Mesh-based Tools to Analyze Deep Reinforcement Learning Policies
for Underactuated Biped Locomotion

Nihar Talele and Katie Byl

Abstract—1In this paper, we present a mesh-based approach
to analyze stability and robustness of the policies obtained
via deep reinforcement learning for various biped gaits of
a five-link planar model. Intuitively, one would expect that
including perturbations and/or other types of noise during
training would likely result in more robustness of the resulting
control policy. However, one would like to have a quantitative
and computationally-efficient means of evaluating the degree to
which this might be so. Rather than relying on Monte Carlo
simulations, our goal is to provide more sophisticated tools
to assess robustness properties of such policies. Our work is
motivated by the twin hypotheses that contraction of dynamics,
when achievable, can simplify control and that control policies
obtained via deep learning may therefore exhibit tendency to
contract to lower-dimensional manifolds within the full state
space, as a result. The tractability of our mesh-based tools in
this work provides some evidence that this may be so.

I. INTRODUCTION

Although legged locomotion is less energy efficient than
wheeled locomotion on relatively mild terrain, it offers the
advantage of more flexibility in the variety of terrain that can
be traversed. However, this flexibility often comes with added
complexity of control, particularly as legged locomotion
can involve phases of underactuation. Two approaches have
become prominent in recent times for the control of legged
locomotion. Model-based trajectory optimization has shown
impressive results, for example in its application within the
DARPA Robotics Challenge (DRC) [1], [2]. Also, with the
advent of improved computational capabilities, the field of
deep reinforcement learning (DRL) is now being successfully
applied to generate control policies for complicated dynam-
ical systems like humanoids [3].

Model-based trajectory optimization methods, as described
in [4], [5], involve the generation of a trajectory for the
system that optimizes a certain cost function, such as en-
ergy minimization. This optimal solution is then used as a
reference trajectory for the actual system through the use
of a low level controller. The low level controller enforces
contraction of the system on a low dimensional manifold;
i.e., for the underactuated dynamics, some subset of directly-
controlled degrees of freedom (DOFs) converge rapidly to
desired trajectories, compared to other (passive, slower, but
still stable) DOF(s). This contraction onto lower dimensional
manifolds can often allow us to avoid the classic of “curse
of dimensionality” in implementing discrete approximations
to analyze the resulting nonlinear dynamics; we exploit this

*This work was funded in part by NSF NRI award 1526424.

Nihar Talele and Katie Byl are with the Electrical Engineering De-
partment at the University of California, Santa Barbara CA 93106
nihar@ucsb.edu, katiebyl@ucsb.edu

contraction to apply meshing tools to evaluate the performanc
of control policies for such systems. In our own group, we
have used model-based trajectory optimizations to corrob-
orate human data studies with model-based energy-optimal
gaits [6] and to explore non-intuitive motions for underac-
tuated rolling locomotion systems [7]. While relationships
between the cost function, constraints in the optimization,
low level controller, and the robustness of the obtained policy
often have some intuitive characteristics, it is not so clear
what quantitative effects the choice of reward function has
on the robustness of the obtained policy. With this goal in
mind, and with application to quantification of deep learning
policies as a particular aim, we analyze locomotion control
polices obtained via deep reinforcement learning and propose
the use of meshing tools to quantify stability and robustness
in terms of failure rates.

In [8], Byl and Tedrake propose the mean first passage
time (MFPT) as a metric to evaluate the robustness of a
rimless wheel and of the compass gait walker, each on rough
terrain. In this framework, robust walking is viewed as a
metastable dynamic process: capable of very long periods
in near-limit-cycle behavior but ultimately guaranteed to
eventually fall. Saglam and Byl build upon this work by
developing a reachability-based approach to non-uniform
meshing [9], [10]. In all of these works, the only noise
considered is variability in terrain height, i.e., walking on
rough terrain. In [11], Talele and Byl demonstrate that
these mesh-based tools can also be extended to additional
noise cases, including push disturbances throughout the gait
cycle. In our current work, we expand the applicability of
our meshing tools by first showing that it is possible to
use the meshing analysis on policies generated via deep
reinforcement learning and then use these tools to perform
a systematic analysis on the generated policies to obtain
a correlation between the reward functions used and the
robustness of the corresponding policies.

The rest of the paper is organized as follows. In Section
II, we present the 5-link model created in MuJoCo [12] that
we use for our simulation as well as some information on
the deep reinforcement learning policies that we generate. In
Section III, we provide details on the basic meshing concepts
that we use for our analyses in the results section. Section
IV presents our results, where we evaluate the robustness
of the policies obtained via deep reinforcement learning for
different reward functions, following which we conclude in
Section V by discussing and summarizing the ideas presented
along with the possible future directions in which we want
to extend the current framework.

II. MODEL AND CONTROL

A. Model

Fig. 1. The 5-link biped model used in simulations. At left, the planar
model in MuJoCo’s simulation engine, used for our simulations. The stick
figure on the right shows the degrees of freedom of the model on the left.

We use a 5-link planar biped model with point feet as
shown in Fig. 1 for our analyses. All simulations for the
results presented in this paper are done in MuJoCo [12]. The
model has a torso, two hips and two knees. Its total mass
is 70 (kg), and it stands 1.6 (m) tall when fully upright.
Length, mass and inertia parameters, which are chosen to
approximate a typical human, are identical to those listed
for “Set 5 within [13]. The model has a total of 4 actuators
(2 at hips and 2 at the knees) and 7 degrees of freedom
g:=1[x v q, @, g3 q4, qs)7 where [x, y| are the
position coordinates of the topmost point of the torso and
[91, 92, 43, g4, g5) correspond to the five angles shown in the
Fig. 1. We ignore rolling friction and set the friction model
to oppose sliding in the tangential plane of two contacting
bodies only. We set all the viscous damping coefficients to
zero. All the contacts in the simulation are soft contacts:
MuJoCo models the interaction between two bodies as a
soft contact, for efficient computation. We set the integration
method to Runge-Kutta (RK4) with a time step of 0.002 (s).
All the torque inputs are restricted to == 100 (N-m).

B. Control Policy

We use the Proximal Policy Optimization algorithm [14] in
the openAl’s baselines package [15] to train our model and
obtain the control policies. The training algorithm models
continuous time action space as a probability density dis-
tribution that it learns for each observation or state of the
environment. While training, the algorithm samples from this
distribution and then takes an action for the corresponding
observation. During evaluation of a trained policy, however,
instead of sampling from the learned distribution, we pick
the action that has the maximum likelihood. Each control
action is held at a constant value for a total of 4 consecutive

time steps during simulation. Thus, even though the time step
for the integration scheme we use is 0.002 (s), the action
sampled for the current observation or the environment state
is applied for a total of 0.008 (s). We set the maximum
training episode length to 4000 time steps, and each state
observation is clipped to a maximum magnitude of 10.

III. MESHING

We create our mesh M by deterministically mapping the
reachable state space of the system on a Poincaré section
for various disturbances, ¥, which for this work are pushes
of a variety of magnitudes and timing within the gait cycle.
Because there are no constraints requiring left-right symme-
try of the locomotion policy learned, we perform a Poincaré
analysis on a full gait “cycle”, i.e., after two steps are taken.
A Poincaré section is taken when the left foot (an arbitrary
choice) makes an impact with the ground. We denote the
post-impact state as s = x*. The mesh has one self-absorbing
state (state #1) to which all failure events transition. In
general, our meshing tools can allow us to calculate the
optimal (switching) policy from a set of controllers, but for
the current work, we simply analyze the policies individually
obtained via DRL framework as explained in Section II.
Once the left foot impacts the ground, we compare the post-
impact state to previously observed post-impact states using
the following metric:

d(s;) = min\/i (si(k) —s;(k))>. (1)

SjGM k=1

If d(s;) > d,, where d,, is some distance threshold, the state
s; 1s added to the mesh. A deterministic state transition matrix
Tyer (s,&,7y) which describes all state transitions is maintained
and updated at every iteration, where & is the particular DRL
policy being analyzed. In case of failure, the corresponding
transition goes to state #1, indicating that under the current
control policy, the state has transitioned to the absorbing
failure state in the mesh.

Our disturbance set consists of various pushes y happening
at different times in forward as well as backward directions.
Each push occurs at the center of mass (COM) of the torso
link. The disturbance profile is characterized by a certain
probability distribution that we chose, and it is denoted by
P(y). Algorithm 1 outlines our meshing procedure.

Once we have the deterministic state transition matrix, we
proceed to calculate the stochastic state transition matrix and
other important elements needed to perform our analyses as
explained in the following sections.

A. Stochastic State Transition matrix

To analyze the performance of a particular DRL-based
control policy, &, when subject to some disturbance profile,
P(y), we first calculate a stochastic transition matrix, T(i, j):

T(i,j) =Y. PN/ 2)
Y

where
L i T (i, 7(0),7) =
Ji {0, else. ©

Algorithm 1 Meshing Algorithm

Input: Initial matrix of states S, containing two states: sy
(failure) and s, (one initial, non-failure state).
Disturbance profile D.
Distance threshold d;,.
Set of controllers Z.

Output: Final matrix of all states S, discretely spanning the
reachable state space.
Deterministic state transition matrix Ty, (s, &, 7).

Initialization:
Current state index: cur = 2
Total number of states: nstate = 2
while cur < nstate do
xcur <— S(cur)
for all controllers & in Z do
for all disturbances y in D do
X, flag < simulatedynamics(xcur, &, ¥)
if flag = 0 (Step taken successfully) then
if d(x, s) > d;, Vs € S then
add x to S and set Ty, (xcur,&,y) = nstate
nstate <— nstate + 1
else
set Ty (xcur,€,7v) = index of s for d(xcur, s)
< dy
end if
else
set Tye (xcur,&,y) = 1 (index to failure state)
end if
end for
end for
cur < cur + 1
end while
return S, Ty,

Matrix T (i, j) gives the probability of transitioning from state
i to state j within mesh M. Because all states must transition
to some state under the entire probability distribution of the
disturbance profile, each row of the stochastic state transition
matrix sums to 1.

B. Mean First Passage Time

The concept of the mean first passage time (MFPT)
for metastable (i.e., “rarely falling”) walking systems is
explained in detail in [16] and [8]. We highlight important
results here that we will be using in the rest of the paper.
To analyze not only convergence rates (eigenvalues) but also
probability distributions across state space (via eigenvectors),
we focus on an eigenanalysis of the franspose, TT, of the
stochastic transition matrix, 7. First, we define a metastable
distribution, ¢, as the stationary distribution in state space,
conditioned on not having entered the failure state:

o= JEEOPF(X(”) =x|X(n) #x1). 4)

The mean first passage vector m, where m; is the mean time
for the state i to go into failure, is given by

0 ifi=1
mi=1{ o ®)
1+Zj>1T,~jmj, else.

Vector m can be calculated by

=t] ©

where T is T with the first column and row (corresponding
to the failure state, for which m(1) = 0) removed. This in
turn lets us calculate the system wide MFPT:

M= Z (b,m,-. (7)

This process can be time consuming and for a more efficient
calculation of M, we use the eigenvalues of the stochastic
transition matrix. As stated, all failures (e.g., falls) are
modeled via a self-absorbing state. This enforces a structure
on the stochastic state transition matrix where T(1,1) =1,
resulting in the largest eigenvalue of 7 being 1. Let A, be
the second largest eigenvalue of 7. The magnitude of A; is
the probability of taking a successful step, assuming initial
conditions have been forgotten and the walker is in a non-
failure state; i.e., that the likelihood of currently being in
any state is given by the metastable distribution, ¢. The
probability of failure on the next step is then 1 — A,, and
the probability of taking only n steps is

Pr(X(n) =x1,X(n—1) #x)) =AM (1-24). (@8)

When the dynamics of A, are much slower than all smaller-
magnitude eigenvalues, i.e., when (1 —|A2|) << (1 —|A3]),
initial conditions will be forgotten long before an expected
failure event, and a system-wide mean first passage time, M,
provides a useful metric for stability:

1
M=——H:.)
(1-2)
Finally, note that normalizing all the non-failure-state el-
ements in the eigenvector associated with the 2"¢-largest
eigenvalue of T7 (the transpose of T) correspondingly yields
the metastable distribution, ¢, in Eq. 4.

IV. RESULTS

We perform analyses on two DRL-trained policies, ob-
tained under different training conditions. The first policy
is trained with a reward function that encourages forward
velocity; there are no perturbations, and terrain is flat. At
each time step, if the walker has not fallen, the reward is in-
cremented by the forward velocity at that instant of time; the
reward function also includes a penalty le-3 times the norm
of the torques. For the second scenario, we use the same
reward function, but we now introduce push disturbances
while training (still on flat terrain). For both cases, we train
several policies and then pick the one that has the maximum
reward at the end of the training session for our analyses.
Both cases also have the same coefficient of friction of 0.5

for contact between the ground and the walker model. For
meshing, we ignore the x coordinate of the top of the torso,
because we perform meshing for step-to-step transitions and
it does not matter from what x position the model takes the
step. The mesh thus contains 13 dimensional states, of which
12 are independent. (The left foot, but not necessarily the
right one, must by definition be at y =0 immediately post-
impact, adding a constraint and removing an independent
DOF on the Poincaré section.) We explore both cases and
analyze the corresponding policies obtained in the next two
subsections.

A. Case 1

In this scenario, we train the policy without any external
perturbations, for flat ground walking. The policy with the
best reward function, chosen for our analyses, results in
a significantly asymmetric forward motion. As previously
mentioned, we consider state-to-state transitions for a full
gait cycle, defined as one complete sequence of right leg
and subsequent left leg contacts with the ground. The states
on the Poincaré section then represent the post impact state
of the system each time the left leg makes contact with the
ground. Fig. 2 illustrates a typical set of consecutive, post-
impact states during locomotion (again, with no perturba-
tions) for 250 gait cycles.

Fig. 2. A principal component analysis (PCA) is used to visualize post-
impact states visited for DRL-trained flat-ground locomotion, subject to
no disturbances. A non-uniform mesh of 64 points is shown, achieved
by applying our meshing algorithm to a set of 250 consecutive gait
cycles. Larger markers depict more frequently visited locations. Here, three
principle components account for 94% of the variance of the normalized
Poincaré states. At left, states fall near the depicted curvy, 2D surface within
the 3D PCA space. At right, straight lines show step-to-step transitions, with
terminal ends shown as thicker, blue segments. The gait has no observable
limit cycle, and it appears to be both stable (never-falling) and chaotic.

As Figure 2 illustrates, applying the closed-loop DRL
control policy to flat-ground walking with no noise inputs
does not result in any discernable (period-n) limit cycle
but instead exhibits chaotic behavior. Based on our numeric
methods for mapping the reachable state space, post-impact
states are bounded and seem to contract onto a lower-
dimensional and bounded region of the full state space.

To examine the robustness of the given policy to push
disturbances, we proceed by calculating a mesh. From simu-
lations, we find the complete two-step gait cycle takes about
0.35 (s). Based on this, for building the mesh, we define
a threshold of 0.3 (s) after which any post impact (for the
left foot) state of the system, s;, is added to the mesh if
d(s;) > dy, as described in Section IIL

For illustrative purposes within Case 1, just four possible
disturbance pushes are considered: a push of either 41000

(N) or —1000 (N) is applied at the COM of the torso for a
duration of 0.008 (s), starting at either 0.1 or 0.25 (s) into the
gait cycle. Along with these 4 disturbances, we also consider
a no-push disturbance, i.e., a push with 0 magnitude. The
probability distribution for these disturbances is given by

0.4, if no disturbance

P = 0.6/4

(10)
else.
For the given policy and disturbance profile, we obtain a
mesh with 28,757 states when d;, = 0.6. The mean first
passage time for the system for the given probability dis-
tribution comes out to only about 32 steps. Once the mesh
is generated, our tools allow us to efficiently calculate the
MFPT for any given probability distribution. For example, if
we reduce the probability of a disturbance so that

0.8,
0.2/4,

if no disturbance

P(y) = Y

else,

the MFPT increases to approximately 117 steps. We also
calculate a mesh for other values of d;,, to analyze how
varying this threshold distance changes the number of states
in the mesh. If the mesh points occupy an n-dimensional
subspace within the full state space, then the number of
mesh points, N, required to span this subspace should grow
as N o« d;,", meaning a loglog plot of d;» vs N would have
slope —n. (See [11] for details.)

dyy 0.6 0.7 0.8
N (# of mesh points) | 28,757 14,891 8,517

TABLE I. N VERSUS dy,, SHOWING n =~ 4.23 FOR CASE 1.

Table I shows this variation. A line fitting x = log(d;,)
vs y =log(N) for these data has slope —4.2, showing that
as we mesh more finely, the size of the mesh grows with
dimensionality n ~ 4.23. Intuitively, the dimensionality of
reachable state space will depend on both the sparsity of
the perturbation set (recall we only include 4 non-zero
perturbations here) as well as the contracting nature of the
control policy. Rather than focusing on a more dense set of
perturbations for Case 1, we instead focus on comparing the
effects of adding perturbations during training (in Case 2).

gs(rad/s)

ds(rad/s)

T, N — [di(rad/s)
o 1s 2 15
in(rad/s) arads)”

=
-10 2

0
Gu(rad/s)

Fig. 3. A 3D section of the full 13D Poincaré mesh states for Case 1.
Subplots show two viewpoints of the same data. “Dangerous” states, with
greater than 99% probability of failure on the next step, are circled in red.

Figure 3 illustrates the distribution of mesh points for
Case 1, using states with the greatest variance within the
mesh (44, g5, and g1) as three representative axes. Recall that

even without added perturbations, the control policy results
in a chaotic set of reachable states; these points fall within
the blue region. The red points show states visited due to
perturbations and from which failures are nearly certain.

B. Case 2

In this scenario, we include push disturbances during
the training, again using a reward function that primarily
encourages forward motion, with a small penalty on energy
use. Every 0.008 (s) interval during training, there is a 5
percent chance that the model will receive a push for the
next 0.008 (s), with a 50/50 chance in either the forward or
the back ward direction. We only introduce pushes at the
COM of torso, and the magnitudes of the push are restricted
to £1000 (N). As in Case 1, the policy with the maximum
reward that we obtain for this new scenario also results in
an asymmetric gait, now with a slower average gait cycle
time of approximately 0.5 (s). We pick a threshold time of
0.45 (s) after which any post impact state (for left foot) with
the ground is considered for meshing. To examine the effects
of introducing disturbances during the training, we generate
a mesh for the same disturbance profile (4 possible pushes,
plus one no-push case) used in Case 1; for d;, = 0.6, this
leads to a mesh of 857 states. For the probability distribution
given in Eq. 10, the MFPT for the system now comes out to
about 10,467 steps, as compared with 32 steps for Case 1.
An improvement in performance is an intuitively expected
result, but our focus is on illustrating that our meshing tools
allow us to quantify the improvement in robustness. We also
generate the mesh for different d;, values, shown in Table II.

dir 0.5 0.6 | 0.7
N (# of mesh points) | 1705 | 857 | 574

TABLE II. N VERSUS d;,, SHOWING 71 = 3.25 FOR CASE 2.

To analyze a more interesting disturbance profile and to
check how the policy performs for magnitudes beyond the
ones used for training, we generate a more complex mesh
involving more varied disturbances, as shown in Fig. 4 As

18 . 19

g L - [y 18 O S
A, B LR e ou :
Z s800f ' oK : -]
< * P * *
e}
= |
£ o e]
s e 8y g 9
4% 5 *
-800 - : 16 : 3 : 17 : i * P
200 g R
* *
-1600 : : :
0 0.1 0.2 0.3
Time (s)

Fig. 4. Disturbance profile for 20 push types.

with the previous mesh, in addition to the 20 disturbances
shown, we also include a no push scenario. This mesh has a
total of 20,660 states which is significantly higher than the
previous mesh but because we explored the mesh for more

disturbances, it also allows us to do much more interesting
analyses. For example, if we set the probability distribution
of the disturbances such that there is 0.6 probability (60%
chance) of no push and 20% chance for disturbance 6 and
disturbance 7 each, then we get a MFPT of infinity indicating
that the walker will always recover under such disturbances.
Similarly, if we set the probability disturbance such that
probability of no push is 0.6, and probability of disturbance
8 and 9 is 0.2 each, then we get a MFPT of infinity as
well. But, if we set the distribution such that probability of
no push is 0.6 and the probability of disturbance 6, 7, 8
and 9 is 0.1 each, we get an MFPT of 32,260 showing that
the mixing effects of disturbance 6, 7 and disturbance 8, 9
all combined over time will now create occasional failures,
reducing the MFPT of the system significantly. Disturbances
6 and 7 correspond to pushes in the forward direction of
magnitude 600 (N) and disturbance 8 and 9 correspond to
the backward pushes of the same magnitude. We can also
study the relative sensitivity of particular disturbances in the
profile. For this we take an example distribution given by:

0.4, no disturbance
P(y)=<:0.5, disturbance of interest (12)
0.1/19, else.

A plot showing the corresponding performance of the DRL
policy for Case 2 is shown in Fig. 5. This is an interesting
plot because it shows the coupled effect of direction and time
of impact of the disturbance matters significantly. For exam-
ple, we see that some disturbances of higher magnitude have
a better MFPT than some disturbances of lower magnitude
because they happen at different time instances.

104 ¢ o © o)

I1]e

0 5 10 15 20
disturbance of interest

Fig. 5. MFPT variations as one disturbance of interest becomes more
likely. The MFPT is shown on log scale to make the plot more readable.

Figures 6 and 7 show subsets of the full mesh corre-
sponding to the reachable state space when each of two
different subsets of the disturbance profiles shown in Fig. 4
are allowed. For Fig. 6, we exclude any pushes occurring
before 0.1 seconds in the gait cycle; i.e., profiles 14, 16, 18
and 20 are excluded. For Fig. 7, all 20 push disturbances
are included. For both figures, we assume a 2% chance of a
push during each gait cycle, with the push type drawn with
uniform probability from the allowable subset of pushes.

In Fig. 6, both subplots show the mesh points visited for
this noise case, with darker points representing much more
frequently-visited states. At right, magenta “+” symbols are

overlaid to show a set of 250 consecutive states visited
(chaotically) when there is no noise during post-training
testing of the policy. The MFPT predicted by the mesh is
about 958,000 gait cycles. Once all 20 pushes are allowed
(Fig. 7), this drops to a MFPT of only about 4,900 gait
cycles. In this latter case, we can see that the system now
visits a significant number of “unsafe” states (shown in red)
that department significantly from the chaotic variability of
locomotion when there is no noise.

Gs(rad/s)

i - B
0 ~ 0 - 0

5 os Gi(rad/s) Ga(rad/s) 05 Q1(rad/s)

qy(rad/s)

Fig. 6. A 3D slice of the full 13D Poincaré states generated to mesh the
policy trained in Case 2, when all but disturbance profiles 14, 16, 18 and
20 are included, i.e., excluding pushes occurring before 0.1 seconds.

Gs(rad/s)

20 ~ 0 . 20
10 § T - 10

1
Gi(rad/s) di(rad/s) di(rad/s) di(rad/s)

Fig. 7. A 3D slice of the full 13D Poincaré states generated to mesh the
policy trained in Case 2, when all 20 timing and magnitude combinations
shown in Fig. 4 are included. As in Fig. 3, the subplot at right highlights
states from which immediate failure has probability greater that 99%.

V. CONCLUSIONS

We have demonstrated the effectiveness of our meshing
tools in analyses of the polices created via deep reinforce-
ment learning. To quantify the robustness of these policies,
we create meshes for different disturbance combinations
that can happen at various times in the gait cycle and
then set transitions among mesh points based on particular
assumed probability distributions of the disturbances. The
policy trained for only forward motion is significantly less
robust to perturbations as compared to the policy trained with
impacts, which is intuitive but our tools gave us an estimate
on the actual performance improvement. Such an estimate is
important if we want to improve the performance of training
by changing various parameters that can affect the outcome
of the trained policy. In addition, by performing the analyses
on various probability distributions we show that our tools
also allow us to plot performance trends which can help
us to understand the effect each individual disturbance in
the disturbance profile has on the overall performance of
the policy. We also show how the mixing effects of these
disturbances can have significant effect on robustness.

In showing the applicability of our meshing tools to an-
alyze the policies obtained via deep reinforcement learning,
we have also created an indirect feedback loop that can be
used to improve the performance of the policies by tuning
various elements of the training framework. A future goal
is to integrate this feedback loop within the training frame-
work. We also plan to explore how increasing the number
of discrete perturbation types affects mesh size. Although
we consider toy sets of perturbations here, for illustrative
purposes, practical use of these tools should cope with denser
sets of perturbations. Finally, another important goal is to
explore how various reward functions and/or disturbances
during training may increase the degree to which a DRL
policy contracts the dynamics; reducing the dimensionality
of the state space visited would increase the practicality of
meshing. We show some initial success in this by reducing
dimensionality from n = 4.23 to n = 3.25 when training
includes pushes. Future work is planned to investigate if this
a repeatable trend and whether more extreme perturbations
during training can further improve contraction.

REFERENCES

[1] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Auton. Robots, vol. 40, no. 3, pp. 429455, 2016.

[2] S. Feng, E. C. Whitman, X. Xinjilefu, and C. G. Atkeson,
“Optimization-based full body control for the darpa robotics chal-
lenge,” J. Field Robotics, vol. 32, pp. 293-312, 2015.

[3] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. M. A. Eslami, M. Riedmiller, and D. Silver,
“Emergence of locomotion behaviours in rich environments,” 2017.

[4] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in Proc. IEEE
Int. Conf. on Robotics and Autom. (ICRA), May 2016, pp. 1366—1373.

[5] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3D dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in Proc.
IEEE Int. Conf. on Robotics and Autom. (ICRA), 2016, pp. 1447-1454.

[6] S. Sovero, N. Talele, C. Smith, N. Cox, T. Swift, and K. Byl, “Initial
data and theory for a high specific-power ankle exoskeleton device,”
in 2016 Int. Symp. on Exper. Robotics (ISER), D. Kuli¢, Y. Nakamura,
O. Khatib, and G. Venture, Eds. Springer, 2017, pp. 355-364.

[71 G. Bellegarda, N. Talele, and K. Byl, “Nonintuitive optima for
dynamic locomotion: The Acrollbot,” 05 2018, pp. 3130-3136.

[8] K. Byl and R. Tedrake, “Metastable walking machines,” 1. J. Robotics
Res., vol. 28, pp. 1040-1064, 2009.

[9] C. O. Saglam and K. Byl, “Robust policies via meshing for metastable
rough terrain walking,” in Proc. Robotics: Science and Systems, 2014.

[10] ——, “Meshing hybrid zero dynamics for rough terrain walking,” in
IEEE Int. Conf. on Robotics and Autom. (ICRA), 2015, pp. 5718-5725.

[11] N. Talele and K. Byl, “Mesh-based methods for quantifying and
improving robustness of a planar biped model to random push dis-
turbances,” in Proc. American Control Conf. (ACC), 2019 (in press).

[12] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct 2012, pp. 5026-5033.

[13] N. Talele and K. Byl, “Methods and performance analyses for design
and feedback control of efficient and robust planar biped walking,” in
Proc. American Control Conf. (ACC), 2019 (in press).

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[15] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “OpenAl baselines,”
https://github.com/openai/baselines, 2017.

[16] C. O. Saglam, “Tractable Quantication of Metastability for Robust
Bipedal Locomotion,” PhD thesis, UCSB, 2015.

