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Abstract

This document provides a guide to use theStochDynTools MATLAB R© toolbox [3]. The core of this library is a
set of functions that compute the approximate moment dynamics for a network of chemical reactions. Examples are
provided to illustrate the use of the library.

ATTENTION: This toolbox is still in a very early stage of development. It has been posted online mostly for the
use of people that I collaborate with. However, anyone is welcome to try it.Please let me know if you have problems
or questions about it. Your help in improving this package will be greatly appreciated!
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Chapter 1

Quick start

The StochDynTools toolbox provides functions to compute the approximate moment dynamics for a network of
chemical reactions. The approximate moment dynamics are based on moment closure techniques that approximate
higher-order moments as static functions of lower-order moments [2, 4, 5]. This section shows by example the use of
theStochDynTools toolbox.

Networks of chemical reactions are specified by a.net file. The syntax of a.net file is somewhat self-explanatory.
For example, consider the Michaelis-Menten mechanism for enzyme kinetics

S+EF
KC−⇀↽−
DC

ES
KP−→ EF +P

whereEF denotes the (free) enzyme,S the substrate,ES the enzyme-substrate complex, andP the product. This
network of three elementary chemical reactions can be described by the following.net file:

species:

EF stochastic 2; % free enzyme
ES stochastic 1; % enzyme−substrate complex
S stochastic 9; % free substrate
P stochastic 1; % product

parameters:

K_C "k_C" = 1; % rate constant for S + EF−> ES
D_C "d_C" = 20; % rate constant for ES−> S + EF
K_P "k_P" =.05; % rate constant for ES−> P + EF

reactions:

% reversible reaction
rate = K_C*S*EF; {S,EF,ES} > {S-1,EF-1,ES+1}; % S + EF−> ES
rate = D_C*ES; {S,EF,ES} > {S+1,EF+1,ES-1}; % ES−> S + EF
% product creation reaction
rate = K_P*ES; {P,EF,ES} > {P+1,EF+1,ES-1}; % ES−> P + EF

In this network, the reversible reactionS+EF −⇀↽− ES typically occurs much more often than the production ofP.
This means that the total number of substrate moleculesSt = S + ES and the total number of enzyme molecules
Et = EF +ES have much slower dynamics that those of the free number of substrate moleculesS and the free number
of enzymesEF . In fact, for the above networkEt is constant and therefore its stochasticity can be ignored.Because
of this, it is more convenient to keep track of the “slow” variablesEt andSt, instead of the “fast” variablesES andS.
Note that the number of enzyme-substrate complex moleculescan be obtained fromES = Et −EF and the number
of free substrate molecules can be obtained fromS = St −ES = St −Et +EF. This approach was followed in the
following .net file, in whichEF is the only “fast” variable.
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% Filename: enzymewith Et St . che
species:

EF "e_f" stochastic 2; % free enzyme ( fast variable )
Et "e_t" constant 3; % total enzymes = free +compound ( constant )
St "s_t" stochastic 10; % total substrate = free +compound (slow variable )
P "p" stochastic 1; % product ( slow variable )

parameters:

K_C "k_C" = 1; % rate constant for S + EF−> ES
D_C "d_C" = 20; % rate constant for ES−> S + EF
K_P "k_P" =.05; % rate constant for ES−> P + EF

reactions:

% fast reversible reaction
rate = K_C*(St-Et+EF)*EF; {EF} > {EF-1}; % S + EF−> ES
rate = D_C*(Et-EF); {EF} > {EF+1}; % ES−> S + EF
% slow product creation reaction
rate = K_P*(Et-EF); {St,P,EF} > {St-1,P+1,EF+1}; % ES−> P + EF

ThereadNet() command ofStochDynTools can be used to read theenzyme_with_Et_St.net file above:

net=readNet(’enzyme_with_Et_St.net’);

The following StochDynTools command then computes the first-order approximate moment dynamics, which is
roughly thedeterministic chemical rate equation1:

mdyn1=closureDynamics(net,1,’derMatch’);

One could produceLATEX code for these approximate moment dynamics using the following commands

dotMu=expand(mdyn1.approxDotMu.sym);

% dotMu=expand( subsParam ete rs ( ne t , dotMu) ) ;
latexmacros=mylatex()

latexMu=mylatex(mdyn1.Mu.sym,mdyn1.texrules)

latexDotMu=mylatex(dotMu,sym,mdyn1.texrules)

where, if one were to uncomment the second line, the parameters would be replaced by their numerical values. The
LATEX code in the variableslatexMu andlatexDotMu requires the macros in the variablelatexmacros. Copying
the content oflatexMu andlatexDotMu into a LATEX equation environment one obtains

d
dt





E[e f ]
E[st ]
E[p]



=





−E[e f ]dC − kP E[e f ]+E[e f ]kCet + dCet + kPet − kCE[e f ]
2− kC E[e f ]E[st ]

kP E[e f ]− kPet

−kP E[e f ]+ kPet





Once can compute theequilibrium point of the system above using the following MATLABR© commands

muEq=momentEquilibrium(net,mdyn1);

The following StochDynTools command then computes thesecond-order approximate moment dynamics using
derivative matching (cf. Appendix2.1) and produces an m-filefun.m that computes the derivatives of the uncentered
moments of order up to 2:

mdyn2=closureDynamics(net,2,’derMatch’,’fun’);

The following MATLAB R© commands solve the approximate moment dynamics and plot theevolution of theuncen-
tered moments:

1The main difference being that reactions of the formA+A −→ B gives rise to terms of the form±kA(A−1), instead of±kA2.
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Tmax=300; % maximum s i m u l a t i o n t im e
[t,mu]=ode23s(@(t,x)fun(x),[0,Tmax],mdyn2.Mu.x0);

plot(t,mu)

legend(fun(),’location’,’best’,’interpreter’,’none’)

One could instead plot the evolution of thecentered moments of E, St, andEt using the followingStochDynTools
command

h=plotCMoments(net,mdyn2,t,mu,’EF’,’b-’,’St’,’g-’,’Et’,’k-’);

legend(h(1:3:end),’E[EF]\pm{}Std[EF]’,’E[St]\pm{}Std[St]’,’E[Et]’,’location’,’best’);

One could also plot thedistribution of St using the followingStochDynTools command

x=0:.01:4;

pdf=getDistribution(net,mdyn2,mu(end,:),’St’,x,’lognormal’);

plot(x,pdf)

The outputs of the previous plot commands are shown in Figure1.1.
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Figure 1.1: Output of the plot commands in the example in Section 1.

One could also run Monte Carlo simulations of the system using the followingStochDynTools command

[Q,b,c,s,x0]=quadPropensities(net);

Q=double(subsParameters(net,Q)); % r e p l a c e p a r a m e t e r s
b=double(subsParameters(net,b)); % by t h e i r num er i ca l v a l u e s
c=double(subsParameters(net,c));

s=double(subsParameters(net,s));

nMC=1000; % number o f Monte Car lo r u n s
Ts=(0:1:300)’; % s i m u l a t i o n t i m e s o f i n t e r e s t
[X,Xmean,Xstd]=sampledSSA(Q,b,c,s,x0,nMC,Ts);

One could then plot the mean, standard deviation, a few MonteCarlo runs, and an histogram at the final time using the
following MATLAB R© commands
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Figure 1.2: Results of the Monte Carlo simulations

StMC=reshape(X(3,:,:),nMC,[])’; % e x t r a c t on ly S t v a l u e s

% p l o t Mean, S td . Dev. , and Monte C a r l o s r u n s
subplot(1,2,1)

h=plot(Ts,Xmean(3,:)’,’b-’,...

Ts,[Xmean(3,:)’-Xstd(3,:)’,Xmean(3,:)’+Xstd(3,:)’],’b:’,...

Ts,StMC(:,1:10),’k-’);

axis([0,Ts(end),0,1.1*x0(3)]);

legend(h([1,2,4]),’E[St]’,’E[St]\pm{}Std[St]’,’Monte Carlo runs’)

% p l o t d i s t r i b u t i o n
subplot(1,2,2)

[n,x]=hist(StMC(end,:),20);

barh(x,n)

axis([0,max(n),0,1.1*x0(3)]);

legend(sprintf(’histogram at time %g’,Ts(end)))

These commands result in the plots in Figure1.2.

The precise syntax of theStochDynTools commands above is explained in the subsequent sections.
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Chapter 2

Moment Closure Methods

Before describing theStochDynTools toolbox, we review moment closure and the methods used in this software to
achieve it.

Consider a set of chemical speciesX1,X2, . . . ,Xn involved in a set of chemical reactions and let us denote by
x := (x1,x2, . . . ,xn) a vector containing their molecule counts. Given a vector ofintegersm := (m1,m2, . . . ,mn), we
use the notationµ (m) to denote the following uncentered moment ofx:

µ (m) := E[xm1
1 xm2

2 · · ·xmn
n ].

Such moment if said to be of order∑i mi. With n species there are exactlyn first order moments E[xi], ∀i∈ {1,2, . . . ,n},
which are just the means;n(n−1)/2 second order moments E[x2

i ], ∀i and E[xix j], ∀i 6= j, which can be used to compute
variances and covariance;n(n−1)(n−2)/6 third order moments; and so on.

It was show in [5], that if we construct a vectorµ containing all the uncentered moments ofx up to some orderk,
the evolution ofµ is determined by a differential equation of the form

µ̇ = Aµ +Bµ̄, µ ∈ R
K , µ̄ ∈R

K̄ (2.1)

whereA andB are appropriately defined matrices andµ̄ is a vector containing moments of order larger1 thank. The
equation (2.1) is exact and we call it the(exact) k-order moment dynamics and the integerk is called theorder of
truncation. Note that the dimensionK of (2.1) is always larger thank since there are many moments of each order. In
fact, in generalK is of ordernk.

When all chemical reactions have only one reactant, the termBµ̄ does not appear in (2.1) and we say that the exact
moment dynamics areclosed. However, when at least one chemical reaction has 2 or more reactants, then the termBµ̄
appears and we say that the moment dynamics areopen since (2.1) depends on the moments in̄µ, which are not part
of the stateµ . When all chemical reactions are elementary (i.e., with at most 2 reactants), then all moments inµ̄ are
exactly of orderk+1.

Moment closure is a procedure by which one approximates the exact (but open)moment dynamics (2.1) by an
approximate (but now closed) equation of the form

ν̇ = Aν +Bϕ(ν), ν ∈ R
K (2.2)

whereϕ(ν) is a column vector that approximates the moments inµ̄ . The functionϕ(ν) is called the moment closure
function and (2.2) is called theapproximate kth order moment dynamics. The goal of any moment closure method is
to constructϕ(ν) so that the solutionν to (2.2) is close to the solutionµ to (2.1).

1When one does not include inµ the zero-order momentµ(0) = 1, this term will appear in̄µ .
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Table 2.1: Which moment closure to use?
distributions have low variability (i.e.,
low standard deviations when compared
to the mean) or are fairly symmetric

distributions have large standard deviations
when compared to the mean, but populations
do not become zero with high probability

populations can become
zero with high probability

accuracy zero cumulant closure derivative matching closure no good solution (yet)
simple dynamics quasi-deterministic closure or Van Kam-

pen’s linear noise approximation
derivative matching closure (but will not be
very simple)

no good solution (yet)

Some moment closure methods approximate the exact moments dynamics (2.1) by a closed equation of larger
order, such as in

φ̇ = ψ(φ), φ ∈R
N , (2.3a)

ν̇ = Aν +Bϕ(φ ,ν), ν ∈ R
K , (2.3b)

where one now approximates̄µ by the functionϕ(φ ,ν) that is allowed to also depend on the stateφ of an additional
dynamic system. Oftenϕ(φ ,ν) can be made linear inν. In this case, onceφ reaches a steady state, theν dynamics
became linear and time-invariant.

There are three main approaches to construct the moment closure functionϕ(·):

1. Matching-based methods directly attempt to match the solutions to (2.1) and (2.2) [or (2.3)].

2. Distribution-based methods constructϕ(·) by making “reasonable” assumptions on the statistical distribution
of the molecule counts vectorx.

3. Large volume methods constructϕ(·) by assuming that reactions take place on a large volume.

It is important to emphasize that this classification is about methods toconstruct moment closure. It turns out that
sometimes different methods lead to the same moment closurefunctionϕ(·).

In the remainder of this section we discuss several methods to construct the moment closure function. We shall
see that the choice of which method to use depends on the type of system (e.g., how population means compare with
standard deviations for the system considered) and also on the primary goal in constructing the approximate moment
dynamics (e.g., how important is accuracy versus simplicity of the equations). Table2.1 summarizes some rules of
thumb on the choice of which approximation to use.

2.1 Derivative Matching

Derivative matching is a matching-based method for moment closure described in [5]. It uses moment closure func-
tionsϕ(·) in (2.2) whose entries areseparable, i.e., of the form

νγ1
1 νγ2

2 · · ·νγn
n .

The coefficientsγi ∈ R are then computed to make the relative error
∥

∥

∥

dℓν
dtℓ

− dℓµ
dtℓ

∥

∥

∥

∥

∥

∥

dℓµ
dtℓ

∥

∥

∥

as small as possible for molecule counts larger than one. Somewhat surprisingly, this minimization leads to explicit
formulas for the moment closure functionsϕ(·) that do not depend on the reaction parameters [5].
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2.2 Zero Cumulants

Zero cumulants is a distribution-based method for moment closure that findsthekth order moment closure function
ϕ(·) in (2.2) by assuming that all multi-variable cumulants of the populationx with order larger thank are negligi-
ble. This makes the distribution ofx “as close as possible” to a multi-variable Gaussian distribution, which has all
cumulants or order higher than two equal to zero.

To construct zero cumulant closures, one uses the fact that the cumulantκ (m) can be expressed as

κ (m) = µ (m)+ ∑
∑m̄i<∑mi

αm̄ µ (m̄), (2.4)

where the summation is over momentsµ (m̄) of order strictly smaller than∑mi and theαm̄ are appropriately selected
constants (c.f. AppendixA.3). This shows that the cumulantκ (m) depends only on the momentµ (m) and lower-order
momentsµ (m̄), so by settingκ (m) = 0 one obtains an expression forµ (m) as a function of lower-order moments.

The procedure to compute thezero-cumulants moment closure functionϕ(·) consists of setting to zero all cumu-
lants corresponding to the moments that do not appear inµ and then solving the equations (2.4) for the moments in
µ̄ .

2.3 Low Dispersion

Low dispersion is a distribution-based method for moment closure that findsthe moment closure functionϕ(·) in
(2.2) by assuming that the distributions of the populations are tightly clustered around their means, with standard
deviations much smaller than the means. Specifically, for the kth order moment closure one assumes that the normal-
ized centered moments of order larger thank are much smaller than one. We recall that given a vector of integers
m := (m1,m2, . . . ,mn), the correspondingnormalized centered moment is defined by

η(m) := E
[(x1−E[x1]

E[x1]

)m1
(x2−E[x2]

E[x2]

)m2
· · ·

(xn −E[xn]

E[xn]

)mn
]

.

Such moment if said to be of order∑i mi. For fairly symmetric distributions the odd-order momentscan be quite
small and therefore this technique is especially useful foreven-order moment closures for which the odd-order higher
moments can be safely neglected.

To construct low dispersion closures, one uses the fact thatan uncentered momentµ (m) can be expressed in terms
of the normalized centered moment as follows

µ (m) = E[x1]
m1 E[x2]

m2 · · ·E[xn]
mn
(

1+η(m)+ ∑
2≤∑m̄i<∑mi

βm̄ η(m̄)
)

,

where the summation is over momentsη(m̄) of order two or larger and strictly smaller than∑mi, and theβm̄ are
appropriately selected nonnegative constants (cf. Appendix A.4). When a particular normalized centered moment
η(m) is much smaller than one, we have that

µ (m) ≈ E[x1]
m1 E[x2]

m2 · · ·E[xn]
mn
(

1+ ∑
2≤∑m̄i<∑mi

βm̄ η(m̄)
)

, (2.5)

which allows one to express the uncentered momentµ (m) solely in terms of normalized centered momentsη(m̄) of
order strictly smaller than∑mi. On the other hand, we can express all these normalized centered moments as linear
combinations of the uncentered moments of order strictly smaller than∑mi as follows

η(m̄) =
µ (m̄)

E[x1]m̄1 E[x2]m̄2 · · ·E[xn]m̄n
+ ∑

∑m̃i<∑mi

γm̃
µ (m̃)

E[x1]m̃1 E[x2]m̃2 · · ·E[xn]m̃n
, (2.6)
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where the summation is over uncentered momentsµ (m̃) of order strictly smaller than∑m̄i and theγm̃ are appropriately
selected constants (cf. AppendixA.4).

The procedure to compute thelow dispersions moment closure functionϕ(·) in (2.2) thus consists of using (2.5)
and (2.6) to approximate any moment that does not appear inµ as a linear combination of the moments inµ . Note how-
ever that the coefficients of these linear combinations willdepend on monomials of the form E[x1]

m̂1 E[x2]
m̂2 · · ·E[xn]

m̂n ,
with all them̂i ≥ 0 and therefore the moment closure functionφ(·) will be polynomial but nonlinear onµ .

Relationship with zero-cumulants closure For second order moment closure (k = 2) one sets to zero 3th-order
normalized centered moments, which is equivalent to setting to zero the 3th-order cumulants. Therefore for 2nd-order
closures, zero cumulant and low dispersion coincide.

2.4 Quasi-Deterministic

Quasi-deterministic is a distribution-based method for moment closure that findsthe moment closure functionϕ(·) in
(2.3) by assuming that the distributions of the populations are tightly clustered around the solutionφ to the determin-
istic dynamics

φ̇ = Adetφ +Bdetψ(φ), φ := (φ1,φ2, . . . ,φn) ∈ R
n, (2.7)

which are obtained by assuming that eachφi := xi is deterministic and therefore

E[φiφ j] = E[φi]E[φ j] = φiφ j.

Specifically, for thekth order moment closure one assumes that the quasi-deterministic normalized centered moments
of order larger thank are much smaller than one. Given a vector of integersm := (m1,m2, . . . ,mn), the corresponding
quasi-deterministic normalized centered moment is defined by

η̂(m) := E
[(x1−φ1

φ1

)m1
(x2−φ2

φ2

)m2
· · ·

(xn −φn

φn

)mn
]

.

Such moment if said to be of order∑i mi.

To construct quasi-deterministic closures, one uses the fact that an uncentered momentµ (m) can be expressed in
terms of the quasi-deterministic normalized centered moment as follows

µ (m) = φm1
1 φm2

2 · · ·φmn
n

(

1+ η̂(m)+ ∑
1≤∑m̄i<∑mi

βm̄ η̂(m̄)
)

,

where the summation is over momentsη(m̄) of order one or larger and strictly smaller than∑mi, and theβm̄ are
appropriately selected nonnegative constants (cf. Appendix A.5). When a particular quasi-deterministic normalized
centered moment̂η(m) is much smaller than one, we have that

µ (m) ≈ φm1
1 φm2

2 · · ·φmn
n

(

1+ ∑
2≤∑m̄i<∑mi

βm̄ η̂(m̄)
)

, (2.8)

which allows one to express the uncentered momentµ (m) solely in terms of quasi-deterministic normalized centered
momentsη̂(m̄) of order strictly smaller than∑mi. On the other hand, we can express all these quasi-deterministic
normalized centered moments as linear combinations of the uncentered moments of order strictly smaller than∑mi as
follows

η̂(m̄) =
µ (m̄)

φ m̄1
1 φ m̄2

2 · · ·φ m̄n
n

+ ∑
∑m̃i<∑mi

γm̃
µ (m̃)

φ m̃1
1 φ m̃2

2 · · ·φ m̃n
n

, (2.9)
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where the summation is over uncentered momentsµ (m̃) of order strictly smaller than∑m̄i and theγm̃ are appropriately
selected constants (cf. AppendixA.5).

The procedure to compute thequasi-deterministic moment closure functionϕ(·) in (2.3) thus consists of using
(2.5) and (2.6) to approximate any moment that does not appear inµ as a linear combination of the moments inµ . The
coefficients of these linear combinations will depend on monomials of the formφ m̂1

1 φ m̂2
2 · · ·φ m̂n

n , with all them̂i ≥ 0
and therefore the moment closure function will be linear onµ for a fixedφ . This means that the approximate dynamics
in (2.3) are of the form

φ̇ = Adetφ +Bdetψ(φ), φ ∈ R
n, ν̇ = Aν(φ)ν + cν(φ), ν ∈R

K , (2.10)

and, whenφ reaches a steady state value, theν dynamics become linear.

Relationship with low dispersion closure In general the normalized centered moment are smaller than their quasi-
deterministic version and therefore whenever quasi-deterministic moment closure provides a good approximation, one
should expect low-dispersion moment closure to do at least as well. However, quasi-deterministic moment closure has
the advantage that it results in moment dynamics that are “almost” linear and therefore generally easier to analyze.

2.5 Van Kampen’s Linear Noise Approximation

Van Kampen’sLinear Noise Approximation is developed in [6, Chapter X] and can be applied when the matricesA,B
in (2.1) depend on some parameterV that can be assumed large, i.e., when we have

µ̇ = A(V )µ +B(V)µ̄ , µ ∈R
K ,

with V large. This form of moment closure results in a system of the form (2.3) and is exact in the limit asV → ∞.
Typically,V is the volume on which the chemical reactions take place.

To construct (2.3), one starts by choosinḡφ to satisfy thedeterministic large-volume dynamics

˙̄φ = Adetφ̄ +Bdetψ(φ̄ ), φ̄ := (φ̄1, φ̄2, . . . , φ̄n) ∈ R
n (2.11)

which are obtained by assuming that eachφ̄i := xi/V is deterministic and therefore

E[φ̄iφ̄ j] = E[φ̄i]E[φ̄ j ] = φ̄iφ̄ j

and also by makingV → ∞.

Regarding the vector̄φ in (2.11) as a deterministic approximation to the stochastic vectorx/V , motivates defining
the following stochastic perturbation vectorχ := (χ1,χ2, . . . ,χn), with

χi :=
xi −V φ̄i

V
1
2

⇔ xi =V φ̄i +V
1
2 χi, (2.12)

where the normalization byV
1
2 will be needed to keep the moments ofχ bounded asV →∞. Given a vector of integers

m := (m1,m2, . . . ,mn), we use the notationξ (m) to denote the following uncentered moment ofχ :

ξ (m) := E[χm1
1 χm2

2 · · ·χmn
n ].

The moments ofx andχ are related by

µ (m) = E[(V φ̄1+V
1
2 χ1)

m1 · · · (V φ̄n +V
1
2 χn)

mn ] =V ∑i mi ∑
∑ m̄i≤∑mi

αm̄

V
m̄
2

ξ (m̄) =V ∑i mi

(

φ̄ (m)+ · · ·+
1

V
∑i mi

2

ξ (m)
)

,

(2.13)

11



where the summation is over momentsξ (m̄) of order up to∑mi and theαm̄ are appropriately selected constants.

Computing the (exact) moment dynamics forξ , one obtains2

ξ̇ = Aξ (V, φ̄ )ξ +Bξ (V, φ̄)ξ̄ , ξ ∈ R
K , (2.14)

whereξ andξ̄ contain the moments ofχ corresponding to the moments ofx in µ andµ̄ , respectively. For elementary
reactions with reaction rates that depend on the volume as follows:

/0
rate=cV
−−−−−→ ∗ X

rate=cX
−−−−−→ ∗ 2X

rate=c X(X−1)
V−−−−−−−−→ ∗ X +Y

rate=c XY
V−−−−−−→ ∗

the open system (2.14) converges asV → ∞ to a closed system of the form

ξ̇ = Aξ (V, φ̄)ξ +Bξ (V, φ̄ )ξ̄
V→∞
−−−→ Aξ (∞, φ̄ )ξ , ξ ∈R

K . (2.15)

Since the momentsµ andξ are related through (2.13), one can use (2.15) to obtain a closed equation forµ as in (2.3).
Moreover, this equation will be linear inµ , leading to approximate dynamics similar to (2.10).

One could have done the derivation above in a more constructive way without pre-specifying the dynamics forφ̄
by (2.11). In this case, since we have no expression to replace for˙̄φ , we would have obtained for the exact dynamics
for ξ an expression of the form

ξ̇ = Aξ (V, φ̄)ξ +Bξ (V, φ̄ )ξ̄ +Cξ (V, φ̄ ) ˙̄φ , ξ ∈ R
K .

If then tried to makeV → ∞, we would observe that to obtain a finite right-hand side we would need ˙̄φ to satisfy
precisely (2.11).

Relationship with quasi-deterministic closure The deterministic equations (2.7) and (2.11) differ by two facts:

1. the state in (2.11) was normalized through a division by the volume,

2. in (2.11) we took the limit asV → ∞.

For elementary reactions with molecule counts much larger than one, taking the limit asV → ∞ has almost no effect
and we essentially haveφ =V φ̄ . In this case,

ξ (m) = E
[(x1−φ1

V
1
2

)m1
(x2−φ2

V
1
2

)m2
· · ·

(xn −φn

V
1
2

)mn
]

=
φm1

1 φm2
2 · · ·φmn

n

V
∑i mi

2

η̂(m).

So setting a quasi-deterministic moments to zeroη̂(m) is equivalent to setting to zero the corresponding uncentered
momentξ (m) of χ . This means that we can view the quasi-deterministic closure as taking the Van Kampen equations
(2.11) and (2.15) and simply settinḡξ in (2.15) to zero, without ignoring other terms that would also disappear as
V → ∞. Since we are keeping more terms of the exact equations, withquasi-deterministic closure one often obtains
more accurate results then with Van Kampen’s linear noise approximation.

2Assuming thatξ remain bounded asV → ∞, for any momentµ(m) in µ̄, we have that for sufficiently largeV ,

µ(m) ≈ V ∑i mi ∑̄
m≤k

αm̄

V
m̄
2

ξ (m̄)

where we only kept in the summation the terms order up tok that are inµ . Since all theξ (m̄), m̄ ≤ k can be expressed as linear combinations of
the moments inµ , we have obtained an expression for the moments inµ̄ as a linear combination of the moments inµ (generally with time varying
coefficient that depend on̄φ ). This approach only makeV → ∞ where this is absolutely needed and therefore could lead to better results than taking
the limit in (2.15). However, in the currentStochDynTools implementation we followed closely [6, Chapter X] and took the limit in (2.15).
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2.6 Example

In this section we present the different moment closure dynamics for the network of chemical reactions considered in
[6, p. 263]. This network of three elementary chemical reactions is described by the following.net file:

species:

X stochastic; % number of X molecules
Y stochastic; % number of Y molecules

parameters:

V = 20; % volume
phiA "\phi_A" = 5; % concentration of A (fixed )
al "\alpha" = 10;

be "\beta" = 20;

ga "\gamma" = 30;

reactions:

rate = al*phiA*V; {X} > {X+1}; % A −> X
rate = ga*X*(X-1)/V; {X,Y} > {X-2,Y+1}; % 2 X −> Y
rate = be*Y; {Y} > {Y-1}; % Y −> B

The exact 2nd-order moment dynamics for this system are given by

d
dt







E[X ]
E[Y ]
E[X2]
E[XY ]
E[Y 2]






=









2 γ
V 0 −2 γ

V 0 0

− γ
V −β γ

V 0 0

2αφAV−4 γ
V 0 8 γ

V 0 0

2 γ
V αφAV −3 γ

V −β+2 γ
V 0

− γ
V β γ

V −2 γ
V −2β















E[X ]
E[Y ]
E[X2]
E[XY ]
E[Y 2]






+







αφAV 0 0
0 0 0

αφAV −4 γ
V 0

0 γ
V −2 γ

V
0 0 2γ

V







[ 1
E[X3]

E[X2Y ]

]

.

We now list the approximate 2nd-order moment dynamics for this system obtained using the different methods:

1. Derivative matching:

[

E[X3]

E[X2Y ]

]

≈





E[X2]
3

E[X ]3

E[X2]E[XY ]2

E[X ]2E[Y ]





2. Zero cumulants and low dispersion:

[

E[X3]

E[X2Y ]

]

≈
[

3E[X2]E[X ]−2E[X ]3

E[X2]E[Y ]+2E[X ]E[XY ]−2E[X ]2 E[Y ]

]

3. Quasi deterministic:

d
dt

[

φX
φY

]

=

[

2 γφX
V −2 γφX

2

V +αφAV

−
γφX

V −β φY+
γφX

2

V

]

[

E[X3]

E[X2Y ]

]

≈
[

φX
3−3φX

2 E[X ]+3φX E[X2]

φX
2φY+φY E[X2]−2φX φY E[X ]−φX

2 E[Y ]+2φX E[XY ]

]

leading to

d
dt







E[X ]
E[Y ]
E[X2]
E[XY ]
E[Y 2]






≈













2 γ
V 0 −2 γ

V 0 0

−
γ
V −β γ

V 0 0

2αφAV−4 γ
V +12γφX

2

V 0 8 γ
V −12γφX

V 0 0

2 γ
V −3 γφX

2

V +4 γφX φY
V αφAV+2 γφX

2

V −3 γ
V +3 γφX

V −2 γφY
V −β+2 γ

V −4 γφX
V 0

− γ
V −4 γφX φY

V β−2 γφX
2

V
γ
V +2 γφY

V −2 γ
V +4 γφX

V −2β



















E[X ]
E[Y ]
E[X2]
E[XY ]
E[Y 2]






+











αφAV
0

αφAV−4
γφX

3

V
γφX

3

V −2
γφX

2φY
V

2 γφX
2φY

V










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4. Van Kampen’s linear noise approximation:

d
dt

[

φX
φY

]

=
[

−2γφX
2+αφA

−β φY+γφX
2

]

d
dt







ξX
ξY

ξX2

ξXY
ξY2






≈







−4γφX 0 0 0 0
2γφX −β 0 0 0

0 0 −8γφX 0 0
0 0 2γφX −β−4γφX 0
0 0 0 4γφX −2β













ξX
ξY

ξX2

ξXY
ξY2






+







0
0

4γφX
2+αφA

−2γφX
2

γφX
2+β φY







leading to

d
dt







E[X ]
E[Y ]
E[X2]
E[XY ]
E[Y 2]






≈







−4γφX 0 0 0 0
2γφX −β 0 0 0

4γV φX
2+2αφAV 0 −8γφX 0 0

−γV φX
2 2γVφX

2+αφAV 2γφX −β−4γφX 0
0 −2γVφX

2 0 4γφX −2β













E[X ]
E[Y ]
E[X2]
E[XY ]
E[Y 2]






+









2γVφX
2+αφAV

−γVφX
2

4γVφX
2+αφAV

−2γVφX
2

γV φX
2+βVφY









Figure2.1 compares the accuracy of the different moment closure methods for a low volume (V = 2) and a high
volume (V = 20). For the larger volume all moment closure techniques provide a very good match with Monte Carlo
results, but for the smaller volume derivative matching produces the most accurate results even with only a second
order truncation. These results are fairly typical.
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Figure 2.1: Comparison of accuracy between different moment closure methods for the example described in Sec-
tion 2.6 with two different volumes. The legends show (i) the values of the mean± one standard deviation at the
final time (ii) a two-character string indicating the momentclosure method, and (iii) an integer indicating the order of
truncation. The distributions, means and standard deviations in the right-most plots were obtained using 20,000 Monte
Carlo simulations produced by [1]. The left-most plots include a typical Monte Carlo run.
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Chapter 3

Specifying networks of chemical reactions

In StochDynTools, networks of chemical reactions are specified by “.net files” whose syntax is described in this
section. These files are read using theStochDynTools functionreadNet(), which is also described here.

3.1 The.net file

A .net file can contain up to five sections:species, parameters, substitutions, reactions, andderivatives.
Thesubstitutions andderivatives sections are optional. Examples of.net files were provided in Section1.

Species section Thespecies section describes the chemical species involved in the network. It also specifies some
assumptions that can be made in analyzing the system. Following aspecies: header, each line is of the form:

species_name "species_latex_name" species_type initial_value;

where

• species_name stands for the symbol that identifies a chemical species.

The symbol should contain no spaces and be a valid name for a MATLAB R© variable1

• species_latex_name stands for an optional LATEX string that represents the species population to be used
when expressions are converted to a LATEX form.

This string appears quoted by ” and should not include any other quotes.

• species_type stands for the assumed type for the species.

The species type specifies assumptions that can be made in analyzing the system. It can be one of the following
keywords:

– constant should be used when the population of the species remains constant;

– boolean should be used when only 0 or 1 molecules can be present (typically genes that can either be
active or inactive);

– deterministic should be used when the expected number of molecules is much larger than its standard
deviation and therefore stochastic effects can be neglected for this species;

– stochastic should be used when no assumptions can be made about this species.

Attention! In principle one could declare all populations asstochastic, but there are several advantages to
providing more information about the populations:

1 The following names should be avoided as they are predefined MuPAD symbols:beta, gamma, psi, theta, zeta, D, E, I, O, Ei, Ci, Si.
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1. Assuming that the assumptions are indeed true, the momentdynamics obtained will be more accurate.

2. The order of the set of ODEs will generally be lower.

3. For populations with low stochasticity (i.e., for which standard deviations are much smaller than the
means), if one does not declare the population asdeterministic one runs the risk of obtaining slightly
negative variances due to the moment closure approximationerrors.

• initial_value is an optional constant that specifies the initial number of molecules for numerical simulations.

Attention! Starting with initial conditions for which some stochasticspecies have exactly zero molecules can
be problematic when using moment closure based on derivative matching (leading to divisions by zero or errors
in the ODE solver). To avoid this, one can initialize the system with a small but positive population (say .01
molecules).

Parameters section Theparameterssection declares all parameters that appear in thereactionsandderivatives
sections and provides default numerical values for the parameters . Following aparameters: header, each line is of
the form:

parameter_name "parameter_latex_name" = default_value;

where

• parameter_name stands for the symbol that identifies the parameter.

The symbol should contain no spaces and be a valid name for a MATLAB R© variable2.

• parameter_latex_name stands for an optional LATEX string that represents the parameter to be used when
expressions are converted to a LATEX form.

This string appears quoted by ” and should not include any other quotes.

• default_value is a symbolic expression that stands for the default value ofthe parameter.

All symbolic computations ignore this value and treat parameters as symbolic variables. Default values are only
used when numerical values are needed.

Substitutions section Thesubstitutionssection provides replacement rules that should be used to simplify com-
putations that involve the populations of the different species. Following arules: header, each line is of the form:

{old_expression} > {new_expression};

where

• old_expression stands for a valid MATLABR© expression that should be replaced bynew_expression. The
rule is applied multiple times until a “fixed point” is achieved.

For example, if a speciesX is known to have either 1 or 2 individuals, then one should usethe rule

{X^2} > {3*X-2}

On the other hand, if the population ofX is known to be in the set{0,1,2}, then one should use

{X^3} > {3*X^2-2*X}

Currently, these rules are used in the following situations

2See footnote1
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• To simplify the computation of moment dynamics (prior to anymoment closure) in the functionsclosureDynamics()
andmomentDynamics().

• To simplify the computation of expected values, standard deviations, and distributions in the functionsgetCMoments(),
plotCMoments, andgetDistribution().

These rules are appliedbefore processing any simplification rules that arise from speciesbeing declared asboolean
or deterministic.

Reactions section Thereactions section describes the chemical reactions involved in the network, including their
stoichiometry and rates. Following areactions: header, each line is of the form:

rate = rate_expr; {list_species} > {post_reaction_counts};

where

• rate_expr stands for an expression describing the rate at which the reaction occurs.

The expression should be apolynomial, possibly dependent on symbolic variables for which numerical values
will be provided later. It should be a valid MATLABR© expression.

• list_species is a comma-separated list with the symbols of the chemical species whose stoichiometry changes
in the reaction.

• post_reaction_counts is a comma-separated list of expressions that specifies how the molecule counts for
each symbol changes when the reaction takes place.

Derivatives section Thederivatives section describes equations for possible continuous evolutions for some/all
of the species populations. Following aderivatives: header, each line is of the form:

d/dt species_name += derivative_expr;

where

• species_name stands for the symbol of the chemical species whose derivative is provided.

• derivative_expr stands for an expression describing the rate of change of thepopulation ofspecies. This
change in the population is to beadded to the discrete rules specified in thereactions section and to other
rules for the same species that may be specified in thederivatives section.

The expression should be apolynomial, possibly dependent on symbolic variables for which numerical values
will be provided later. It should be a valid MATLABR© expression.

Comments Comments can be inserted anywhere in a.net file with the prefix%.

3.2 Reading a.net file

A .net file can be read using the followingStochDynTools function:

readNet()

net=readNet(filename)

ThisStochDynTools function reads a.net file and stores its contents in thenet structure.
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Inputs and outputs:

• filename specifies the name of the.net file to read

• net is a structure that describes the network in a format that is recognized by theStochDynTools toolbox. This
structure has the following main fields:

– net.species describes the species involved (from thespecies section of the.net file);

– net.parameter contains default numerical values for parameters that appear in the symbolic expressions
in net.reactions andnet.raterule (from theparameters section of the.net file);

– net.substitutionrule describes the replacement rules that should be used to simplify computations
that involve populations (from therules section of the.net file).

– net.reaction describes the chemical reactions (from thereactions section of the.net file).

– net.raterule describes the continuous rates of change for the populations (from thederivatives
section of the.net file).
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Chapter 4

Computing moment dynamics

In StochDynTools, the exact and approximate moment dynamics for a network of chemical reactions are character-
ized by themdyn structure described in this section.

4.1 Creating amdyn structure

The approximate moment dynamics described in Section2 can be computed using theStochDynTools function
closureDynamics().

closureDynamics()

mdyn=closureDynamics(net,maxdeg,method,funname,symParameters)

ThisStochDynTools function computes the exact (open) moment dynamics (2.1) and then uses the moment closure
technique specified by the input parametermethod to compute approximate (closed) moment dynamics of the form
(2.2) or (2.3). As described in [5], the (exact) time-derivative of the uncentered moment

µ (m) := E[ψ(x1,x2, . . . ,xn)], ψ(x1,x2, . . . ,xn) := xm1
1 xm2

2 · · ·xmn
n

can be obtained by computing

dµ (m)

dt
= E[(Lψ)(x1,x2, . . . ,xk)] (4.1)

where(Lψ)(x1,x2, . . . ,xk) is an expression obtained by applying toψ(·) the generator of the Markov process that
describes the populations. Regardless of the method used, the following is assumed in computing the expected value
in the left-hand side of (4.1):

1. All replacement rules specified in therules section of the.net file are applied to(Lψ)(x1,x2, . . . ,xk) before
taking the expected value in the right-hand side of (4.1).

2. For every speciesx1 that was declareddeterministic, it is assumed that

E
[

x1 f (x2, ...xk)
]

= E[x1]E
[

f (x2, ...xk)
]

(4.2)

for any functionf (.) of the remaining species.

3. For every speciesx1 that was declaredboolean, it is assumed thatxn
1 = x1, ∀n ≥ 1. This introduces no error as

long as the number of molecules ofx1 is indeed restricted to the set{0,1}.
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Inputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

• maxdeg is an integer that specifies the largest degree for the uncentered moments inµ . If maxdeg is not an
integer, then boolean variables are not taken into account for the degree of a moment. In this case, more
moments are included inµ for the same value ofmaxdeg.

• method (optional) is a string that specifies the method that should be used for moment closure. This parameter
is optional, and in its absence the first method below is used.The following methods are currently recognized:

– ’dm’ or ’derivativematching’ for moment closure obtained by matching the derivatives of the exact
and approximate moment dynamics [5]. See Section2.1.

– ’zc’ or ’zerocumulants’ for moment closure obtained by assuming that the high-ordercumulants cor-
responding to all unknown moments are equal to zero. See Section 2.2.

For second order closure and elementary reactions, this corresponds to the technique described in [2].
However, this function can be used for closures of any order and for reactions with more than two reactants
(non-elementary).

– ’ld’ or ’lowdispersion’ for moment closure obtained by assuming that the high-ordernormalized
centered moments corresponding to all unknown moments are equal to zero. See Section2.3.

For second order closure and elementary reactions, this corresponds to the technique described in [2].
However, this function can be used for closures of any order and for reactions with more than two reactants
(non-elementary).

– ’qd’ or ’quasideterministic’ for moment closure obtained by assuming that the high-orderquasi-
deterministic normalized centered moments correspondingto all unknown moments are equal to zero.

For this approximation, the closed dynamics are of the form (2.3), whereφ is the solution to the determin-
stic dynamics (in molecule counts). See Section2.4.

– {’lna’,’Volume’} or {’vankampen’,’Volume’} or {’linearnoiseapproximation’,’Volume’}
for Van Kampen’s linear noise approximation [6, Chapter X]. The second element of the cell specifies the
variable to be used as the volume. This variable should have be declared in theparameters section of the
.net file. To achieve moment closure, one considers the limit as this variable converges to infinity. For
this limit to result in a closed set of moment equations, the all reactions should be elementary and their
rates should depend on the volume as follows:

/0
rate=c Volume
−−−−−−−−→ ∗ X

rate=cX
−−−−−→ ∗ 2X

rate=c X(X−1)
Volume−−−−−−−−→ ∗ X +Y

rate=c XY
Volume−−−−−−−−→ ∗

For this approximation, the closed dynamics are of the form (2.3), whereφ is the solution to the determin-
stic dynamics (in concentrations). See Section2.5.

– ’zv’ or’zerovariance’ or’zv’ for moment closure assuming a negligible variance for the populations,
i.e., assuming that the equality (4.2) holds for all species.

• funname (optional) is a string containing the filename used to createan m-file that computes the left-hand side
of the differential equations in (2.2) or (2.3). For approximate dynamics of the form (2.3), theµ components of
the state appear above theφ components. When the function created byclosureDynamics() is called with no
arguments, it outputs the names of the state variables (as a string array).

The function created can be used as input toode23s() to simulate the moment dynamics (see Section6 and the
example in Section1).

• symParameters (optional) is a vector of symbolic variables correspondingto parameters that appear in the rate
expressions (e.g., rate constants).
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This vector is used only in the creation of the functionfunname and it allows inclusion of additional inputs to
this function that may be needed to specify numerical valuesfor parameters that appear in the moment dynamics.
These values will override any default values specified innet.parameter.

Outputs:

• mdyn is a structure characterizing the exact moment dynamics in (2.1) and the approximate moment dynamics
in (2.2) or (2.3) (see Section4.2).

Under the hood: The functionclosureDynamics() essentially combines the functionality of the three lower-
level functions:momentDynamics(), momentClosure(), andsym2mfile(). Documentation for these functions is
provided in the corresponding m-files.

4.2 Themdyn structure

Themdyn structure characterizes the exact and approximate moment dynamics, including

1. the entries of theµ vector in the exact and approximate moment dynamics (Mu field),

2. the exact (open) moment dynamics in (2.1) (dotMu field),

3. the approximate (closed) moment dynamics in (2.2) (approxDotMufield) or in (2.3) (approxDotMuanddotPhi
fields), and

4. set of formatting rules to produce the moment dynamics in LATEX format (texrules field).

A detailed explanation of the key fields of this structure follows. This structure may contain additional fields not
described here, which are used internally byStochDynTools.

Exact moment dynamics The following fields describe the exact moment dynamics in (2.1):

• Mu is a structure describing the entries of the vectorµ in (2.1) and the vectorν in (2.2) or (2.3b). The following
table describes the key fields of this structure for a networkof chemical reactions with speciesX1,X2,X3,...:

field type value of row corresponding to momentE[X1m1X2m2X3m3 · · · ]

Mu.sym column vector of symbolic variables mu_X1m1_X2m2_X3m3...

Mu.mon column vector of symbolic expressions X1^m1*X2^m2*X3^m3...

Mu.ndx matrix of integers with one column per
species (in the order they were declared
in the.net file)

m1,m2,m3,...

Mu.x0 column vector of doubles initial value from the.net file

• barMu is a structure describing the entries of the vectorµ̄ in (2.1). The following table describes the key fields
of this structure for a network of chemical reactions with speciesX1,X2,X3,...:

field type value of row corresponding
to momentE[X1m1X2m2X3m3 · · · ]

barMu.sym column vector of symbolic variables mu_X1m1_X2m2_X3m3...

barMu.mon column vector of symbolic expressions X1^m1*X2^m2*X3^m3...

barMu.ndx matrix of integers with one column per
species (in the order they were declared
in the.net file)

m1,m2,m3,...
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• dotMu is a structure describing the exact moment dynamics (2.1). It contains the following fields:

field type value
dotMu.A matrix of symbolic expressions matrixA in (2.1)
dotMu.B matrix of symbolic expressions matrixB in (2.1)
dotMu.sym column vector of symbolic expressions whole right-hand side of (2.1)

The right-hand side of (2.1) can thus be obtained using any one of the following two symbolic expressions:

dotMu.A * Mu.sym + dotMu.B * barMu.sym

dotMu.sym

Approximate moment dynamics The following fields describe the approximate moment dynamics in (2.2) or
(2.3b), depending on the moment closure technique used. It contains the following fields:

• approxDotMu is a structure describing the right-hand sides of (2.2) or (2.3b). It contains the following fields:

field type value
approxDotMu.barMu column vector of symbolic expres-

sions
approximate value of̄µ in (2.1)

approxDotMu.sym column vector of symbolic expres-
sions

right-hand sides of (2.2) or (2.3b)

approxDotMu.A matrix of symbolic expressions Jacobian ofapproxDotMu.sym with respect toMu.sym
approxDotMu.c vector of symbolic expressions approxDotMu.sym-approxDotMu.A*Mu.sym

The right-hand side of (2.2) or (2.3b) can thus be obtained using any one of the following three symbolic
expressions:

dotMu.A * Mu.sym + dotMu.B * approxDotMu.barMu

approxDotMu.sym

approxDotMu.A * Mu.sym + approxDotMu.c

The last representation is especially useful for the’qd’ and’lna’ moment closure methods because in this
case the matricesapproxDotMu.A andapproxDotMu.c do not depend on the entries ofMu.sym [cf. (2.10)].

Currently, the moment closure method’lna’ does not return the fieldapproxDotMu.barMu

The following fields are only needed to describe the approximate moment dynamics in (2.3).

• Phi is a structure describing the entries of the vectorφ in (2.3a). The following table describes the key fields of
this structure for a network of chemical reactions with speciesX1,X2,X3,...:

field type value of row corresponding to momentE[X1m1X2m2X3m3 · · · ]

Phi.sym column vector of symbolic variables phi_X1m1_X2m2_X3m3...

Phi.mon column vector of symbolic expressions X1^m1*X2^m2*X3^m3... (’qd’ method)
(X1/V)^m1*(X2/V)^m2*(X3/V)^m3... (’lna’ method)

Phi.x0 column vector of doubles initial value from the.net file

• dotPhi is a vector of symbolic expressions with the derivative ofφ in (2.3a).

The following additional fields are only returned by the’lna’ moment closure method:

• Xi is a structure describing the entries of the first-order “perturbation” vectorξ in (2.14). The following table
describes the key fields of this structure for a network of chemical reactions with speciesX1,X2,X3,...:
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field type value of row corresponding to

E
[(X1−Vφ1

V
1
2

)m1(X2−Vφ2

V
1
2

)m2( X3−Vφ3

V
1
2

)m3
. . .

]

Xi.sym column vector of symbolic variables xi_X1m1_X2m2_X3m3...

Xi.mon column vector of symbolic expressions ((X1-V*phi_X1)/V^(1/2))^m1*...

Xi.mu2xi column vector of symbolic expressions expression for E
[(X1−Vφ1

V
1
2

)m1(X2−Vφ2

V
1
2

)m2( X3−Vφ3

V
1
2

)m3
. . .

]

as

a function of the entries ofµ andφ
Xi.xi2mu column vector of symbolic expressions expression for the uncentered moment E

[

X1m1X2m2X3m3 . . .
]

in µ as a function of the entries ofξ andφ
Xi.xi2barMu column vector of symbolic expressions expression for the uncentered moment E

[

X1m1X2m2X3m3 . . .
]

in µ̄ as a function of the entries ofξ andφ

• dotXi is a symbolic vector with the exact derivative ofξ as in (2.14).

• approxDotXi is a structure describing the approximate derivative ofξ in the right-hand side of (2.15). It
contains the following fields:

field type value
approxDotXi.sym column vector of symbolic variables right-hand side of (2.15)
approxDotXi.A matrix of symbolic expressions Jacobian ofapproxDotXi.sym with respect toXi.sym
approxDotXi.c vector of symbolic expressions approxDotXi.sym-approxDotXi.A*Xi.sym

The right-hand side of (2.15) can thus be obtained using any one of the following two symbolic expressions:

approxDotXi.sym

approxDotXi.A * Xi.sym + approxDotXi.c

The last representation is especially useful because the matricesapproxDotXi.A andapproxDotXi.c do not
depend on the entries ofXi.sym [cf. (2.10)].

LATEX formatting The following field is used to produced LATEX-formatted versions of any symbolic expression
involving reaction parameters, moments, or exact and approximate moment dynamics. These rules should be used by
theStochDynTools functionmylatex() described in Section7.

• texrules is a cell array of strings with one row per transformation rule and two columns:

– the first column contains a regular expression, following the syntax of MATLABR©’s regexp()

– the second column contains the string to replace the regularexpression.
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Chapter 5

Monte Carlo Simulations

One can run Monte Carlo simulations of a network of chemical reactions specified by a.net file within MATLAB R©

usingStochDynToolsor in C++ using STOCHK IT.

Attention! For both simulation methods,

1. thepost_reaction_counts in the.net file must correspond to increments/decrements; and

2. molecule counts are assume constant between reactions and therefore thederivatives section of the.net file
is ignored.

5.1 UsingStochDynTools

quadPropensities()

[Q,b,c,s,x0]=quadPropensities(net)

The functionquadPropensities() describes a network of chemical reactions with quadratic propensity functions.
The outputs of this function are used bysampledSSA() to run Monte Carlo simulations of the network of chemical
reactions.

Inputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

Outputs:

• Q is a matrix with the quadratic terms for the propensity functions. Each reaction corresponds to a (# species)
by (# species) square matrix. These matrices are stacked on top of each other so the size ofQ is (# reactions×
# species) by (# species).

• b is a matrix with the linear terms for the propensity functions. Each reaction corresponds to a vector of length
(# species). These vectors are stacked on top of each other sosize ofb is (# reactions) by (# species).

• c is a vector with the constant terms for the propensity functions. The constants for each reaction are stacked on
top of each other so size ofc is (# reactions) by 1.

• s is a matrix with the stoichiometry for the reactions. Each reaction corresponds to a vector of length (# species).
These vector are stacked side by side so size ofs is (# species) by (# reactions).

• x0 is a vector with the initial conditions in the.net file. The size ofx0 is (# species) by 1.
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sampledSSA()

[X,Xmean,Xstd,XmeanCI,XstdCI] = sampledSSA(Q,b,c,s,x0,nMC,Ts,CI)

The functionsampledSSA runs multiple Gillespie’s stochastic Simulation Algorithms (SSA) for the network of chem-
ical reactions with propsenties specified by the inputsQ, b, c and stoichiometry specified bys.

This function returns all the sample paths at a set of sample times, as well as estimates for the means and standard
deviations at the sample times.

Inputs:

• Q is a matrix with the quadratic terms for the propensity functions. Each reaction corresponds to a (# species)
by (# species) square matrix. These matrices are stacked on top of each other so the size ofQ is (# reactions×
# species) by (# species).

• b is a matrix with the linear terms for the propensity functions. Each reaction corresponds to a vector of length
(# species). These vectors are stacked on top of each other sosize ofb is (# reactions) by (# species).

• c is a vector with the constant terms for the propensity functions. The constants for each reaction are stacked on
top of each other so size ofc is (# reactions) by 1.

• s is a matrix with the stoichiometry for the reactions. Each reaction corresponds to a vector of length (# species).
These vector are stacked side by side so size ofs is (# species) by (# reactions).

• x0 is a vector with the initial conditions in the.net file. The size ofx0 is (# species) by 1.

• nMC is the number if Monte Carlo simulations to run.

• Ts is a vector with the desired sample times for the output.

The sampled paths are computed exactly at all times, but their values are only returned at the time in the vector
Ts.

• CI is an optional input with the desired percentage for the confidence intervals for the mean and standard
deviation. If not specified, 95% is used.

Outputs:

• X is matrix with the molecule counts at the sample times. The size ofX is (# species) by (# simulations) by (# of
sample times).

• Xmean is a matrix with the mean molecule counts at the sample times.The size ofXmean is (# species) by (# of
sample times).

• Xstd is a matrix with the standard deviation molecule counts at the sample times. The size ofXstd is (# species)
by (# of sample times)

• XmeanCI is a matrix with the confidence interval for theXmean. The size ofXmeanCI is (# species) by (# of
sample times) by 2.

The computation ofXmeanCI assumes that the central limit theorem is valid to determinethe distribution of the
mean

• XstdCI is a matrix with the confidence interval for the Xstd. The sizeof XstdCI is (# species) by (# of sample
times) by 2.

The computation ofXstdCI assumes a normal distribution.
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5.2 Using STOCH K IT

net2stochKit()

net2stochKit(net,filename,x0,symParameters ,valueParameters)

The functionnet2stochKit() automatically creates a C++ file that can be used to create a STOCHK IT executable to
run Monte Carlo simulations of a network of chemical reactions.

Attention! All the post_reaction_counts in the.net file must correspond to increments/decrements. If this
is not the case the C++ code will not compile.

Inputs and Outputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

• filename is a string containing the filename of the C++ file to be created(without the.cpp extension).

• x0 is a vector of initial populations for the Monte Carlo simulations with as many entries as the number of
chemical species.

• symParameters (optional) is a vector of symbolic parameters that appear inthe rate expressions (e.g., rate
constants).

• valueParameters (optional) is a vector of numerical values for the symbolic parameters in symParameters.

The functionnet2stochKit() returns no output, but creates a C++ STOCHK IT “ProgramDefinition” file. To learn
how to use this file, please consult the StochKit user guide [1]. An example Makefile and two “main” C++ files are
provided as examples. However, these will only work if (i) STOCHK IT has been successfully installed and (ii) the
variableCSE_CPP_HOME in the Makefile points to the STOCHK IT directory.

An error is returned if equations for continuous evolution are specified in thederivatives section because
STOCKK IT cannot simulate reaction networks with continuous variations in the populations.

27



Chapter 6

Simulation and plots

The m-file produced byclosureDynamics() can be passed to an ODE solver such asode23s() to solve the ap-
proximate moment dynamics. The solution to the ODE can then be used to compute and plot centered moments
usinggetCMoments() andplotCMoments(), respectively. It can also be used to obtain an approximate probability
distribution usinggetDistribution().

ode23s()

[t,mu]=ode23s(@(t,x)funname(x,parameter_list),[0,Tmax],x0);

This (standard) MATLABR© function can be used to solve the approximate moment dynamics.

Inputs:

• funname is a string containing the filename of the m-file created byclosureDynamics() to compute the left-
hand side of (2.2) or (2.3) (without the.m extension).

• parameter_list is a list of parameter values to be passed tofunname(), as specified by the input parameter
symParameters to the functionclosureDynamics().

• Tmax is the time at which the simulation should terminate.

• x0 is the initial condition for the moment dynamics.

For moment dynamics of the form (2.2), x0 must have the size ofµ and to obtain the initial the conditions in
the.net file one would choosex0=mdyn.Mu.x0, with mdyn returned byclosureDynamics().

For moment dynamics of the form (2.3), x0 must have the size of
[

µ ′ φ ′
]′

and to obtain the initial the condi-
tions in the.net file one would choosex0=[mdyn.Mu.x0;mdyn.Phi.x0], with mdyn returned byclosureDynamics().

Attention! Starting with initial conditions for which some species have exactly zero molecules can be problem-
atic when using moment closure based on derivative matching(because this may lead to divisions by zero or
errors in the ODE solver). To avoid this, one can initialize the system with small but positive population (say .1
molecules).

The functionode23s() accepts several other parameters (seehelp ode23s). Other ODE solvers can also be
used, however a stiff solver is generally preferable.
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Outputs:

• t is a column vector with the time instants at which the solution was computed.

• mu is a time series ofµ for moment dynamics of the form (2.2) or a time series of
[

µ ′ φ ′
]′

for moment
dynamics of the form (2.3). This vector can be plotted using the following command

plot(t,mu)

legend(funname(),’location’,’best’,’interpreter’,’none’)

wherefunname() is the m-file created byclosureDynamics(). Recall that when the function created by
closureDynamics() is called without arguments it returns the names of the variables inµ , which can be used
to label the plot. The option’interpreter’,’none’ to the commandlegend() prevents MATLABR© from
interpreting underscores as subscripts.

getCMoments()

[average,stddev]=getCMoments(net,mdyn,mu,symExpression ,assumezero)

Given a time seriesµ(t) of uncentered moments, typically computed usingode23s(), thisStochDynTools function
computes the means and standard deviations of a given vectorof expressions involving the populations of the different
species.

Inputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

• mdyn is a structure characterizing the exact moment dynamics in (2.1) and/or the approximate moment dynamics
in (2.2) or (2.3), typically computed usingclosureDynamics().

• mu is a matrix containing a time series ofµ or
[

µ ′ φ ′
]′

, typically computed usingode23s(). Each row ofmu
corresponds to a different time instant and each column to a different moment.

• symExpression is an array of symbolic expressions whose means and standarddeviations will be computed.
The function returnsNaN if the computation of a mean and/or standard deviation cannot be computed exactly
using the moments available (except whenassumezero is nonzero, see below).

The replacement rules innet.substitutionrulewill be applied to the symbolic expression (and to its square
in order to compute the variance) before taking expectations. The boolean nature of the variables declared as
such, will be taken into account.

Attention! In the current implementation of this function, the deterministic nature of the variables declared as
such will be ignore. This means, e.g., thatNaN will be generated if one asks for the expected value ofX^2 and
mu only contains the expected value ofX, even if X was declared deterministic.

• assumezero is an optional boolean variable that, when nonzero, instructs the function to assume zero all mo-
ments that are not available to compute the mean and/or standard deviations.
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Outputs:

• average is a time series of the expected value of the vectorsymExpression, with one time instant per row and
one element of thesymExpression per column.

• stddev (optional) is a time series of the standard deviation of the vectorsymExpression, with one time instant
per row and one element of thesymExpression per column.

Attention! For populations with low stochasticity (i.e., for which standard deviations are much smaller than the
means), the moment closure approximation errors can lead tonegative variances. Such populations should be
declared asdeterministic in the.net file.

plotCMoments()

[handles,average,stddev]=plotCMoments(net,mdyn,t,mu,symExpression_1 ,style_1,symExpression_2 ,style_2,...)

Given a time seriesµ(t) of uncentered moments, typically computed usingode23s(), thisStochDynTools function
computes and plots the means and standard deviations of a given vector of expressions involving the populations of
the different species. Internally, this function usesgetCMoments() to compute means and standard deviations.

Inputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

• mdyn is a structure characterizing the exact moment dynamics in (2.1) and/or the approximate moment dynamics
in (2.2) or (2.3), typically computed usingclosureDynamics().

• mu is a matrix containing a time series ofµ or
[

µ ′ φ ′
]′

, typically computed usingode23s(). Each row ofmu
corresponds to a different time instant and each column to the different moment.

• symExpression_1,symExpression_2,... are symbolic expressions whose means and standard deviations
will be plotted. The means of each symExpressioni will be plotted with the style defined bystyle_i and
dotted lines will be used to depict the mean plus/minus one standard deviation.

This function usesgetCMoments() so the reader is referred to the documentation of that function for details on
the computation of means and standard deviations.

• style_1,style_2,... are character strings defining the style of the line to be used, as in MATLAB R©’s
plot() command.

Outputs:

• handles is a vector with the handles of all the lines plotted. These handles are useful, for example to produce
legends, as in

h=plotCMoments(net,monMu,t,mu,’E’,’b-’,’St’,’g-’,’Et’,’k-’);

legend(h(1:3:end),’E[E]\pm{}Std[E]’,’E[St]\pm{}Std[St]’,’E[Et]’,’location’,’best’);

where by using only one out of each three handles, one skips legends for the lines corresponding to the standard
deviations.

• average is a time series with the expected values of all expressions,with one time instant per row and one
expression per column.

• stddev is a time series with the standard deviations of all expressions, with one time instant per row and one
expression per column.
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getDistribution()

pdf=getDistribution(net,mdyn,mu,symExpression ,x,distribution ,symBoolean)

Given a vectorµ of uncentered moments, thisStochDynTools function estimates the distribution of a given expres-
sion involving the populations of the different species. Internally, this function usesgetCMoments() to compute
means and standard deviations.

Inputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

mdyn is a structure characterizing the exact moment dynamics in (2.1) and the approximate moment dynamics
in (2.2) or (2.3)

• mu is a vector containing the value ofµ or
[

µ ′ φ ′
]′

at a given time instant, typically computed usingode23s().

• symExpression is a symbolic expression whose distribution will be estimated.

This function usesgetCMoments() to compute the mean and standard deviation from which the distribution
is estimated. The reader is referred to the documentation ofgetCMoments() for details on the computation of
means and standard deviations.

• x is a vector containing the points at which the distribution will be computed.

• distribution is a character string specifying which type of distributionshould be assumed. This parameter
can take the following values:

– ’normal’ when a normal distribution should be assumed.

– ’lognormal’ when a lognormal distribution should be assumed.

– ’binomial’ when a binomial distribution should be assumed.

– ’mix_normal’ when it should be assumed that the distribution is normal, when conditioned to any one of
the two values for a given boolean-valued expressionsymBoolean. This will result in a convex combina-
tion (mixture) of two normal distributions.

– ’mix_lognormal’ when it should be assumed that the distribution is lognormal, when conditioned to any
one of the two values for a given boolean-valued expressionsymBoolean. This will result in a convex
combination (mixture) of two lognormal distributions.

• symBoolean is a boolean-valued symbolic expression needed for any of the “mixture” distributions discussed
above.

Output:

• pdf is a vector containing the values of the probability densityfunction (pdf) at the points inx.

plotCompare()

[exact,approx,MC]=plotCompare(net,yPlots,xPlots,Tmax,varargin)

This function produces an array of plots that can be used to compare several moment closure techniques and Monte
Carlo Simulations.

This function is currently undocumented but we provide an example of its use below. More examples can be found
in the /examples folder.
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figure(1);clf

[exact,approx,MC]=plotCompare(net,2,5,Tmax,...

{{’derivative matching’,X1minmax},... % s u b f i g u r e ( 2 , 5 , 1 )

{’MCsample’,1,’X1’,’c-’},{’dm’,2,’X1’,’b-’},{’dm’,3,’X1’,’r-’}},...

{{’zero cumulants’,X1minmax},... % s u b f i g u r e ( 2 , 5 , 2 )

{’zc’,1,’X1’,’k-’},{’zc’,2,’X1’,’b-’},{’zc’,3,’X1’,’r-’}},...

{{’low dispersion’,X1minmax},... % s u b f i g u r e ( 2 , 5 , 3 )

{’ld’,1,’X1’,’k-’},{’ld’,2,’X1’,’b-’},{’ld’,3,’X1’,’r-’}},...

{{’quasi deterministic’,X1minmax},... % s u b f i g u r e ( 2 , 5 , 4 )

{’qd’,1,’X1’,’k-’},{’qd’,2,’X1’,’b-’},{’qd’,3,’X1’,’r-’}},...

{{’distribution (Monte Carlo)’,X1minmax},... % s u b f i g u r e ( 2 , 5 , 5 )

’MCdistribution’,nMC,’X1’},...

{{’derivative matching’,X2minmax},.. % s u b f i g u r e ( 2 , 5 , 6 ) .

{’MCsample’,1,’X2’,’c-’},{’dm’,2,’X2’,’b-’},{’dm’,3,’X2’,’r-’}},...

{{’zero cumulants’,X2minmax},... % s u b f i g u r e ( 2 , 5 , 7 )

{’zc’,1,’X2’,’k-’},{’zc’,2,’X2’,’b-’},{’zc’,3,’X2’,’r-’}},...

{{’low dispersion’,X2minmax},... % s u b f i g u r e ( 2 , 5 , 8 )

{’ld’,1,’X2’,’k-’},{’ld’,2,’X2’,’b-’},{’ld’,3,’X2’,’r-’}},...

{{’quasi deterministic’,X2minmax},... % s u b f i g u r e ( 2 , 5 , 9 )

{’qd’,1,’X2’,’k-’},{’qd’,2,’X2’,’b-’},{’qd’,3,’X2’,’r-’}},...

{{’distribution (Monte Carlo)’,X2minmax},... % s u b f i g u r e ( 2 , 5 , 1 0 )

’MCdistribution’,nMC,’X2’});

In this example,

1. net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

2. 2,5 specifies that an array of 2 by 5 subfigure should be draw. Each subfigure can have several plots. All
subplots for the same figure are passed as a cell array.

3. Tmax specifies the that all simulations should be produced in the interval[0,Tmax] and that Monte Carlos
distributions should be computed for the timeTmax.

4. ’derivative matching’,X1minmax specifies that the tile of the first subfigure should be’derivative matching’

andX1minmax is a 2-vector that specifies the limits of the y-axis for this subfigure.

5. ’MCsample’,1,’X1’,’c-’ specifies a plot within a subfigure, containing1 Monte Carlo sample path of the
speciesX1, using the line stylec-.

6. ’dm’,2,’X1’,’b-’ specifies a plot within a subfigure, displaying the moment closure approximate dynamics
using derivative matching with moments up to order2. The plot with contain the mean ofX1 using the line style
b-, and dotted lines specifying±1 standard deviation.

7. ’MCdistribution’,nMC,’X2’ specifies a plot within a subfigure, displaying an histogram with the distribu-
tion of X2 at timeTmax obtained fromnMC Monte Carlo simulations.
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Chapter 7

Utilities

subsParameters()

new_expression=subsParameters(net,old_expression)

The functionsubsParameters() takes a given expression and replaces the parameters from a network of chemi-
cal reactions by their default values.

Inputs and Outputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

• old_expression is a vector of symbolic expressions where the parameters should be eliminated.

• new_expression is a vector of symbolic expressions obtained fromold_expression by replacing any pa-
rameters by their default values.

mylatex()

str=mylatex(sym,texrules)

The functionmylatex() takes a symbolic expression and returns it into a fairly readable LATEX syntax. This
function allows the latex expression to be transformed by a set of replacement rules, which can be used to include the
LATEX names specified in the.net file.

Inputs and Outputs: When callingmylatex() without inputs, this function returns a set of macros neededto
interpret the LATEX output. Otherwise. . .

• sym is a symbolic expression to be transformed into LATEX format.

• texrules is a cell array of strings with one row per transformation rule and two columns:

– the first column contains a regular expression, following the syntax of MATLABR©’s regexp()

– the second column contains the string to replace the regularexpression.

The transformation rules are applied sequentially and onlyonce. Replacements are not applied to strings already
replaced.

texrulesare typically obtained by theStochDynToolscommandclosureDynamcis() ormomentDynamics().

• str is a string in the LATEX output.
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momentEquilibrium()

[muEq,phiEq,xiEq]=momentEquilibrium(net,mdyn,option)

This StochDynTools function computes the equilibrium points of approximate moment dynamics of the form
(2.2) or (2.3).

Inputs:

• net is a structure that describes the network of chemical reactions. It is typically obtained from a.net file
usingnet=readNet(filename).

• mdyn is a structure describing the moment dynamics in (2.2) or (2.3). This structure is typically produced by
closureDynamics().

• numerical is an optional boolean variable indicating whether or not the parameters should be replaced by the
numerical values innet.parameter prior to finding the equilibrium points.

• option is an optional string specifying options to be used in the computation of the equilibrium points. The
following options are currently recognized:

– ’none’ — no option specified.

– ’lna’ — use Van Kampen’s linear noise approximation (see [6, Chapter X]). Assumes that the’lna’
moment closure method was used to producemdyn.

– ’smallCV’ — assume that the distribution of the populations is tightlyconcentrated around a mean value.
Currently does not work for Van Kampen’s linear noise approximation.

Outputs:

• muEq is a cell array of symbolic vectors with the equilibrium points of the vectorµ in (2.2) or (2.3). Each entry
of the cell array corresponds to one equilibrium point.

The following additional outputs are available with the options’lna’ and’smallCV’

• phiEq is a cell array of symbolic vectors with the equilibrium points of the deterministic vectorφ around which
the populations are concentrated. Each entry of the cell array corresponds to one equilibrium point.

• xiEq is a cell array of symbolic vectors with the equilibrium points of the perturbationsξ aroundφ . Each entry
of the cell array corresponds to one equilibrium point.
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Appendix A

Appendix

A.1 Installation

The.tar file posted contains the following three folders:

• stochdyntools/doc — Packet documentation (including this file).

• stochdyntools/lib — TheStochDynToolsMATLAB R© scripts described in this document.

• stochdyntools/examples — Examples on the use of this set of tools (including the examples in Section1).

To start usingStochDynTools one needs to

1. “Untar” the.tar file. In a PC this can be done using any of the usual “unzip” utilities and in Linux this can be
done by executing the following command at the shell prompt:

tar xvf sotchdyntools.tar

2. Add thestochdyntools/lib folder to the MATLABR© path. This can be done by executing the following
command at the MATLABR© prompt:

path(’{BASE}stochdyntools/lib’,path)

where{BASE} should be replaced by the folder where the.tar file was “untared.” Most likely, you will want
to add the above command to yourstartup.m MATLAB R© script.

If one wants to use the functionnet2stochKit() to create Monte Carlos simulations, STOCHK IT must be in-
stalled [1]. However, this is not needed to compute moment dynamics.

A.2 Algebraic derivations

A.3 Cumulants

The multi-variable cumulants for the distribution of a random vectorx are defined by the Taylor series of the cumulant-
generating function:

g(λ ) := log
(

E[e jλ ·x]
)

,
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whereλ ∈ R
n and · denotes inner product. In particular, the cumulantκ (m) associated with the vector of integers

m := (m1,m2, . . . ,mn) is given by

κ (m) :=
∂ m1+m2+···+mng(0)
∂λ m1

1 λ m2
2 · · ·λ mn

n
,

which is one of the coefficients in the Taylor series ofg(λ ) aroundλ = 0. The cumulantκ (m) can be computed by first
expanding

E[e jλ ·x] =
∑mi

∑
ℓ=0

1
ℓ!

E
[

( j∑
i

λixi)
ℓ
]

+E[R(λ ,x)],

which results in

E[e jλ ·x] = ∑
∑ m̄i≤∑mi

cm̄(λ )µ (m̄)+E
[

O
(

(λ · x)1+∑mi
)]

,

where the summation is over momentsµ (m̄) of order up to∑mi, thecm̄(λ ) are appropriately selected constants that
depend onλ , and all terms in the remainderR(λ ,x) have powers inλ or order higher than∑mi. The cumulantκ (m) is
then obtained from

κ (m) = ∑
∑ m̄i≤∑mi

µ (m̄) ∂ m1+m2+···+mncm̄(0)
∂λ m1

1 λ m2
2 · · ·λ mn

n
.

Note that since the derivative is computed atλ = 0, the terms inR(λ ,x) will note appear because they only have
powers inλ or order higher than∑mi. In fact, it is straightforward to show that

κ (m) = µ (m)+ ∑
∑m̄i<∑mi

µ (m̄) ∂ m1+m2+···+mncm̄(0)
∂λ m1

1 λ m2
2 · · ·λ mn

n
,

which means that the cumulantκ (m) depends only onµ (m) and lower-order moments, so by settingκ (m) = 0 one
obtains an expression forµ (m) as a function of lower-order moments.

A.4 Uncentered Versus Normalized Centered moments

The uncentered momentµ (m) can be expressed in terms of the normalized centered momentη(m̄) as follows

µ (m) = E[xm1
1 xm2

2 · · ·xmn
n ]

= E[x1]
m1 E[x2]

m2 · · ·E[xn]
mn E

[(

1+
x1−E[x1]

E[x1]

)m1
(

1+
x2−E[x2]

E[x2]

)m2
· · ·

(

1+
xn −E[xn]

E[xn]

)mn
]

= E[x1]
m1 E[x2]

m2 · · ·E[xn]
mn
(

1+η(m)+ ∑
2≤∑m̄i<∑mi

βm̄ η(m̄)
)

,

where the summation is over normalized centered momentsη(m̄) of order two1 or larger and strictly smaller than∑mi;
and theβm̄ are appropriately selected nonnegative constants.

Conversely, we can also express the any normalized centeredmomentsη(m̄) in terms of uncentered momentµ (m̃)

as follows

η(m̄) = E
[(x1−E[x1]

E[x1]

)m̄1
(x2−E[x2]

E[x2]

)m̄2
· · ·

(xn −E[xn]

E[xn]

)m̄n
]

1The normalized centered moments of order one are always zero.

36



= E
[( x1

E[x1]
−1

)m̄1
( x2

E[x2]
−1

)m̄2
· · ·

( xn

E[xn]
−1

)m̄n
]

=
µ (m̄)

E[x1]m̄1 E[x2]m̄2 · · ·E[xn]m̄n
+ ∑

∑m̃i<∑mi

γm̃
µ (m̃)

E[x1]m̃1 E[x2]m̃2 · · ·E[xn]m̃n
,

where the summation is over uncentered momentsµ (m̃) of order strictly smaller than∑m̄i and theγm̃ are appropriately
selected constants.

The final formulas for low-dispersion moment closure can be obtained directly from expansions of the non-
normalized centered moments

E
[

(x1−E[x1])
m̄1(x2−E[x2])

m̄2 · · · (xn −E[xn])
m̄n
]

= µ (m̄)+ ∑
∑m̃i<∑mi

γ̂m̃(E[x1],E[x2], . . . ,E[xn])µ (m̃),

because setting to zero some normalized centeredη(m) is equivalent to setting to zero the left-hand side of the equation
above, from which we conclude that

µ (m̄) ≈− ∑
∑m̃i<∑mi

γ̂m̃(E[x1],E[x2], . . . ,E[xn])µ (m̃).

A.5 Quasi-deterministic Normalized Centered moments

The uncentered momentµ (m) can be expressed in terms of the quasi-deterministic normalized centered momentη̂(m̄)

as follows

µ (m) = E[xm1
1 xm2

2 · · ·xmn
n ]

= φm1
1 φm2

2 · · ·φmn
n E

[(

1+
x1−φ1

φ1

)m1
(

1+
x2−φ2

φ2

)m2
· · ·

(

1+
xn −φn

φn

)mn
]

= φm1
1 φm2

2 · · ·φmn
n

(

1+ η̂(m)+ ∑
2≤∑m̄i<∑mi

βm̄ η̂(m̄)
)

,

where the summation is over quasi-deterministic normalized centered momentŝη(m̄) of order one2 or larger and strictly
smaller than∑mi; and theβm̄ are appropriately selected nonnegative constants.

Conversely, we can also express the any quasi-deterministic normalized centered momentsη̂(m̄) in terms of uncen-
tered momentµ (m̃) as follows

η̂(m̄) = E
[(x1−φ1

φ1

)m̄1
(x2−φ2

φ2

)m̄2
· · ·

(xn −φn

φn

)m̄n
]

= E
[( x1

φ1
−1

)m̄1
( x2

φ2
−1

)m̄2
· · ·

( xn

φn
−1

)m̄n
]

=
µ (m̄)

φ m̄1
1 φ m̄2

2 · · ·φ m̄n
n

+ ∑
∑m̃i<∑mi

γm̃
µ (m̃)

φ m̃1
1 φ m̃2

2 · · ·φ m̃n
n

,

where the summation is over uncentered momentsµ (m̃) of order strictly smaller than∑m̄i and theγm̃ are appropriately
selected constants.

The final formulas for quasi-deterministic moment closure can be obtained directly from expansions of the quasi-
deterministic non-normalized centered moments

E
[

(x1−φ1)
m̄1(x2−φ2)

m̄2 · · · (xn −φn)
m̄n
]

= µ (m̄)+ ∑
∑m̃i<∑mi

γ̂m̃(φ1,φ2, . . . ,φn)µ (m̃),

2Contrary to what happens for normalized centered moments, the quasi-deterministic normalized centered moments of order one are not neces-
sarily zero.
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because setting to zero some quasi-deterministic normalized centered̂η(m) is equivalent to setting to zero the left-hand
side of the equation above, from which we conclude that

µ (m̄) ≈− ∑
∑m̃i<∑mi

γ̂m̃(φ1,φ2, . . . ,φn)µ (m̃).
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