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Abstract

This document provides a guide to use BiwchDynTools MATLAB ® toolbox [3]. The core of this library is a
set of functions that compute the approximate moment dycgfor a network of chemical reactions. Examples are
provided to illustrate the use of the library.

ATTENTION: This toolbox is still in a very early stage of developmenthads been posted online mostly for the
use of people that | collaborate with. However, anyone i<l to try it. Please let me know if you have problems
or questions about it. Your help in improving this package will be greatly appréett
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Chapter 1

Quick start

The StochDynTools toolbox provides functions to compute the approximate muandgnamics for a network of
chemical reactions. The approximate moment dynamics asedoan moment closure techniques that approximate
higher-order moments as static functions of lower-ordemmiats P, 4, 5]. This section shows by example the use of
theStochDynTools toolbox.

Networks of chemical reactions are specified byat file. The syntax of anet file is somewhat self-explanatory.
For example, consider the Michaelis-Menten mechanismrinyme kinetics

S+EFZ°:ESE>EF+P
C

whereEF denotes the (free) enzym8,the substrateES the enzyme-substrate complex, addhe product. This
network of three elementary chemical reactions can be ithestby the following. net file:

species:
EF stochastic 2; % free enzyme
ES stochastic 1; % enzyme-substrate complex
S stochastic 9; % free substrate
P stochastic 1; % product

parameters:
K_C "k_C" = 1; % rate constant for S + EF>ES
D_C "d_C" = 20; %rate constant for ES> S+EF
K_P "k_P" =.05; %rate constant for ES> P +EF

reactions:
% reversible  reaction
rate = K_C*S*EF; {S,EF,ES} > {S-1,EF-1,ES+1}; % S+ EF->ES
rate = D_C*ES; {S,EF,ES} > {S+1,EF+1,ES-1}; % ES—> S+ EF
% product creation reaction
rate = K_P*ES; {P,EF,ES} > {P+1,EF+1,ES-1}; % ES—> P +EF

In this network, the reversible reacti@4 EF = ES typically occurs much more often than the productiorPof
This means that the total number of substrate moleclles S+ ES and the total number of enzyme molecules
Et = EF + EShave much slower dynamics that those of the free number stisatb moleculeSand the free number
of enzyme<£F. In fact, for the above networkkt is constant and therefore its stochasticity can be igndsedause
of this, it is more convenient to keep track of the “slow” \adriesEt andS, instead of the “fast” variablesSandS.
Note that the number of enzyme-substrate complex molecalede obtained froreS= Et — EF and the number
of free substrate molecules can be obtained f@mS — ES= S — Et + EF. This approach was followed in the
following .net file, in whichEF is the only “fast” variable.



% Filename: enzymevith_Et St . che

species:
EF "e_f" stochastic 2; % free enzyme (fast variable )
Et "e_t" constant 3; %total enzymes = free +compound (constant )
St "s_t" stochastic 10; % total substrate = free +compound (slow variable )

P "p" stochastic 1; % product (slow variable )
parameters:

K_C "k_C" = 1; % rate constant for S + EF>ES

D_C "d_C" = 20; % rate constant for ES> S+EF

K_P "k_P" =.05; % rate constant for ES> P +EF
reactions:

% fast reversible reaction

rate = K_Cx(St-Et+EF)*EF; {EF} > {EF-1}; %S+ EF->ES

rate = D_C*(Et-EF); {EF} > {EF+1}; % ES—> S+EF

% slow product creation reaction

rate = K_P*(Et-EF); {St,P,EF} > {St-1,P+1,EF+1}; W ES—> P +EF

ThereadNet () command oBtochDynTools can be used to read thazyme_with_Et_St.net file above:

net=readNet(’enzyme_with_Et_St.net’);

The following StochDynTools command then computes the first-order approximate momerdrdics, which is
roughly thedeterministic chemical rate equation:

mdyni=closureDynamics(net,1, ’derMatch’);

One could producBTeX code for these approximate moment dynamics using the followorgmands

dotMu=expand (mdynl.approxDotMu.sym) ;

% dotMu=expand(subsParameters (net, dotMu) ) ;
latexmacros=mylatex()
latexMu=mylatex(mdynl.Mu.sym,mdynl.texrules)
latexDotMu=mylatex(dotMu,sym,mdynl.texrules)

where, if one were to uncomment the second line, the parasnetaild be replaced by their numerical values. The
IATEX code in the variable3atexMu andlatexDotMu requires the macros in the variahletexmacros. Copying
the content oflatexMu andlatexDotMu into a BTEX equation environment one obtains

Ele] — Eler]dc — ke E[ef] + E[ef]kce + dca + keer — keEler]? — ke Eler] E[s]
0t Els] | = kp Elef] — keex
Elp] —kp Eler] + kpar

Once can compute theguilibrium point of the system above using the following MATLABcommands

muEq=momentEquilibrium(net,mdyn1) ;

The following StochDynTools command then computes tisecond-order approximate moment dynamics using
derivative matching (cf. Appendi2.1) and produces an m-filtun . m that computes the derivatives of the uncentered
moments of order up to 2:

mdyn2=closureDynamics(net,2, ’derMatch’,’fun’);

The following MATLAB® commands solve the approximate moment dynamics and plewthiation of theuncen-
tered moments:

1The main difference being that reactions of the fakm A — B gives rise to terms of the foratkA(A — 1), instead of+kA?,



Tmax=300; % maximum simulation time
[t,mul=o0de23s(@(t,x)fun(x), [0,Tmax] ,mdyn2.Mu.x0);
plot(t,mu)
legend(fun(),’location’,’best’,’interpreter’,’none’)

One could instead plot the evolution of thentered moments of E, St, andEt using the followingStochDynTools
command

h=plotCMoments(net,mdyn2,t,mu,’EF’,’b-’,’St’,’g-",’Et’,’k-");
legend(h(1:3:end),’E[EF]\pm{}Std[EF]’, ’E[St]\pm{}Std[St]’,’E[Et]’,’location’,’best|);

One could also plot thdistribution of St using the followingStochDynTools command

x=0:.01:4;
pdf=getDistribution(net,mdyn2,mu(end,:),’St’,x, ’lognormal’);
plot(x,pdf)

The outputs of the previous plot commands are shown in Figjure
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ElEY

200 250 o 50 100 150 200 250 a0 0 05 1 15 2 25 3 a5 !

(a) uncentered moments (b) centered moments (c) distribution of St
Figure 1.1: Output of the plot commands in the example iniSedt

One could also run Monte Carlo simulations of the systemgutéie followingStochDynTools command

[Q,b,c,s,x0]=quadPropensities(net);

Q=double(subsParameters(net,Q)); % replace parameters
b=double(subsParameters(net,b)); % by their numerical values
c=double(subsParameters(net,c));

s=double(subsParameters(net,s));

nMC=1000; % number of Monte Carlo runs
Ts=(0:1:300)’; % simulation times of interest
[X,Xmean,Xstd]=sampledSSA(Q,b,c,s,x0,nMC,Ts);

One could then plot the mean, standard deviation, a few M@atk runs, and an histogram at the final time using the
following MATLAB ® commands



E[St] I histogram at time 300
E[St]+Std[St]
Monte Carlo runs
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Figure 1.2: Results of the Monte Carlo simulations

StMC=reshape(X(3,:,:),nMC, [])’; % extract only St values

% plot Mean, Std.Dev., and Monte Carlos runs
subplot(1,2,1)
h=plot(Ts,Xmean(3,:)’,’b-",...
Ts, [Xmean(3,:)’-Xstd(3,:)’,Xmean(3,:) ’+Xstd(3,:)’],’b:’,...
Ts,StMC(:,1:10),°k-?);
axis([0,Ts(end),0,1.1*x0(3)]1);
legend(h([1,2,4]),’E[St]’,’E[St]\pm{}Std[St]’, ’Monte Carlo runs’)

% plot distribution

subplot(1,2,2)

[n,x]=hist(StMC(end,:),20);

barh(x,n)

axis([0,max(n),0,1.1*x0(3)]1);
legend(sprintf(’histogram at timey%g’,Ts(end)))

These commands result in the plots in Figlir2

The precise syntax of th&tochDynTools commands above is explained in the subsequent sections.



Chapter 2

Moment Closure Methods

Before describing th8tochDynTools toolbox, we review moment closure and the methods usedsrstifiware to
achieve it.

Consider a set of chemical speci¥g X,..., X, involved in a set of chemical reactions and let us denote by
X:= (X1,%2,...,%n) @ vector containing their molecule counts. Given a vectantfgersm:= (my,mp,...,My), we
use the notatiop(™ to denote the following uncentered momenkof

T B,

Such momentif said to be of ordgym. With n species there are exactifirst order moments ], Vi € {1,2,...,n},
which are just the means{n— 1)/2 second order moment$€], Vi and Bxx;], Vi # j, which can be used to compute
variances and covarianag;n — 1)(n— 2)/6 third order moments; and so on.

It was show in f], that if we construct a vectqe containing all the uncentered momentsafp to some ordek,
the evolution ofu is determined by a differential equation of the form

[l=Au+Bf, peRK geRrK (2.1)

whereA andB are appropriately defined matrices gmds a vector containing moments of order lafgérank. The
equation 2.1) is exact and we call it théexact) k-order moment dynamics and the integek is called theorder of
truncation. Note that the dimensiold of (2.1) is always larger thak since there are many moments of each order. In
fact, in generaK is of ordernk.

When all chemical reactions have only one reactant, the Barioes not appear ir2(1) and we say that the exact
moment dynamics ar@osed. However, when at least one chemical reaction has 2 or mactanets, then the terBy
appears and we say that the moment dynamicsjgae since @.1) depends on the momentsjin which are not part
of the stateu. When all chemical reactions are elementary (i.e., with @t reactants), then all momentstirare
exactly of ordek + 1.

Moment closure is a procedure by which one approximates the exact (but apement dynamics2.1) by an
approximate (but now closed) equation of the form

V=Av+Bo(v), veRK (2.2)

whereg (v) is a column vector that approximates the moments.iiThe functiong (v) is called the moment closure
function and 2.2) is called theapproximate kth order moment dynamics. The goal of any moment closure method is
to constructp (v) so that the solutiom to (2.2) is close to the solutiop to (2.1).

1When one does not include jnthe zero-order moment© = 1, this term will appear in.



Table 2.1: Which moment closure to use?
distributions have low variability (i.e.| distributions have large standard deviationgpopulations can becomg
low standard deviations when comparédwhen compared to the mean, but populationgero with high probability
to the mean) or are fairly symmetric do not become zero with high probability

accuracy zero cumulant closure derivative matching closure no good solution (yet)
simple dynamics|| quasi-deterministic closure or Van Kam- derivative matching closure (but will not be no good solution (yet)
pen’s linear noise approximation very simple)

Some moment closure methods approximate the exact momgmasnits 2.1) by a closed equation of larger
order, such asin

o=w(p), @R, (2.3a)
V=Av+B¢(p,v), veRK, (2.3b)

where one now approximatesby the functiong (¢, v) that is allowed to also depend on the statef an additional
dynamic system. Ofteti (¢, v) can be made linear in. In this case, once reaches a steady state, thelynamics
became linear and time-invariant.

There are three main approaches to construct the momentelfasictiong (-):
1. Matching-based methods directly attempt to match the solutions &1) and @.2) [or (2.3)].

2. Digtribution-based methods constructg (-) by making “reasonable” assumptions on the statisticalitigion
of the molecule counts vectar

3. Large volume methods constructp(-) by assuming that reactions take place on a large volume.

It is important to emphasize that this classification is dboathods taconstruct moment closure. It turns out that
sometimes different methods lead to the same moment clsocgon ¢ (-).

In the remainder of this section we discuss several mettmdserstruct the moment closure function. We shall
see that the choice of which method to use depends on the tygystem (e.g., how population means compare with
standard deviations for the system considered) and alsleoprimary goal in constructing the approximate moment
dynamics (e.g., how important is accuracy versus simplizgitthe equations). Tabl2.1 summarizes some rules of
thumb on the choice of which approximation to use.

2.1 Derivative Matching

Derivative matching is a matching-based method for moment closure described.irt[uses moment closure func-
tions@(-) in (2.2 whose entries arseparable, i.e., of the form
vivi...vih

The coefficientss € R are then computed to make the relative error

d'v _d'u
dtf dtf
d‘u

as small as possible for molecule counts larger than one.e®bat surprisingly, this minimization leads to explicit
formulas for the moment closure functiog$-) that do not depend on the reaction parametdrs [

dt?



2.2 Zero Cumulants

Zero cumulantsis a distribution-based method for moment closure that fthd«th order moment closure function
¢(-) in (2.2) by assuming that all multi-variable cumulants of the pagioh x with order larger thark are negligi-
ble. This makes the distribution af“as close as possible” to a multi-variable Gaussian distidim, which has all
cumulants or order higher than two equal to zero.

To construct zero cumulant closures, one uses the facttaatimulank (™ can be expressed as

K(m) — “(m) + Z an—qu(rﬁ)7 (24)
TM<Em

where the summation is over momeptd” of order strictly smaller thaly m and theaw are appropriately selected
constants (c.f. Appendi&.3). This shows that the cumulart™ depends only on the moment™ and lower-order
momentsu(™, so by setting«(™ = 0 one obtains an expression fof™ as a function of lower-order moments.

The procedure to compute tkzero-cumulants moment closure functiotp () consists of setting to zero all cumu-
lants corresponding to the moments that do not appegrand then solving the equation®.4) for the moments in

u.

2.3 Low Dispersion

Low dispersion is a distribution-based method for moment closure that fthédsmoment closure functiog(-) in

(2.2) by assuming that the distributions of the populations ajletly clustered around their means, with standard
deviations much smaller than the means. Specifically, foktin order moment closure one assumes that the normal-
ized centered moments of order larger thkaare much smaller than one. We recall that given a vector efyes
m:= (my,my, ..., my), the correspondingormalized centered moment is defined by

1 =E [(Xl E[Z[]Xl])ml (Xz E[Z[]XZ])W . (Xn E[En[]xn])nh} '

Such moment if said to be of ordgr m. For fairly symmetric distributions the odd-order momeoas be quite
small and therefore this technique is especially usefubt@n-order moment closures for which the odd-order higher
moments can be safely neglected.

To construct low dispersion closures, one uses the facathancentered momept™ can be expressed in terms
of the normalized centered moment as follows

p™ = Elxg|™ E]xp]™ - - E[xy] ™ (1+ n(m 4 S Bn—qn(@),
2<ymy<ym

where the summation is over momem&” of order two or larger and strictly smaller thgim, and theBs are
appropriately selected nonnegative constants (cf. Apgead!). When a particular normalized centered moment
n™ is much smaller than one, we have that

u™ ~ B Epl™ - Ep™ (14 Y Ban™), (2.5)
2<ym<ymy

which allows one to express the uncentered momeéfit solely in terms of normalized centered moment® of
order strictly smaller thaiy m. On the other hand, we can express all these normalizedredrmeoments as linear
combinations of the uncentered moments of order strictlgllemthany m as follows

(™ ()

E[Xl]rﬁl E[Xz]f’ﬁz ... E[Xn]rﬁ“ + Zﬁ\ZZm ¥ E[x1] iy E[xz]f’ﬁz ... E[Xn]f‘?h ’

nMm — (2.6)



where the summation is over uncentered momgft of order strictly smaller thaly m and theyy, are appropriately
selected constants (cf. Appendid).

The procedure to compute thaw dispersions moment closure functioth () in (2.2) thus consists of usin@(5)
and @.6) to approximate any moment that does not appegras a linear combination of the momentginNote how-
ever that the coefficients of these linear combinationsaiiend on monomials of the forn] ™ E[x,]™ - - - E[x,] ™,
with all themy > 0 and therefore the moment closure functigin) will be polynomial but nonlinear op.

Relationship with zero-cumulants closure For second order moment closute=£ 2) one sets to zero 3th-order
normalized centered moments, which is equivalent to gpttirzero the 3th-order cumulants. Therefore for 2nd-order
closures, zero cumulant and low dispersion coincide.

2.4 Quasi-Deterministic

Quasi-deterministic is a distribution-based method for moment closure that fihndsnoment closure functiof(-) in
(2.3) by assuming that the distributions of the populations gl clustered around the solutignto the determin-
istic dynamics

@ = Adet+ Baet (), @:= (P, ¢, h) R, (2.7)
which are obtained by assuming that egrh= x; is deterministic and therefore
Elag] =ElalElg] = ag.

Specifically, for thekth order moment closure one assumes that the quasi-detstimimormalized centered moments
of order larger thak are much smaller than one. Given a vector of integers (m;,m, ..., my), the corresponding
guasi-deterministic normalized centered moment is defined by

()" (e (e

Such moment if said to be of ordgf m.

To construct quasi-deterministic closures, one uses ttteat an uncentered momemt™ can be expressed in
terms of the quasi-deterministic normalized centered nmae follows

pm — (plml(pzmz...%nh(H Ay Y ﬁrﬁﬁm)’
I<ym<ym

where the summation is over momemi€” of order one or larger and strictly smaller thgnmn, and thefs are
appropriately selected nonnegative constants (cf. Appefd). When a particular quasi-deterministic normalized
centered momen}(™ is much smaller than one, we have that

,,(m)%q,,lmlq,zmz...qqgm(lJr )3 Bmf,(@), (2.8)
2<ym<ym

which allows one to express the uncentered morpéhk solely in terms of quasi-deterministic normalized cerdere
momentsA (™ of order strictly smaller thary mi. On the other hand, we can express all these quasi-detstimini
normalized centered moments as linear combinations ofribeniered moments of order strictly smaller tiyam; as
follows

(m) (M)
H M
M + Z Y~y

N = g PLP TR
Ao ol g O]

(2.9)

10



where the summation is over uncentered momgft of order strictly smaller thaly m and theyy, are appropriately
selected constants (cf. Appendb).

The procedure to compute tlgeasi-deterministic moment closure functiog (-) in (2.3) thus consists of using
(2.5 and @.6) to approximate any moment that does not appegras a linear combination of the momentginThe
coefficients of these linear combinations will depend on amials of the formg ™ @? --- g™, with all theni > 0
and therefore the moment closure function will be lineaudor a fixedg. This means that the approximate dynamics
in (2.3) are of the form

@ = Aget®+ Baet0(9), @R, v=A/(@)v+cy(p), veRK, (2.10)

and, whenp reaches a steady state value, thdynamics become linear.

Relationship with low dispersion closure In general the normalized centered moment are smaller beanguasi-
deterministic version and therefore whenever quasi-tdetgstic moment closure provides a good approximation, one
should expect low-dispersion moment closure to do at leastedl. However, quasi-deterministic moment closure has
the advantage that it results in moment dynamics that aned'st’ linear and therefore generally easier to analyze.

2.5 Van Kampen'’s Linear Noise Approximation

Van Kampen'd.inear Noise Approximation is developed inf, Chapter X] and can be applied when the matrisg®
in (2.1) depend on some parametéthat can be assumed large, i.e., when we have

f=AV)u+BV)E, peR,

with V large. This form of moment closure results in a system of timf(2.3) and is exact in the limit a¢ — oo,
Typically, V is the volume on which the chemical reactions take place.

To construct?.3), one starts by choosinﬁto satisfy thedeterministic large-volume dynamics

@ = Adet®+ Buet (), 0= (O, @,...,@h) ER" (2.12)

which are obtained by assuming that ea_ph: xi/V is deterministic and therefore

Elag] = ElalEln] = a9
and also by makinyy — co.

Regarding the vecto;ljin (2.11) as a deterministic approximation to the stochastic vectdr motivates defining
the following stochastic perturbation vecpr= (X1, X2---, Xn), With

. X-Vag
- 1
V2

& x=V@+Viy, (2.12)

where the normalization w% will be needed to keep the momentsybounded a¥ — . Given a vector of integers
m:= (my,my,...,my), we use the notatio&(™ to denote the following uncentered momeniof

EM = EX" X XA
The moments ok andy are related by

am _ 1
M (M) _ \/3im ((m +m+v%’“‘ 5<m>)7

M = E[V @V Ex0)™ - (Veh+VExn) ™ = VI 7
smym V?

11



where the summation is over mome#t§) of order up toy m; and theay, are appropriately selected constants.

Computing the (exact) moment dynamics &rone obtain%

E=As(V, Q)& +Bs(V, )8, &€eRK, (2.14)

whereé andE_contain the moments of corresponding to the momentsxin ¢ andy, respectively. For elementary
reactions with reaction rates that depend on the volumellasvi

_X(X=1) _ XY
rate=cV rate=cX rate=c=y— rate=c
0 — % X — % 2 ——————— % X+Y — Y x

the open systen®(14) converges a¥ —  to a closed system of the form

e — 7 Voo ~

£ =Ae(V,0)E +Bg(V,0) 2 Ag(e0,0)¢, & €RX, (2.15)

Since the momentg and¢ are related througl2(13, one can useX(15 to obtain a closed equation faras in @.3).
Moreover, this equation will be linear in, leading to approximate dynamics similar £210.

One could have done the derivation above in a more consteustly without pre-specifying the dynamics ﬁﬁr
by (2.11). In this case, since we have no expression to replace,fae would have obtained for the exact dynamics
for & an expression of the form

E=A:(V,0)E +B:(V,0)E +Ce(V,0)p, & €RK.

If then tried to make/ — o, we would observe that to obtain a finite right-hand side weului/(meedq;to satisfy
precisely 2.17).
Relationship with quasi-deterministic closure The deterministic equation2.() and @.11) differ by two facts:

1. the state inZ.11) was normalized through a division by the volume,

2. in (2.11) we took the limit a8/ — oo.

For elementary reactions with molecule counts much laifgsm bne, taking the limit 8¢ — « has almost no effect
and we essentially havg=V @. In this case,

EmM_g [(le_;ol)nh(xzv_%@)mz... (X“V;;q‘)mq} — (plmlfz%ﬁ(m)_

So setting a quasi-deterministic moments to z@f® is equivalent to setting to zero the corresponding uncedter
moment£ (™ of x. This means that we can view the quasi-deterministic cioasrtaking the Van Kampen equations
(2.17) and Q.15 and simply setting in (2.15 to zero, without ignoring other terms that would also diszgr as

V — 0. Since we are keeping more terms of the exact equations,quiki-deterministic closure one often obtains
more accurate results then with Van Kampen'’s linear noigecgmation.

2Assuming tha€ remain bounded a¢ — oo, for any momenu(™ in [, we have that for sufficiently large,

) O
UM v Zim z —Ef“ﬁ
mzk V 2
where we only kept in the summation the terms order ulttoat are iny. Since all thef (™, M < k can be expressed as linear combinations of
the moments inu, we have obtained an expression for the momengsas a linear combination of the momentsir{generally with time varying

coefficient that depend op). This approach only maké — o where this is absolutely needed and therefore could leadttertresults than taking
the limit in (2.15. However, in the curreritochDynTools implementation we followed closelys| Chapter X] and took the limit in.15).

12



2.6 Example

In this section we present the different moment closure dyosfor the network of chemical reactions considered in

[6, p. 263]. This network of three elementary chemical reastis described by the followinget file:

species:
X stochastic; 9% number of X molecules
Y stochastic; % number of Y molecules
parameters H
Y = 20; % volume
phiA "\phi_A" = 5; % concentration of A (fixed )
al "\alpha" = 10;
be "\beta" = 20;
ga "\gamma" = 30;
reactions:
rate = al*phiA*V; {X} > {X+1}; % A-—>X
rate = gaxX*(X-1)/V; {X,Y} > {X-2,Y+1}; %2X->Y
rate = bexY; {Y} > {Y-1}; % Y->B

The exact 2nd-order moment dynamics for this system arediye

EIX] 2y 0 -2 0 0 EIX] agV 0
E[Y] -¥ -B ¢ 0 0 ElY] o 0
— |EX? | = | 200v-4 0 8% 0 0 EX?) | + | 9V *‘;\7
dt E[X\Zf] 2y agV -3¢ —B+2¥ 0 E[X\Zf] g v
E E
[Y<] -¢ By 2y -2 [Y<]

0

0 1

0 [ EXS) } .
—2¢ | LEX2Y]
2y

We now list the approximate 2nd-order moment dynamics fisraiistem obtained using the different methods:

1. Derivative matching:

ex?°®
|: E[Xa] jl ~ E[X]3
E[X?Y] EX2JE[XY)?
E[X|2E[Y]

2. Zero cumulants and low dispersion:

3. Quasi deterministic:

{ 3E[X?|E[X]—2E[X]®
E[XZ E[Y]+2 E[X] E[XY]—2EIX]?E]Y]

~
~

9

2
d (%] = e L
ol 2
dt VX B+ VX
[ E[X?| } ~ [ ®3-3p2E[X]+3¢x E[X?]
EX2Y] ] ™ [ oo+ EIX?)—20¢ @ EIX]— @< 2E[Y]+20x E[XY]
leading to
2y 0 —2¢ 0 0
v v agV
E[X] Y _ y E[X] %
ElY] v P v 0 0 ElY] 3
d 4y qove® Y _1o¥0x agny—4Y"
m EX? | ~ | 20¢aV—4g+1257- 0 8y —121% 0 0 EX? | + A v
t | Exy vox? | v yox? Yox o y EIXY YOxT o Yex oy
E[[Yz]] 28 -3V L 4YBH g2V _3Y VX VN _pio¥ VX g E[[Yz]] v
,V74V¢)(4’Y 72)’@(2 Y 2V‘W 72)’ 4V(P)( _2 ZVW a'd
VAT B—277- vr2v- v 2B
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4. Van Kampen'’s linear noise approximation:

a3~

dt Lo ]~ L -Bavtyex?
éx —4ygc 0 0O 0 0 éx 0
d | & 2ygx —B O 0 0 & 9
— | &2 | = 0 0 -8yx O 0 Seo | 4 | Avex g
dt | &y 0 0 2 B-dyx O | |&v ~2yex
&2 0 0 0 4 -28] L& Vo> +Bey
leading to
EX] —4yepx 0 0 0 0 E[X] 2NV @2+ a gV
d | B 2y -B 0 0 0 E[Y] ~Waex?
— | EX?Y | & | WVaP+amV 0 —8ypx 0 0 EX? | 4+ | 4 e +amV
dt | Exy) “Wa? 2NeCrag 2ygx —B-dygx O | | EIXY] VP
E[Y?) 0 -2V 0 aypc —281 LEY? W2+ BV gy

Figure2.1 compares the accuracy of the different moment closure rdstfar a low volume Y = 2) and a high
volume { = 20). For the larger volume all moment closure techniquesigeoa very good match with Monte Carlo
results, but for the smaller volume derivative matchingdoices the most accurate results even with only a second

order truncation. These results are fairly typical.
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Figure 2.1: Comparison of accuracy between different mdrolsure methods for the example described in Sec-
tion 2.6 with two different volumes. The legends show (i) the valuéthe meant one standard deviation at the
final time (ii) a two-character string indicating the momeluisure method, and (iii) an integer indicating the order of
truncation. The distributions, means and standard dewviain the right-most plots were obtained using 20,000 Monte
Carlo simulations produced by][ The left-most plots include a typical Monte Carlo run.
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Chapter 3

Specifying networks of chemical reactions

In StochDynTools, networks of chemical reactions are specified byét files” whose syntax is described in this
section. These files are read using $e chDynTools functionreadNet (), which is also described here.

3.1 The.net file

A .net file can contain up to five sectionspecies, parameters, substitutions, reactions, andderivatives.
Thesubstitutions andderivatives sections are optional. Examples .afet files were provided in Sectich

Species section Thespecies section describes the chemical species involved in thearkivt also specifies some
assumptions that can be made in analyzing the system. Fof@agpecies: header, each line is of the form:

species_name "species_latex_name" species_type initial_value;

where

e species_name stands for the symbol that identifies a chemical species.
The symbol should contain no spaces and be a valid name forELIMB® variable

e species_latex_name Stands for an optionalkTeX string that represents the species population to be used
when expressions are converted téTgeX form.
This string appears quoted by ” and should not include angraghotes.

e species_type stands for the assumed type for the species.
The species type specifies assumptions that can be maddymiagdhe system. It can be one of the following
keywords:
— constant should be used when the population of the species remairssartn

— boolean should be used when only 0 or 1 molecules can be present dtlypgenes that can either be
active or inactive);

— deterministic should be used when the expected number of molecules is ratggr than its standard
deviation and therefore stochastic effects can be negléotehis species;

— stochastic should be used when no assumptions can be made about thissspec

Attention! In principle one could declare all populationsstchastic, but there are several advantages to
providing more information about the populations:

1 The following names should be avoided as they are predefing@d symbolsbeta, gamma, psi, theta, zeta, D, E, I, 0, Ei, Ci, Si.
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1. Assuming that the assumptions are indeed true, the maigaatics obtained will be more accurate.
2. The order of the set of ODEs will generally be lower.

3. For populations with low stochasticity (i.e., for whictasdard deviations are much smaller than the
means), if one does not declare the populatiodearministic one runs the risk of obtaining slightly
negative variances due to the moment closure approximetfons.

e initial_valueis an optional constant that specifies the initial numberaltules for numerical simulations.

Attention! Starting with initial conditions for which some stochastjmecies have exactly zero molecules can
be problematic when using moment closure based on deevaiatching (leading to divisions by zero or errors
in the ODE solver). To avoid this, one can initialize the systwith a small but positive population (say .01

molecules).

Parameters section Theparameters section declares all parameters that appear inéhetions andderivatives
sections and provides default numerical values for therpatars . Following @arameters: header, each line is of
the form:

parameter_name "parameter_latex_name" = default_value;

where

e parameter_name Stands for the symbol that identifies the parameter.
The symbol should contain no spaces and be a valid name forELIMB® variablée’.

e parameter_latex_name Stands for an optionalTgX string that represents the parameter to be used when
expressions are converted ta*"gX form.
This string appears quoted by ” and should not include angrajhotes.

e default_valueis a symbolic expression that stands for the default valubeparameter.

All symbolic computations ignore this value and treat pagtars as symbolic variables. Default values are only
used when numerical values are needed.

Substitutions section Thesubstitutions section provides replacementrules that should be usenhfisy com-
putations that involve the populations of the different@ges. Following arules: header, each line is of the form:

{old_expression} > {new_expression};

where

e old_expression stands for a valid MATLAE® expression that should be replacediayr_expression. The
rule is applied multiple times until a “fixed point” is ache.

For example, if a specigsis known to have either 1 or 2 individuals, then one shouldtseule

{x~2} > {3%Xx-2}

On the other hand, if the population®fs known to be in the s€t0, 1,2}, then one should use
{X"3} > {3%X"2-2xX}

Currently, these rules are used in the following situations

2See footnotd
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e To simplify the computation of moment dynamics (prior to amyment closure) in the functior osureDynamics()
andmomentDynamics().

e To simplify the computation of expected values, standavitdiens, and distributions in the functiogst CMoments (),
plotCMoments, andgetDistribution().

These rules are applidadfore processing any simplification rules that arise from spdué@sg declared asolean

Ordeterministic.

Reactions section Thereactions section describes the chemical reactions involved in tiwark, including their
stoichiometry and rates. Followingraactions: header, each line is of the form:

rate = rate_expr; {list_species} > {post_reaction_counts};

where

e rate_expr stands for an expression describing the rate at which thltio@eoccurs.
The expression should bepalynomial, possibly dependent on symbolic variables for which nuocaralues
will be provided later. It should be a valid MATLAB expression.

e list_speciesisacomma-separated list with the symbols of the chemiealisp whose stoichiometry changes
in the reaction.

e post_reaction_countsis a comma-separated list of expressions that specifies twoblecule counts for
each symbol changes when the reaction takes place.

Derivatives section Thederivatives section describes equations for possible continuous teokifor some/all
of the species populations. Followinglarivatives: header, each line is of the form:

d/dt species_name += derivative_expr;

where
e species_name stands for the symbol of the chemical species whose demvatiprovided.

e derivative_expr stands for an expression describing the rate of change gfdpelation ofspecies. This
change in the population is to laelded to the discrete rules specified in theactions section and to other
rules for the same species that may be specified iddlieévatives section.

The expression should bepalynomial, possibly dependent on symbolic variables for which nuocaralues
will be provided later. It should be a valid MATLAB expression.

Comments Comments can be inserted anywhere imat file with the prefixs.

3.2 Reading a.net file

A .net file can be read using the followirgtochDynTools function:

readNet()

net=readNet (filename)

ThisStochDynTools function reads anet file and stores its contents in thet structure.
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Inputs and outputs:

e filename specifies the name of thewet file to read

e net is a structure that describes the network in a format thadsgnized by thetochDynTools toolbox. This
structure has the following main fields:

net.species describes the species involved (from #pecies section of the net file);

net.parameter contains default numerical values for parameters thatagpe¢he symbolic expressions
in net.reactions andnet.raterule (from theparameters section of the.net file);

net.substitutionrule describes the replacement rules that should be used toifsirnpinputations
that involve populations (from theules section of the. net file).

net.reaction describes the chemical reactions (from tfeactions section of the.net file).

net.raterule describes the continuous rates of change for the poputatibom thederivatives
section of the. net file).
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Chapter 4

Computing moment dynamics

In StochDynTools, the exact and approximate moment dynamics for a networkefnécal reactions are character-
ized by themdyn structure described in this section.

4.1 Creating amdyn Structure

The approximate moment dynamics described in Se@iean be computed using tf#ochDynTools function
closureDynamics().

closureDynamics()

mdyn=closureDynamics(net ,maxdeg ,method, funname,symParameters)

This StochDynTools function computes the exact (open) moment dynanfich énd then uses the moment closure
technique specified by the input parametethod to compute approximate (closed) moment dynamics of the form
(2.2 or (2.3). As described inf], the (exact) time-derivative of the uncentered moment

ﬂ(m> = E[Lp(xj.vXZv ce ,Xn)]a W(XlaXZa ce 7Xn) = lelme o 'Xgh
can be obtained by computing

du(m)
dt
where (Ly)(x1,X2,...,X) is an expression obtained by applyingyg-) the generator of the Markov process that

describes the populations. Regardless of the method usethltowing is assumed in computing the expected value
in the left-hand side of4.1):

— E[(L) (X0, %, - X)) (4.1)

1. All replacement rules specified in tlr@les section of the.net file are applied tdLy)(x1, X2, ..., X) before
taking the expected value in the right-hand sidedof),

2. For every species that was declaredeterministic, it is assumed that
E [x¢f(xo,..%0)| = EXa] E[f (%o, ...%)] (4.2)
for any functionf (.) of the remaining species.

3. For every speciesg that was declaredoolean, it is assumed that] = x;, ¥n > 1. This introduces no error as
long as the number of moleculesxafis indeed restricted to the sgd, 1}.
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Inputs:

e net is a structure that describes the network of chemical remsti It is typically obtained from anet file
usingnet=readNet(filename).

e maxdeg iS an integer that specifies the largest degree for the uaihtmoments inu. If maxdeg is not an
integer, then boolean variables are not taken into accaunthe degree of a moment. In this case, more
moments are included in for the same value afaxdeg.

e method (optional) is a string that specifies the method that shoaldded for moment closure. This parameter
is optional, and in its absence the first method below is uBhd following methods are currently recognized:

— ’dm’ or *derivativematching’ for moment closure obtained by matching the derivativeefaxact

and approximate moment dynamié$.[See Sectior.1

’zc’ Or ’zerocumulants’ for moment closure obtained by assuming that the high-araeulants cor-
responding to all unknown moments are equal to zero. Se@8ecp.

For second order closure and elementary reactions, thissponds to the technique described’ih [
However, this function can be used for closures of any orddfar reactions with more than two reactants
(non-elementary).

’1d’ or ’lowdispersion’ for moment closure obtained by assuming that the high-andemalized
centered moments corresponding to all unknown momentsjara ® zero. See Secti@3,

For second order closure and elementary reactions, thissponds to the technique described’ih [
However, this function can be used for closures of any orddfar reactions with more than two reactants
(non-elementary).

’qd’ or ’quasideterministic’ for moment closure obtained by assuming that the high-aydesi-
deterministic normalized centered moments corresportdiaj unknown moments are equal to zero.

For this approximation, the closed dynamics are of the f&r8) (whereg is the solution to the determin-
stic dynamics (in molecule counts). See Secfich

{’1na’,’Volume’} or {’vankampen’,’Volume’} Or {’linearnoiseapproximation’,’Volume’}

for Van Kampen's linear noise approximatic#) [Chapter X]. The second element of the cell specifies the
variable to be used as the volume. This variable should hadeblared in thearameters section of the
.net file. To achieve moment closure, one considers the limit esvidriable converges to infinity. For
this limit to result in a closed set of moment equations, theeactions should be elementary and their
rates should depend on the volume as follows:

X(X-1
0 rate=c Volume N X rate=cX “ 2% rate:c—vilumg “ X+Y rate=Cites
_— —_— —

For this approximation, the closed dynamics are of the f&r8) (whereg is the solution to the determin-
stic dynamics (in concentrations). See Secfidn

’zv’ Of zerovariance’ Or >zv’ for moment closure assuming a negligible variance for thmufadions,
i.e., assuming that the equali®.p) holds for all species.

e funname (optional) is a string containing the filename used to craate-file that computes the left-hand side
of the differential equations ir2(2) or (2.3). For approximate dynamics of the for2.8), the u components of
the state appear above theomponents. When the function createddiysureDynamics() is called with no
arguments, it outputs the names of the state variables (aés@array).

The function created can be used as inpuide23s () to simulate the moment dynamics (see Seciand the
example in Sectiod).

e symParameters (optional) is a vector of symbolic variables correspondmpgarameters that appear in the rate
expressions (e.g., rate constants).
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This vector is used only in the creation of the functiamname and it allows inclusion of additional inputs to
this function that may be needed to specify numerical valoigsarameters that appear in the moment dynamics.
These values will override any default values specifiegkit. parameter.
Outputs:
e mdyn iS a structure characterizing the exact moment dynamic®.i) &nd the approximate moment dynamics
in (2.2) or (2.3) (see Sectiod.2).

Under the hood: The functionclosureDynamics() essentially combines the functionality of the three lower-
level functions:momentDynamics(), momentClosure(), andsym2mfile(). Documentation for these functions is
provided in the corresponding m-files.

4.2 Themdyn structure

Themdyn structure characterizes the exact and approximate momgeatmcs, including
1. the entries of th@ vector in the exact and approximate moment dynamiadiéld),
2. the exact (open) moment dynamics2alj (dotMu field),

3. the approximate (closed) moment dynamicgi@)(approxDotMufield) orin (2.3) (approxDotMuanddotPhi
fields), and

4. set of formatting rules to produce the moment dynamic&TgXLlformat (texrules field).
A detailed explanation of the key fields of this structurddek. This structure may contain additional fields not
described here, which are used internallySty chDynTools.
Exact moment dynamics The following fields describe the exact moment dynamicgi)(

e Mu is a structure describing the entries of the vegtan (2.1) and the vectov in (2.2) or (2.3b). The following
table describes the key fields of this structure for a netwwddhemical reactions with speci#&s$,X2,X3, .. .:

field type value of row corresponding to mom@&ixX1m™X2MX 3™ .. ]
Mu.sym column vector of symbolic variables  mu_Xim1_X2m2_X3m3...

Mu . mon column vector of symbolic expressions X1 m1*X2 " m2*X3°m3. ..

Mu.ndx matrix of integers with one column permi,m2,m3, ...

species (in the order they were declared
in the . net file)
Mu.x0 column vector of doubles initial value from theet file

e barMu is a structure describing the entries of the vegtdn (2.1). The following table describes the key fields
of this structure for a network of chemical reactions wite@psX1,X2,X3, .. .:

field type value of row corresponding
to momentE[X 1M X2M2X3MS. .. |
barMu.sym column vector of symbolic variables  mu_X1m1_X2m2_X3m3...
barMu.mon column vector of symbolic expressions X1 m1*X2 " m2*X3"m3. . .
barMu.ndx matrix of integers with one column permi,m2,m3, ...
species (in the order they were declared
in the . net file)
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e dotMuis a structure describing the exact moment dynan#ich.(It contains the following fields:

field type value
dotMu.A matrix of symbolic expressions matixin (2.1)
dotMu.B matrix of symbolic expressions matrixin (2.1)

dotMu.sym column vector of symbolic expressions  whole right-hane sifi2.1)

The right-hand side of.1) can thus be obtained using any one of the following two syliolexpressions:

dotMu.A * Mu.sym + dotMu.B * barMu.sym
dotMu.sym

Approximate moment dynamics The following fields describe the approximate moment dyranm @.2) or
(2.3b), depending on the moment closure technique used. It ¢caatia¢ following fields:

e approxDotMu is a structure describing the right-hand sides®) or (2.3b). It contains the following fields:

field type value
approxDotMu.barMu column vector of symbolic expres- approximate value of in (2.1)
sions
approxDotMu.sym  column vector of symbolic expres- right-hand sides of2.2) or (2.3
sions
approxDotMu. A matrix of symbolic expressions JacobianapbroxDotMu . sym with respect tdtu. sym
approxDotMu.c vector of symbolic expressions approxDotMu. sym-approxDotMu.A*Mu.sym

The right-hand side of2(2) or (2.3b can thus be obtained using any one of the following threebsjfin
expressions:

dotMu.A * Mu.sym + dotMu.B * approxDotMu.barMu
approxDotMu.sym
approxDotMu.A * Mu.sym + approxDotMu.c

The last representation is especially useful for thg’ and’>1na’ moment closure methods because in this
case the matricespproxDotMu. A andapproxDotMu. c do not depend on the entriesiaf. sym [cf. (2.10)].

Currently, the moment closure methotha’ does not return the fielelpproxDotMu. barMu
The following fields are only needed to describe the apprai@moment dynamics ir2(3).

e Phi is a structure describing the entries of the veqian (2.39. The following table describes the key fields of
this structure for a network of chemical reactions with $gex1,%x2,X3, .. .:

field type value of row corresponding to momd&ixX 1™ X 2Mx 3™ .. ]
Phi.sym column vector of symbolic variables ~ phi_X1iml_X2m2_X3m3. ..
Phi.mon column vector of symbolic expressions X1 m1*X2 "m2*X3"m3. .. (*qd’ method)

(X1/V) "m1*(X2/V) "m2* (X3/V) "m3. .. (’1na’ method)
Phi.x0 column vector of doubles initial value from theet file

e dotPhi is a vector of symbolic expressions with the derivativepan (2.33.
The following additional fields are only returned by thima’ moment closure method:

e Xi is a structure describing the entries of the first-ordert{mbation” vectoré in (2.14). The following table
describes the key fields of this structure for a network ofeisal reactions with specied ,X2,X3, .. .:
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field type value of row corresponding to
E[(X17V@)nﬂ(x27VQ)ﬂQ(X37Y@)nﬁ.“]

1 I
V2 V2 V2
Xi.sym column vector of symbolic variables  xi_Xim1_X2m2_X3m3...
Xi.mon column vector of symbolic expressions ((X1-Vxphi_X1)/V~(1/2)) “mix*...
Xi.mu2xi  column vector of symbolic expressions  expression f@(@v’\l"”i)ml(xzv’}/"’z)m(xs\;}/%)m...] as
2 2 2

a function of the entries gfi and¢@

Xi.xi2mu column vector of symbolic expressions  expression for tleentered moment E(lmlxzr”ZXS"13 . ]
in u as a function of the entries §fand ¢

Xi.xi2barMu column vector of symbolic expressions  expression for ttentered moment E(lmlxz’“ZXSm3 . ]
in 1 as a function of the entries gfandg

e dotXi is a symbolic vector with the exact derivativedts in £.14).

e approxDotXi is a structure describing the approximate derivativé ah the right-hand side ofZ/15. It
contains the following fields:

field type value

approxDotXi.sym  column vector of symbolic variables right-hand side2fl§

approxDotXi.A matrix of symbolic expressions JacobianapbroxDotXi . sym with respect t&Xi . sym
approxDotXi.c vector of symbolic expressions approxDotXi.sym-approxDotXi.A*Xi.sym

The right-hand side off; 15 can thus be obtained using any one of the following two syinlexpressions:

approxDotXi.sym
approxDotXi.A * Xi.sym + approxDotXi.c

The last representation is especially useful because thécesapproxDotXi. A andapproxDotXi.c do not
depend on the entries &t . sym [cf. (2.10)].

IATEX formatting The following field is used to producedTEX-formatted versions of any symbolic expression
involving reaction parameters, moments, or exact and aopaie moment dynamics. These rules should be used by
theStochDynTools functionmylatex () described in Sectiof.

e texrulesis a cell array of strings with one row per transformatioreraihd two columns:

— the first column contains a regular expression, followirggiintax of MATLAB®’s regexp ()
— the second column contains the string to replace the regyfaession.
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Chapter 5

Monte Carlo Simulations

One can run Monte Carlo simulations of a network of chemieattions specified by aet file within MATLAB ®
usingStochDynToolsorin C++ using SOCHKIT.

Attention! For both simulation methods,

1. thepost_reaction_countsin the .net file must correspond to increments/decrements; and

2. molecule counts are assume constant between reactiotiseaarfore théerivatives section of the net file
is ignored.

5.1 UsingStochDynTools

guadPropensities()

[Q,b,c,s,x0]=quadPropensities(net)

The functionquadPropensities() describes a network of chemical reactions with quadratp@nsity functions.
The outputs of this function are used BympledSSA() to run Monte Carlo simulations of the network of chemical
reactions.

Inputs:

e net is a structure that describes the network of chemical remsti It is typically obtained from anet file
usingnet=readNet(filename).

Outputs:

e Q is a matrix with the quadratic terms for the propensity fiorts. Each reaction corresponds to a (# species)
by (# species) square matrix. These matrices are stackexparf ach other so the size ©fs (# reactions<
# species) by (# species).

e b is a matrix with the linear terms for the propensity funcoiach reaction corresponds to a vector of length
(# species). These vectors are stacked on top of each otkesofb is (# reactions) by (# species).

c is a vector with the constant terms for the propensity flumsti The constants for each reaction are stacked on
top of each other so size eofis (# reactions) by 1.

s is a matrix with the stoichiometry for the reactions. Eadcten corresponds to a vector of length (# species).
These vector are stacked side by side so sizei@{# species) by (# reactions).

x0 is a vector with the initial conditions in thenet file. The size ok&O0 is (# species) by 1.
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sampledSSA()

[X,Xmean,Xstd,XmeanCI,XstdCI] = sampledSSA(Q,b,c,s,x0,nMC,Ts,CI)

The functionsampledSSA runs multiple Gillespie’s stochastic Simulation Algoritk (SSA) for the network of chem-
ical reactions with propsenties specified by the in@uts c and stoichiometry specified by

This function returns all the sample paths at a set of sanpkst as well as estimates for the means and standard
deviations at the sample times.

Inputs:

e Q is a matrix with the quadratic terms for the propensity fiorts. Each reaction corresponds to a (# species)
by (# species) square matrix. These matrices are stackexparf ach other so the size ©fs (# reactions<
# species) by (# species).

e b is a matrix with the linear terms for the propensity funcoiach reaction corresponds to a vector of length
(# species). These vectors are stacked on top of each otkesofb is (# reactions) by (# species).

e cis a vector with the constant terms for the propensity fumsi The constants for each reaction are stacked on
top of each other so size eofis (# reactions) by 1.

e sis a matrix with the stoichiometry for the reactions. Eadct®n corresponds to a vector of length (# species).
These vector are stacked side by side so sizeig{# species) by (# reactions).

e x0 is a vector with the initial conditions in thenet file. The size of&0 is (# species) by 1.
e nMC is the number if Monte Carlo simulations to run.

e Tsis a vector with the desired sample times for the output.
The sampled paths are computed exactly at all times, butvhkies are only returned at the time in the vector
Ts.

e CI is an optional input with the desired percentage for the denfte intervals for the mean and standard
deviation. If not specified, 95% is used.

Outputs:

e X is matrix with the molecule counts at the sample times. The afX is (# species) by (# simulations) by (# of
sample times).

e Xmean iS a matrix with the mean molecule counts at the sample tifies.size offmean is (# species) by (# of
sample times).

e Xstdis a matrix with the standard deviation molecule countsesdmple times. The size ¥étd is (# species)
by (# of sample times)

e XmeanCI is a matrix with the confidence interval for th@ean. The size offmeanCI is (# species) by (# of
sample times) by 2.
The computation ofmeanCI assumes that the central limit theorem is valid to deterrtiaalistribution of the
mean

e XstdCI is a matrix with the confidence interval for the Xstd. The 93£XstdCl is (# species) by (# of sample
times) by 2.
The computation ofkstdCI assumes a normal distribution.
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5.2 Using SocHKIT
net2stochKit()

net2stochKit(net,filename ,x0,symParameters ,valueParameters)

The functiomet2stochKit() automatically creates a C++ file that can be used to creat®a s T executable to
run Monte Carlo simulations of a network of chemical reawsio

Attention! All the post_reaction_counts in the .net file must correspond to increments/decrements. If this
is not the case the C++ code will not compile.

Inputs and Outputs:

e net is a structure that describes the network of chemical reasti It is typically obtained from anet file
usingnet=readNet(filename).

e filename iS a string containing the filename of the C++ file to be cre&ethout the. cpp extension).

e x0 is a vector of initial populations for the Monte Carlo simiidas with as many entries as the number of
chemical species.

e symParameters (optional) is a vector of symbolic parameters that appedhénrate expressions (e.g., rate
constants).

e valueParameters (optional) is a vector of numerical values for the symboklcgmeters in symParameters.

The functionnet2stochKit() returns no output, but creates a C+¥d&®HKIT “ProgramDefinition” file. To learn
how to use this file, please consult the StochKit user guifleAn example Makefile and two “main” C++ files are
provided as examples. However, these will only work if ()d&HKIT has been successfully installed and (i) the
variableCSE_CPP_HOME in the Makefile points to the ®CcHKIT directory.

An error is returned if equations for continuous evolutior apecified in thelerivatives section because
STocKKIT cannot simulate reaction networks with continuous varretiin the populations.
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Chapter 6

Simulation and plots

The m-file produced bylosureDynamics() can be passed to an ODE solver suchh@s23s() to solve the ap-
proximate moment dynamics. The solution to the ODE can thended to compute and plot centered moments
usinggetCMoments() andplotCMoments(), respectively. It can also be used to obtain an approxinategility
distribution usinggetDistribution().

0de23s()

[t,mu]l=0de23s(@(t,x)funname(x,parameter_list), [0,Tmax],x0);

This (standard) MATLAE® function can be used to solve the approximate moment dyrsamic

Inputs:

funname is a string containing the filename of the m-file create¢ bysureDynamics() to compute the left-
hand side of2.2) or (2.3) (without the.m extension).

parameter_listis a list of parameter values to be passedianame (), as specified by the input parameter
symParameters to the functionclosureDynamics().

Tmax iS the time at which the simulation should terminate.

x0 is the initial condition for the moment dynamics.

For moment dynamics of the forn2.Q), x0 must have the size gi and to obtain the initial the conditions in
the .net file one would choosg@0=mdyn.Mu. x0, with mdyn returned byclosureDynamics().

For moment dynamics of the forr2.@), x0 must have the size (ﬁu’ qo’}/ and to obtain the initial the condi-
tionsin the. net file one would choosg0= [mdyn.Mu.x0;mdyn.Phi.x0], withmdyn returned byt losureDynamics().

Attention! Starting with initial conditions for which some species @axactly zero molecules can be problem-
atic when using moment closure based on derivative matqhiegause this may lead to divisions by zero or
errors in the ODE solver). To avoid this, one can initialize system with small but positive population (say .1
molecules).

The functionode23s () accepts several other parameters (s€kp ode23s). Other ODE solvers can also be
used, however a stiff solver is generally preferable.
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Outputs:

t is a column vector with the time instants at which the soluti@s computed.

mu iS a time series ofu for moment dynamics of the forn2(2) or a time series o[u’ (p’]’ for moment
dynamics of the formZ.3). This vector can be plotted using the following command

plot(t,mu)
legend(funname(),’location’,’best’,’interpreter’, ’none’)

wherefunname () is the m-file created bylosureDynamics(). Recall that when the function created by
closureDynamics() is called without arguments it returns the names of the ldeginu, which can be used
to label the plot. The optioninterpreter’,’none’ to the commandegend() prevents MATLAB® from
interpreting underscores as subscripts.

getCMoments()

[average ,stddev]=getCMoments(net ,mdyn,mu,symExpression ,assumezero)

Given a time seriefi(t) of uncentered moments, typically computed usidg23s (), thisStochDynTools function
computes the means and standard deviations of a given \@@rpressions involving the populations of the different
species.

Inputs:

net is a structure that describes the network of chemical reasti It is typically obtained from anet file
usingnet=readNet(filename).

mdyn is a structure characterizing the exact moment dynamic Ip&nd/or the approximate moment dynamics
in (2.2) or (2.3), typically computed usinglosureDynamics().

mu iS a matrix containing a time series pfor [u’ qo’] g typically computed usingde23s (). Each row ofnu
corresponds to a different time instant and each column tex@ht moment.

symExpression is an array of symbolic expressions whose means and staddeiations will be computed.
The function returnglaN if the computation of a mean and/or standard deviation calbb@@omputed exactly
using the moments available (except wh&gunezero is nonzero, see below).

The replacementrules et . substitutionrule will be applied to the symbolic expression (and to its square
in order to compute the variance) before taking expectatidine boolean nature of the variables declared as
such, will be taken into account.

Attention! In the current implementation of this function, the detenistic nature of the variables declared as
such will be ignore. This means, e.g., tifall will be generated if one asks for the expected valugef and
mu only contains the expected valueXfeven if X was declared deterministic.

assumezero iS an optional boolean variable that, when nonzero, in&rine function to assume zero all mo-
ments that are not available to compute the mean and/orasthddviations.
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Outputs:

average is a time series of the expected value of the vesfaiExpression, with one time instant per row and
one element of theymExpression per column.

stddev (optional) is a time series of the standard deviation of #EarsymExpression, with one time instant
per row and one element of tlhgmExpression per column.

Attention! For populations with low stochasticity (i.e., for whichstird deviations are much smaller than the
means), the moment closure approximation errors can leadgative variances. Such populations should be
declared ageterministicin the .net file.

plotCMoments()

[handles ,average,stddev]=plotCMoments(net,mdyn,t,mu,symExpression_1,style_1,symExpression_2,style_2,...)

Given a time seriegi(t) of uncentered moments, typically computed usidg23s (), thisStochDynTools function
computes and plots the means and standard deviations oéa géctor of expressions involving the populations of
the different species. Internally, this function ugesCMoments() to compute means and standard deviations.

Inputs:

net is a structure that describes the network of chemical reasti It is typically obtained from anet file
usingnet=readNet(filename).

mdyn is a structure characterizing the exact moment dynamic ipgnd/or the approximate moment dynamics
in (2.2) or (2.3, typically computed usinglosureDynamics().

mu iS a matrix containing a time series pfor [u’ qo’]/, typically computed usingde23s(). Each row ofnu
corresponds to a different time instant and each columnretaliffierent moment.

symExpression_1,symExpression_2,... are symbolic expressions whose means and standard desiatio
will be plotted. The means of each symExpressiovill be plotted with the style defined bytyle_i and
dotted lines will be used to depict the mean plus/minus cawedstrd deviation.

This function usegetCMoments() so the reader is referred to the documentation of that fondtir details on
the computation of means and standard deviations.

style_1,style_2,... are character strings defining the style of the line to be uasdn MATLAB®’s
plot () command.

Outputs:

handles is a vector with the handles of all the lines plotted. Theselles are useful, for example to produce
legends, as in

h=plotCMoments(net,monMu,t,mu,’E’,’b-",’St’,’g-",’Et’,’k-");
legend(h(1:3:end),’E[E]\pm{}Std[E]’,’E[St]\pm{}Std[St]’,’E[Et]’,’location’, ’best’)

where by using only one out of each three handles, one slgpsitks for the lines corresponding to the standard
deviations.

average iS a time series with the expected values of all expressiwitl, one time instant per row and one
expression per column.

stddev is a time series with the standard deviations of all expoessiwith one time instant per row and one
expression per column.
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getDistribution()

pdf=getDistribution(net,mdyn,mu, symExpression,x,distribution ,symBoolean)

Given a vectou of uncentered moments, ths ochDynTools function estimates the distribution of a given expres-
sion involving the populations of the different speciestetnally, this function usegetCMoments() to compute
means and standard deviations.

Inputs:
e net is a structure that describes the network of chemical remsti It is typically obtained from anet file
usingnet=readNet(filename).
mdyn is a structure characterizing the exact moment dynamic.i) &nd the approximate moment dynamics
in (2.2 or (2.3
e mu is a vector containing the value gfor [u’ qo’] "ata given time instant, typically computed usinie23s ().

e symExpressionis a symbolic expression whose distribution will be estrmaat

This function usegetCMoments() to compute the mean and standard deviation from which thehdison
is estimated. The reader is referred to the documentatigatMoments () for details on the computation of
means and standard deviations.

e x is a vector containing the points at which the distributidt e computed.

e distribution is a character string specifying which type of distributgiould be assumed. This parameter
can take the following values:
— ’normal’ when a normal distribution should be assumed.
— ’lognormal’ when alognormal distribution should be assumed.
’binomial’ when a binomial distribution should be assumed.

’mix_normal’ when it should be assumed that the distribution is norma¢mdonditioned to any one of
the two values for a given boolean-valued expressigiBoolean. This will result in a convex combina-
tion (mixture) of two normal distributions.

— ’mix_lognormal’ when it should be assumed that the distribution is lognorwiaén conditioned to any
one of the two values for a given boolean-valued expressjaBoolean. This will result in a convex
combination (mixture) of two lognormal distributions.

e symBoolean is a boolean-valued symbolic expression needed for anyeofrttixture” distributions discussed
above.

Output:

e pdf is a vector containing the values of the probability deniityction (pdf) at the points ig.

plotCompare()

[exact ,approx,MC]=plotCompare(net,yPlots,xPlots,Tmax,varargin)

This function produces an array of plots that can be usedngeoe several moment closure techniques and Monte
Carlo Simulations.

Thisfunction is currently undocumented but we provide an example of its use below. More examples can be found
inthe /examples folder.
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figure(1);clf
[exact,approx,MC]=plotCompare(net,2,5,Tmax, ...

{{’derivative matching’,X1iminmax}, ... % subfigure (2,5,1)
{’MCsample’,1,’X1’,’c-},{’dm’>,2,°X1’,’b-"},{’dm’,3,°X1’,’r=-"3}}, ...
{{’zeroycumulants’ ,X1iminmax}, ... % subfigure (2,5,2)
{’zc’,1,’%X1°,°k-"},{’2c’,2,’X1°,°b-"},{’2c?,3,°X1’°,’r=-"}}, ...
{{’low,dispersion’,Ximinmax}, ... % subfigure (2,5,3)
{’14’,1,°X1’,°k-"},{’14’,2,’X1’,’b-"},{’14’,3,’X1’,’r-"}}, ...
{{’quasi_ deterministic’,X1minmax}, ... % subfigure (2,5 ,4)
{’qd’,1,’X1’,°k-"},{’qd’,2,°X1’>,’b-"},{’qd’?,3,’X1’,°r-}}, . ..
{{’distribution,,(Monte Carlo)’,X1minmax}, ... % subfigure (2,5,5)
’MCdistribution’ ,nMC,’X1°},...
{{’derivative matching’,X2minmax},.. % subfigure (2,5 ,6).
{’MCsample’,1,’X2’,’c-},{’dm’>,2,°X2’ ,’b-"},{’dm’,3,°X2’ ,’r=-"3}}, ...
{{’zeroycumulants’ ,X2minmax}, ... % subfigure (2,5,7)
{’z¢’,1,°%X2° ,°k-"},{’2c’,2,’X2’ ,’b-"},{’2c?,3,°X27 ,’r=-"}}, ...
{{’low,dispersion’,X2minmax}, ... % subfigure (2,5,8)
{’1d4’,1,°%X2°,°k-"},{’14’,2,’X2’,’b-"},{’14°,3,°X2’ ,’r=-"}}, ...
{{’quasi_ deterministic’,X2minmax}, ... % subfigure (2,5,9)
{’qd’,1,’%X2?,°k-"},{’qd’,2,°X2’,’b-"},{’qd’,3,°X2°,°r-}}, . ..
{{’distribution;(Monte Carlo)’,X2minmax}, ... % subfigure (2,5,10)

’MCdistribution’ ,nMC, ’X2°});

In this example,

1.

net is a structure that describes the network of chemical reasti It is typically obtained from anet file
usingnet=readNet(filename).

. 2,5 specifies that an array of 2 by 5 subfigure should be draw. Ealofigsire can have several plots. All

subplots for the same figure are passed as a cell array.

. Tmax specifies the that all simulations should be produced in nkerval [0,Tmax] and that Monte Carlos

distributions should be computed for the timeax.

. ’derivative matching’,X1minmax specifies thatthe tile of the first subfigure should berivative matching’

andX1minmax is a 2-vector that specifies the limits of the y-axis for thibfigure.

’MCsample’,1,’X1’,’c-’ specifies a plot within a subfigure, containind/lonte Carlo sample path of the
speciex1, using the line style-.

. ’dm’,2,°X1’, b=’ specifies a plot within a subfigure, displaying the momergule approximate dynamics

using derivative matching with moments up to ordemhe plot with contain the mean &f using the line style
b-, and dotted lines specifyinj1 standard deviation.

’MCdistribution’ ,nMC, X2’ specifies a plot within a subfigure, displaying an histograith the distribu-
tion of X2 at timeTmax obtained frormMC Monte Carlo simulations.
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Chapter 7
Utilities

subsParameters()

new_expression=subsParameters(net,old_expression)

The functionsubsParameters() takes a given expression and replaces the parameters fretwark of chemi-
cal reactions by their default values.

Inputs and Outputs:

e net is a structure that describes the network of chemical remsti It is typically obtained from anet file
usingnet=readNet(filename).

e 0ld_expressionis a vector of symbolic expressions where the parameterddgbe eliminated.

e new_expression is a vector of symbolic expressions obtained frold_expression by replacing any pa-
rameters by their default values.

mylatex()

str=mylatex(sym,texrules)

The functionmylatex() takes a symbolic expression and returns it into a fairly abéel ETEX syntax. This
function allows the latex expression to be transformed bst@kreplacement rules, which can be used to include the
IATEX names specified in thenet file.

Inputs and Outputs: When callingmylatex() without inputs, this function returns a set of macros needed
interpret theATEX output. Otherwise. ..

e symis a symbolic expression to be transformed iligX format.

e texrulesis a cell array of strings with one row per transformatioreraihd two columns:

— the first column contains a regular expression, followirggiintax of MATLAB®’s regexp ()
— the second column contains the string to replace the regyfaession.

The transformation rules are applied sequentially and onte. Replacements are not applied to strings already
replaced.

texrules are typically obtained by th&tochDynTools commanclosureDynamcis() OrmomentDynamics().

e stris a string in theATpX output.
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momentEquilibrium()

[muEq,phiEq,xiEq]l=momentEquilibrium(net ,mdyn,option)

This StochDynTools function computes the equilibrium points of approximatenmeot dynamics of the form
(2.2 or (2.3.
Inputs:

e net is a structure that describes the network of chemical remsti It is typically obtained from anet file
usingnet=readNet(filename).

e mdyn iS a structure describing the moment dynamics2ir?)(or (2.3). This structure is typically produced by
closureDynamics().

e numerical is an optional boolean variable indicating whether or netgarameters should be replaced by the
numerical values itaet . parameter prior to finding the equilibrium points.

e option is an optional string specifying options to be used in the otation of the equilibrium points. The
following options are currently recognized:

— ’none’ — no option specified.

— ’1na’ — use Van Kampen’s linear noise approximation (sgedJhapter X]). Assumes that thena’
moment closure method was used to produden.

— ’smallCV’ — assume that the distribution of the populations is tightigcentrated around a mean value.
Currently does not work for Van Kampen'’s linear noise appration.

Outputs:

e muEq is a cell array of symbolic vectors with the equilibrium pigiof the vecto in (2.2) or (2.3). Each entry
of the cell array corresponds to one equilibrium point.

The following additional outputs are available with theiops’>1na’ and’smallCV’

e phiEqis a cell array of symbolic vectors with the equilibrium pisinf the deterministic vectap around which
the populations are concentrated. Each entry of the celyawrresponds to one equilibrium point.

e xiEqis a cell array of symbolic vectors with the equilibrium pwinf the perturbationg aroundg. Each entry
of the cell array corresponds to one equilibrium point.
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Appendix A

Appendix

A.1 Installation

The . tar file posted contains the following three folders:

e stochdyntools/doc — Packet documentation (including this file).

e stochdyntools/1ib— TheStochDynTools MATLAB ® scripts described in this document.

e stochdyntools/examples — Examples on the use of this set of tools (including the eXamip Sectiort).
To start usinggtochDynTools one needs to

1. “Untar” the . tar file. In a PC this can be done using any of the usual “unzipitig# and in Linux this can be
done by executing the following command at the shell prompt:

tar xvf sotchdyntools.tar

2. Add thestochdyntools/1ib folder to the MATLAB® path. This can be done by executing the following
command at the MATLAE® prompt:

path(’{BASE}stochdyntools/1lib’,path)

where{BASE} should be replaced by the folder where ther file was “untared.” Most likely, you will want
to add the above command to yaitrartup.m MATLAB ® script.

If one wants to use the functiaret2stochKit() to create Monte Carlos simulationsT&HKIT must be in-
stalled []. However, this is not needed to compute moment dynamics.

A.2 Algebraic derivations

A.3 Cumulants

The multi-variable cumulants for the distribution of a rantvectorx are defined by the Taylor series of the cumulant-
generating function:

g(A) == log (E[e"*™)),
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whereA € R" and- denotes inner product. In particular, the cumulaf® associated with the vector of integers
m:= (my,My,...,My) is given by

dm1+m2+---+r‘rhg(o)
B 0/\1“1/\5“2---)\,’1““ ’

K(m) .

which is one of the coefficients in the Taylor seriegtX) aroundA = 0. The cumulank ™ can be computed by first
expanding

D x moq ) ,
Ele’ ]:/;EE[(JZ/MX;)}+E[R(/\,X)],
which results in

B~ 5 aalhu™+E[0((A M)
ym<ym

where the summation is over momept$” of order up toy m;, thecs(A) are appropriately selected constants that
depend or, and all terms in the remaindB(A ,x) have powers irA or order higher thaiy m. The cumulank (™ is
then obtained from

i 9T (0
OATEATE A

m)

K(:Zu
SM<ym

Note that since the derivative is computediat 0, the terms inR(A,x) will note appear because they only have
powers inA or order higher thaiy m. In fact, it is straightforward to show that

7 GMutme -t Q)
OATIATE AT

KO =pmy 5l
ym<ym

which means that the cumulart™ depends only om™ and lower-order moments, so by settinf” = 0 one
obtains an expression for™ as a function of lower-order moments.

A.4 Uncentered Versus Normalized Centered moments
The uncentered momept™ can be expressed in terms of the normalized centered maoyf@has follows
™ = EXHG?  X)

- E[Xl]mlE[lemz~~-E[xn]”hE[(1+X1E[7:(El[]Xl])ml (H%XEZ[]&])W... (14 2= Ebaly™]
— B ™ Epel™ - Ep™ (140 ™ Y Ban™).
2<ym<ym

where the summation is over normalized centered momgftsof order twd or larger and strictly smaller thanm;
and theB are appropriately selected nonnegative constants.

Conversely, we can also express the any normalized centesatents) (™ in terms of uncentered moment™
as follows

e[ o) ()

1The normalized centered moments of order one are always zero
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where the summation is over uncentered momgfits of order strictly smaller thaly m and theyy, are appropriately
selected constants.

The final formulas for low-dispersion moment closure can b&ined directly from expansions of the non-
normalized centered moments

E[(Xl—E[Xﬂ)rﬁl(Xz—E[Xz])rﬁz"'(xn—E[Xn])ﬁ“]=H<rﬁ)+ S w(Elal, Exal, . Efxa]) 1™,
sM<sm

because setting to zero some normalized centg®8ds equivalent to setting to zero the left-hand side of theatiqn
above, from which we conclude that

H™ xS Gl Elxl. .. Epa) ™.
TM<sm

A.5 Quasi-deterministic Normalized Centered moments

The uncentered momept™ can be expressed in terms of the quasi-deterministic nazetbtentered momerit™
as follows

™ = EpqHG? -]
=g e[ (14 qol‘”l)"h(1+xz;z‘pz)m2---(1+X“q;%)m“]

=gMme®- (1+n + Brﬁﬁ“ﬁ)),
2<ym<ymy

where the summation is over quasi-deterministic normalizatered moments™ of order oné or larger and strictly
smaller thary, my; and thefBs are appropriately selected nonnegative constants.

Conversely, we can also express the any quasi-determinitinalized centered momerit§™ in terms of uncen-

tered momeng(™ as follows
() ) (2"
M

el (2

p(m p(m

W g g

=
@G zrﬁgzm )

where the summation is over uncentered momgft of order strictly smaller thaly m and theyy, are appropriately
selected constants.

The final formulas for quasi-deterministic moment closwar be obtained directly from expansions of the quasi-
deterministic non-normalized centered moments

Ela—a)™0e—@)™ - Ca—a)™| =p™+ 5 fn(e,e.. @)™,
SM<Tm

2Contrary to what happens for normalized centered momdmsyuasi-deterministic normalized centered moments @frarde are not neces-
sarily zero.
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because setting to zero some quasi-deterministic noretatientered (™ is equivalent to setting to zero the left-hand
side of the equation above, from which we conclude that

HP = 5 im(en e, g)u™.
<y m
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