Local Enhancement

- Local Enhancement
 - •Median filtering (see notes/slides, 3.5.2)
- •HW4 due next Wednesday
- •Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7

Local Enhancement

1

Local enhancement

Sometimes Local Enhancement is Preferred.

Malab: BlkProc operation for block processing.

Left: original "tire"

image.

Local Enhancement

Histogram equalized

Local Enhancement

3

Local histogram equalized



F=@ histeq; I=imread('tire.tif'); J=blkproc(I,[20 20], F);

Local Enhancement

Fig 3.23: Another example

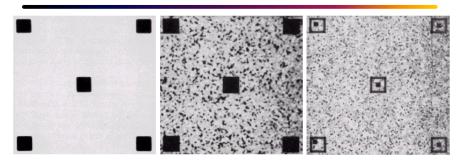


FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization using a 7 × 7 neighborhood about each pixel.

Local Enhancement

5

Local Contrast Enhancement

• Enhancing local contrast

$$g(x,y) = A(x,y) [f(x,y) - m(x,y)] + m(x,y)$$

 $A(x,y) = k M / \sigma(x,y)$ 0 < k < 1

M: Global mean

m (x,y), $\sigma(x,y)$: Local mean and standard dev.

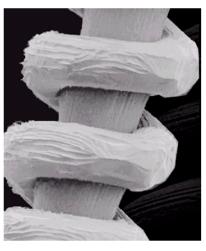
Areas with low contrast → Larger gain A (x,y) (fig 3.24-3.26)

Local Enhancement

Fig 3.24

FIGURE 3.24 SEM

FIGURE 3.24 SEM image of a tungsten filament and support, magnified approximately 130×. (Original image courtesy of Mr. Michael Shaffer, Department of Department of Geological Sciences, University of Oregon, Eugene).



Local Enhancement

Fig 3.25

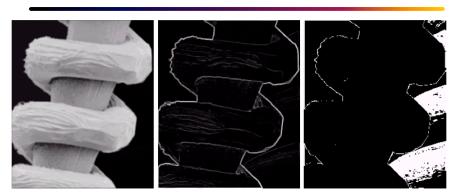


FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (c) Image formed from all multiplication constants used to produce the enhanced image shown in Fig. 3.26.

Local Enhancement

Fig 3.26

FIGURE 3.26 Enhanced SEM image. Compare with Fig. 3.24. Note in particular the enhanced area on the right side of the image.

Local Enhancement

9

Image Subtraction

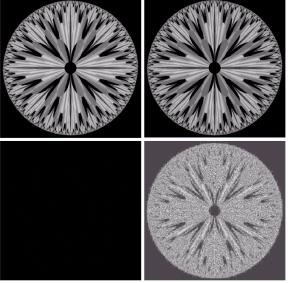
g(x,y) = f(x,y) - h(x,y)h(x,y)—a low pass filtered version of f(x,y).

- Application in medical imaging -- "mask mode radiography"
- H(x,y) is the mask, e.g., an X-ray image of part of a body; f(x,y) –incoming image after injecting a contrast medium.

Local Enhancement

Subtraction: an example

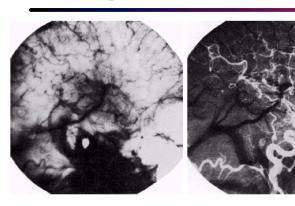
re d
FIGURE 3.28
(a) Original
fractal image.
(b) Result of
setting the four
lower-order bit
planes to zero.
(c) Difference
between (a) and
(b).
(d) Histogramequalized
difference image.
(Original image
courtesy of Ms.
Melissa D. Binde,
Swarthmore
College,
Swarthmore, PA).



Local Enhancement

11

Fig 3.28: mask mode radiography



a b

FIGURE 3.29
Enhancement by image subtraction.
(a) Mask image.
(b) An image (taken after injection of a contrast medium into the bloodstream) with mask subtracted out.

Local Enhancement

Averaging

$$g(x,y) = f(x,y) + \eta(x,y)$$

$$\overline{g}(x,y) = \frac{1}{M} \sum_{i=1}^{M} g_i(x,y)$$

$$E(\overline{g}(x,y)) = f(x,y) \text{ and } \sigma^2_g = \frac{1}{M} \sigma^2_{\eta}(x,y)$$

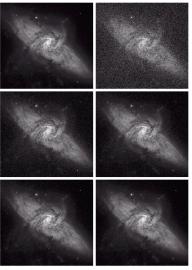
$$\eta(x,y) \to \text{Uncorrelated zero mean}$$

$$\sigma^2_{\eta}(x,y) \to \text{Re duces the noise variance}$$
Fig 3.30

Local Enhancement

13

Fig 3.30



a b c d

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss ian noise with zero mean and a standard deviation of 64 gray levels. (c)-(f) Results of averaging K = 8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Local Enhancement

Another example

Images with additive Gausian Noise; Independent Samples.

I=imnoise(J,'Gaussian');

Local Enhancement

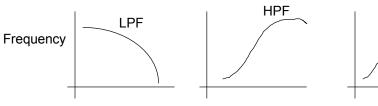
15

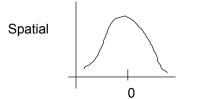
Averaged image

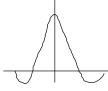
Left: averaged image (10 samples);

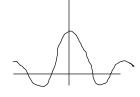
Right: original image

Local Enhancement







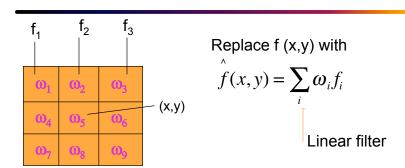


BPF

Local Enhancement

17

Smoothing (Low Pass) Filtering



LPF: reduces additive noise \rightarrow blurs the image

→ sharpness details are lost (Example: Local averaging)

Fig 3.35

Local Enhancement

Fig 3.35: smoothing

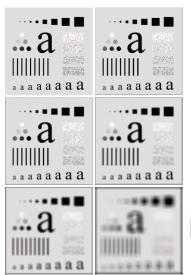


FIGURE 3.35 (a) Original image, of size 500×500 pixels (b)–(f) Results of smoothing with square averaging filter masks of sizes n=3,5,9,15, and 35, respectively. The black squares at the top are of sizes 3, 5,9, 15,25, 35, 45, and 55 pixels respectively their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 29 pixels and part. The letters at the bottom range in size from 10 to 24 points, which is perfectly the side of pixels. The side of the circles is dead of 105 pixels high, their separation is 20 pixels. The diameter of the circles back in increments of 20%. The background of the image is 10% black. The noisy restangles are of size 50×120 pixels.

Local Enhancement

Fig 3.36: another example

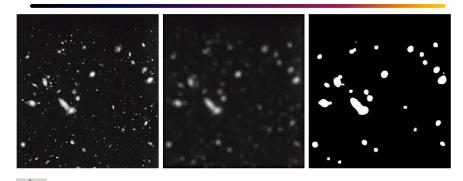


FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Local Enhancement

Image Dithering

- Dithering: to produce visually pleasing signals from heavily quantized data.
 - Halftoning: convert a gray scale image to a binary image by thresholding.
 - Dithering to "add" noise so that the resulting image is smoother than just thresholding (but still it is a binary image)
 - Your homework #4 explores this further with a MATLAB exercise.

Local Enhancement

21

Median filtering

Replace f(x,y) with median [f(x', y')](x', y') \mathcal{E} neighbourhood

- Useful in eliminating intensity spikes. (salt & pepper noise)
- Better at preserving edges.

Example:

10	20	20
20	15	20
25	20	100

→ (10,15,20,20,20,20,20,25,100)

Median=20

So replace (15) with (20)

Local Enhancement

Median Filter: Root Signal

Repeated applications of median filter to a signal results in an invariant signal called the "root signal".

A root signal is invariant to further application of the medina filter.

Example: 1-D signal: Median filter length = 3

 $0 \ 0 \ 0 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 0 \ 0 \ 0$

 $0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 2 \quad 1 \quad 2 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0$

 $0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 2 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$

0 0 0 1 1 1 1 1 1 1 0 0 0 root signal

Local Enhancement

23

Invariant Signals

Invariant signals to a median filter:

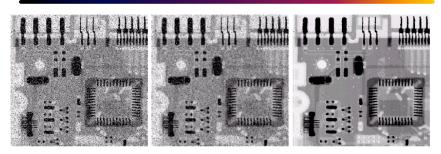
Constant increasing

Monotonically decreasing

length?

Local Enhancement

Fig 3.37: Median Filtering example



a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Local Enhancement

25

Media Filter: another example

Original and with salt & pepper noise imnoise(image, 'salt & pepper');

Local Enhancement

Donoised images

Local averaging K=filter2(fspecial('average',3),image)/255.

Median filtered L=medfil2(image, [3 3]);

Local Enhancement

27

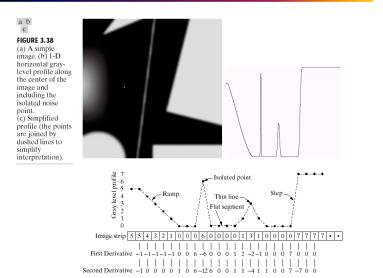
Sharpening Filters

- Enhance finer image details (such as edges)
- Detect region /object boundaries.

Example:

-1	-1	-1
-1	8	-1
-1	-1	-1

Local Enhancement



Local Enhancement

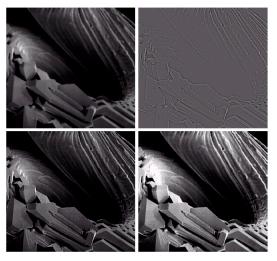
Unsharp Masking

Subtract Low pass filtered version from the original emphasizes high frequency information

Local Enhancement

Fig 3.43 –example of unsharp masking

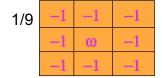
FIGURE 3.43 (a) Same as Fig. 3.41(c), but darker. (a) Laplacian of (a) computed with the mask in Fig. 3.42(b) using A = 0. (c) Laplacian enhanced image using the mask in Fig. 3.42(b) with A = 1. (d) Same as (c), but using A = 1.7.



Local Enhancement

21

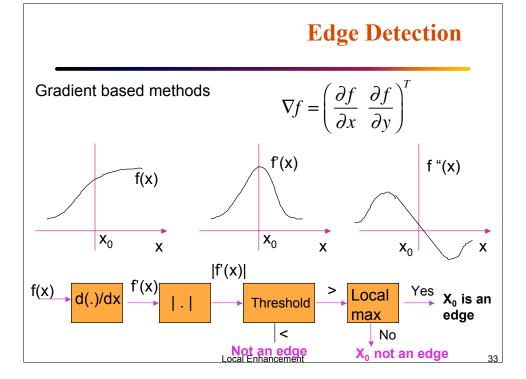
Derivative Filters



Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right]^{T}$$
$$\|\nabla f\| = \left[\left(\frac{\partial f}{\partial x} \right)^{2} + \left(\frac{\partial f}{\partial y} \right)^{2} \right]^{\frac{1}{2}}$$

Local Enhancement



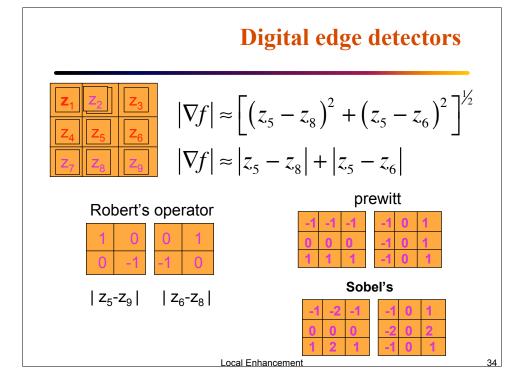
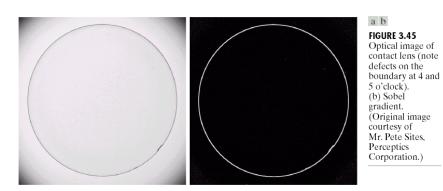


Fig 3.45: Sobel edge detector



Local Enhancement

35

Laplacian based edge detectors

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- •Rotationally symmetric, linear operator
- •Check for the zero crossings to detect edges
- •Second derivatives => sensitive to noise.

Local Enhancement

