Robust Policies via Meshing for Metastable Rough Terrain Walking

Cenk Oguz Saglam and Katie Byl

Abstract—In this paper, we present and verify methods for developing robust, high-level policies for metastable (i.e., rarely falling) rough-terrain robot walking. We focus on simultaneously addressing the important, real-world challenges of (1) use of a tractable mesh, to avoid the curse of dimensionality and (2) maintaining near-optimal performance that is robust to uncertainties. Toward our first goal, we present an improved meshing technique, which captures the step-to-step dynamics of robot walking as a discrete-time Markov chain with a small number of points. We keep our methods and analysis generic, and illustrate robustness by quantifying the stability of resulting control policies derived through our methods. To demonstrate our approach, we focus on the challenge of optimally switching among a finite set of low-level controllers for underactuated, rough-terrain walking. Via appropriate meshing techniques, we see that even terrain-blind switching between multiple controllers increases the stability of the robot, while lookahead (ground information) makes this improvement dramatic. We deal with both noise on the lookahead information and on the state of the robot. These two robustness requirements are essential for our methods to be applicable to real high-DOF robots, which is the primary motivation of the authors.

I. INTRODUCTION

Legged robots may potentially replace or assist humans in tasks involving difficult and/or dangerous environments not suitable for wheels, but where mobility is essential. As highly dynamic solutions to legged mobility, both hopping/running robots [14] and passive dynamic inspired bipeds [9] have been extensively researched and demonstrated. Stability is a major concern for such robots, and one aspect of performance that has not been widely studied is the optimal use of upcoming terrain information. Instead, work to date has typically focused either on remaining robust when blind to upcoming terrain [15] [12] or on achieving particular footstep lengths [7], without more generally addressing the issue of planning on partly-known terrain. A major reason such control problems are not yet adequately addressed in robotics, we argue, is the need for better methods to model legged systems and to quantify their stability. In this work, we present new methods to represent a high-dimensional, nonlinear dynamic system with a relatively small mesh and robustly employ resulting meshes to optimize high-level policies for highly reliable (metastable) walking. We also apply these robust policies derived through meshing to the problem of walking with noisy terrain knowledge as a case example.

Demonstrations of stable limit cycles for passive walkers [9] have motivated the development of underactuated dynamic powered walkers. One approach in control of such walkers is to minimize energy use [4] [2] [5]. However, optimizing for energetics often results in poor stability on rough terrain; such methods lack sufficient robustness. To plan on terrain with limited footholds, Zero Moment Point (ZMP) planning has become very popular. Here, walking motions are planned deliberately to avoid underactuation [20] [18] [13]. While very prominent in humanoid walking research, this approach often results in slow and inefficient walking, motivating many researchers to focus on improving robustness for dynamic walking solutions that more closely resemble human walking. One notable control method for dynamic walking is the Hybrid Zero Dynamics (HZD) approach [21] [22], which has been shown to be successful on a boom-mounted robot and is currently being tested on a 3D robot [6].

Recent work on underactuated bipeds has demonstrated tractable strategies for switching among multiple controllers to cope with rough terrain [17] [12]. A blind (to the ground information) finite-state machine approach has been shown to increase robustness greatly [12], and switching control based on a one-step lookahead to the ground slope is shown to be advantageous [17]. While robustness to unexpected (blind) perturbations is definitely useful, lookahead knowledge should also be used if it can improve performance. Our intuition and experience tells us that when we walk blindly, we are not as safe, comfortable, fast, or efficient as in sighted walking. Our work aims to quantify this perhaps obvious intuition more scientifically. In this work, we argue through modeling that sighted walking is dramatically better than optimal state-based switching with blind walking. However, the main focus will be on demonstrating robustness of our modeling, which is needed for our methods to be applicable to an experimental robot.

Although our goal is to keep our methods and results generic for all legged robots, the ideas will be illustrated on a planar, five-link, underactuated biped in this paper. We will assume there are qualitatively different low-level controllers, which might be designed using different control schemes. What is important is that they should behave differently and that we can make use of all of them effectively. To come up with high-level policies achieving this, we will use dynamic programming. In this sense, our methods are aimed in particular at a machine-learning framework, which is shown to be useful for bipedal locomotion research [10] [11] [19].

In addition to our particular results on sighted walking, key contributions of this work include (1) new methods for tractable meshing of high dimensional (10D) dynamics, (2) techniques for improving policy robustness, and (3) quantifying the validity of both our meshing and resulting policy. The rest of the paper is organized as following. Sec. II describes
our problem statement and walking model, followed by a brief description of low-level controllers in [III]. Sections [IV] and [V] describe our meshing methods and value iteration algorithm, respectively, and [VI] investigates robustness. Finally, conclusions and future work are presented in VII and VIII.

II. PROBLEM STATEMENT AND MODEL

Consider a legged robot that is walking, running, and/or hopping. Furthermore, assume there are multiple controllers available, each having advantages and disadvantages under different circumstances. Each of them might be obtained by different methods, and/or optimal for different cost functions. The problem we address is: How can the robot optimally switch among them?

We will consider biped walking, and our concern will be stability. There will be three controllers, designed for flat, downhill, and uphill grounds. The state and noisy information about the ground ahead will be available to the controller. The goal is to find a robust near-optimal control policy.

A. Model

The analysis in this paper will be carried out with a 5-link biped as shown in Figure 1. It has point feet and it is underactuated by 1 DOF. The angles shown in the figure form \(q := [q_1, q_2, q_3, q_4, q_5]^T \). The ten dimensional state of the robot is defined as \(x := [\dot{q}^T, \ddot{q}^T]^T \).

![Illustration of the five-link biped](image)

Dependent on the number of legs in contact with the ground, the robot will be either in the single or double support phase. Walking consists of these two phases in sequence. The single support phase has continuous dynamics, which can be derived in the following canonical form using a Lagrangian approach.

\[
D(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = Bu,
\]

where \(u \) is the input. As the robot has point feet, the double support phase can be well captured as an impact event.

\[
x^+ = \Delta(x^-),
\]

where \(x^- \) and \(x^+ \) are the states just before and after the impact respectively. Conservation of energy and the principle of virtual work gives the mapping \(\Delta \) [22], [8].

III. CONTROL

In this paper, we propose a general framework that is independent of the structure of the controllers. We anticipate that the same ideas will apply when different control schemes are used. However, we will still provide a short explanation of the particular controller design used in this work, which is taken from [17].

One challenge for the control of bipedal locomotion is under-actuation: \(q \) is 5-dimensional, whereas \(u \) is 4-dimensional. The latter suggests selecting 4 variables to be controlled. which we name as \(q_c \).

\[
q_c := [q_2 + q_5, q_3 + q_4, q_5]_T
\]

Other definitions for \(q_c \) are possible, but this choice is verified to work well. Then, adopting an input \(u \) in the following form

\[
u = (ED^{-1}B)^{-1}(v + ED^{-1}(Cq + G)),
\]

where \(E = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \)

will lead to

\[
\dot{q}_c = v.
\]

The way \(v \) is controlled is a matter of choice. Here, we use the sliding mode controller (SMC) scheme as explained in [16] for finite time convergence. The error is defined by

\[
e = q_c - q_c^{ref}.
\]

And generalized error is given as

\[
\sigma_i = \dot{e}_i + e_i/\tau_i, \quad i = \{1, 2, 3, 4\}.
\]

Then \(v \) in (4) can be chosen to be

\[
v_i = -k_i |\sigma_i|^{2\alpha -1} \text{sign}(\sigma_i), \quad i = \{1, 2, 3, 4\}.
\]

Table I lists the controller parameters used, which were obtained by trial and error.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\tau_i)</th>
<th>(k_i)</th>
<th>(\alpha_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/10</td>
<td>50</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>1/10</td>
<td>100</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1/20</td>
<td>75</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>1/5</td>
<td>10</td>
<td>0.7</td>
</tr>
</tbody>
</table>

| TABLE I |

Controller Parameters

In this study, we will obtain different controllers using the same controller parameters, but different references. Details of reference design are left out, due to space constraints, but qualitatively, each is designed to bias the walker toward suitability for uphill (leaning forward and smaller steps), flat, or downhill (more upright and larger steps) walking. We note that despite these general design goals, heuristic switching
among controllers is far from optimal, and optimal policies are not trivial. Piece-wise constant, time-invariant references are used, and one of the resulting gait trajectories is shown in Figure [2]

![Figure 2. Angles over time for a typical step](image)

IV. MESH

This section describes our meshing, which uses a distance metric to adjust the total mesh size as desired within the 10D (5 angles and their velocities) state space. We also review theory for estimating the mean steps to failure for the system and provide numerical evidence that our estimation error converges as the mesh resolution improves. Our eventual meshing goals are to create one mesh with a small number of error converges as the mesh resolution improves. Our eventual meshing goals are to create one mesh with a small number of states. So, for the rest of the paper, the term ‘state’ refers to and refer to those ‘states just before the impact’ simply as transition from single support phase to double support phase, as meshing resolution increases.

As meshing resolution increases, our distance metric (for the learned policy, whereas the actual slope ahead, γ, might be any real value. The range and density of the slope set can be chosen depending on the controllers’ performance, and on the robot. Also, the slope set does not have to be evenly spaced, it may be denser around slopes of particular interest. As we increase the density of the slope set, we are able to capture the dynamics more accurately at the expense of higher numbers of points in the final mesh, P.

Next, an initial mesh, P, should be chosen. In this study, we use an initial mesh consisting of only two points. One of these points (p_1) represents all failure states, no matter how robot failed, e.g. a foot slipped, or the torso touched the ground. The other point was the stable fixed point the robot state converged to when the ground was flat, and only ζ_1 was used. Then the process explained in Algorithm [11] is used. This algorithm is taken directly from [17], except that the mesh can be grown here in one pass, using only two initial mesh points, due to our distance metric.

B. Ground Profile

We will assume the ground profile is angular, i.e., it consists of slopes, noted by γ. The slope ahead only changes at impacts; i.e., it remains constant until the next step. This ground assumption captures the fact that to calculate the pre-impact state, the ground for each step can simply be interpreted as a ramp with the appropriate slope. Our general method is still applicable to more complicated ground models, and we note briefly that the most important modeling detail for future work is to consider vertical (tripping) obstacles in between the footholds.

For our piecewise-sloped ground profile model, the next state of the robot, $x[n+1]$, is a function of the current state $x[n]$, the slope ahead $\gamma[n]$, and the controller used $\zeta[n]$, i.e.

$$x[n+1] = h(x[n], \gamma[n], \zeta[n]).$$

D. Deterministic State-Transition Matrix

Recall the step-to-step dynamics of walking are given by [11] and, thanks to the meshing (state-transition map), that we know $h(p, s, \zeta)$ for all $p \in P$, $s \in S$, and $\zeta \in Z$. Next, we will make an approximation. Consider the closest point in mesh to $h(p, s, \zeta)$.

$$h^a(x[n], \gamma[n], \zeta[n]) := c(h(x[n], \gamma[n], \zeta[n]), P)$$

(14)
Algorithm 1 Meshing algorithm

Output: Final set of states P and state-transition map

1: $Q \leftarrow P$ (except p_1)
2: $P \leftarrow P$
3: while Q is non-empty do
4: $Q_2 \leftarrow Q$
5: empty Q
6: for each state in $q \in Q_2$ do
7: for each slope $s \in S$ do
8: for each controller $\zeta \in Z$ do
9: Simulate a single step to get the final state x, when initial state is q, slope ahead is s, and controller ζ is used. Store this information in the state-transition map.
10: if robot did not fall and $d(x, P) > d_{thr}$ then
11: add x to Q
12: add x to P
13: end if
14: end for
15: end for
16: end for
17: end while
18: return P and state-transition map

where (10) is used, and the superscript a stands for approximation. Then we write the approximate step-to-step dynamics of the system:

$$p[n+1] = h^a(p[n], s[n], \zeta[n])$$

(15)

After that, the deterministic state transition matrix can be written as

$$T_{d(ij)}(s, \zeta) = \begin{cases} 1, & \text{if } p_j = h^a(p_i, s, \zeta) \\ 0, & \text{otherwise.} \end{cases}$$

(16)

Note that (16) is the result of our basic, nearest-neighbor approximation, which appears to work well. More sophisticated approximations are left as a topic for future work and would result with the matrix not just having one or zero elements, but also fractional values in between.

E. Stochastic State-Transition Matrix

The stochastic state-transition matrix T_s is defined by

$$T_{s(ij)} := Pr(p[n+1] = p_j \mid p[n] = p_i).$$

(17)

To calculate this matrix, the first thing we need to do is assume a distribution over slope set, noted by P_S.

$$P_S(s) = Pr(s[n] = s)$$

(18)

In this paper, we will assume a normal distribution for P_S, with mean μ_s, and standard deviation σ_s.

$$s[n] \sim \mathcal{N}(\mu_s, \sigma_s)$$

(19)

When only one of the controllers, say ζ is used (no switching), T_s can be calculated as

$$T_s = \sum_{s \in S} P_s(s) \cdot T_d(s, \zeta)$$

(20)

The definition of T_s will always remain the same, but its calculation will be updated when we consider switching between controllers.

F. Mean First Passage Time

As mentioned, we will be illustrating our methods by optimizing stability of bipedal walking in this paper. To measure stability, we will be looking at the average number of steps before falling. The more steps a robot takes on average, the more stable we consider it to be. To describe the average number of steps before falling, we borrow the somewhat misleading term Mean First Passage Time (MFPT) in [3], which we note actually characterizes average steps (not time) to failure. First, it is assumed that once the robot falls, it stays that way. Then the failure state, noted by p_1 in this work, is an absorbing state, and it is associated with the largest eigenvalue of T_s, $\lambda_1 = 1$. When the second-largest eigenvalue, λ_2, is very close to unity, its corresponding time constant, τ_2, approximately equals the MFPT:

$$MFPT \approx \tau_2 = \frac{-1}{\log(\lambda_2)} \approx \frac{1}{1 - \lambda_2},$$

(21)

and the system is considered “metastable”, with failures events being both inevitable but also very rare. Thus, the number of steps robot is going to take on average can be approximated using the stochastic state transition matrix. For space considerations we are skipping further details and proofs which can be found in [3]. In this paper, we will use (21) as the basis for the graphs of the following sections.

G. Convergence of the Mesh

Note that with the meshing algorithm we explained, and with a fixed initial mesh, the only parameter to be selected is d_{thr}. The number of points in the final mesh, and the accuracy obtained from (15) with this mesh are inversely related to d_{thr}. We argue that as $d_{thr} \to 0$, the accuracy of the mesh, and as a result, the MFPT of the controllers, converges to a result capturing the true, hybrid dynamic system dynamics. We illustrate convergence numerically by first fixing $\sigma_s = 1.5$ (deg) and plotting six independently obtained meshes with $d_{thr} = \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6\}$. In all plots that follow, each location on the x-axis assumes a different long-term mean in slope, resulting in a different stochastic transition matrix, from (17).

Figure 3 shows the difference in results for $d_{thr} = 0.1$ (more refined) versus $d_{thr} = 0.5$ (more coarse). Here, solid lines are associated with $d_{thr} = 0.1$. As d_{thr} is reduced from 0.5 to 0.1, we observe that the dashed line approaches the solid one, as expected. Table I shows the convergence. The second row gives the number of points in the mesh, while the third row shows the total area of the difference with $d_{thr} = 0.1$ plot.

V. VALUE ITERATION

Unless stated otherwise, we will be working with a $d_{thr} = 0.5$ mesh to solve for optimal policies, which has 6,126 points, and plotting results for $\sigma_s = 1.5$.

TABLE II

<table>
<thead>
<tr>
<th>d_{th}</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>394,420</td>
<td>65,066</td>
<td>21,726</td>
<td>10,531</td>
<td>6,126</td>
<td>4,154</td>
</tr>
<tr>
<td>err</td>
<td>0</td>
<td>3.3078</td>
<td>5.1959</td>
<td>7.9576</td>
<td>11.6452</td>
<td>14.4813</td>
</tr>
</tbody>
</table>

A. Blind Walking

We define policy, π, as the function determining the choice of controller, $\zeta[n]$. It is typical to assume a policy is a function of the state in Markov Decision Processes.

$$\zeta[n] = \pi(p[n])$$ \hspace{1cm} (22)

When this policy is applied, the approximate dynamics in (15) will become the following.

$$p[n+1] = h^\pi(p[n], s[n], \pi(p[n]))$$ \hspace{1cm} (23)

In this case, (20) should be also updated as

$$T_s(ij) = \sum_{s \in S} P_{s}(s) T_d(ij)(s, \zeta)$$ \hspace{1cm} (24)

We then use value iteration (11) to get the optimal policy.

$$V(i) := \max_{\zeta} \{ \sum_{j} P_{\zeta[ij]} (R(j) + \alpha V(j)) \}$$ \hspace{1cm} (25)

where V is the value, $P_{\zeta[ij]}$ is the probability of transitioning from p_i to p_j when ζ is used, $R(j)$ is the reward for transitioning to p_j, and α is the discount factor, which is chosen to be 0.9. This equation is iterated until convergence to get the optimal policy. Remember that the failure state is p_1. The value of the failure state will initially be zero, i.e.,

$$V(1) = 0$$ \hspace{1cm} (26)

and it will always stay as zero due to the following: The reward for taking a successful step is one, falling is zero.

$$R(j) = \begin{cases} 0, & j = 1 \\ 1, & \text{otherwise} \end{cases}$$ \hspace{1cm} (27)

Note that the reward function we use does not depend on the controller, slope ahead, or current state. More sophisticated reward functions (e.g., considering energy, speed, step width) are topics for our future research. Substituting (26) and (27) into (25), we obtain

$$V(i) := \max_{\zeta} \{ \sum_{j \neq 1} P_{\zeta[ij]} (1 + \alpha V(j)) \}.$$ \hspace{1cm} (28)

What is left is to write the probability term.

$$P_{\zeta[ij]} = \sum_{s \in S} P_{s}(s) T_d(ij)(s, \zeta)$$ \hspace{1cm} (29)

The optimization is done for each $\mu_i \in S$ and $\sigma_i = 1.5$. Figure 4 presents the results. Apart from the three individual controllers we have seen before, there are three more plots. The dark green (top) plot assumes mean is known to the controller, while the other two assume $\mu_i = 0$. Unlike the other two, the orange (bottom) plot uses only ζ_1 and ζ_2 for optimization. In the light of the performance degradation indicated by this plot, we conclude that use of a third controller, ζ_3, is helpful for blind walking.

B. Sighted Walking with One-Step Lookahead

investigate policies obtained using only sight information, without regard for the current state, and they demonstrate this performs very poorly. Next, we consider policies that are functions of both the current state, and the slope ahead, i.e.,

$$\zeta[n] = \pi(p[n], s[n]).$$ \hspace{1cm} (30)

In this case, the approximate dynamics in (15) becomes

$$p[n+1] = h^\pi(p[n], s[n], \pi(p[n], s[n])),$$ \hspace{1cm} (31)

and T_s should also be updated as

$$T_s(ij) = \sum_{s \in S} P_{s}(s) T_d(ij)(s, \pi(p_i, s))$$ \hspace{1cm} (32)
To use the one-step lookahead in deriving policy, we will modify the value iteration.

$$V(i) := \sum_{s \in S} \max_{\zeta} \left\{ \sum_{j \neq i} P_{\zeta[ij]}(s) (1 + \alpha V(j)) \right\}$$ \hspace{1cm} (33)

Instead of modifying the value iteration algorithm, we could define a new 11-dimensional state, including the slope in addition. However, (33) makes the analysis of the following parts easier, reduces computational cost, and requires less memory. The probability of 'having s as the slope ahead' and 'transitioning from p_i to p_j when ζ is used' is simply the multiplication of these two probabilities.

$$P_{\zeta[ij]}(s) = P_S(s) T_{d[ij]}(s, \zeta)$$ \hspace{1cm} (34)

We optimize with $\mu_0 = 0$ and $\sigma_0 = 1.5$ to get Figure 5. The best policy from Figure 4 (when μ_0 is assumed to be known, but without the one-step lookahead) is also shown for reference. Noting the logarithmic y-axis, it is clear that sighted walking is significantly better than blind walking, as one might expect. In the sighted walking case, we also found that knowing the mean helps very little, and we correspondingly only present a $\mu_0 = 0$ plot. We note that not needing to know the long-term mean is a desirable result.

![Fig. 5. Optimal Switching](image)

VI. Robustness

Although the results of the previous section seem impressive, for this methodology to be applicable to real-life problems, the policies must also be robust to uncertainties. In this section, we describe several modifications that significantly improve several aspects of policy robustness.

A. Noisy Slope Estimation

We start our study of robustness by considering the addition of noise to slope information. The slope ahead will still be defined by variable s, but the controller will think it is (closest to) $\tilde{s} \in S$, due to the noise $l \in S$. Their relationship will be given by

$$\tilde{s} = \max(\min(S), \min(\max(S), s + l)).$$ \hspace{1cm} (35)

The noise will be normally distributed with zero mean and standard deviation σ_l. In the presence of noise, the policy will be a function of \tilde{s}, not s.

$$\zeta[n] = \pi(p[n], \tilde{s}[n])$$ \hspace{1cm} (36)

Then the approximate dynamics (15) will be

$$p[n + 1] = h^\text{f}(p[n], s[n], \pi(p[n], \tilde{s}[n]))$$ \hspace{1cm} (37)

The stochastic state-transition matrix must also be updated to consider noise.

$$T_{s[ij]} = \sum_{l \in S} \sum_{i \in S} P_S(s) P_L(l) T_{d[ij]}(s, \pi(p_i, \tilde{s}))$$ \hspace{1cm} (38)

Figure 6 shows what happens to the policy we obtained in the previous section (orange-top plot), in the presence of $\sigma_l = 1$ noise (magenta-bottom plot). We lose almost all the improvements gained by switching!

![Fig. 6. Noisy Slope Information](image)

To account for noise in the slope information while optimizing, we first rewrite the modified value iteration algorithm.

$$V(i) := \sum_{s \in S} \max_{\zeta} \left\{ \sum_{j \neq i} P_{\zeta[ij]}(\tilde{s}) (1 + \alpha V(j)) \right\}$$ \hspace{1cm} (39)

The equation is essentially the same as (33), except we made clear \tilde{s} is available to the controller instead of s. The probability of 'thinking \tilde{s} is the slope ahead' and 'transitioning from p_i to p_j when ζ is used' is then

$$P_{\zeta[ij]}(\tilde{s}) = \sum_{s \in S} \sum_{l \in S} P_S(s) P_L(l) f_s(s, l, \tilde{s}) T_{d[ij]}(s, \zeta),$$ \hspace{1cm} (40)

where

$$f_s(s, l, \tilde{s}) = \begin{cases}
1, & \tilde{s} = \max(\min(S), \min(\max(S), s + l)) \\
0, & \text{otherwise}.
\end{cases}$$ \hspace{1cm} (41)
The green (middle) plot in Fig. 6 is the policy obtained and plotted by assuming $\sigma_l = 1$. Note that the new policy performs almost as well now with noisy slope information as the original policy did using noise-free data. Not surprisingly, as the noise goes down, the new policy performs better. More importantly, as the magnitude of the noise increases, we find performance does not suddenly drop. These data support our hypothesis that accounting for lookahead uncertainty is extremely important and can be done well without a precise noise model.

B. Small Mesh Policy on Big Mesh

Up until now, we optimized policies and plotted resulting performance using the same ($d_{thr} = 0.5$) mesh. In this section, we keep optimizing on the coarse ($d_{thr} = 0.5$) mesh, but we estimate performance using a bigger, more refined ($d_{thr} = 0.1$) mesh, intended to better approximate the true system dynamics. As presented in Table III, the small mesh has 6,126 points, while the big mesh has 394,420 points, meaning use of the small mesh in policy optimization requires significantly lower computational cost. Thus, quantifying and improving robustness to mesh size are important issues.

As before, we will assume the small ($d_{thr} = 0.5$) mesh used to derive a policy is completely known. However, we will assume the larger, high-resolution mesh is not known during value iteration, thus it cannot be used while finding the policy. The larger mesh will be only used to estimate how well the small-mesh policy would work on the true system, i.e., it approximates how the policy behaves when substituted to (11). First, we need to explain how the small-mesh policy can be applied when the slope ahead, γ, may not be in the slope set, and/or state x may not be in the mesh. In these cases, we will apply the most basic idea: The controller will be picked assuming slope ahead is $s \in S$ closest to γ and current state is $p \in P$ that is closest to x. So the policy actually is

$$\zeta[n] = \pi(c(x[n], P), c(\tilde{\gamma}[n], S)), \text{ (42)}$$

where $\tilde{\gamma}[n]$ is the noisy slope ahead information, and function c is as defined in (11). In its general form, let us denote the big mesh by P_b, which is obtained from a slope set S_b. Using this mesh, we can approximate how (42) would behave in the higher fidelity mesh.

$$\zeta[n] = \pi(c(p_b[n], P), c(\tilde{\gamma}[n], S)), \text{ (43)}$$

The definition and calculation of T_s remain the same, but this time P_b and S_b will be used in obtaining it. Figure 7 shows the policy from the last section for reference (green-top plot). The magenta (bottom) plot shows what happens when this policy is applied on P_b, when P_b is obtained with $S_b = S$, but $d_{thr} = 0.1$. (We consider $S_b \neq S$ later, in [1-13].) Comparing the purple and green curves in the figure we immediately note that there is a huge drop. As in our the previous section on noisy terrain sensing, we must once again refine our algorithm, this time to improve robustness to meshing discretization.

In our approach to fix this issue, we consider the following: While the actual state is p_i, the robot thinks it is p_k. To make this clear, we rewrite the value iteration algorithm.

$$V(k) := \sum_{\gamma \in \mathcal{S}} \max_{\xi \in \mathcal{P}} \left\{ \sum_{j \neq 1} P_{\zeta[kj]}(\tilde{s})(1 + \alpha V(j)) \right\} \text{ (44)}$$

Note that we only changed i with k, but this will make future notation easier to follow. The probability of ‘thinking \tilde{s} is the slope ahead’, ‘thinking the state is p_k’, and ‘transitioning to p_j when ζ is used’ is

$$P_{\zeta[kj]}(\tilde{s}) = \sum_{s \in \mathcal{S}} \sum_{l \in \mathcal{S}} P_s(s)P_{l}(l)f_s(s, l, \tilde{s})P_{p_{(k)}}T_{d_{(lj)}}(s, \zeta), \text{ (45)}$$

where $P_{p_{(k)}}$ is the probability of being at state p_i when robot thinks the state is p_k.

$$P_{p_{(k)}} := Pr(p = p_i \mid \tilde{p} = p_k) \text{ (46)}$$

Finding the best calculation for $P_{p_{(k)}}$ is a question we want to answer in future work. In this paper, we try the following

$$P_{p_{(k)}} = P_{c}(c) / \sum_{c} P_{c}(c), \text{ (47)}$$

where p_i is the c^{th} closest state to p_k, and P_{c} has the following form

$$P_{c}(c) = \begin{cases} \exp(-\lambda_c c), & \text{if } \exp(-\lambda_c c) > 10^{-5} \\ 0, & \text{otherwise.} \end{cases} \text{ (48)}$$

In this work, we use $\lambda_c = 1$ as the distribution parameter. These calculations result with the orange curve in Figure 7 (new policy).

C. A Final Adjustment

It is important to note that robustness to slope and state information is somewhat similar in the following sense: If the slope ahead or the current state is different from what the robot thinks, it may end up at a different point than it estimated beforehand. So in both cases, the optimization tries to account for this ending up in a different state. Since the approach in (47) is
only ad hoc, we will also try increasing the robustness to slope information to see whether this actually helps when evaluating MFPT on the big mesh. While optimizing policy, instead of a normal distribution for \mathcal{P}_s we assume a uniform distribution. Thus, we will optimize assuming the probability of having -7° as the slope ahead is the same as the probability of having 2°. This idea eliminates the need to choose both μ_s and σ_s for optimization. We also assume sensing noise $\sigma_j = 3 \text{ (deg)}$ and use $\lambda_c = 1/5$ in \[48\] while optimizing to increase robustness. These adjustments do improve performance, as shown by the dark blue curve in Figure 7 (final policy). We also tested the performance of this “final policy” using both smaller and larger magnitude terrain noise than the nominal $\sigma_z = 1.5$ assumption. Plots are not included, due to space limitations. However, when we test on terrain $\sigma_z = 1$ and $\sigma_z = 2$, we observe that the performance for the policy derived assuming $\sigma_z = 1.5$ still gives near-optimal stability results for the actual terrain noise present.

\subsection*{D. Increasing Mesh Resolution for Slope Set, S_b}

We finally show what happens if the slope set is different for optimization than for the system under evaluation, i.e., $S_b \neq S$. We now apply the final policy from Section VI-C on a new mesh obtained using $d_{thr} = 0.2$, and

$$S_b = \{(k/3)^{\circ} \mid k \in \mathbb{Z}, -24 \leq k \leq 24\}. \quad (49)$$

This new big mesh has 226,489 points, and plotting is done with $\sigma_z = 1.5$, and $\sigma_z = 1$. Figure 8 presents the results, where final policy from Figure 7 is shown for reference. We see that the policy is quite similar when the slope set is denser, which encourages us to think that the final policy would also yield similar performance when simulating the full dynamics (Eq. 1) and using an even denser set of possible terrain slopes. Monte Carlo simulations are not a computationally practical means of verifying this prediction when MFPT is very high, which has motivated our testing methodology throughout, using more refined meshing.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{Denser Slope Set}
\end{figure}

\section{Conclusions}

In this paper, we present methods for capturing the approximate dynamics of a walking model using a tractable mesh size, and we develop and test approaches for deriving robust, near-optimal switching control. To illustrate, we consider an underactuated five-link (10-state) walker with noisy one-step lookahead information. Our results quantify the intuition that even a one-step lookahead on terrain improves walking stability significantly. However, it is important to also use the current state information to set the policy. Using only slope information yields poor performance.

To estimate the number of steps before falling, we mesh the step-to-step dynamics of the system. With the meshing technique explained in this paper, we were able to do this accurately with around six thousand points only.

After getting the mesh, we use value iteration to make use of qualitatively different controllers and maximize number of steps before falling. We highlight that use of only three such controllers on rough terrain improves stability significantly, compared with using any one; in fact, eliminating any one of the three degrades stability significantly.

Our primary concern in this paper is to estimate how these policies would do in reality, on the true hybrid dynamic system. Thus, we focus on robustness. We were able to deal with both the effects of noise on slope information and of estimating MFPT on a big mesh using the policy obtained on a much smaller mesh. Our final conclusion is that the drastic reduction in required mesh size in our work here (6,126 points, compared with over 139,000 in [17]) provides an important step toward eventually applying these methods to improve the number of steps before falling of an actual robot dramatically.

\section{Future Work}

Although our exponential distribution approach seems to be working fine, our next goal is to improve the calculation of P_f defined in \[46\]. Our main goal is to make these ideas work on a high DOF robot first in simulation, then in experiments with real robots.

Recall that the meshes in this paper were obtained using an initial mesh consisting of two points. As a result, we get a final mesh from which we will never escape (except by falling), if we start walking from one of those states in the mesh. However, there are states from which we can go to this mesh, but not vice-versa. Addressing control and performance for initial conditions outside the mesh is a topic for future work. We also want to investigate the validity of and improve if needed our angular ground profile assumption.

Finally, although we focused on stability in this paper, one can update the reward function of value iteration to consider many factors such as speed, obstacles, energetics, and/or friction limits.

\section*{Acknowledgments}

This work is supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
REFERENCES

