
  

  

Abstract—Dynamic walking gaits which exploit inverted 
pendulum dynamics have demonstrated significant promise for 
biped robot locomotion.  For example, these gaits can reduce the 
energy expended and the number and complexity of actuators 
required for level-ground walking. However, robot walkers 
employing dynamic gaits are, in general, also notoriously 
sensitive to terrain variations. In this paper, we focus on new 
methods for developing improved control strategies for and 
analyzing resulting stability of a simple yet effective model for 
biped walking on rough terrain. Our primary contributions are 
as follows. (1) We quantify the stabilizing value of adding a torso 
to the standard compass gait model; (2) we optimize a class of 
simple controllers on this walker to be robust to unsensed 
changes in upcoming terrain height; and (3) we develop 
improved numerical tools for estimating the statistics of fall 
events for rough terrain walking. Our results indicate that the 
torso walker can handle unanticipated step changes in terrain of 
approximately 14% of leg length, and that our statistical tools 
are effective for a 6-dimensional state space system, indicating 
promise in the challenge of addressing the curse of 
dimensionality when applying machine learning techniques to 
rough terrain walking. 

I. INTRODUCTION 
Both efficiency and stability are central goals in bipedal 

robot locomotion.  Achieving both goals simultaneously is 
challenging, however.  In meeting these challenges, we 
suggest that it is first practical to identify models that are 
simple enough to yield general principles – yet not so simple 
that they seriously limit the control capabilities of the system. 
Second, we suggest appropriate tools are required to 
investigate the “mixing effects” of step-to-step variability in 
terrain on the dynamics of the system and, correspondingly, 
on its stability.  In particular, we hypothesize that 
understanding the effects of a single perturbation on a 
limit-cycle behavior is not sufficient in predicting failure 
rates nor in providing guarantees of stability for walking 
models on stochastically rough terrain. This paper 
investigates the twin issues of identifying simple yet capable 
models for biped walking and of quantifying and optimizing 
their stability on rough terrain.  A third challenge is to use 
machine learning techniques for high dimensional systems, 
i.e., to address the “curse of dimensionality” [1]. 

Toward addressing the issue of efficiency, researchers 
have demonstrated stable biped gaits in purely passive 
mechanical devices [2, 3]. The principles of passive dynamic 
walking (PDW) have since been extended to design a variety 
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of powered robots based upon dynamic walking principles 
[4], and investigations of the energetics of various powered 
robot [5, 6] certainly seem to indicate that there are significant 
energetic benefits in exploiting passive dynamic elements in 
bipedal robots.  

A fundamental model used in understanding the dynamics 
of biped gaits is the compass gait (CG) walker [7, 8, 9]. 
Although this model demonstrates a stable limit cycle, it is 
notoriously sensitive to variations in terrain [10]. Several 
researchers have begun to investigate the stability of the 
compass gait model on rough terrain, studying passive 
models [11] and developing control strategies for actuated 
CG models to improve stability [10, 12, 13]. Recent work on 
this problem has also been tested on a real-world robot 
designed to capture the essential dynamics of the CG model 
[14, 15, 16]. Despite these efforts, the compass gait with a 
passive ankle (no ankle torque) can negotiate only mildly 
rough terrain, e.g., height changes on the order of 1-2% of leg 
length for blind walking [15, 17].   

Dynamic programming (DP) has shown some potential in 
developing effective tools for analysis and optimization of 
control policies for low-dimensional system such as the 
compass gait walker. For example, in [10], an approximate 
optimal control policy is developed for an actuated CG 
walker with a torque at the hip, and in [17], the dynamics of 
walking are analyzed using a step-to-step transition matrix. In 
both cases, however, a mesh is employed to discretize state 
space, and this presents a potential limitation: meshing is 
traditionally only practical for very low-dimensional system, 
typically three dimensions or fewer. [18] present one 
approach to extend meshed DP techniques to 
higher-dimensional models of walking, dividing the control 
problem into a set of nearly-decoupled subsystems. 

In this paper, we address the issue of improving stability on 
rough terrain by studying a walking model with an additional 
degree of freedom – a torso – based on a hypothesis that 
effectively decoupling the twin problems of adding energy at 
each step and of achieving adequate ground clearance for 
uphill obstacles will require at least two control actuations. 
Our model of the torso walker can handle step changes in 
terrain of greater than 10% of leg length during blind walking 
on stochastically rough terrain.  

Increasing the complexity of our walking model makes 
analysis of the step-to-step dynamics more challenging. We 
present an approach to extend the analyses developed in [17] 
toward a sparse set of discrete points in a five-dimensional 
state space. This is possible because our low-level controllers 
for swing leg and torso angle tend to restrict the step-to-step 
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dynamics of the system to a region near a thin, 2-dimensional 
manifold within this larger space.  

The rest of the paper proceeds as follow. Section II 
introduces the compass gait both with and without a torso and 
compares the performance of heuristically-tuned controllers 
for each. Section III describes methods and results for a 
hill-climbing optimization to maximize the magnitude of 
single-step perturbation the torso walker can handle during 
blind walking. In Section IV, we outline the Poincaré analysis 
techniques we use, and analyze the metastable dynamics of 
the system when walking blindly on stochastically rough 
terrain, via an extension of the techniques in [17] to 
higher-order systems. We also briefly present experimental 
simulation results, toward verifying the validity of various 
simplifications made throughout. Finally, we conclude and 
discuss directions for future work in Sections V and VI. 

II. MODIFIED MECHANICAL STRUCTURE 
From [9], it seems reasonable to hypothesize that an upper 

body may be used to improve stability of rough terrain 
walking. In this work, we present techniques to quantify the 
extent to which this is true. As an initial step, we compare the 
performance of the CG with and without a torso to determine 
the maximum single-step change in height that each can 
successfully be negotiated during blind walking on otherwise 
flat terrain. Based on these single-perturbation tests, we will 
later focus on the torso walker as a more promising candidate 
for rough terrain walking. First, the CG models and results of 
our initial simulation tests are explained in more detail below. 

A. Models: Compass Gait With and Without a Torso 
The classic (non-torso) compass gait model is depicted on 

the left side of Figure 1. It consists of two rigid links, 
connected by a frictionless, revolute joint at the common 
point called the hip. Additionally, there are three point 
masses: two on the legs (m) and one on the hip (mh). The end 
of each leg can be considered as a tip, providing an 
unactuated point contact on the ground. Note that all angles 
shown in Figure 1 are measure clockwise with respect to 
vertical. For each simulation in this paper, the classic CG 
walker is actuated by a single torque actuator at the hip, and a 
low-level, PD controller is used to regulate the inter-leg 
angle, 21 θθα −= . Although a passive compass gait walker 
may have stable limit cycle gaits for some downhill slopes, an 
actuator is required for successful walking on level ground or 
rough terrain.  

 

The compass gait with a torso, shown on the right side of 
Figure 1, is based on the compass gait model, but it includes a 
third rigid link, attached to the hip and ending in a point mass 
mt. The CG model with a torso has two actuators at the hip; 
one provides torque between the swing leg and the torso and 
the other provides torque between the stance leg and the 
torso. Although the torso walker has a second actuator, the 
degree of underactuaction of the model is still one, the same 
as the classic CG, due to the passive ankle joint. 

The walking dynamics can be separated into two phases: a 
continuous single support phase in which only the stance leg 
contacts the ground, and an instantaneous double support 
phase in which the preceding swing leg becomes the stance 
leg for the next step. The low-level controllers we use to 
regulate torso and swing leg angle are both PD controllers, 
which operate only during the single support phase. As for 
the ground collision, it is assumed to be perfect inelastic and 
instantaneous, so the equation of motion at impact can be 
derived using the principle of conservation of angular 
momentum. Also, we assume that the swing leg will retract 
automatically when taking a step forward and extend 
automatically before the impact happens. Equations of 
motion for both systems can be found in [9]. 

B. Single Perturbation Experiments  
Toward verifying our hypothesis that the stability of the 

compass gait on rough terrain can be improved by adding a 
torso, we simulated the compass gait models from Figure 1 
both with and without a torso on a long stretch flat terrain 
with only a single step change in height, Δh.  In these 
experiments, we use the parameters in the caption of Fig. 1 
and the proportional-derivative (PD) gains below in Table 1. 

 
The proportional and derivative gains, Kp and Kd, that 

regulate the (relative) interleg angle of the classic compass 
gait model are the same values used in regulation of the 
absolute swing leg angle in the CG model with a torso. We 
use a desired interleg angle of 20° for the compass gait model, 
which we determined to be the optimal choice for maximizing 
the uphill perturbation height this classic model can handle. 
To compare a similar step-size for the torso walker, we 
selected a desired absolute swing leg angle of -10° for the 
swing leg angle (θ2, positive clockwise) for the CG with a 
torso. We note briefly that we found the performance of the 
classic CG to be much better when relative, not absolute, 
swing leg angle is regulated, while the torso walker performs 
better when commanding absolute swing angle. In this initial 
benchmarking, we therefore chose to regulate swing leg angle 
as best fit each dynamic model: interleg for the classic CG, 
and absolute for the torso walker. We tested both an “upright” 
torso angle of 4° for the torso CG,  which is optimal when 
θ2des is constrained to be -10°, and an optimal θ2des and θ3des 
combination, found as described further on, in Section III. 

 

TABLE I 
COEFFICIENTS USED FOR LOW-LEVEL PD CONTROL OF JOINTS 

PD 
Controller 

CG CG + torso: torso 
and  swing leg 

CG + torso: torso 
and  stance leg 

Kp 100 100 18 
Kd 10 10 9 

        
Fig. 1. Left: The classic compass gait biped model. Right: Compass gait 
with a torso.  Simulations parameters:   mh = 15kg,  m = 5kg,  L = 0.5m, 
r = 1m,  mt = 10kg (for the compass gait with torso, only) . 



  

For each trial in our single perturbation experiments, we 
start each walker at its fixed point for level-ground walking. 
We perform successive trials on both models for a range of 
positive step changes, Δh+, and negative step change Δh-, 
increasing the magnitude by 0.001 [m] until the robot can no 
longer converge afterward to the fixed point – and falls down.  

C. Results of Single-Perturbation Testing  
As shown in Table II, the ability of the compass gait to 

negotiate an unseen step height change in terrain was 
improved by adding a torso. Performance of the torso 
depends highly on the combination of desired swing and torso 
angles that are commanded. In Table II, we show results for 
both an “upright” and “bent over” set of angles for the torso 
walker. Recall that PD set points for the upright walker were 
selected to match the step length of the optimal classic CG 
model for level-ground walking. For the upright torso model, 
the maximum positive step change in height that could be 
negotiated, or max(Δh+), was about 2.5 times that of the 
two-link CG, and the maximum negative step change in 
height, max(Δh-), increases in magnitude by a factor of 9. 
Once an optimal set for θ2des and θ3des is used, the largest 
single perturbation the torso walker can handle is over 12 
times larger than it is for the classic compass gait. The 
optimal values for θ2des and θ3des were found using a 
hill-climbing algorithm described ahead in Section III. 

III. HILL-CLIMBING SEARCH FOR OPTIMAL TORSO CONTROL 
A hill-climbing search [19] was used to find the optimal 

value of optimal combination of θ2des and θ3des. Pseudo code 
for the algorithm is given below. Our goal is to maximize the 
overall step height, uphill or downhill, that might be 
randomly encountered during blind walking.  In practice, as 
shown in Table II, the limiting perturbation size going uphill, 
max(Δh+), was always smaller in magnitude than max(Δh-). 
Thus, our algorithm effectively seeks only to maximize 
max(Δh+). To initiate the algorithm, we fixed θ2des at -10° and 
searched using with 1° step intervals for the value of torso 
angle, θ3des, that maximizes max(Δh+). The resulting initial 
pair of PD set point angles is 4° for θ3des, and -10° for θ2des. 

In each trial, the initial conditions used for the walker 
dynamics are the fixed point on flat terrain for the 
corresponding θ2des and θ3des of the controller. In the pseudo 
code, and are the optimal θ2des and θ3des to 
have been found thus far. The search is illustrated in Figure 2.  

HILL-CLIMBING PSEUDO CODE 
 

function: find optimal θ2des and θ3des to maximize max(Δh+) 
initialization: o102des −=θ , o43des =θ , and 

o03des2des == θθ , max(Δh+) = max(Δh+)saved = 0.026 [m] 

while ( last22des θθ ≠ ) or ( last33des θθ ≠ ) 

for ]1,0,1[2des2
oo−+= θθ des  

 for ]1,0,1[3des3
oo−+= θθ des  

  find new max(Δh+) for these set point angles 
if  max(Δh+) >= max(Δh+)saved  
 max(Δh+)saved ← max(Δh+) 
 2des2 θθ ←last  ;   3des3 θθ ←last  

 des22des θθ ←  ;  des33des θθ ←  
end 

 end 
end 
returns locally-optimal 2desθ  and 3desθ . 
 

 
Although the hill-climbing search finds on a locally 

optimal solution for θ2des and θ3des, we notice that the values of 
both max(Δh+) and max(Δh-) vary smoothly, as illustrated in 
Figure 2. It therefore seems likely that the locally-optimal 
solution may also be globally optimal; however, we can only 
guarantee that the solution gives a conservative bound on the 
true performance possible by the torso compass gait walker. 
The motion of the optimized system during steady-state 
walking on level ground is shown in Figure 3. 

To further investigate the potential of the torso walker on 
generalized rough terrain, in which we might have knowledge 
of the average upcoming slope over time, we used the same 
gradient-based search algorithm to find optimal combinations 
of θ2des and θ3des for a total of five different terrain slopes. 
Results are summarized in Table III. Note that there is only 

TABLE II 
SINGLE-PERTURBATION CAPABILITIES OF CG WALKING MODELS 

max(Δh) Compass 
Gait 

(no torso) 

Compass gait with a torso 
Upright Torso Bent Torso 

(Optimal) 
max(Δh+) 0.011[m] 0.026[m] 0.139[m] 

max(Δh-) 
 

-0.07[m] -0.63[m] -0.33[m] 

Maximum step change in height (Δh) that the compass gait with and 
without a torso is capable of negotiating. The desired interleg angle is 
20° for the compass gait model, and the desired torso and desired 
swing leg angles are 4° and -10°, respectively, for the “upright torso” 
walker, and are 70° and -24° for the optimal “bent torso” walker. 

 
Fig. 2. Path taken during hill-climbing algorithm for optimal torso 
control. The algorithm starts with θ3des = 4° and θ2des =-10°, and follows 
the local gradient to a locally-optimal solution θ3des = 70°, θ2des =-24°. 
We have included patches of the local surface along the paths for 
max(Δh+) (top surface, in red) and max(Δh-) (in blue) to demonstrate 
that the max uphill and downhill single-step perturbations vary 
smoothly throughout the search.  

Δh (cm)

2desθ 3desθ



  

one matched swing leg angle for each torso angle to generate 
the maximum max(Δh+). Although the optimal commanded 
(desired) torso angle is 70°, the corresponding actual torso 
angle swings between 80° and 90°, so that the torso is bent 
quite close to horizontal, as illustrated in Figure 3, as opposed 
to the more upright posture depicted in Figure 1. Also, it is 
interesting to note that the optimal desired swing leg for a 
bent posture walker is larger in magnitude that for 
near-upright walking (see Table II).  

 

 

 
In our results, the torso CG model can withstand an 

isolated perturbation of up to 13.9% of leg length, providing 
some support to our initial hypothesis that a torso may 
improve walking stochastically rough terrain. The rest of this 
paper focuses on analyses of the torso walker on terrain that 
varies in height at every step. Before continuing, however, we 
have two brief but important comments. First, the second 
column in Table III lists heights with respect to the 
anticipated (steady-state) slope that is listed in column 1, and 
so the numbers may look a bit misleading. The absolute  Δh 
values for uphill step perturbations are given in order below: 

0.092 (+8°), 0.128, 0.139, 0.148, 0.143 (-8°) [units in m] 
These values do not vary quite so significantly as those in the 
Table. They also show that the walker is more susceptible to 
uphill perturbations after local periods of walking uphill for 
some time. This fact leads nicely to our second comment: 
falls during rough terrain walking may not require a step 
height as great as the 13.9 cm single-step perturbation, 
because the local time history of walking may make it more 
vulnerable to falls. Most particularly, we anticipate more falls 
after local periods of uphill walking lasting for multiple steps. 

IV. QUANTIFICATION OF ROUGH TERRAIN WALKING 
Next, we study our controlled torso walkers on stochastic 

terrain, where the change in height at each step is drawn from 
a probability distribution. Experiments were performed to 
analyze the dynamics of both the upright torso configuration, 
with a commanded torso angle of 4°, and the optimal one, 
with θ3des of 70°. Our goal is to represent the step-to-step 
dynamics of rough terrain walking via a compact transition 
matrix, which can be analyzed to predict the long-term 
behavior and stability of a particular walker-terrain 
combination. The details of our simulations, analyses, and 
results are explained in the sub-sections that follow. 

A. One-Step Testing from Non-Equilibrium States 
Our first experiments in this Section study the upright torso 

walker. In initial simulations, the relative change in height of 
terrain at each step, Δh, is drawn a Gaussian distribution with 
zero mean and a standard deviation of 0.005 [m], i.e., 0.5% of 
leg length. This noise level was chosen based roughly on 
max(Δh+) from Table II, such that the probability of any 
single Δh event exceeding max(Δh+) was quite rare (i.e., 5σ). 
This was experimentally determined to be an “interesting” 
level of noise, such that the walker will generally take around 
1000 steps or so between failures: long sequences of steps can 
be recorded, but fall events can also be observed. 

The compass gait with a torso, shown in Figure 1, has six 
state variables, which we define in a state vector, X: 

TTXXXXXX ],,,,,[],,,,,[ 321321654321 θθθθθθ &&&=  
Recall that θ1 is the angle of the stance leg, θ2 is the angle of 
the swing leg, and θ3 is the angle of the torso.  

1) Definition of Poincaré map: When walking on perfectly 
level ground, the controlled torso walker has a stable gait with 
a periodic orbit through state space, which can be analyzed 
using a Poincaré map. We employ a similar step-to-step 
mapping analysis for rough terrain walking. On flat ground, it 
is typical to select the “post-impact” state (as a new leg begins 
a continuous stance phase) as the state of interest with which 
to build a Poincaré map. In such situations, with the ground 
always defined to have a known, constant slope value, and 
with both feet in contact with the ground post-impact, only 5 
additional states are necessary and sufficient to fully define 
the post-impact state.  For example, given the interleg angle 
and a known ground slope, both 1θ  and 2θ   are defined.  

In our work, a Poincaré snapshot is instead taken for each 
time instant when the stance leg passes vertical position, i.e., 
when 01 =X . The only cases in which such a state did not 
exist in our simulations were due to imminent failure (falling 
backward) of the walker, and, fortunately, such events simply 
map to a failure state in our simulations, regardless. 

2) Low-dimensional state representation: As shown in 
Figure 4, our Poincaré states all tended to fall on or near a thin 
manifold within the five-dimensional state space of Poincaré 
snapshots. Moreover, three of the five states could each be 
expressed as a function of X4 and X5. In other words, only X4 
and X5, seem to be necessary to uniquely define the entire 
Poincaré state. As a result, we chose to represent the Poincaré 

 
Fig. 3. The torso walker during its optimal gait. The PD controller 
moves the swing leg forward rapidly during walking, resulting in high 
ground clearance (i.e., nearly 14% of the leg length), as shown. 

TABLE III 
SINGLE-PERTURBATION CAPABILITIES OF CG WALKING MODELS 

Terrain 
Slope 
(deg) 

Δh [m], wrt 
steady-state 
slope value 

Torso angle (deg)  Swing leg (deg) 

des actual  des actual 

8 [-0.52,0.033] 83+[-2,2] [91,98]  -22 -28 – -23 
4 [-0.43,0.093] 74+ [-3,3] [82,89]  -23 -29 – -24 
0 [-0.33,0.139] 70+[-3,2] [80,90]  -24 -31 – -24 
-4 [-0.28,0.189] 60+ [-3,2] [67,74]  -23 -29 – -23 
-8 [-0.25,0.232] 70+ [-4,5] [77,84]  -22 -28 – -23 

The desired (des) torso angle and swing leg angle that is locally optimal 
for  negotiating one Δh+. For each desired torso angle listed, the range in 
[] brackets indicates values for which  max(Δh-) and max(Δh+) remain 
nearly identical (flat). The column of actual torso angle provides the range 
observed during a steady state bobbing motion. See Fig. 3 as an 
illustration of actual torso motion. The actual range for the swing leg 
angle indicates the range of overshoot caused by the PD controller. 



  

state using only two states: the angular velocity of the stance 
leg (X4) and of the swing leg (X5) 

 
3) Sparse state selection for a transition matrix: We wish 

to represent the step-to-step dynamics of rough terrain 
walking by using an efficient distribution of sparse, discrete 
points along our 2D manifold of Poincaré states. We hope to 
demonstrate that such a simplified representation can still be 
reasonably accurate in describing the system dynamics, 
providing a promising tool in analyzing walking gaits. To 
select a sparse set of Poincaré states, we performed 30 Monte 
Carlo trials in which the torso walker began at the fixed point 
for zero-slope terrain. Each simulation ran until the walker 
eventually fell down.  

Figure 5 shows the next randomly-selected upcoming step 
height (z-axis) as a function of Poincaré states (X4, X5) for 
these particular Monte Carlo trials. Successful steps are 
shown in red, and steps resulting in failure are in blue. The 
green points show the one-step limit in terrain height change 
that can be negotiated for any given (X4, X5) state visited 
during walking, vs the X4 – X5 plane. These limits were 
obtained empirically, by testing successively larger step 
heights from each visited state. 

 

 

The sparse set of (X4, X5) points we chose to create our 
transition matrix of the dynamics is shown as a set of green 
points in Figure 6. We began by iteratively selecting points 
from our set of visited states (shown in red) one-at-a-time. 
Points were selected randomly, such that no new point fell 
within a given distance metric of any previously selected 
point. Then, we systematically simulated the step-to-step 
dynamics from each sparse point, for step heights from -2.7 
cm to +2.7 cm, at 1 mm spacing. In the course of these tests, 
we also expanded our sparse mesh whenever necessary, to 
ensure no mesh point transitioned to a new state that exceeded 
our distance metric. This explains why the green points in 
Figure 6 go beyond the range of the red ones from Monte 
Carlo trials. The new points correspond to multi-step periods 
of downhill walking. In the case of multi-step periods of 
significant uphill step heights, the walker would simply fall 
down, going to an absorbing failure state. Thus, the mesh 
only grew in one general direction.  

 
 4) Intuition on failure modes: The bottom of Figure 6 
shows max(Δh) values for our sparse mesh points. The largest 
max(Δh+) value is about 0.026 [m], compared to the max(Δh-), 
which is about -0.63 [m]. The fact that max(Δh+) is so much 
smaller in magnitude than the max(Δh-) reemphasizes our 
earlier comments improved walking intuitively depends on 
increasing max(Δh+).  

Figure 5 in fact gives a closer view of the upper limit shown 
in Figure 6. Note that there are two distinct regions within the 
ceiling of green points shown. For states with higher kinetic 
energy, i.e., larger magnitude angular velocities, the limit is 
nearly flat at around 2.6 cm. The failure mode here 
corresponds to a lack of sufficient swing leg clearance. 
Unlike the optimal walking gait shown in Figure 3, the 
upright torso gait simply never gets its swing leg foot high 
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Fig. 6. Performance limits for the upright torso walker. Top: Data from 
the Monte Carlo trials (red points) and a sparse set of points (green) 
used to build an approximate transition matrix of the dynamics. 
Bottom: the max(Δh+) (largest uphill step) and max(Δh-) (downhill) 
one-step perturbations are shown for each point in the sparse set. 
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Fig.  5. Poincaré states visited during Monte Carlo trials. Red points 
show the next, (randomly selected) upcoming step height during Monte 
Carlo trials. Blue points are the last steps before falling down in each 
trial. The maximum possible one-step uphill limit, max(Δh+), is shown 
in green. Note that failures occur from “dangerous” regions of state 
space, where the green ceiling of points is low. 
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Fig.  4.  Poincaré states for the torso walker lie on a thin manifold in a 
5D space, and three of the five states can each be represented as 
function of the other two. To illustrate this, the plots above show X2 
(swing leg angle, in blue), X3 (torso angle, in red), and X6 (torso 
velocity, in green). Note that X1 is by definition zero for our Poincaré 
sections. Units on the z-axis are degrees and deg/s, as appropriate. 



  

enough to clear a step change in terrain of more than about 2.7 
cm. The walker is “tripping forward” for failures that occur in 
this region 

By contrast, at states with lower kinetic energy, where 
angular velocities approach zero, the swing leg can clear 
terrain, but the stance leg never successfully goes past vertical. 
The failure events here correspond to “falling backward”. See 
the upper diagram in Figure 6 to better visualize this region, 
in which both leg velocities approach zero.  Reaching this 
region typically occurs because a walker has traveled uphill 
for several, successive steps. 

B. Analyses of walking via state transition matrix 
We will examine the dynamics of rough terrain walking by 

analyzing a state transition matrix. This matrix is built using 
our sparse set of observed Poincaré states along with data 
from trials (described earlier) in which we simulate what 
happens from each state, for discrete heights ranging from 
-2.7 to 2.7 cm. We will in fact build transition matrices for 
each of several magnitudes of noise, to calculate the expected 
number of step to failure as a function of the level of noise. 

Let us assume that each new relative change in height is 
selected from a particular Gaussian distribution with zero 
mean and some particular standard deviation, σ. Since the 
probability of the next step height change is drawn from a 
Gaussian distribution, there is always finite (non-zero) 
probability any given step will cause failure, and so the 
walker is guaranteed to eventually fall, with probability one. 
However, the system may still demonstrate exceptionally 
long-living periods of continuous walking. Such long-living 
behaviors before eventual failure are not strictly stable, but 
they are well-described as metastable [17] dynamics. 

For each value of terrain noise, σ, that we wish to examine, 

we calculate a probability transition matrix, T̂ , by using 
equations (1) and (2) below:  
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where fH is a probability mass function, and fh is the 
probability density function of the Gaussian distribution with 
the desired variance to be examined. TΔh is the state transition 
matrix at the corresponding step height change Δh, with an 
extra “fallen down” state included along with our sparse  
(X4,X5) points. Once a walker enters the fallen state, it remains 
fallens, so that falling down is represented as an absorbing 
failiure state. Hence, the last row of TΔh is always [0,0,…,0,1], 
representing fallen states transition to fallen states with 
probability one. In our simulations, 110 sparse states were 
selected and step-to-step transitions were simply mapped to 
the nearest neighbor node.  Note that we also tested more 
sophisticated weighting strategies, notably barycentric 
weighting for an irregular mesh of the sparse points, but 
results were not significantly different in either case. Thus, 

we focus on the more simple, nearest-neighbor approach in 
this presentation.  

The probability transition matrix can be used to estimate 
the probability of being at any neighborhood of interest in 
state space after n steps of walking on stochastically rough 
terrain, as shown in equation (3). 

nTpp ˆ [0] [n] =                 (3) 
Here, p[n] is the state distribution vector of the system; it is a 
vector containing the probability of being at any mesh state at 
the nth step, and can be calculated given any initial state 
distribution vector, p[0]. 

Furthermore, we can decompose any initial state 
distribution vector, p[0], into a sum of the eigenvectors of 

TT̂ , which is the transpose of the transition matrix, as:  
)1()1(0    , ]0[ +×+ℜ∈⋅== NNVkVSp
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where k is the initial weight constant vector, N is the number 
of the selected states, and V contains all the eigenvectors of 

TT̂  in columns. 0
jS  is a vector representing a particular, 

known initial state for the walker, before taking the first step. 
Note that it is also completely valid to assume a probability 
distribution for the initial condition, rather than a particular 
state; the derivation below is identical in either case. 

The probability mass function (PMF) for each mesh state 
after n steps can be found from the state distribution 
vector, n

jS , as shown in equation (6),  

∑=
N

i
i

n
ii

n
j VkS λ           (6) 

where λi, { } !321,1,,3,2,1 +≥⋅⋅⋅≥≥≥+⋅⋅⋅∈ NNi λλλλ , are 

the eigenvalues of TT̂ and Vi are the corresponding 
eigenvectors. Note that Vi is the ith column of V, and ki is the 
initial weight constant at the ith row. λ1 will always be 1 since 
it is the eigenvalue of the absorbing state. In other words, 
once you are in an absorbing state, you remain there with 
probability one. For systems that demonstrate long-living 
behaviors, the magnitude of the second-largest eigenvalue is, 
correspondingly, only slightly less than 1. If the third and 
lower eigenvalues are not very close to unity as well, then the 
expected mean number of steps to failure for the system can 
be approximated as:  

)1(1 2λ−≈failM         (7) 

This theory is discussed in much greater detail in [17]. 

C. Application to the Upright Torso Walker 
For the upright torso walker, walking on terrain where 

σ=5mm, we find that λ2 = 0.9991 and λ3 = 0.83 in our 
simulations. This corresponds to an expected average of 
about 1,200 steps before failure, for initial conditions that are 
well-represented within the second eigenvector (e.g., in a 
particular neighborhood about the fixed point for walking). 



  

Figure 7 shows how rapidly initial conditions are “forgotten” 
for this system. After 2 to 5 steps, the PMF of our discretized 
system has nearly converged a steady-state value.  

 
 Figure 8 illustrates that most falls for the walker are 
expected to occur from low-energy regions of state space, 
where the walker (as previously discussed) cannot 
successfully pivot forward on its passive ankle to complete a 
step. The average step height causing failure in these trials (in 
which σ=5mm) was around 1.7cm, considerably lower than 
the single-perturbation limit of 2.6cm, listed in Table. As we 
anticipated, the mixing effects of rough terrain walking result 
in failures due to multi-step events – most particularly, to 
multiple uphill perturbations in a row. 
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Fig.  8. (a):The conditional probability of failing on the next step, as a 

function of X4 and X5. (b): The probability of being at any given state, after 
initial conditions (IC) are forgotten. (c) and (d): The total probability of a 
failure occurring from each state on any one step, after IC are forgotten. (d) 
magnifies (c) around the “tail” area. Magenta points show actual failures in 
our Monte Carlo simulations; they are grouped at the tail, as expected.  

D. Application to the Optimal Torso Walker 
We also created a family of transition matrices for the 

optimal PD-controlled torso walker for various different 
levels of noise. Our methods were similar to those described 

in modeling the upright walker, except that we skipped the 
painstaking step of simulating each, particular step height for 
each, particular element in the mesh and instead only 
post-processed data from initial Monte Carlo trials (with 
sigma of 4cm) to create each matrix.  

 
E. Experimental Results from Monte Carlo Trials 
Figure 10 compares steps-to-failure with results from 

Monte Carlo trials. It is not practical to use Monte Carlo trials 
to verify all cases here, but the agreement we find in cases we 
did test is very encouraging, since it is not obvious that our 
sparse set of points, representing (X4,X5) only, could 
accurately capture the step-to-step walking dynamics here. 

 

V. CONCLUSIONS 
In this paper, we identify and analyze a simple but effective 

model for biped locomotion on stochastically rough terrain. 
Our contributions are summarized below.  

First, we compare the relative effectiveness of a compass 
gait model with versus without a torso. Using 
heuristically-tuned controllers for both systems, we find the 
torso walker can handle a single-step perturbation that is five 
times greater than our standard CG model. As our second 
contribution, we optimize low-level controllers for torso 
angle and swing leg motion, improving performance 
significantly over our heuristic initial controller.  

Previous research has documented that the largest uphill 
step an optimized CG walker can handle is at most on the 
order of 2% of leg length [10,15]. Our optimized torso CG 
can handle a single step perturbation of about 14 cm for a 

 
Fig. 10. Expected number of steps between falls, as a function of terrain 
variability. Solid and dashed lines show estimates based on transition 
matrix eigenvalues for the upright (θ3des = 4°) and optimal (θ3des = 70°) 

 
Fig. 9. The probability mass distribution (PMF) for the optimal torso 
walker, shown from above (left) and in a 3D viewpoint (right). 
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Fig. 7. Starting at each of three, different initial conditions, shown in 
the leftmost images above, the probability mass function (PMF) is 
shown after taking 1, 2, and 5 steps on stochastically rough terrain. The 
similarity toward the right side indicates that initial conditions are 
rapidly forgotten as the dynamics evolve toward a probabilistic 
distribution for metastable walking. (Sigma is 5mm in this case.)
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1-meter leg. On stochastically rough terrain, where terrain 
height varies at each step and the walker is in a stochastic 
limit cycle, failures can occur due to lower step changes; 
however, it can still handle uphill or downhill steps of at least 
10% of leg length. As in the case of the heuristic controller, 
the increase in terrain roughness for the walker with a torso is 
on the order of a factor of five. 

Finally, we develop meshing techniques to capture the 
step-the-step dynamics of a six-dimensional system. We use 
an eigenanalysis of this transition matrix to examine the 
stochastic stability of controlled torso walkers.  

VI. DISCUSSION AND FUTURE WORK 
Our discretized, low-dimensional modeling of walker 

dynamics is in part developed as a step toward facilitating the 
use of the use of dynamic programming in studying and 
further optimizing control of robot walking. We have 
presented some promising steps toward the analysis of 
higher-order dynamic systems, but there are still several 
directions we plan to explore in future work. Of particular 
interest, we seek improved methods for using limited and/or 
real-world data from a robot to develop both transition matrix 
approximations and to estimate the terrain disturbance which 
results in failure across the regions of state space that are 
visited.  

Tentatively, we believe this might potentially be done with 
two small-scale sets of experiments. One set would involve 
mildly rough stochastic terrain; this would be used to 
generate a sparse set of discrete points in state space and 
corresponding transition matrix describing step-to-step 
dynamics. Our plots of probability mass distribution in 
Section IV use this basic approach, except that the 
experiments here are performed in simulation, rather than on 
an actual robot. 

A second set would involve steady state walking on a 
slope, followed by a particular step change in height. Here, 
the goal would be to approximate the green “ceiling” in 
possible next Δh, as shown in Figure 4, for other systems. 
Intuitively, regions in state space corresponding to lower 
kinetic energy (i.e., velocities closer to zero) have a lower 
“ceiling”, and we can travel toward these regions by walking 
uphill for several steps. Conversely, walking downhill tends 
to pump energy into the system, as one would expect. Exact 
details of such a method remain as open problem.  

Finally, we note that it is interesting that the optimal torso 
angle for blind walking on rough terrain is nearly horizontal. 
Humans walk with an upright posture, while our walker looks 
more reminiscent of a bird such as an ostrich or emu. It would 
be interesting to investigate the relative stability of models 
approximating the mass distribution and joint trajectories 
from data captured from both humans and large birds using 
our eigenanalysis techniques. 
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