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Abstract— Practical bipedal robot locomotion needs to be
both energy efficient and robust to variability and uncertainty.
In this paper, we build upon recent works in trajectory
optimization for robot locomotion with two primary goals.
First, we wish to demonstrate the importance of (a) considering
and quantifying not only energy efficiency but also robustness
of gaits, and (b) optimization not only of nominal motion
trajectories but also of robot design parameters and feedback
control policies. As a second, complementary focus, we present
results from optimization studies on a 5-link planar walking
model, to provide preliminary data on particular trade-offs
and general trends in improving efficiency versus robustness.
In addressing important, open challenges, we focus in particular
on discussions of the effects of choices made (a) in formulating
what is always, necessarily only an approximate optimization,
in choosing metrics for performance, and (b) in structuring and
tuning feedback control.

I. INTRODUCTION

Humanoid walking should be both energy efficient and ro-
bust to perturbations. This paper explores methods and trade-
offs in achieving these two goals through local (gradient-
based) optimization of a 5-link planar walking model.

Both energy efficiency and robustness have long been
goals for robot walking, and both mechanical design and
control strategy play important roles in each objective. Below
is a selective summary of relevant prior work.

Toward improved mechanical design, biped robots built on
passive dynamic principles drew significant attention over a
decade ago [1], but their success at reducing required energy
has seemed to be coupled with fragile dynamics, yielding
susceptibility to falls. Design of mechanical properties, i.e.,
lengths and mass distribution, clearly play an important
role in enabling efficient legged locomotion, but they also
arguably affect stability.

To improve controlled walking strategies, a range of work
has focused on both trajectory optimization and control
theory. Trajectory optimization through direct collocation [2]
is one promising approach. In 1999, for example, Hardt
et al. formulated the problem of minimizing energy of a
planar 5-link biped, both with and without ankle torque,
using DIRCOL software [3] to solve a nonlinear optimiza-
tion subject to contact constraints. Two years later, Paul
et al. looked at simultaneous optimization of both mass
distributions (robot design) and nominal motion trajectories,
to be tracked via a simple proportional controller (with
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saturation limits), using simple neural networks to learn
efficient locomotion [4].

In 2002, Westervelt and Grizzle highlighted the impor-
tance of optimizing walking motions while simultaneously
guaranteeing asymptotic stability [5], as opposed to a still-
dominating paradigm of sequential design, first optimizing a
nominal trajectory and subsequently adding feedback control
in a more ad hoc way. As in [3], they also use DIRCOL, and
they solve a sequential quadratic programming (SQP) prob-
lem to optimize the sum of u2 across all four actuators. Note
that [5] uses a hybrid zero dynamic (HZD) approach, which
parameterizes joint trajectories on a monotonic, geometric
variable. In a similar spirit, [6] produce energy-optimal gaits
for the 5-link walker using polynomial trajectories in which
the gait is defined as q(s), as a function of geometry rather
than time, by solving for optimal polynomial coefficients.

Various works have instead focused on optimizing robust-
ness. Dai and Tedrake [7] optimized a measure of robustness
that quantifies variation from a nominal trajectory during
rough terrain locomotion, for both the spring-loaded inverted
pendulum (SLIP) and compass gait (CG) walker planar
legged locomotion models. In [8], Saglam and Byl explored
Pareto trade-offs between energy use and robustness, using
a weighted metric that balances rewards for both low energy
use and high mean-time to failure (aka mean first-passage
time), using value iteration to optimize across a meshed
approximation of the reachable state space for the system.

Recent work by Hamed, Buss and Grizzle also focuses
on robustness, tuning control parameters to ensure not only
stable eigenvalues of the Jacobian of the period-one return
map of limit-cycle walking but also reduced sensitivity of this
Jacobian to parameter variation [9]. Here, they decouple the
selection of a nominal periodic orbit from that of optimizing
a parameterized controller, e.g., torques include both the
necessary feedforward terms exactly compatible with the
limit cycle of interest, along with some flavor of feedback
law (e.g., perhaps but not necessarily HZD) that has no effect
along the exact limit cycle trajectory.

Finally, a few other recent works emphasize applicability
of legged locomotion optimization to an expanding range
of problems. Recent work by Ma, Hereid, Hubicki and
Ames on the DURUS robot employs the HZD framework to
optimize energy efficiency for stable 3D walking [10]. Xi,
Yesilevskiy and Remy employ direct collocation (DC) to op-
timize energetic cost for gaits without a prescribed sequence
of foot contacts with the grounds [11], and within our own
group, we have used trajectory optimization to predict the
theoretical cost of added mass in exoskeleton design [12]



and to discover nonintuitive locomotion strategies for an
underactuated, acrobot-based rolling system [13].

In this paper, we focus on several related, open challenges
in simultaneously optimizing for energetics and robustness.
We highlight important choices made in differentiation and
integration that improve speed and accuracy, since local
optimization provides only approximate results. With an aim
toward improving both energetics and robustness, we explore
how variations in mass distribution affect metrics for each
of these goals and observe a natural trade-off (between
metrics) that results from tuning of feedback control. Our
results demonstrate that choice of both mass distribution and
feedback control structure have important, and apparently
coupled, effects on both energy use and stability, provid-
ing evidence for the hypothesis that more comprehensive
frameworks are needed for simultaneous optimization across
system parameters and desired metrics.

The rest of this paper is organized as follows. Section II
describes the 5-link planar walking model we study, while
Section III outlines our choices on optimization framework,
feedback structure for subsequent control of trajectories and
definition of cost metric. Results are given in Section IV,
followed by discussion and conclusions in Section V.

II. SIMULATION MODEL

Fig. 1. 5-link biped model. At left, q5 is an absolute angle, measured with
respect to vertical, while all other angles are relative. The lefthand image
is drawn to clearly illustrate angles are positive in the counter-clockwise
direction, throughout. At right, a typical pose, while walking to the right.

We use a 5-link model, shown in Fig. 1, for our sim-
ulations. The dynamics of this system are constrained to
the sagittal plane only. We study several mass distributions,
always enforcing that the total mass of the model is 70 (kg).
The model has actuators at hips and knees, and the nonlinear
dynamics can be written in the matrix form as

D(q)q̈+C(q, q̇)q̇+G(q) = Bu. (1)

This well-studied model [5] has 5 degrees of freedom, cor-
responding to 5 joint angles given by q := [q1 q2 q3 q4 q5]

T,
but due to the passive point-foot contact at the ground, the
model still remains underactuated with u ∈ R4. We model
the impact dynamics between the swing leg and the ground
as instantaneous and inelastic [14] to obtain joint velocities
just after the impact. Since the impact model we use assumes

inelastic collisions, some amount of energy is lost when the
stance foot impacts the ground.

III. TRAJECTORY OPTIMIZATION

A. Framework for Direct Collocation

We discretize the dynamics and use direct collocation
(DC) to generate trajectories for the walking motion. Our
approach is close to that suggested in [15], except that we use
trapezoidal integration instead of backward Euler. Trapezoid
rule integration can potentially result in lack of convergence.
However, in our work, this had not been an issue, and
results with trapezoid rule are significantly more accurate,
when comparing the discretized (and thereby approximate)
solutions inherent in this framework with subsequent high-
resolution (1e-9) simulations of dynamics in Matlab.

The optimization problem is formulated as

min
q,q̇,u

COT (2)

such that D(q)q̈+C(q, q̇)q̇+G(q) = Hu (3)
Φ(q, q̇)≤ 0 (4)

where q∈Rn is the vector of generalized coordinates, D(q)∈
Rn×n is the mass inertia matrix, C(q, q̇)∈Rn×n represents the
Coriolis forces, G ∈Rn contains the gravitational forces and
H ∈Rn×n−1 is the input (torque) mapping. Φ(q, q̇) is a vector
of constraints. Constraints are imposed to make sure that the
normal reaction at the point of contact with the ground is
always positive. The optimization problem is set up such that
at the end of the trajectory an impact at the ground happens.
An additional constraint is added that the state of the model
after the impact should match the initial condition in order
to obtain a limit cycle behavior.

We implement this framework in Matlab making use of
CasADi [16], which lets us calculate gradients for optimiza-
tion using algorithmic differentiation to machine precision.
(CasADi uses Computer algebra system syntax to perform
Algebraic Differentiation; thus the name.) Using algebraic
(and not numerical) differentiation greatly increases the sta-
bility and convergence properties of our optimization, while
also reducing run time considerably.

Using CasADi to improve automated gradient calculation,
the nonlinear programming (NLP) optimization itself is
solved using IPOPT [17]. This choice (vs use of SNOPT,
Matlab’s fmincon, etc.) is made based both on improved
speed during our own in-lab testing experience and similar
external benchmarking results [18].

The DC framework evaluates Eqs. 2-4 only at discrete
time intervals, tk, resulting in an approximation of the desired
optimization problem. We use ∆t = h= 0.01 (s) and integrate
using the standard trapezoid rule. Also, we assume u(t) is
held via a zero-order hold for each time step (as opposed to
a first-order hold). Our integration scheme is then

qk+1 = qk +
h
2
[q̇k + q̇k+1] (5)

q̇k+1 = q̇k +
h
2
[ f (qk, q̇k,uk)+ f (qk+1, q̇k+1,uk)] (6)



where f (q, q̇,u) = D(q)\(−C(q, q̇)−G(q)+Bu). We found
that using a first order hold for input, i.e., replacing uk
with uk+1 at far right in (6) above, leads to trajectories that
are undesirably oscillatory and not smooth. This problem
is easily rectified by adding some level of regularization.
However, the zero order hold method still converges more
rapidly. Also important to note is that regularization increases
the optimal cost by a small amount.

B. Trajectory Stabilization

After we obtain the trajectories from the optimization
framework, we simulate them in matlab using ode45 with an
error tolerance of 1e-9. In order to stabilize these trajectories,
we use partial feedback linearization (PFL). The total input
to the system is U =U f f +U f b where

U f b = (SD−1B)−1(v+SD−1(Cq̇+G)), (7)

S is given by

S =


0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (8)

and u f f contains the feedforward torques compatible with
the nominal dynamics.

Given a passive contact of the stance leg with the ground,
PFL allows us to directly set the accelerations of 4 out of 5
angles using v. We set v = [q̈2des, q̈1des + q̈3des, q̈4des, q̈5des]

T

where q̈des =−Kp(q−qdes)−Kd(q̇− q̇des). We set Kp = ω2
n

and Kd = 2ζ ωn. For all our simulations we set ζ = 1 and test
across a range of ωn values. We get U f f , qdes, q̇des by inter-
polating the trajectories from the optimization framework.

C. Cost of Transport (COT)

We optimize the trajectories for cost of transport (COT)
which is calculated as

COT =

∫ t
0 ∑

5
n=1 |Pn(t)|dt

Mgd
(9)

which we implement using trapezoid rule with zero order
hold for input as

COT =
∑

N−1
k=0 ∑

5
n=1 P̃n(k)∆t
Mgd

(10)

where there are N discrete time steps t(k), d is the stride
length, and M is the mass of the model. Rate of work (power)
at joint n during time step k is approximated as

P̃n(k) =
P̃n,1(k)+ P̃n,2(k)

2
n = {1,2, ...,5} , (11)

where P̃n,1(k) is the regularized version of Pn,1(k) =
τn(k)ωn(k) and P̃n,2(k) is the regularized version of Pn,2(k) =
τn(k)ωn(k+1). Also, P̃n,i(k) is defined to penalize both the
positive as well as the negative mechanical work. We smooth
the cost function by using a regularization factor, so that

P̃n,i =
√

P2
n,i + ε2 i = {1,2} (12)

as suggested in [19]. We use ε2 = 0.01, which works well
for our optimization. Lower values of ε led to stability issues
with the solver.

IV. RESULTS

Fig. 2. Typical motion for the 5-link walker, using trajectories generated
from the optimization framework. The figure on the left shows snapshots
of motion. On the right, trajectories of the COM and the end of the swing
foot are overlaid.

Fig. 2 shows a typical motion generated for the mass distri-
bution m5 = 50 (kg), m1 = m2 = 7 (kg), m3 = m4 = 3 (kg),
which corresponds roughly to a human mass distribution.
Fig. 3 and Fig. 4 show the corresponding angle and angular
velocity trajectories for that motion, and Fig. 5 shows the
joint torques. All the results we present here are generated
for a walking motion of stride length = 0.6 (m) over a time
interval of 0.6 (s), resulting in a velocity of 1 (m/s).

A few details in these four figures are worth pointing out.
First, note that all trajectories are divided into two subplots
for better resolution and clarity, since q1 and q2 remain close
to π , while the other joints are near 0. Upper plots correspond
to upper leg segments; solid (blue) lines correspond to stance
leg segments (femur and tibia).

Several characteristics seen in this example are common
among optimizations we performed across a range of mass
distributions, as itemized below:

1) The swing leg follows a very low trajectory, as depicted
by the solid green line in Fig. 2. We enforce a
minimum ground clearance of 2 (cm), except at the first
and last 5 points of the trajectory, and the swing leg
tip overshoots near the ends and grazes this value mid-
gait. Without adequate ground clearance (e.g., 2 (cm)),
resulting limit cycle gaits could not be stabilized.

2) The center of mass (COM) trajectory “flattens out”
mid-stride, as opposed to following an arc, which is
a feature also seen in human walking. This trajectory
requires work in bending of the stance leg but results
in less acceleration and deceleration vertically (against
gravity), for lower accelerations overall of COM.

3) Also, rapid changes in velocities just before impact, as
seen in Fig. 4, deflect the COM velocity at the end of
gait slightly “upward”, reducing kinetic energy losses
at impact. The velocity vector, depicted as a solid blue
line in Fig. 2 is close to orthogonal with the dashed
line drawn from COM to stance leg tip at the start of
the step (at 92.8◦) and more obtuse at the end (100.0◦



with respect to current stance contact, and 66.0◦ wrt
upcoming stance leg, as a black dashed line).

4) Also, the velocity vector is longer (i.e., faster speed)
at the end, showing kinetic energy has built up, to
compensate for dissipation at impact.

Fig. 3. Angle trajectories for the walking shown in Fig. 2. The top plot
shows the positions of the swing and the stance thighs, while the bottom
plot shows the positions of the stance knee, swing knee and torso.

Fig. 4. Velocity trajectories for the walking motion shown in Fig. 2.

Fig. 5. Torques for the walking motion in Fig. 2.

The velocity (Fig. 4) and torque (Fig. 5) trajectories
also show repeatable features that were not anticipated but
are (retrospectively) intuitively in agreement with our cost
function, as noted in the rest of the list of features, below.

5) Magnitude of velocities of the stance leg segments
(solid blue) increase quite rapidly at the very end of the
step, in achieving the COM deflection upward (item 3).

The “toe-off” described above has a well-known benefit for
energetics [20], but it also causes a problem:

6) We observe that rapid increases in velocity near the end
of a step, required for toe-off, also have an important
(and unfortunate) negative effect on stability.

For example, when we attempted to use linear quadratic
regulation (LQR) to provide feedback control, the resulting
gait was not stable. Specifically, we linearized about each
“knot point” of the optimal solution, and then controlled
motions using the nominal feedforward torque (U f f ) added to
feedback of the form U f b =−K(X−Xnom), where K = K(t)
and Xnom = Xnom(t) were interpolated between their values
at the discrete points of the optimal solution. During con-
tinuous motion, the trajectories definitely converged toward
the nominal trajectories as expected, but the effects through
impacts were too destabilizing, resulting in falls after 3 to 6
steps.

This is a particularly interesting result, as it demonstrates
evidence for a strong hypothesis that trajectories and feed-
back policies should be optimized as a concurrent problem,
rather than planning ad hoc feedback subsequent to solving
for a nominal trajectory. Finally,

7) values of un and the corresponding relative angular
velocity q̇n show a complementary behavior: when one
is significant in magnitude, the other is near zero.

This makes sense, given Pn = unq̇n, from Eq. 11. In Fig-
ures 4 and 5, note in particular the solid blue lines, for
the stance thigh (upper) and knee joints. The relative thigh
angle (between torso and stance leg) is nearly zero while
torque is at its maximum magnitude (-100 (N·m)), with the
associated bobbing motion of the torso in Fig. 2 during the
first 0.25 (s) of the step. For the stance knee, a period of
negative velocity for q̇3 (i.e., knee bending) at mid-stance
corresponds to a flat region in which u3 ≈ 0, i.e., bending
almost passively during the gait. Near the end of the step,
push-off with the stance knee is concentrated in particular at
the last time step, perhaps exploiting the approximate nature
of the optimization problem somewhat.

A different choice of cost function would result in some-
what different solution characteristics. We also tested a
simple quadratic cost on control effort (i.e., cost = u2); here,
the “toe-off” behavior, with a spike in torque and velocity of
the stance knee at the end of the step, also occurred. Overall,
the trajectories are qualitatively more smooth for this cost
function, however, and the overall COT is noticeably higher
than when optimizing for COT specifically.

A. Effect of system parameters on energy and stability
We repeated the same optimization on five different mass

distributions. Link lengths and masses are shown in Tables I



and Table II, respectively. Each link is modeled as a simple
rod, with COM at mid-length.

Segment Length(m) COM(m)
L1 = L2 0.4 0.2
L3 = L4 0.43 0.215

L5 0.77 0.385

TABLE I
LENGTH AND COM PARAMETERS USED IN SIMULATION EXPERIMENTS

Set m1 = m2(kg) m3 = m4(kg) m5(kg) COTopt
1 7 7 42 0.0992
2 5 7 46 0.0996
3 7 5 46 0.0861
4 5 5 50 0.0853
5 7 3 50 0.0705

TABLE II
MASS PARAMETERS USED IN SIMULATION EXPERIMENTS

Fig. 6 shows how changing ωn affects COT. First, recall
that discretized trajectory optimization solutions of true dy-
namics are always approximate ([2], [3], [9], [11], [13], [15],
[19], etc.), and also that ωn is analogous to a “stiffness” (or
proportional controller, “Kp”), within the PFL framework.
Intuitively, increasing control gains would increase control
effort, in following an arbitrary reference trajectory.

However, our reference trajectories are far from arbitrary:
they are precalculated to achieve a locally optimal (i.e.,
minimal) cost of transport – within some approximation
errors. Therefore, increasing wn monotonically decreases
resulting COT in our higher-accuracy Matlab simulations.
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Fig. 6. Cost of Transport (COT) as a function of ωn.

Figure 6 both illustrates how COT converges exponentially
downward as ωn increases and also how different parameter
sets result in a range of different errors, in comparing
optimization results to more accurate simulations. For ex-
ample, the lowest COT is for Set 5 from Table II, which
is also closest to a typical human mass distribution. The
lower subplot of Fig. 6 shows the ratio of “actual” COT
(from simulation) to the value output from optimization, also
as a function of ωn, where Set 5 also shows the lowest
approximation error.

Figure 7 shows the evolution of energy over time for
different values of ωn. The steep rise at the start is due to
high peak torques as the controller tries to pull the actual
trajectory back to the optimal trajectory.

Fig. 7. Variation of energy as ωn changes.

B. Energy vs Stability Tradeoff
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Fig. 8. Rate of convergence, λ , as a function of ωn, for push recovery.

Fig. 8 shows the change in rate convergence (i.e.,
largest/slowest discrete-time eigenvalue) as a function of ωn
when recovering from push perturbations. Three impulsive
push tests were simulated for each set of parameters by
applying an impulse of 10 (Ns) (e.g., effectively a pulse
of 1000 (N) for 0.01 (s)) at the hip, stance knee, or torso,
respectively. The velocities post impact were calculated as

D(q)q̇+−D(q)q̇− = E ·Fext∆t (13)

where Fext∆t = 10 (Ns) is the applied pulse and E = ∂ p(q)
∂q

where p(q) is the point at which force is applied.
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Fig. 9. Cost of Transport vs rate of convergence λ (ωn), for push recovery.
Each line sweeps across results from ωn = 60 to ωn = 100.



As with Figure 6, the trend seen in Figure 8 as a function
of ωn is not immediately intuitive. Usually, it would be
expected that higher values of ωn should lead to faster rates
of convergence as higher gains should pull back the trajectory
to the optimal reference trajectory faster.

Combining data from Figures 6 and 8 to investigate any
potential relationship between stability and energy further,
Fig. 9 shows a plot of COT vs rate of convergence for the
parameter sets given in Table II. A clear trade-off between
energy efficiency and rate of convergence is evident here.

V. DISCUSSION AND CONCLUSIONS

Our simulation results demonstrate that although optimiz-
ing for energy alone and then stabilizing the trajectories
can work, there is a need for a more cohesive framework
that takes into account both energy as well as stability of
the system for optimization simultaneously. Furthermore,
because different physical robot design parameters have
important effects on stability and energy properties, it would
be prudent to include these parameters as open variables, via
appropriate optimization frameworks.

Toward better understanding of the effects of system
parameters on the energy and stability of biped systems, we
presented simulation data for 5 different sets of parameters.
For the mass distribution sets we chose, the one which is
most similar to human parameters (Set 5) does in fact have
the lowest energy consumption. However, the set with the
fastest rate of convergence is set 2. These phenomena may
in part be a result of other factors, such as choice of feedback
control structure and certainly warrant further study.

Also, these and other simulations we have performed show
that while increasing the mass of the lower leg (with constant
upper-leg mass and total mass) results in a fairly linear
increase in COT, as shown in the lower subplot of Figure 10,
energy use remains close to flat as mass of the upper leg
increases (while holding lower-leg and total mass constant).
Corresponding trends relating mass distribution to stability
are less apparent and deserve further investigation.

Fig. 10. COT variations as upper or lower leg mass varies.

To explore trade-offs, we presented COT vs rate of conver-
gence in Figure 9, which illustrates a Pareto frontier, formed
essentially by sets 2, 3, and 5, while sets 1 and 4 provide

poor trade-off characteristics by comparison. We hypothesize
that a more comprehensive framework that includes energy,
robustness, and physical parameters in a single optimization
can improve the limits of such performance trade-offs, and
developing such a framework is a goal for our future work.
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