Game Theory Lecture #12

Outline:

• Auctions
• Mechanism Design
• Vickrey-Clarke-Groves Mechanism
Optimizing Social Welfare

• **Goal:** Entice players to select outcome which optimizes social welfare

• **Examples:**
 – Traffic Networks
 – Auctions
 – Cost Sharing
 – Matching

• **Technical Challenges:**
 – Social planner has minimal means with respect to enticing players
 – Players have private information not available to social planner

• **Approach:** Augment players’ utility functions so that NE corresponds to optimal joint action profile

• **Problems:** Nash equilibrium reasonable prediction of behavior in one-shot setting?

• **Revised Approach:** Augment players’ utility functions so that each player’s *dominant strategy* results in the optimal joint action profile

• **Features:**
 – A player should never play a dominated strategy
 – Rare that game has a dominant strategy
 – Shaping dominant strategy more challenging than shaping NE.
Example: First price sealed bid auction

• Setup:
 – Players have internal valuations of item: \(v_1 > v_2 > ... > v_n \)
 – Players make bids: \(b_1, b_2, ..., b_n \)
 – Highest bidder wins and pays highest bid

• Player \(i \) payoff: Let \(\bar{b} = \max \{b_{-i}\} \)
 – If \(b_i > \bar{b} \): \(v_i - b_i \)
 – If \(b_i < \bar{b} \): 0

Assume for convenience that ties never happen.

• Claim: There is no dominant strategy in first price sealed bid auctions

• Cases:
 – \(b_i > v_i \): This strategy is always dominated by setting \(b_i = v_i \)
 – \(b_i = v_i \): This strategy is dominated by setting \(b_i = v_i/2 \)
 – \(b_i < v_i \): Is there another bid \(b_i' \) which dominates \(b_i \)?
 * \(b_i' > b_i \): The bid \(b_i \) performs better when \(\bar{b} < b_i \).
 * \(b_i' < b_i \): The bid \(b_i \) performs better when \(b_i' < \bar{b} < b_i \).

• Conclusion: The strategy \(b_i \) is not dominated by any other strategy \(b_i' \).
Example: Second price sealed bid auction

• Setup:
 – Players have internal valuations of item: $v_1 > v_2 > \ldots > v_n$
 – Players make bids: b_1, b_2, \ldots, b_n
 – Highest bidder wins and pays second highest bid

• Player i payoff: Let $\bar{b} = \max \{b_{-i}\}$
 – If $b_i > \bar{b}$: $v_i - \bar{b}$
 – If $b_i < \bar{b}$: 0

 Assume for convenience that ties never happen.

• Claim: $b_i = v_i$ is a dominant strategy for player i

• Consequence:
 – All bidders bid their true value…
 – The bidder with the highest value is sure to win…
 – The auction allocates the prize efficiently

• Known as the Vickrey Auction

• Conclusion still hold for English Auctions where bids are continually updated.
Efficient Mechanisms

- Definition: An efficient mechanism is a game which induces the players to truthfully reveal their values and which results in at the utilitarian social choice.

- The Vickrey Auction is an efficient mechanism under certain circumstances:
 - No externalities.
 - “Private” values

- Example: Externalities
 - Three bidders \(\{x, y, z\}\).
 - Three possible allocations \(\{X, Y, Z\}\) where \(X\) indicates object given to player \(x\)
 - Player specific valuations of allocations:

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(v_x)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y)</td>
<td>0</td>
<td>(v_y)</td>
<td>0</td>
</tr>
<tr>
<td>(z)</td>
<td>0</td>
<td>0</td>
<td>(v_z)</td>
</tr>
</tbody>
</table>

- Bidder \(y\) has a negative externality when \(z\) gets the object. This is a negative externality.
- Consequence: Bidder \(y\) does not have a dominant strategy.

- Consequence: Vickrey auction is not an efficient mechanism under externalities.
Overcoming Externalities

• Example revisited:
 – Three bidders \(\{x, y, z\} \).
 – Three possible allocations \(\{X, Y, Z\} \) where \(X \) indicates object given to player \(x \)
 – Player specific valuations of allocations:
 \[
 \begin{array}{ccc}
 & X & Y & Z \\
 x & v_x & 0 & 0 \\
 y & 0 & v_y & -5 \\
 z & 0 & 0 & v_z \\
 \end{array}
 \]

• The following modified auction in an efficient mechanism.
 – Subtract 5 for \(z \)'s bid. Set \(\hat{b}_z = b_z - 5 \).
 – Award the object to the highest bidder when using \(\hat{b}_z \) for the bid of \(z \)
 – If \(x \) or \(y \) wins, they pay the highest losing bid using \(\hat{b}_z \)
 – If \(z \) wins, she pays the highest losing bid plus 5

• Problems:
 – What if system designer does not know the level of externality?
 – Does approach extend to other problems?

• Question: Is it possible to construct an efficient mechanism that works for a broad class of problems?
General Framework and Definitions

- General framework: Social choice
 - A set of n-individuals $N = \{1, \ldots, n\}$.
 - A set X of alternatives from which to choose.
 - $v_i(x)$ is the value to i from alternative $x \in X$ being chosen.
 - Monetary transfer scheme $t = (t_1, \ldots, t_n)$.
- Definition: Utilitarian alternative
 $$x^* \in \arg\max_{x \in X} \sum_{i \in N} v_i(x).$$
- Definition: Marginal contribution player i
 $$\sum_{j \neq i} v_j(x^*) - \sum_{j \neq i} v_j(x_{-i}^*).$$
 where
 $$x_{-i}^* \in \arg\max_{x \in X} \sum_{j \neq i} v_j(x).$$
 Note that x^* and x_{-i}^* may very well be different.
- Flavor of forthcoming mechanism:
 - Players report valuation functions \hat{v}_i simultaneously. Note these may be different than v_i.
 - Use report valuation functions \hat{v}_i to determine alternative.
 - Use marginal contributions to determine prices.
The Vickrey-Clarke-Groves Mechanism

- The players: \(N = \{1, \ldots, n\} \).
- The actions: Each player will report a valuation function \(\hat{v}_i \)
 - Announcements of valuation functions are simultaneous.
 - Note that \(v_i \) is player \(i \)'s true valuation function
 - Players need not inform truthfully.
- Selection of alternative: The utilitarian alternative is chosen relative to the submitted valuations \(\hat{v} = (\hat{v}_1, \ldots, \hat{v}_n) \), i.e.,
 \[
 x^*(\hat{v}) \in \arg \max_{x \in X} \sum_{i \in N} \hat{v}_i(x).
 \]
 Note that the selected alternative is not dependent on the true valuations \(v_i \).
- Monetary transfers: Price are determined by evaluating marginal contributions according to reported valuations
 \[
 t_i(\hat{v}) = \sum_{j \neq i} \hat{v}_j(x^*(\hat{v})) - \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_{-i})).
 \]
- Utility functions:
 \[
 U_i(\hat{v}_i, \hat{v}_{-i}) = v_i(x(\hat{v})) + t_i(\hat{v}).
 \]
- **Theorem:** The VCG mechanism is efficient.
 - All individuals have a dominant strategy to announce their true valuations.
 - When they do so, the utilitarian alternative is enacted by the VCG mechanism.
The Vickrey Auction Revisited

- The players: \(N = \{1, \ldots, n\} \).
- Set of alternatives: \(X = \{1, \ldots, n\} \) where \(x = \{i\} \) means object awarded to agent \(i \).
- The actions: Each player will report a value \(\hat{v}_i \) for each outcome \(x \in X \). Here, \(\hat{v}_i(x) = 0 \) for all \(x \neq i \).
- Selection of alternative: The object goes to the highest bidder, i.e.,
 \[
 x^*(\hat{v}) = \arg \max_{x \in X} \sum_{i \in \mathcal{P}} \hat{v}_i(x),
 = \arg \max_{i \in N} \hat{v}_i(i)
 \]
- Monetary transfers: Price are determined by evaluating marginal contributions according to reported valuations. For player \(i = \arg \max_{i \in \mathcal{P}} \hat{v}_i(i) \), we have
 \[
 t_i(\hat{v}) = \sum_{j \neq i} \hat{v}_j(x^*(\hat{v})) - \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_{-i}))
 = 0 - \max_{j \neq i} \hat{v}_j(i)
 \]
 For player \(j \neq \arg \max_{i \in N} \hat{v}_i(i) \), we have
 \[
 t_j(\hat{v}) = \sum_{k \neq j} \hat{v}_k(x^*(\hat{v})) - \sum_{k \neq j} \hat{v}_k(x^*(\hat{v}_{-j}))
 = \max_i \hat{v}_i(i) - \max_i \hat{v}_i(i)
 = 0.
 \]
- Utility functions:
 \[
 U_i(\hat{v}_i, \hat{v}_{-i}) = v_i(x(\hat{v})) + t_i(\hat{v}).
 \]
- Fact: Vickrey auction is special class of VCG mechanism.
Proof

• Want to show that announcing truthfully is dominant strategy

• If the others announce \(\hat{v}_{-i} \) and \(i \) announces \(\hat{v}_i \), \(i \)'s utility is

\[
v_i(x^*(\hat{v}_i, \hat{v}_{-i})) + t_i(\hat{v}_i, \hat{v}_{-i})
\]

and by substituting the VCG transfer formula for \(t_i \)

\[
v_i(x^*(\hat{v}_i, \hat{v}_{-i})) + \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_i, \hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_{-i}))
\]

• Hence, player \(i \)'s best response to \(\hat{v}_{-i} \) is

\[
\arg \max_{\hat{v}_i} v_i(x^*(\hat{v}_i, \hat{v}_{-i})) + \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_i, \hat{v}_{-i}))
\]

• For the moment, suppose \(i \) could choose the alternative \(x \) directly. If this was the case, he would choose the \(x \) that

\[
\arg \max_{x \in X} v_i(x) + \sum_{j \neq i} \hat{v}_j(x)
\]

which is precisely \(x = x^*(v_i, \hat{v}_{-i}) \).

• But \(i \) cannot choose \(x \) directly. Rather he choose \(\hat{v}_i \) and then \(x^*(\hat{v}_i, \hat{v}_{-i}) \) will be chosen.

• By announcing truthfully, i.e., \(\hat{v}_i = v_i \), he ensures that \(x^*(v_i, \hat{v}_i) \) will be chosen.

• Hence, announcing truthfully is a dominant strategy.