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2D Fourier Transform

2-D DFT  & Properties
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Fourier Transform - review

1-D:

2-D:

F u( ) ! " f (x){ } = f (x)e
# j2$ u x

#%

%

& dx

f (x) ! "#1
F(u){ } = F(u)e

j2$ u x

#%

%

& du

F(u,v) = f (x, y)&& e
# j2$ ux+vy( )

dxdy

f (x, y) = F(u,v)e
j2$ ux+vy( )

dudv&&
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2D FT: Properties

Convolution: f(x,y)      g(x,y) =  F(u,v) G(u,v)

Multiplication: f(x,y) g(x,y) = F(u,v)      G(u,v)

Separable functions: Suppose f(x,y) = g(x) h(y), Then
                                                 F(u,v)=G(u)H(v)

Shifting: f(x+x0, y+y0)                exp[2π j (+ x0u + y0v)] F(u,v)

Linearity: a f(x,y) + b g(x,y)                a F(u,v) + b G(u,v)
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Separability of the FT

F(u,v) = f (x, y)e
! j2" ux

dx
!#

#

$
%

&
'

(

)
*

!#

#

$ e
! j2" vy

dy

= F(u, y)
!#

#

$ e
! j2" vy

dy
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Separability (contd.)

f(x,y) F(u,y) F(u,v)

Fourier Transform 
along X.

Fourier Transform
along Y.

We can implement the 2D Fourier transform as a
sequence of 1-D Fourier transform operations.
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Eigenfunctions of LSI Systems

A function f(x,y) is an Eigenfunction of a system T if
T[ f(x,y) ] = α f(x,y) for some  constant (Possibly complex) α.

For LSI systems, complex exponentials of the form
exp{  j2π (ux+vy) }, for any (u,v), are the
Eigenfunctions.
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Impulse Response and Eigenfunctions

g(x, y) = h(x ! s, y ! t)e j2" (us+vt )ds
!#

#

$$ dt

= h(x , y )$$ e
j2" (ux+vy)

e
! j2" (ux +vy )

dx dy

= H (u,v)e
j2" (ux+vy)

Consider a LSI system with impulse response h(x,y).
Its output to the complex exponential is

2D Fourier Transform 8

2-D FT: Example

f(x,y)

x

y
YX

A

F(u,v) = f (x, y)e
! j2" (ux+vy)

dxdy
!#

#

$$

= A e
! j2" ux

0

X

$ dx e
! j2" vy

0

Y

$ dy

= AXY
sin"uX

"uX
%

&'
(

)*
sin"vY

"vY
%

&'
(

)*
e
! j" (uX+vY )
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Example (contd.)
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Example2
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Discrete Fourier Transform

Consider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) is
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Where and the inverse is given by
#

2D Fourier Transform 12

2-D DFT

Often it is convenient
to consider a
symmetric transform:

In 2-D:
consider a
NXN image

v(k) =
1

N
u(n)W

N

kn

n=0

N !1

" and

u(n) =
1

N
v(k)W

N

!kn

n=0

N !1

"

v(k,l) =
1

N
u

n=0

N !1

" (m,n)W
N

km
W

N

ln

m=0

N !1

" ,

u(m,n) =
1

N
v

l=0

N !1

" (k,l)W
N

!km! l n

k=0

N !1

"
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2D DFT -- PROPERTIES

 Separability
 Translation
 Scaling
 Periodicity and Conjugate Symmetry
 Rotation
 convolution
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Separability

For each ‘m’, v(m,l) is the 1-D DFT with frequency values 
l = 0,1,....., N-1

v(k,l) =
1

N
W

N

km

m=0

N !1

" u(m,n)W
N

ln

n=0

N !1

"

=
1

N
v(m,l)W

N

km

m=0

N !1

"
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Separability

The DFT of a 2-D array can be obtained by first taking
the 1-D DFT of each row (or column) and then taking
the 1-D DFT of each column (or row).

It does not matter if the order of operation is
reversed.
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Translation

u(m ! "m ,n ! "n )# v(k,l)e
! j2$

(km '+ l n ')

N
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Displaying the DFT: Scaling

v(k,l)=
DFT{u(m,n)}  Display

C log[1+lv(k,l)l]

 Constant

Large dynamic range
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In MATLAB

f = zeros(30,30);
f(5:24,13:17)=1;
imshow(f, ‘notruesize’);
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In Matlab(2)

F =fft2(f);
F2 = log(abs(F));
imshow(F2, [-1, 5], ‘notruesize’);
colormap(jet); colorbar;
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Displaying the DFT

N-1

v

0   N-1
u

Low frequency components
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Displaying (again) & Shifting

u(m,n)e

j2! (k 'm+ l 'n)

N " v(k # k ',l # l ') and

u(m,n)(#1)m+n " v k #
N

2
, l #

N

2

$
%&

'
()

The origin of the F{u(m,n)} can be moved to the center of
the array (N X N square) by first multiplying u(m,n) by (-1)m+n

and  then taking the Fourier transform.
Note: Shifting does not affect the magnitude of the Fourier transform.
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Displaying DFT

|v(k,l) e -j2π[ km’+ln’ ] / N |  =  |v(k,l)|

A B

C D

D C

B A

Low frequency
componentsMATLAB Example
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In Matlab(3): FFTSHIFT

F2= fftshift(F);
imshow (log(abs(F2),..)
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Another example

Original image Its centered DFT magnitude
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Periodicity & Conjugate Symmetry

u(m,n) 
F

v(k,l)

v(k,l) = v(k+N, l) = v(k, l+N) = v(k+N, l+N)

If u(m,n) is real, v(k,l) also exhibits conjugate symmetry
v(k,l) = v* (-k, -l)  or  | v(k,l) | = | v(-k, -l) |
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Rotation

(continuous case)

      If you rotate the image u(m,n) by an angle θ, its F.T also
gets rotated by the same angle.
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Rotation
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Average Value

u =
1

N
u(m,n) = Average

n

!
m

!

v(k,l) =
1

N
u(m,n)e

" j2#
km+ l n

N

n

!
m

!

v(0,0) =
1

N
u(m,n) = Nu

n

!
m

!

  or u =
v(0,0)

N
 (Scaled Average)
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Convolution (Revisited)

Consider 1-D
continuous case

Convolution in
Space

Multiplication in
Frequency

f (x)! g(x) = f (x ')g(x " x ')dx '
"#

#

$

Let  f (x) % F(u), g(x) % G(u)

Then  f (x)! g(x) % F(u)G(u)
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Let us now assume that we discretize f(x) and g(x) into
vectors f(n) and g(n) of lengths A and B

f(n)        {f(0), f(1),..... f(A-1)}
g(n)       {g(0), g(1), g(2),....g(B-1)}

(a) DFT and its inverse are periodic functions
(b) Convolving two vectors of length A and B gives a
vector of dimension A+B-1. (Linear convolution)

Discrete Convolution
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Length of the Convolution

B
 A
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Discrete Convolution: an example (Fig 4.36)

3

200 400

f(m)

m

3

200 400

f(m)

m
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200 400

h(m)

m

2

200 400

h(m)

m

2

200 400

h(-m)

m

2

200 400

h(-m)

m
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Discrete conv. (cont.)

2

200 400

h(x-m)

mx
2

200 400

h(x-m)

mx

Range of the DFT=400500
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Zero Imbedding

In order to obtain a convolution theorem for the discrete case, and still
be consistent with the periodicity property we need to assume that
sequences f( ) and g( ) are periodic with some period M. From (b) it is
clear that M> A+B-1 to avoid overlap.

Since this period is greater than A or B, the original sequence length
must be increased and this is done by appending zeros at the end.
Redefine the extended sequences as

fe(n) =
f (n) 0 ! n ! A "1

0 A ! n ! M "1

#
$
%

ge(n) =
g(n) 0 ! n ! B "1

0 B ! n ! M "1

#
$
%
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fe(n) !c ge(n) = fe(m)ge(n " m)c
m=0

M "1

#

where   g(n)( )
c
= g n Modulo M[ ]

Note: With n expressed as

n=n1 + n2N        where   0 $ n1 $ N "1

n modulo N  equals n1

x   mod   y = x " y x
y

%
&'

(
)*

   if y + 0

x   mod   0 = x.   

x

y
%& ()  is the integer part of x

y
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Theorem

The DFT of the circular convolution of two sequences of
length N is equal to the product of their DFTs.

A linear convolution of two sequences can be obtained via
FFT by embedding it into a circular convolution.

If  y(n) = f (n ! m)c
m=0

N !1

" g(n) then 

 DFT y(n)[ ]
N
=  DFT f (n)[ ]

N
DFT g(n)[ ]

N
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2-D Convolution

These results can be similarly extended to 2-D
signals.

Let    f(m,n) :  A x B  array
         g(m,n) : C x D  array
Let    M> = A + C -1
         N> =  B + D -1

For linear convolution using DFT create the extended
periodic sequences of period MxN in the 2-D.
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Extended (periodic) Sequences

f m n

f m n m A

n B

A m M

B n N

g m n

g m n m C
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C m M

D n N

y m n f m m n n g m n

e

e

e c
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m

M

e
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and the 2 - D linear convolution becomes

computing
convolution
is more 
efficient
in the frequency
domain.
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Linear Convolution and DFT: Summary

               y(n) = f(n)  *  g(n)y(n) = f(n)  *  g(n)

1. Let  M>= A+B-1 be an integer for which the FFT algorithm
is available.

2. Define the zero extended sequences fe(n), ge(n).

3. Let  Fe(k) =  DFT { fe(n) }M,  Ge(k) = DFT { ge(n) }M. Let
Ye(k)=Fe(k)Ge(k)

4. Take the I-DFT of Ye(k) to obtain Ye(n).
    Then Y (n) = Ye(n)  for 0 <= n <= A+B-1
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A note on convolution with images

Note: In many cases involving images, we deal
with square arrays of size N X N. We normally
would like to have the resulting convolved
output also as an N X N array.
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Conv2 (.) in Matlab

CONV2 Two dimensional convolution.
C = CONV2(A, B) performs the 2-D convolution of matrices A

and B.   If [ma,na] = size(A) and [mb,nb] = size(B), then
 size(C) = [ma+mb-1,na+nb-1].

C = CONV2( ... ,'shape') returns a subsection of the 2-D
convolution with size specified by 'shape':

       'full'  - (default) returns the full 2-D convolution,
       'same'  - returns the central part of the convolution that is the

same size as A.
       'valid' - returns only those parts of the convolution that are

computed without the zero-padded edges,
     size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).


