the number of transmitters
n. In the remainder of the simulations, both the Gauss-Seidel
and the LTV version of Nesterov from [24] are compared
against the Nesterov and Heavy-Ball algorithms selecting
optimal parameters from Theorem 3. The initial state is set
to 1n/n and we report the same error function as previously.

In Fig. 5 it is depicted the error evolution for a small
size network of 6 nodes. In small networks, simulations show
that the LTV Nesterov has the worst performance while, as
expected, the Heavy-Ball algorithm has the best performance
given that it is the fastest for quadratic functions of all
methods. As proven in Theorem 4, the convergence of LTV
Nesterov is not monotonous. The Gauss-Seidel outperforms
the optimal Nesterov method but with a similar behavior.

In order to test for medium-sized networks, a similar simula-
tion was conducted for a 20 node network. The Gradient with
optimal parameter is the slowest and the oscillatory behavior
of the LTV Nesterov is heightened and still underperfoms
in comparison with the Gauss-Seidel. For this case, both
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Fig. 7. Logarithmic evolution of the error norm for the PCO-based (Gradient
Descent), Nesterov, LTV Nesterov, Heavy-Ball and Gauss-Seidel algorithms
for a 200 node network.

the Nesterov and the Heavy-Ball methods achieve a better
convergence since it scales with 1/

√
κ. Another curious fact

that starts to emerge is the bad performance of the Heavy-Ball
in the beginning of the simulation.

In order to illustrate the behavior of the algorithms for large
networks, a 200 transmitter network is also simulated with the
error evolution being presented in Fig. 7. For such cases, the
behavior of the Gauss-Seidel approaches the optimal Gradient
Descent albeit faster but both underperform in comparison
with the Nesterov and Heavy-Ball. The LTV Nesterov has a
performance in between these two classes and still maintains
its oscillatory behavior. The initial increase in the error for
the Heavy-Ball is noticeable which might discourages its ap-
plication for large networks and error tolerances around 10−3

or 10−4 for which the Nesterov method produces equivalent
results without the initial increase in the error.

VI. DISCUSSION AND FUTURE WORK

In this paper, the desynchronization problem was addressed
in the format of an optimization problem. In this formula-
tion, it is possible to apply different distributed optimization
algorithms and also, given the quadratic objective function, to
use an iterative algorithm to solve linear equations to find the
solution of zero gradient.

The analysis of the convergence rate is carried out by
writing the optimization algorithms as Linear Time-Invariant
(LTI) systems and analyzing the correspondent transition ma-
trix. The Gauss-Seidel is shown to be convergent for the
desynchronization problem and its convergence rate as the
second largest eigenvalue in magnitude of a row stochastic
matrix.

When no information regarding the number of transmitters
is known, the Gauss-Seidel algorithm performs better than the
PCO and the LTV Nesterov but its performances degrades
for large networks. In contrast, when the number of nodes in
the network can be determined, it is shown exact closed-form
expressions for the parameters of both the Gradient descent,
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Nesterov and Heavy-Ball that considerable improve perfor-
mance in comparison with the PCO-based, LTV Nesterov and
Gauss-Seidel. For large networks, the Heavy-Ball might not
be desirable since its error increases in an initial phase and
takes approximately the same number of iterations to get errors
around 10−3 than the Nesterov.

In future work, the results presented herein point towards the
need to investigate other iterative solvers for linear equations
that may bring additional gains in performance for medium
or large-sized networks. Other optimization algorithms both
linear and nonlinear can also be implemented and optimal
parameters may be derived following similar reasoning used
in this paper. These questions are of utmost importance since
both the optimization options and the iterative solvers for
linear equations present faster convergence rates than the PCO-
based algorithm that constitutes the IEEE standard. A last
direction of future work is to use the methods proposed herein
to address the multi-channel case of the desynchronization
problem.
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